xref: /netbsd/sys/dev/ic/gem.c (revision c4a72b64)
1 /*	$NetBSD: gem.c,v 1.23 2002/10/22 00:01:56 fair Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * All rights reserved.
7  *
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Driver for Sun GEM ethernet controllers.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.23 2002/10/22 00:01:56 fair Exp $");
38 
39 #include "bpfilter.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/syslog.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 
53 #include <machine/endian.h>
54 
55 #include <uvm/uvm_extern.h>
56 
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61 
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65 
66 #include <machine/bus.h>
67 #include <machine/intr.h>
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <dev/mii/mii_bitbang.h>
72 
73 #include <dev/ic/gemreg.h>
74 #include <dev/ic/gemvar.h>
75 
76 #define TRIES	10000
77 
78 void		gem_start __P((struct ifnet *));
79 void		gem_stop __P((struct ifnet *, int));
80 int		gem_ioctl __P((struct ifnet *, u_long, caddr_t));
81 void		gem_tick __P((void *));
82 void		gem_watchdog __P((struct ifnet *));
83 void		gem_shutdown __P((void *));
84 int		gem_init __P((struct ifnet *));
85 void		gem_init_regs(struct gem_softc *sc);
86 static int	gem_ringsize(int sz);
87 int		gem_meminit __P((struct gem_softc *));
88 void		gem_mifinit __P((struct gem_softc *));
89 void		gem_reset __P((struct gem_softc *));
90 int		gem_reset_rx(struct gem_softc *sc);
91 int		gem_reset_tx(struct gem_softc *sc);
92 int		gem_disable_rx(struct gem_softc *sc);
93 int		gem_disable_tx(struct gem_softc *sc);
94 void		gem_rxdrain(struct gem_softc *sc);
95 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
96 void		gem_setladrf __P((struct gem_softc *));
97 
98 /* MII methods & callbacks */
99 static int	gem_mii_readreg __P((struct device *, int, int));
100 static void	gem_mii_writereg __P((struct device *, int, int, int));
101 static void	gem_mii_statchg __P((struct device *));
102 
103 int		gem_mediachange __P((struct ifnet *));
104 void		gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
105 
106 struct mbuf	*gem_get __P((struct gem_softc *, int, int));
107 int		gem_put __P((struct gem_softc *, int, struct mbuf *));
108 void		gem_read __P((struct gem_softc *, int, int));
109 int		gem_eint __P((struct gem_softc *, u_int));
110 int		gem_rint __P((struct gem_softc *));
111 int		gem_tint __P((struct gem_softc *));
112 void		gem_power __P((int, void *));
113 
114 #ifdef GEM_DEBUG
115 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
116 				printf x
117 #else
118 #define	DPRINTF(sc, x)	/* nothing */
119 #endif
120 
121 
122 /*
123  * gem_attach:
124  *
125  *	Attach a Gem interface to the system.
126  */
127 void
128 gem_attach(sc, enaddr)
129 	struct gem_softc *sc;
130 	const uint8_t *enaddr;
131 {
132 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
133 	struct mii_data *mii = &sc->sc_mii;
134 	struct mii_softc *child;
135 	struct ifmedia_entry *ifm;
136 	int i, error;
137 	u_int32_t v;
138 
139 	/* Make sure the chip is stopped. */
140 	ifp->if_softc = sc;
141 	gem_reset(sc);
142 
143 	/*
144 	 * Allocate the control data structures, and create and load the
145 	 * DMA map for it.
146 	 */
147 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
148 	    sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
149 	    1, &sc->sc_cdnseg, 0)) != 0) {
150 		printf("%s: unable to allocate control data, error = %d\n",
151 		    sc->sc_dev.dv_xname, error);
152 		goto fail_0;
153 	}
154 
155 /* XXX should map this in with correct endianness */
156 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
157 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
158 	    BUS_DMA_COHERENT)) != 0) {
159 		printf("%s: unable to map control data, error = %d\n",
160 		    sc->sc_dev.dv_xname, error);
161 		goto fail_1;
162 	}
163 
164 	if ((error = bus_dmamap_create(sc->sc_dmatag,
165 	    sizeof(struct gem_control_data), 1,
166 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
167 		printf("%s: unable to create control data DMA map, "
168 		    "error = %d\n", sc->sc_dev.dv_xname, error);
169 		goto fail_2;
170 	}
171 
172 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
173 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
174 	    0)) != 0) {
175 		printf("%s: unable to load control data DMA map, error = %d\n",
176 		    sc->sc_dev.dv_xname, error);
177 		goto fail_3;
178 	}
179 
180 	/*
181 	 * Initialize the transmit job descriptors.
182 	 */
183 	SIMPLEQ_INIT(&sc->sc_txfreeq);
184 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
185 
186 	/*
187 	 * Create the transmit buffer DMA maps.
188 	 */
189 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
190 		struct gem_txsoft *txs;
191 
192 		txs = &sc->sc_txsoft[i];
193 		txs->txs_mbuf = NULL;
194 		if ((error = bus_dmamap_create(sc->sc_dmatag,
195 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
196 		    ETHER_MAX_LEN_JUMBO, 0, 0,
197 		    &txs->txs_dmamap)) != 0) {
198 			printf("%s: unable to create tx DMA map %d, "
199 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
200 			goto fail_4;
201 		}
202 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
203 	}
204 
205 	/*
206 	 * Create the receive buffer DMA maps.
207 	 */
208 	for (i = 0; i < GEM_NRXDESC; i++) {
209 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
210 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
211 			printf("%s: unable to create rx DMA map %d, "
212 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
213 			goto fail_5;
214 		}
215 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
216 	}
217 
218 	/*
219 	 * From this point forward, the attachment cannot fail.  A failure
220 	 * before this point releases all resources that may have been
221 	 * allocated.
222 	 */
223 
224 	/* Announce ourselves. */
225 	printf("%s: Ethernet address %s", sc->sc_dev.dv_xname,
226 	    ether_sprintf(enaddr));
227 
228 	/* Get RX FIFO size */
229 	sc->sc_rxfifosize = 64 *
230 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
231 	printf(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
232 
233 	/* Get TX FIFO size */
234 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
235 	printf(", %uKB TX fifo\n", v / 16);
236 
237 	/* Initialize ifnet structure. */
238 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
239 	ifp->if_softc = sc;
240 	ifp->if_flags =
241 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
242 	ifp->if_start = gem_start;
243 	ifp->if_ioctl = gem_ioctl;
244 	ifp->if_watchdog = gem_watchdog;
245 	ifp->if_stop = gem_stop;
246 	ifp->if_init = gem_init;
247 	IFQ_SET_READY(&ifp->if_snd);
248 
249 	/* Initialize ifmedia structures and MII info */
250 	mii->mii_ifp = ifp;
251 	mii->mii_readreg = gem_mii_readreg;
252 	mii->mii_writereg = gem_mii_writereg;
253 	mii->mii_statchg = gem_mii_statchg;
254 
255 	ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
256 
257 	gem_mifinit(sc);
258 
259 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
260 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
261 
262 	child = LIST_FIRST(&mii->mii_phys);
263 	if (child == NULL) {
264 		/* No PHY attached */
265 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
266 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
267 	} else {
268 		/*
269 		 * Walk along the list of attached MII devices and
270 		 * establish an `MII instance' to `phy number'
271 		 * mapping. We'll use this mapping in media change
272 		 * requests to determine which phy to use to program
273 		 * the MIF configuration register.
274 		 */
275 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
276 			/*
277 			 * Note: we support just two PHYs: the built-in
278 			 * internal device and an external on the MII
279 			 * connector.
280 			 */
281 			if (child->mii_phy > 1 || child->mii_inst > 1) {
282 				printf("%s: cannot accomodate MII device %s"
283 				       " at phy %d, instance %d\n",
284 				       sc->sc_dev.dv_xname,
285 				       child->mii_dev.dv_xname,
286 				       child->mii_phy, child->mii_inst);
287 				continue;
288 			}
289 
290 			sc->sc_phys[child->mii_inst] = child->mii_phy;
291 
292 		}
293 
294 		/*
295 		 * Now select and activate the PHY we will use.
296 		 *
297 		 * The order of preference is External (MDI1),
298 		 * Internal (MDI0), Serial Link (no MII).
299 		 */
300 		if (sc->sc_phys[1]) {
301 #ifdef DEBUG
302 			printf("using external phy\n");
303 #endif
304 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
305 		} else {
306 #ifdef DEBUG
307 			printf("using internal phy\n");
308 #endif
309 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
310 		}
311 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
312 			sc->sc_mif_config);
313 
314 		/*
315 		 * XXX - we can really do the following ONLY if the
316 		 * phy indeed has the auto negotiation capability!!
317 		 */
318 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
319 	}
320 
321 	/*
322 	 * If we support GigE media, we support jumbo frames too.
323 	 * Unless we are Apple.
324 	 */
325 	TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
326 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
327 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
328 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
329 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
330 			if (sc->sc_variant != GEM_APPLE_GMAC)
331 				sc->sc_ethercom.ec_capabilities
332 				    |= ETHERCAP_JUMBO_MTU;
333 
334 			sc->sc_flags |= GEM_GIGABIT;
335 			break;
336 		}
337 	}
338 
339 	/* claim 802.1q capability */
340 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
341 
342 	/* Attach the interface. */
343 	if_attach(ifp);
344 	ether_ifattach(ifp, enaddr);
345 
346 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
347 	if (sc->sc_sh == NULL)
348 		panic("gem_config: can't establish shutdownhook");
349 
350 #if NRND > 0
351 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
352 			  RND_TYPE_NET, 0);
353 #endif
354 
355 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
356 	    NULL, sc->sc_dev.dv_xname, "interrupts");
357 #ifdef GEM_COUNTERS
358 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
359 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
360 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
361 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
362 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
363 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
364 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
365 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
366 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
367 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
368 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
369 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
370 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
371 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
372 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
373 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
374 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
375 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
376 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
377 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
378 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
379 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
380 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
381 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
382 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
383 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
384 #endif
385 
386 #if notyet
387 	/*
388 	 * Add a suspend hook to make sure we come back up after a
389 	 * resume.
390 	 */
391 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
392 	if (sc->sc_powerhook == NULL)
393 		printf("%s: WARNING: unable to establish power hook\n",
394 		    sc->sc_dev.dv_xname);
395 #endif
396 
397 	callout_init(&sc->sc_tick_ch);
398 	return;
399 
400 	/*
401 	 * Free any resources we've allocated during the failed attach
402 	 * attempt.  Do this in reverse order and fall through.
403 	 */
404  fail_5:
405 	for (i = 0; i < GEM_NRXDESC; i++) {
406 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
407 			bus_dmamap_destroy(sc->sc_dmatag,
408 			    sc->sc_rxsoft[i].rxs_dmamap);
409 	}
410  fail_4:
411 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
412 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
413 			bus_dmamap_destroy(sc->sc_dmatag,
414 			    sc->sc_txsoft[i].txs_dmamap);
415 	}
416 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
417  fail_3:
418 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
419  fail_2:
420 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
421 	    sizeof(struct gem_control_data));
422  fail_1:
423 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
424  fail_0:
425 	return;
426 }
427 
428 
429 void
430 gem_tick(arg)
431 	void *arg;
432 {
433 	struct gem_softc *sc = arg;
434 	int s;
435 
436 	s = splnet();
437 	mii_tick(&sc->sc_mii);
438 	splx(s);
439 
440 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
441 
442 }
443 
444 void
445 gem_reset(sc)
446 	struct gem_softc *sc;
447 {
448 	bus_space_tag_t t = sc->sc_bustag;
449 	bus_space_handle_t h = sc->sc_h;
450 	int i;
451 	int s;
452 
453 	s = splnet();
454 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
455 	gem_reset_rx(sc);
456 	gem_reset_tx(sc);
457 
458 	/* Do a full reset */
459 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
460 	for (i=TRIES; i--; delay(100))
461 		if ((bus_space_read_4(t, h, GEM_RESET) &
462 			(GEM_RESET_RX|GEM_RESET_TX)) == 0)
463 			break;
464 	if ((bus_space_read_4(t, h, GEM_RESET) &
465 		(GEM_RESET_RX|GEM_RESET_TX)) != 0) {
466 		printf("%s: cannot reset device\n",
467 			sc->sc_dev.dv_xname);
468 	}
469 	splx(s);
470 }
471 
472 
473 /*
474  * gem_rxdrain:
475  *
476  *	Drain the receive queue.
477  */
478 void
479 gem_rxdrain(struct gem_softc *sc)
480 {
481 	struct gem_rxsoft *rxs;
482 	int i;
483 
484 	for (i = 0; i < GEM_NRXDESC; i++) {
485 		rxs = &sc->sc_rxsoft[i];
486 		if (rxs->rxs_mbuf != NULL) {
487 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
488 			m_freem(rxs->rxs_mbuf);
489 			rxs->rxs_mbuf = NULL;
490 		}
491 	}
492 }
493 
494 /*
495  * Reset the whole thing.
496  */
497 void
498 gem_stop(struct ifnet *ifp, int disable)
499 {
500 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
501 	struct gem_txsoft *txs;
502 
503 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
504 
505 	callout_stop(&sc->sc_tick_ch);
506 	mii_down(&sc->sc_mii);
507 
508 	/* XXX - Should we reset these instead? */
509 	gem_disable_rx(sc);
510 	gem_disable_tx(sc);
511 
512 	/*
513 	 * Release any queued transmit buffers.
514 	 */
515 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
516 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
517 		if (txs->txs_mbuf != NULL) {
518 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
519 			m_freem(txs->txs_mbuf);
520 			txs->txs_mbuf = NULL;
521 		}
522 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
523 	}
524 
525 	if (disable) {
526 		gem_rxdrain(sc);
527 	}
528 
529 	/*
530 	 * Mark the interface down and cancel the watchdog timer.
531 	 */
532 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
533 	ifp->if_timer = 0;
534 }
535 
536 
537 /*
538  * Reset the receiver
539  */
540 int
541 gem_reset_rx(struct gem_softc *sc)
542 {
543 	bus_space_tag_t t = sc->sc_bustag;
544 	bus_space_handle_t h = sc->sc_h;
545 	int i;
546 
547 
548 	/*
549 	 * Resetting while DMA is in progress can cause a bus hang, so we
550 	 * disable DMA first.
551 	 */
552 	gem_disable_rx(sc);
553 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
554 	/* Wait till it finishes */
555 	for (i=TRIES; i--; delay(100))
556 		if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
557 			break;
558 	if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
559 		printf("%s: cannot disable read dma\n",
560 			sc->sc_dev.dv_xname);
561 
562 	/* Wait 5ms extra. */
563 	delay(5000);
564 
565 	/* Finally, reset the ERX */
566 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
567 	/* Wait till it finishes */
568 	for (i=TRIES; i--; delay(100))
569 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
570 			break;
571 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
572 		printf("%s: cannot reset receiver\n",
573 			sc->sc_dev.dv_xname);
574 		return (1);
575 	}
576 	return (0);
577 }
578 
579 
580 /*
581  * Reset the transmitter
582  */
583 int
584 gem_reset_tx(struct gem_softc *sc)
585 {
586 	bus_space_tag_t t = sc->sc_bustag;
587 	bus_space_handle_t h = sc->sc_h;
588 	int i;
589 
590 	/*
591 	 * Resetting while DMA is in progress can cause a bus hang, so we
592 	 * disable DMA first.
593 	 */
594 	gem_disable_tx(sc);
595 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
596 	/* Wait till it finishes */
597 	for (i=TRIES; i--; delay(100))
598 		if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
599 			break;
600 	if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
601 		printf("%s: cannot disable read dma\n",
602 			sc->sc_dev.dv_xname);
603 
604 	/* Wait 5ms extra. */
605 	delay(5000);
606 
607 	/* Finally, reset the ETX */
608 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
609 	/* Wait till it finishes */
610 	for (i=TRIES; i--; delay(100))
611 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
612 			break;
613 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
614 		printf("%s: cannot reset receiver\n",
615 			sc->sc_dev.dv_xname);
616 		return (1);
617 	}
618 	return (0);
619 }
620 
621 /*
622  * disable receiver.
623  */
624 int
625 gem_disable_rx(struct gem_softc *sc)
626 {
627 	bus_space_tag_t t = sc->sc_bustag;
628 	bus_space_handle_t h = sc->sc_h;
629 	int i;
630 	u_int32_t cfg;
631 
632 	/* Flip the enable bit */
633 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
634 	cfg &= ~GEM_MAC_RX_ENABLE;
635 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
636 
637 	/* Wait for it to finish */
638 	for (i=TRIES; i--; delay(100))
639 		if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
640 			GEM_MAC_RX_ENABLE) == 0)
641 			return (0);
642 	return (1);
643 }
644 
645 /*
646  * disable transmitter.
647  */
648 int
649 gem_disable_tx(struct gem_softc *sc)
650 {
651 	bus_space_tag_t t = sc->sc_bustag;
652 	bus_space_handle_t h = sc->sc_h;
653 	int i;
654 	u_int32_t cfg;
655 
656 	/* Flip the enable bit */
657 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
658 	cfg &= ~GEM_MAC_TX_ENABLE;
659 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
660 
661 	/* Wait for it to finish */
662 	for (i=TRIES; i--; delay(100))
663 		if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
664 			GEM_MAC_TX_ENABLE) == 0)
665 			return (0);
666 	return (1);
667 }
668 
669 /*
670  * Initialize interface.
671  */
672 int
673 gem_meminit(struct gem_softc *sc)
674 {
675 	struct gem_rxsoft *rxs;
676 	int i, error;
677 
678 	/*
679 	 * Initialize the transmit descriptor ring.
680 	 */
681 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
682 	for (i = 0; i < GEM_NTXDESC; i++) {
683 		sc->sc_txdescs[i].gd_flags = 0;
684 		sc->sc_txdescs[i].gd_addr = 0;
685 	}
686 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
687 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
688 	sc->sc_txfree = GEM_NTXDESC-1;
689 	sc->sc_txnext = 0;
690 	sc->sc_txwin = 0;
691 
692 	/*
693 	 * Initialize the receive descriptor and receive job
694 	 * descriptor rings.
695 	 */
696 	for (i = 0; i < GEM_NRXDESC; i++) {
697 		rxs = &sc->sc_rxsoft[i];
698 		if (rxs->rxs_mbuf == NULL) {
699 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
700 				printf("%s: unable to allocate or map rx "
701 				    "buffer %d, error = %d\n",
702 				    sc->sc_dev.dv_xname, i, error);
703 				/*
704 				 * XXX Should attempt to run with fewer receive
705 				 * XXX buffers instead of just failing.
706 				 */
707 				gem_rxdrain(sc);
708 				return (1);
709 			}
710 		} else
711 			GEM_INIT_RXDESC(sc, i);
712 	}
713 	sc->sc_rxptr = 0;
714 
715 	return (0);
716 }
717 
718 static int
719 gem_ringsize(int sz)
720 {
721 	int v;
722 
723 	switch (sz) {
724 	case 32:
725 		v = GEM_RING_SZ_32;
726 		break;
727 	case 64:
728 		v = GEM_RING_SZ_64;
729 		break;
730 	case 128:
731 		v = GEM_RING_SZ_128;
732 		break;
733 	case 256:
734 		v = GEM_RING_SZ_256;
735 		break;
736 	case 512:
737 		v = GEM_RING_SZ_512;
738 		break;
739 	case 1024:
740 		v = GEM_RING_SZ_1024;
741 		break;
742 	case 2048:
743 		v = GEM_RING_SZ_2048;
744 		break;
745 	case 4096:
746 		v = GEM_RING_SZ_4096;
747 		break;
748 	case 8192:
749 		v = GEM_RING_SZ_8192;
750 		break;
751 	default:
752 		printf("gem: invalid Receive Descriptor ring size\n");
753 		break;
754 	}
755 	return (v);
756 }
757 
758 /*
759  * Initialization of interface; set up initialization block
760  * and transmit/receive descriptor rings.
761  */
762 int
763 gem_init(struct ifnet *ifp)
764 {
765 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
766 	bus_space_tag_t t = sc->sc_bustag;
767 	bus_space_handle_t h = sc->sc_h;
768 	int s;
769 	u_int max_frame_size;
770 	u_int32_t v;
771 
772 	s = splnet();
773 
774 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
775 	/*
776 	 * Initialization sequence. The numbered steps below correspond
777 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
778 	 * Channel Engine manual (part of the PCIO manual).
779 	 * See also the STP2002-STQ document from Sun Microsystems.
780 	 */
781 
782 	/* step 1 & 2. Reset the Ethernet Channel */
783 	gem_stop(ifp, 0);
784 	gem_reset(sc);
785 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
786 
787 	/* Re-initialize the MIF */
788 	gem_mifinit(sc);
789 
790 	/* Call MI reset function if any */
791 	if (sc->sc_hwreset)
792 		(*sc->sc_hwreset)(sc);
793 
794 	/* step 3. Setup data structures in host memory */
795 	gem_meminit(sc);
796 
797 	/* step 4. TX MAC registers & counters */
798 	gem_init_regs(sc);
799 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
800 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
801 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
802 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
803 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
804 	    max_frame_size|/* burst size */(0x2000<<16));
805 
806 	/* step 5. RX MAC registers & counters */
807 	gem_setladrf(sc);
808 
809 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
810 	/* NOTE: we use only 32-bit DMA addresses here. */
811 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
812 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
813 
814 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
815 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
816 
817 	/* step 8. Global Configuration & Interrupt Mask */
818 	bus_space_write_4(t, h, GEM_INTMASK,
819 		      ~(GEM_INTR_TX_INTME|
820 			GEM_INTR_TX_EMPTY|
821 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
822 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
823 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
824 			GEM_INTR_BERR));
825 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
826 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
827 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
828 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
829 
830 	/* step 9. ETX Configuration: use mostly default values */
831 
832 	/* Enable DMA */
833 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
834 	bus_space_write_4(t, h, GEM_TX_CONFIG,
835 		v|GEM_TX_CONFIG_TXDMA_EN|
836 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
837 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
838 
839 	/* step 10. ERX Configuration */
840 
841 	/* Encode Receive Descriptor ring size: four possible values */
842 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
843 
844 	/* Enable DMA */
845 	bus_space_write_4(t, h, GEM_RX_CONFIG,
846 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
847 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
848 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
849 	/*
850 	 * The following value is for an OFF Threshold of about 3/4 full
851 	 * and an ON Threshold of 1/4 full.
852 	 */
853 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
854 	     (3 * sc->sc_rxfifosize / 256) |
855 	     (   (sc->sc_rxfifosize / 256) << 12));
856 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
857 
858 	/* step 11. Configure Media */
859 	mii_mediachg(&sc->sc_mii);
860 
861 /* XXXX Serial link needs a whole different setup. */
862 
863 
864 	/* step 12. RX_MAC Configuration Register */
865 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
866 	v |= GEM_MAC_RX_ENABLE;
867 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
868 
869 	/* step 14. Issue Transmit Pending command */
870 
871 	/* Call MI initialization function if any */
872 	if (sc->sc_hwinit)
873 		(*sc->sc_hwinit)(sc);
874 
875 
876 	/* step 15.  Give the reciever a swift kick */
877 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
878 
879 	/* Start the one second timer. */
880 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
881 
882 	ifp->if_flags |= IFF_RUNNING;
883 	ifp->if_flags &= ~IFF_OACTIVE;
884 	ifp->if_timer = 0;
885 	splx(s);
886 
887 	return (0);
888 }
889 
890 void
891 gem_init_regs(struct gem_softc *sc)
892 {
893 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
894 	bus_space_tag_t t = sc->sc_bustag;
895 	bus_space_handle_t h = sc->sc_h;
896 	const u_char *laddr = LLADDR(ifp->if_sadl);
897 	u_int32_t v;
898 
899 	/* These regs are not cleared on reset */
900 	if (!sc->sc_inited) {
901 
902 		/* Wooo.  Magic values. */
903 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
904 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
905 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
906 
907 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
908 		/* Max frame and max burst size */
909 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
910 		     ETHER_MAX_LEN | (0x2000<<16));
911 
912 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
913 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
914 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
915 		/* Dunno.... */
916 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
917 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
918 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
919 
920 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
921 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
922 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
923 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
924 
925 		/* MAC control addr set to 01:80:c2:00:00:01 */
926 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
927 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
928 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
929 
930 		/* MAC filter addr set to 0:0:0:0:0:0 */
931 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
932 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
933 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
934 
935 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
936 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
937 
938 		sc->sc_inited = 1;
939 	}
940 
941 	/* Counters need to be zeroed */
942 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
943 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
944 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
945 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
946 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
947 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
948 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
949 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
950 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
951 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
952 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
953 
954 	/* Un-pause stuff */
955 #if 0
956 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
957 #else
958 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
959 #endif
960 
961 	/*
962 	 * Set the station address.
963 	 */
964 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
965 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
966 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
967 
968 #if 0
969 	if (sc->sc_variant != APPLE_GMAC)
970 		return;
971 #endif
972 
973 	/*
974 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
975 	 */
976 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
977 	v = GEM_MAC_XIF_TX_MII_ENA;
978 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
979 		v |= GEM_MAC_XIF_FDPLX_LED;
980 		if (sc->sc_flags & GEM_GIGABIT)
981 			v |= GEM_MAC_XIF_GMII_MODE;
982 	}
983 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
984 }
985 
986 void
987 gem_start(ifp)
988 	struct ifnet *ifp;
989 {
990 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
991 	struct mbuf *m0, *m;
992 	struct gem_txsoft *txs, *last_txs;
993 	bus_dmamap_t dmamap;
994 	int error, firsttx, nexttx, lasttx, ofree, seg;
995 
996 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
997 		return;
998 
999 	/*
1000 	 * Remember the previous number of free descriptors and
1001 	 * the first descriptor we'll use.
1002 	 */
1003 	ofree = sc->sc_txfree;
1004 	firsttx = sc->sc_txnext;
1005 
1006 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1007 	    sc->sc_dev.dv_xname, ofree, firsttx));
1008 
1009 	/*
1010 	 * Loop through the send queue, setting up transmit descriptors
1011 	 * until we drain the queue, or use up all available transmit
1012 	 * descriptors.
1013 	 */
1014 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1015 	       sc->sc_txfree != 0) {
1016 		/*
1017 		 * Grab a packet off the queue.
1018 		 */
1019 		IFQ_POLL(&ifp->if_snd, m0);
1020 		if (m0 == NULL)
1021 			break;
1022 		m = NULL;
1023 
1024 		dmamap = txs->txs_dmamap;
1025 
1026 		/*
1027 		 * Load the DMA map.  If this fails, the packet either
1028 		 * didn't fit in the alloted number of segments, or we were
1029 		 * short on resources.  In this case, we'll copy and try
1030 		 * again.
1031 		 */
1032 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1033 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1034 			if (m0->m_pkthdr.len > MCLBYTES) {
1035 				printf("%s: unable to allocate jumbo Tx "
1036 				    "cluster\n", sc->sc_dev.dv_xname);
1037 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1038 				m_freem(m0);
1039 				continue;
1040 			}
1041 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1042 			if (m == NULL) {
1043 				printf("%s: unable to allocate Tx mbuf\n",
1044 				    sc->sc_dev.dv_xname);
1045 				break;
1046 			}
1047 			if (m0->m_pkthdr.len > MHLEN) {
1048 				MCLGET(m, M_DONTWAIT);
1049 				if ((m->m_flags & M_EXT) == 0) {
1050 					printf("%s: unable to allocate Tx "
1051 					    "cluster\n", sc->sc_dev.dv_xname);
1052 					m_freem(m);
1053 					break;
1054 				}
1055 			}
1056 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1057 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1058 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1059 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1060 			if (error) {
1061 				printf("%s: unable to load Tx buffer, "
1062 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1063 				break;
1064 			}
1065 		}
1066 
1067 		/*
1068 		 * Ensure we have enough descriptors free to describe
1069 		 * the packet.
1070 		 */
1071 		if (dmamap->dm_nsegs > sc->sc_txfree) {
1072 			/*
1073 			 * Not enough free descriptors to transmit this
1074 			 * packet.  We haven't committed to anything yet,
1075 			 * so just unload the DMA map, put the packet
1076 			 * back on the queue, and punt.  Notify the upper
1077 			 * layer that there are no more slots left.
1078 			 *
1079 			 * XXX We could allocate an mbuf and copy, but
1080 			 * XXX it is worth it?
1081 			 */
1082 			ifp->if_flags |= IFF_OACTIVE;
1083 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1084 			if (m != NULL)
1085 				m_freem(m);
1086 			break;
1087 		}
1088 
1089 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1090 		if (m != NULL) {
1091 			m_freem(m0);
1092 			m0 = m;
1093 		}
1094 
1095 		/*
1096 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1097 		 */
1098 
1099 		/* Sync the DMA map. */
1100 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1101 		    BUS_DMASYNC_PREWRITE);
1102 
1103 		/*
1104 		 * Initialize the transmit descriptors.
1105 		 */
1106 		for (nexttx = sc->sc_txnext, seg = 0;
1107 		     seg < dmamap->dm_nsegs;
1108 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1109 			uint64_t flags;
1110 
1111 			/*
1112 			 * If this is the first descriptor we're
1113 			 * enqueueing, set the start of packet flag,
1114 			 * and the checksum stuff if we want the hardware
1115 			 * to do it.
1116 			 */
1117 			sc->sc_txdescs[nexttx].gd_addr =
1118 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1119 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1120 			if (nexttx == firsttx) {
1121 				flags |= GEM_TD_START_OF_PACKET;
1122 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1123 					sc->sc_txwin = 0;
1124 					flags |= GEM_TD_INTERRUPT_ME;
1125 				}
1126 			}
1127 			if (seg == dmamap->dm_nsegs - 1) {
1128 				flags |= GEM_TD_END_OF_PACKET;
1129 			}
1130 			sc->sc_txdescs[nexttx].gd_flags =
1131 				GEM_DMA_WRITE(sc, flags);
1132 			lasttx = nexttx;
1133 		}
1134 
1135 #ifdef GEM_DEBUG
1136 		if (ifp->if_flags & IFF_DEBUG) {
1137 			printf("     gem_start %p transmit chain:\n", txs);
1138 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1139 				printf("descriptor %d:\t", seg);
1140 				printf("gd_flags:   0x%016llx\t", (long long)
1141 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1142 				printf("gd_addr: 0x%016llx\n", (long long)
1143 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1144 				if (seg == lasttx)
1145 					break;
1146 			}
1147 		}
1148 #endif
1149 
1150 		/* Sync the descriptors we're using. */
1151 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1152 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1153 
1154 		/*
1155 		 * Store a pointer to the packet so we can free it later,
1156 		 * and remember what txdirty will be once the packet is
1157 		 * done.
1158 		 */
1159 		txs->txs_mbuf = m0;
1160 		txs->txs_firstdesc = sc->sc_txnext;
1161 		txs->txs_lastdesc = lasttx;
1162 		txs->txs_ndescs = dmamap->dm_nsegs;
1163 
1164 		/* Advance the tx pointer. */
1165 		sc->sc_txfree -= dmamap->dm_nsegs;
1166 		sc->sc_txnext = nexttx;
1167 
1168 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1169 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1170 
1171 		last_txs = txs;
1172 
1173 #if NBPFILTER > 0
1174 		/*
1175 		 * Pass the packet to any BPF listeners.
1176 		 */
1177 		if (ifp->if_bpf)
1178 			bpf_mtap(ifp->if_bpf, m0);
1179 #endif /* NBPFILTER > 0 */
1180 	}
1181 
1182 	if (txs == NULL || sc->sc_txfree == 0) {
1183 		/* No more slots left; notify upper layer. */
1184 		ifp->if_flags |= IFF_OACTIVE;
1185 	}
1186 
1187 	if (sc->sc_txfree != ofree) {
1188 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1189 		    sc->sc_dev.dv_xname, lasttx, firsttx));
1190 		/*
1191 		 * The entire packet chain is set up.
1192 		 * Kick the transmitter.
1193 		 */
1194 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1195 			sc->sc_dev.dv_xname, nexttx));
1196 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1197 			sc->sc_txnext);
1198 
1199 		/* Set a watchdog timer in case the chip flakes out. */
1200 		ifp->if_timer = 5;
1201 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1202 			sc->sc_dev.dv_xname, ifp->if_timer));
1203 	}
1204 }
1205 
1206 /*
1207  * Transmit interrupt.
1208  */
1209 int
1210 gem_tint(sc)
1211 	struct gem_softc *sc;
1212 {
1213 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1214 	bus_space_tag_t t = sc->sc_bustag;
1215 	bus_space_handle_t mac = sc->sc_h;
1216 	struct gem_txsoft *txs;
1217 	int txlast;
1218 	int progress = 0;
1219 
1220 
1221 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1222 
1223 	/*
1224 	 * Unload collision counters
1225 	 */
1226 	ifp->if_collisions +=
1227 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1228 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1229 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1230 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1231 
1232 	/*
1233 	 * then clear the hardware counters.
1234 	 */
1235 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1236 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1237 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1238 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1239 
1240 	/*
1241 	 * Go through our Tx list and free mbufs for those
1242 	 * frames that have been transmitted.
1243 	 */
1244 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1245 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1246 		    txs->txs_ndescs,
1247 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1248 
1249 #ifdef GEM_DEBUG
1250 		if (ifp->if_flags & IFF_DEBUG) {
1251 			int i;
1252 			printf("    txsoft %p transmit chain:\n", txs);
1253 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1254 				printf("descriptor %d: ", i);
1255 				printf("gd_flags: 0x%016llx\t", (long long)
1256 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1257 				printf("gd_addr: 0x%016llx\n", (long long)
1258 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1259 				if (i == txs->txs_lastdesc)
1260 					break;
1261 			}
1262 		}
1263 #endif
1264 
1265 		/*
1266 		 * In theory, we could harveast some descriptors before
1267 		 * the ring is empty, but that's a bit complicated.
1268 		 *
1269 		 * GEM_TX_COMPLETION points to the last descriptor
1270 		 * processed +1.
1271 		 */
1272 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1273 		DPRINTF(sc,
1274 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1275 				txs->txs_lastdesc, txlast));
1276 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1277 			if ((txlast >= txs->txs_firstdesc) &&
1278 				(txlast <= txs->txs_lastdesc))
1279 				break;
1280 		} else {
1281 			/* Ick -- this command wraps */
1282 			if ((txlast >= txs->txs_firstdesc) ||
1283 				(txlast <= txs->txs_lastdesc))
1284 				break;
1285 		}
1286 
1287 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1288 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1289 
1290 		sc->sc_txfree += txs->txs_ndescs;
1291 
1292 		if (txs->txs_mbuf == NULL) {
1293 #ifdef DIAGNOSTIC
1294 				panic("gem_txintr: null mbuf");
1295 #endif
1296 		}
1297 
1298 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1299 		    0, txs->txs_dmamap->dm_mapsize,
1300 		    BUS_DMASYNC_POSTWRITE);
1301 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1302 		m_freem(txs->txs_mbuf);
1303 		txs->txs_mbuf = NULL;
1304 
1305 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1306 
1307 		ifp->if_opackets++;
1308 		progress = 1;
1309 	}
1310 
1311 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1312 		"GEM_TX_DATA_PTR %llx "
1313 		"GEM_TX_COMPLETION %x\n",
1314 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1315 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1316 			GEM_TX_DATA_PTR_HI) << 32) |
1317 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1318 			GEM_TX_DATA_PTR_LO),
1319 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1320 
1321 	if (progress) {
1322 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1323 			sc->sc_txwin = 0;
1324 
1325 		ifp->if_flags &= ~IFF_OACTIVE;
1326 		gem_start(ifp);
1327 
1328 		if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
1329 			ifp->if_timer = 0;
1330 	}
1331 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1332 		sc->sc_dev.dv_xname, ifp->if_timer));
1333 
1334 	return (1);
1335 }
1336 
1337 /*
1338  * Receive interrupt.
1339  */
1340 int
1341 gem_rint(sc)
1342 	struct gem_softc *sc;
1343 {
1344 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1345 	bus_space_tag_t t = sc->sc_bustag;
1346 	bus_space_handle_t h = sc->sc_h;
1347 	struct ether_header *eh;
1348 	struct gem_rxsoft *rxs;
1349 	struct mbuf *m;
1350 	u_int64_t rxstat;
1351 	u_int32_t rxcomp;
1352 	int i, len, progress = 0;
1353 
1354 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1355 
1356 	/*
1357 	 * Read the completion register once.  This limits
1358 	 * how long the following loop can execute.
1359 	 */
1360 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1361 
1362 	/*
1363 	 * XXXX Read the lastrx only once at the top for speed.
1364 	 */
1365 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1366 		sc->sc_rxptr, rxcomp));
1367 
1368 	/*
1369 	 * Go into the loop at least once.
1370 	 */
1371 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1372 	     i = GEM_NEXTRX(i)) {
1373 		rxs = &sc->sc_rxsoft[i];
1374 
1375 		GEM_CDRXSYNC(sc, i,
1376 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1377 
1378 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1379 
1380 		if (rxstat & GEM_RD_OWN) {
1381 			/*
1382 			 * We have processed all of the receive buffers.
1383 			 */
1384 			break;
1385 		}
1386 
1387 		progress++;
1388 		ifp->if_ipackets++;
1389 
1390 		if (rxstat & GEM_RD_BAD_CRC) {
1391 			ifp->if_ierrors++;
1392 			printf("%s: receive error: CRC error\n",
1393 				sc->sc_dev.dv_xname);
1394 			GEM_INIT_RXDESC(sc, i);
1395 			continue;
1396 		}
1397 
1398 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1399 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1400 #ifdef GEM_DEBUG
1401 		if (ifp->if_flags & IFF_DEBUG) {
1402 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1403 			printf("gd_flags: 0x%016llx\t", (long long)
1404 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1405 			printf("gd_addr: 0x%016llx\n", (long long)
1406 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1407 		}
1408 #endif
1409 
1410 		/*
1411 		 * No errors; receive the packet.  Note the Gem
1412 		 * includes the CRC with every packet.
1413 		 */
1414 		len = GEM_RD_BUFLEN(rxstat);
1415 
1416 		/*
1417 		 * Allocate a new mbuf cluster.  If that fails, we are
1418 		 * out of memory, and must drop the packet and recycle
1419 		 * the buffer that's already attached to this descriptor.
1420 		 */
1421 		m = rxs->rxs_mbuf;
1422 		if (gem_add_rxbuf(sc, i) != 0) {
1423 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1424 			ifp->if_ierrors++;
1425 			GEM_INIT_RXDESC(sc, i);
1426 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1427 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1428 			continue;
1429 		}
1430 		m->m_data += 2; /* We're already off by two */
1431 
1432 		eh = mtod(m, struct ether_header *);
1433 		m->m_flags |= M_HASFCS;
1434 		m->m_pkthdr.rcvif = ifp;
1435 		m->m_pkthdr.len = m->m_len = len;
1436 
1437 #if NBPFILTER > 0
1438 		/*
1439 		 * Pass this up to any BPF listeners, but only
1440 		 * pass it up the stack if its for us.
1441 		 */
1442 		if (ifp->if_bpf)
1443 			bpf_mtap(ifp->if_bpf, m);
1444 #endif /* NPBFILTER > 0 */
1445 
1446 		/* Pass it on. */
1447 		(*ifp->if_input)(ifp, m);
1448 	}
1449 
1450 	if (progress) {
1451 		/* Update the receive pointer. */
1452 		if (i == sc->sc_rxptr) {
1453 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1454 #ifdef GEM_DEBUG
1455 			if (ifp->if_flags & GEM_DEBUG)
1456 				printf("%s: rint: ring wrap\n",
1457 				    sc->sc_dev.dv_xname);
1458 #endif
1459 		}
1460 		sc->sc_rxptr = i;
1461 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1462 	}
1463 #ifdef GEM_COUNTERS
1464 	if (progress <= 4) {
1465 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1466 	} else if (progress > 31) {
1467 		if (progress < 16)
1468 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1469 		else
1470 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1471 
1472 	} else {
1473 		if (progress < 64)
1474 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1475 		else
1476 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1477 	}
1478 #endif
1479 
1480 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1481 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1482 
1483 	return (1);
1484 }
1485 
1486 
1487 /*
1488  * gem_add_rxbuf:
1489  *
1490  *	Add a receive buffer to the indicated descriptor.
1491  */
1492 int
1493 gem_add_rxbuf(struct gem_softc *sc, int idx)
1494 {
1495 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1496 	struct mbuf *m;
1497 	int error;
1498 
1499 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1500 	if (m == NULL)
1501 		return (ENOBUFS);
1502 
1503 	MCLGET(m, M_DONTWAIT);
1504 	if ((m->m_flags & M_EXT) == 0) {
1505 		m_freem(m);
1506 		return (ENOBUFS);
1507 	}
1508 
1509 #ifdef GEM_DEBUG
1510 /* bzero the packet to check dma */
1511 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1512 #endif
1513 
1514 	if (rxs->rxs_mbuf != NULL)
1515 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1516 
1517 	rxs->rxs_mbuf = m;
1518 
1519 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1520 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1521 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1522 	if (error) {
1523 		printf("%s: can't load rx DMA map %d, error = %d\n",
1524 		    sc->sc_dev.dv_xname, idx, error);
1525 		panic("gem_add_rxbuf");	/* XXX */
1526 	}
1527 
1528 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1529 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1530 
1531 	GEM_INIT_RXDESC(sc, idx);
1532 
1533 	return (0);
1534 }
1535 
1536 
1537 int
1538 gem_eint(sc, status)
1539 	struct gem_softc *sc;
1540 	u_int status;
1541 {
1542 	char bits[128];
1543 
1544 	if ((status & GEM_INTR_MIF) != 0) {
1545 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1546 		return (1);
1547 	}
1548 
1549 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1550 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1551 	return (1);
1552 }
1553 
1554 
1555 int
1556 gem_intr(v)
1557 	void *v;
1558 {
1559 	struct gem_softc *sc = (struct gem_softc *)v;
1560 	bus_space_tag_t t = sc->sc_bustag;
1561 	bus_space_handle_t seb = sc->sc_h;
1562 	u_int32_t status;
1563 	int r = 0;
1564 #ifdef GEM_DEBUG
1565 	char bits[128];
1566 #endif
1567 
1568 	sc->sc_ev_intr.ev_count++;
1569 
1570 	status = bus_space_read_4(t, seb, GEM_STATUS);
1571 	DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1572 		sc->sc_dev.dv_xname, (status>>19),
1573 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1574 
1575 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1576 		r |= gem_eint(sc, status);
1577 
1578 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
1579 		GEM_COUNTER_INCR(sc, sc_ev_txint);
1580 		r |= gem_tint(sc);
1581 	}
1582 
1583 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
1584 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
1585 		r |= gem_rint(sc);
1586 	}
1587 
1588 	/* We should eventually do more than just print out error stats. */
1589 	if (status & GEM_INTR_TX_MAC) {
1590 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1591 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1592 			printf("%s: MAC tx fault, status %x\n",
1593 			    sc->sc_dev.dv_xname, txstat);
1594 	}
1595 	if (status & GEM_INTR_RX_MAC) {
1596 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1597 		if (rxstat & ~GEM_MAC_RX_DONE)
1598 			printf("%s: MAC rx fault, status %x\n",
1599 			    sc->sc_dev.dv_xname, rxstat);
1600 	}
1601 	return (r);
1602 }
1603 
1604 
1605 void
1606 gem_watchdog(ifp)
1607 	struct ifnet *ifp;
1608 {
1609 	struct gem_softc *sc = ifp->if_softc;
1610 
1611 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1612 		"GEM_MAC_RX_CONFIG %x\n",
1613 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1614 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1615 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1616 
1617 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1618 	++ifp->if_oerrors;
1619 
1620 	/* Try to get more packets going. */
1621 	gem_start(ifp);
1622 }
1623 
1624 /*
1625  * Initialize the MII Management Interface
1626  */
1627 void
1628 gem_mifinit(sc)
1629 	struct gem_softc *sc;
1630 {
1631 	bus_space_tag_t t = sc->sc_bustag;
1632 	bus_space_handle_t mif = sc->sc_h;
1633 
1634 	/* Configure the MIF in frame mode */
1635 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1636 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1637 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1638 }
1639 
1640 /*
1641  * MII interface
1642  *
1643  * The GEM MII interface supports at least three different operating modes:
1644  *
1645  * Bitbang mode is implemented using data, clock and output enable registers.
1646  *
1647  * Frame mode is implemented by loading a complete frame into the frame
1648  * register and polling the valid bit for completion.
1649  *
1650  * Polling mode uses the frame register but completion is indicated by
1651  * an interrupt.
1652  *
1653  */
1654 static int
1655 gem_mii_readreg(self, phy, reg)
1656 	struct device *self;
1657 	int phy, reg;
1658 {
1659 	struct gem_softc *sc = (void *)self;
1660 	bus_space_tag_t t = sc->sc_bustag;
1661 	bus_space_handle_t mif = sc->sc_h;
1662 	int n;
1663 	u_int32_t v;
1664 
1665 #ifdef GEM_DEBUG1
1666 	if (sc->sc_debug)
1667 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1668 #endif
1669 
1670 #if 0
1671 	/* Select the desired PHY in the MIF configuration register */
1672 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1673 	/* Clear PHY select bit */
1674 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1675 	if (phy == GEM_PHYAD_EXTERNAL)
1676 		/* Set PHY select bit to get at external device */
1677 		v |= GEM_MIF_CONFIG_PHY_SEL;
1678 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1679 #endif
1680 
1681 	/* Construct the frame command */
1682 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1683 		GEM_MIF_FRAME_READ;
1684 
1685 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1686 	for (n = 0; n < 100; n++) {
1687 		DELAY(1);
1688 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1689 		if (v & GEM_MIF_FRAME_TA0)
1690 			return (v & GEM_MIF_FRAME_DATA);
1691 	}
1692 
1693 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1694 	return (0);
1695 }
1696 
1697 static void
1698 gem_mii_writereg(self, phy, reg, val)
1699 	struct device *self;
1700 	int phy, reg, val;
1701 {
1702 	struct gem_softc *sc = (void *)self;
1703 	bus_space_tag_t t = sc->sc_bustag;
1704 	bus_space_handle_t mif = sc->sc_h;
1705 	int n;
1706 	u_int32_t v;
1707 
1708 #ifdef GEM_DEBUG1
1709 	if (sc->sc_debug)
1710 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
1711 			phy, reg, val);
1712 #endif
1713 
1714 #if 0
1715 	/* Select the desired PHY in the MIF configuration register */
1716 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1717 	/* Clear PHY select bit */
1718 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1719 	if (phy == GEM_PHYAD_EXTERNAL)
1720 		/* Set PHY select bit to get at external device */
1721 		v |= GEM_MIF_CONFIG_PHY_SEL;
1722 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1723 #endif
1724 	/* Construct the frame command */
1725 	v = GEM_MIF_FRAME_WRITE			|
1726 	    (phy << GEM_MIF_PHY_SHIFT)		|
1727 	    (reg << GEM_MIF_REG_SHIFT)		|
1728 	    (val & GEM_MIF_FRAME_DATA);
1729 
1730 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1731 	for (n = 0; n < 100; n++) {
1732 		DELAY(1);
1733 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1734 		if (v & GEM_MIF_FRAME_TA0)
1735 			return;
1736 	}
1737 
1738 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1739 }
1740 
1741 static void
1742 gem_mii_statchg(dev)
1743 	struct device *dev;
1744 {
1745 	struct gem_softc *sc = (void *)dev;
1746 #ifdef GEM_DEBUG
1747 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1748 #endif
1749 	bus_space_tag_t t = sc->sc_bustag;
1750 	bus_space_handle_t mac = sc->sc_h;
1751 	u_int32_t v;
1752 
1753 #ifdef GEM_DEBUG
1754 	if (sc->sc_debug)
1755 		printf("gem_mii_statchg: status change: phy = %d\n",
1756 			sc->sc_phys[instance];);
1757 #endif
1758 
1759 
1760 	/* Set tx full duplex options */
1761 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1762 	delay(10000); /* reg must be cleared and delay before changing. */
1763 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1764 		GEM_MAC_TX_ENABLE;
1765 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1766 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1767 	}
1768 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1769 
1770 	/* XIF Configuration */
1771  /* We should really calculate all this rather than rely on defaults */
1772 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1773 	v = GEM_MAC_XIF_LINK_LED;
1774 	v |= GEM_MAC_XIF_TX_MII_ENA;
1775 
1776 	/* If an external transceiver is connected, enable its MII drivers */
1777 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1778 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1779 		/* External MII needs echo disable if half duplex. */
1780 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1781 			/* turn on full duplex LED */
1782 			v |= GEM_MAC_XIF_FDPLX_LED;
1783 		else
1784 	 		/* half duplex -- disable echo */
1785 		 	v |= GEM_MAC_XIF_ECHO_DISABL;
1786 
1787 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1788 			v |= GEM_MAC_XIF_GMII_MODE;
1789 		else
1790 			v &= ~GEM_MAC_XIF_GMII_MODE;
1791 	} else
1792 		/* Internal MII needs buf enable */
1793 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1794 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1795 }
1796 
1797 int
1798 gem_mediachange(ifp)
1799 	struct ifnet *ifp;
1800 {
1801 	struct gem_softc *sc = ifp->if_softc;
1802 
1803 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1804 		return (EINVAL);
1805 
1806 	return (mii_mediachg(&sc->sc_mii));
1807 }
1808 
1809 void
1810 gem_mediastatus(ifp, ifmr)
1811 	struct ifnet *ifp;
1812 	struct ifmediareq *ifmr;
1813 {
1814 	struct gem_softc *sc = ifp->if_softc;
1815 
1816 	if ((ifp->if_flags & IFF_UP) == 0)
1817 		return;
1818 
1819 	mii_pollstat(&sc->sc_mii);
1820 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1821 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1822 }
1823 
1824 int gem_ioctldebug = 0;
1825 /*
1826  * Process an ioctl request.
1827  */
1828 int
1829 gem_ioctl(ifp, cmd, data)
1830 	struct ifnet *ifp;
1831 	u_long cmd;
1832 	caddr_t data;
1833 {
1834 	struct gem_softc *sc = ifp->if_softc;
1835 	struct ifreq *ifr = (struct ifreq *)data;
1836 	int s, error = 0;
1837 
1838 	s = splnet();
1839 
1840 	switch (cmd) {
1841 	case SIOCGIFMEDIA:
1842 	case SIOCSIFMEDIA:
1843 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1844 		break;
1845 
1846 	default:
1847 		error = ether_ioctl(ifp, cmd, data);
1848 		if (error == ENETRESET) {
1849 			/*
1850 			 * Multicast list has changed; set the hardware filter
1851 			 * accordingly.
1852 			 */
1853 if (gem_ioctldebug) printf("reset1\n");
1854 			gem_init(ifp);
1855 			delay(50000);
1856 			error = 0;
1857 		}
1858 		break;
1859 	}
1860 
1861 	/* Try to get things going again */
1862 	if (ifp->if_flags & IFF_UP) {
1863 if (gem_ioctldebug) printf("start\n");
1864 		gem_start(ifp);
1865 	}
1866 	splx(s);
1867 	return (error);
1868 }
1869 
1870 
1871 void
1872 gem_shutdown(arg)
1873 	void *arg;
1874 {
1875 	struct gem_softc *sc = (struct gem_softc *)arg;
1876 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1877 
1878 	gem_stop(ifp, 1);
1879 }
1880 
1881 /*
1882  * Set up the logical address filter.
1883  */
1884 void
1885 gem_setladrf(sc)
1886 	struct gem_softc *sc;
1887 {
1888 	struct ethercom *ec = &sc->sc_ethercom;
1889 	struct ifnet *ifp = &ec->ec_if;
1890 	struct ether_multi *enm;
1891 	struct ether_multistep step;
1892 	bus_space_tag_t t = sc->sc_bustag;
1893 	bus_space_handle_t h = sc->sc_h;
1894 	u_int32_t crc;
1895 	u_int32_t hash[16];
1896 	u_int32_t v;
1897 	int i;
1898 
1899 	/* Get current RX configuration */
1900 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1901 
1902 	/*
1903 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
1904 	 * and hash filter.  Depending on the case, the right bit will be
1905 	 * enabled.
1906 	 */
1907 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
1908 	    GEM_MAC_RX_PROMISC_GRP);
1909 
1910 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1911 		/* Turn on promiscuous mode */
1912 		v |= GEM_MAC_RX_PROMISCUOUS;
1913 		ifp->if_flags |= IFF_ALLMULTI;
1914 		goto chipit;
1915 	}
1916 
1917 	/*
1918 	 * Set up multicast address filter by passing all multicast addresses
1919 	 * through a crc generator, and then using the high order 8 bits as an
1920 	 * index into the 256 bit logical address filter.  The high order 4
1921 	 * bits select the word, while the other 4 bits select the bit within
1922 	 * the word (where bit 0 is the MSB).
1923 	 */
1924 
1925 	/* Clear hash table */
1926 	memset(hash, 0, sizeof(hash));
1927 
1928 	ETHER_FIRST_MULTI(step, ec, enm);
1929 	while (enm != NULL) {
1930 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1931 			/*
1932 			 * We must listen to a range of multicast addresses.
1933 			 * For now, just accept all multicasts, rather than
1934 			 * trying to set only those filter bits needed to match
1935 			 * the range.  (At this time, the only use of address
1936 			 * ranges is for IP multicast routing, for which the
1937 			 * range is big enough to require all bits set.)
1938 			 * XXX use the addr filter for this
1939 			 */
1940 			ifp->if_flags |= IFF_ALLMULTI;
1941 			v |= GEM_MAC_RX_PROMISC_GRP;
1942 			goto chipit;
1943 		}
1944 
1945 		/* Get the LE CRC32 of the address */
1946 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
1947 
1948 		/* Just want the 8 most significant bits. */
1949 		crc >>= 24;
1950 
1951 		/* Set the corresponding bit in the filter. */
1952 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
1953 
1954 		ETHER_NEXT_MULTI(step, enm);
1955 	}
1956 
1957 	v |= GEM_MAC_RX_HASH_FILTER;
1958 	ifp->if_flags &= ~IFF_ALLMULTI;
1959 
1960 	/* Now load the hash table into the chip (if we are using it) */
1961 	for (i = 0; i < 16; i++) {
1962 		bus_space_write_4(t, h,
1963 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
1964 		    hash[i]);
1965 	}
1966 
1967 chipit:
1968 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1969 }
1970 
1971 #if notyet
1972 
1973 /*
1974  * gem_power:
1975  *
1976  *	Power management (suspend/resume) hook.
1977  */
1978 void
1979 gem_power(why, arg)
1980 	int why;
1981 	void *arg;
1982 {
1983 	struct gem_softc *sc = arg;
1984 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1985 	int s;
1986 
1987 	s = splnet();
1988 	switch (why) {
1989 	case PWR_SUSPEND:
1990 	case PWR_STANDBY:
1991 		gem_stop(ifp, 1);
1992 		if (sc->sc_power != NULL)
1993 			(*sc->sc_power)(sc, why);
1994 		break;
1995 	case PWR_RESUME:
1996 		if (ifp->if_flags & IFF_UP) {
1997 			if (sc->sc_power != NULL)
1998 				(*sc->sc_power)(sc, why);
1999 			gem_init(ifp);
2000 		}
2001 		break;
2002 	case PWR_SOFTSUSPEND:
2003 	case PWR_SOFTSTANDBY:
2004 	case PWR_SOFTRESUME:
2005 		break;
2006 	}
2007 	splx(s);
2008 }
2009 #endif
2010