xref: /netbsd/sys/dev/ic/i82557.c (revision c4a72b64)
1 /*	$NetBSD: i82557.c,v 1.69 2002/11/15 03:30:26 enami Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1995, David Greenman
42  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
43  * All rights reserved.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice unmodified, this list of conditions, and the following
50  *    disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68  */
69 
70 /*
71  * Device driver for the Intel i82557 fast Ethernet controller,
72  * and its successors, the i82558 and i82559.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.69 2002/11/15 03:30:26 enami Exp $");
77 
78 #include "bpfilter.h"
79 #include "rnd.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 
92 #include <machine/endian.h>
93 
94 #include <uvm/uvm_extern.h>
95 
96 #if NRND > 0
97 #include <sys/rnd.h>
98 #endif
99 
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104 
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108 
109 #include <machine/bus.h>
110 #include <machine/intr.h>
111 
112 #include <dev/mii/miivar.h>
113 
114 #include <dev/ic/i82557reg.h>
115 #include <dev/ic/i82557var.h>
116 
117 #include <dev/microcode/i8255x/rcvbundl.h>
118 
119 /*
120  * NOTE!  On the Alpha, we have an alignment constraint.  The
121  * card DMAs the packet immediately following the RFA.  However,
122  * the first thing in the packet is a 14-byte Ethernet header.
123  * This means that the packet is misaligned.  To compensate,
124  * we actually offset the RFA 2 bytes into the cluster.  This
125  * alignes the packet after the Ethernet header at a 32-bit
126  * boundary.  HOWEVER!  This means that the RFA is misaligned!
127  */
128 #define	RFA_ALIGNMENT_FUDGE	2
129 
130 /*
131  * The configuration byte map has several undefined fields which
132  * must be one or must be zero.  Set up a template for these bits
133  * only (assuming an i82557 chip), leaving the actual configuration
134  * for fxp_init().
135  *
136  * See the definition of struct fxp_cb_config for the bit definitions.
137  */
138 const u_int8_t fxp_cb_config_template[] = {
139 	0x0, 0x0,		/* cb_status */
140 	0x0, 0x0,		/* cb_command */
141 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
142 	0x0,	/*  0 */
143 	0x0,	/*  1 */
144 	0x0,	/*  2 */
145 	0x0,	/*  3 */
146 	0x0,	/*  4 */
147 	0x0,	/*  5 */
148 	0x32,	/*  6 */
149 	0x0,	/*  7 */
150 	0x0,	/*  8 */
151 	0x0,	/*  9 */
152 	0x6,	/* 10 */
153 	0x0,	/* 11 */
154 	0x0,	/* 12 */
155 	0x0,	/* 13 */
156 	0xf2,	/* 14 */
157 	0x48,	/* 15 */
158 	0x0,	/* 16 */
159 	0x40,	/* 17 */
160 	0xf0,	/* 18 */
161 	0x0,	/* 19 */
162 	0x3f,	/* 20 */
163 	0x5,	/* 21 */
164 	0x0,	/* 22 */
165 	0x0,	/* 23 */
166 	0x0,	/* 24 */
167 	0x0,	/* 25 */
168 	0x0,	/* 26 */
169 	0x0,	/* 27 */
170 	0x0,	/* 28 */
171 	0x0,	/* 29 */
172 	0x0,	/* 30 */
173 	0x0,	/* 31 */
174 };
175 
176 void	fxp_mii_initmedia(struct fxp_softc *);
177 int	fxp_mii_mediachange(struct ifnet *);
178 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179 
180 void	fxp_80c24_initmedia(struct fxp_softc *);
181 int	fxp_80c24_mediachange(struct ifnet *);
182 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183 
184 void	fxp_start(struct ifnet *);
185 int	fxp_ioctl(struct ifnet *, u_long, caddr_t);
186 void	fxp_watchdog(struct ifnet *);
187 int	fxp_init(struct ifnet *);
188 void	fxp_stop(struct ifnet *, int);
189 
190 void	fxp_txintr(struct fxp_softc *);
191 void	fxp_rxintr(struct fxp_softc *);
192 
193 void	fxp_rxdrain(struct fxp_softc *);
194 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
195 int	fxp_mdi_read(struct device *, int, int);
196 void	fxp_statchg(struct device *);
197 void	fxp_mdi_write(struct device *, int, int, int);
198 void	fxp_autosize_eeprom(struct fxp_softc*);
199 void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
200 void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
201 void	fxp_eeprom_update_cksum(struct fxp_softc *);
202 void	fxp_get_info(struct fxp_softc *, u_int8_t *);
203 void	fxp_tick(void *);
204 void	fxp_mc_setup(struct fxp_softc *);
205 void	fxp_load_ucode(struct fxp_softc *);
206 
207 void	fxp_shutdown(void *);
208 void	fxp_power(int, void *);
209 
210 int	fxp_copy_small = 0;
211 
212 /*
213  * Variables for interrupt mitigating microcode.
214  */
215 int	fxp_int_delay = 1000;		/* usec */
216 int	fxp_bundle_max = 6;		/* packets */
217 
218 struct fxp_phytype {
219 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
220 	void	(*fp_init)(struct fxp_softc *);
221 } fxp_phytype_table[] = {
222 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
223 	{ -1,				fxp_mii_initmedia },
224 };
225 
226 /*
227  * Set initial transmit threshold at 64 (512 bytes). This is
228  * increased by 64 (512 bytes) at a time, to maximum of 192
229  * (1536 bytes), if an underrun occurs.
230  */
231 static int tx_threshold = 64;
232 
233 /*
234  * Wait for the previous command to be accepted (but not necessarily
235  * completed).
236  */
237 static __inline void
238 fxp_scb_wait(struct fxp_softc *sc)
239 {
240 	int i = 10000;
241 
242 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
243 		delay(2);
244 	if (i == 0)
245 		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
246 }
247 
248 /*
249  * Submit a command to the i82557.
250  */
251 static __inline void
252 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
253 {
254 
255 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256 }
257 
258 /*
259  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
260  */
261 void
262 fxp_attach(struct fxp_softc *sc)
263 {
264 	u_int8_t enaddr[ETHER_ADDR_LEN];
265 	struct ifnet *ifp;
266 	bus_dma_segment_t seg;
267 	int rseg, i, error;
268 	struct fxp_phytype *fp;
269 
270 	callout_init(&sc->sc_callout);
271 
272 	/* Start out using the standard RFA. */
273 	sc->sc_rfa_size = RFA_SIZE;
274 
275 	/*
276 	 * Enable some good stuff on i82558 and later.
277 	 */
278 	if (sc->sc_rev >= FXP_REV_82558_A4) {
279 		/* Enable the extended TxCB. */
280 		sc->sc_flags |= FXPF_EXT_TXCB;
281 	}
282 
283 	/*
284 	 * Allocate the control data structures, and create and load the
285 	 * DMA map for it.
286 	 */
287 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
288 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
289 	    0)) != 0) {
290 		printf("%s: unable to allocate control data, error = %d\n",
291 		    sc->sc_dev.dv_xname, error);
292 		goto fail_0;
293 	}
294 
295 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
296 	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
297 	    BUS_DMA_COHERENT)) != 0) {
298 		printf("%s: unable to map control data, error = %d\n",
299 		    sc->sc_dev.dv_xname, error);
300 		goto fail_1;
301 	}
302 	sc->sc_cdseg = seg;
303 	sc->sc_cdnseg = rseg;
304 
305 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
306 
307 	if ((error = bus_dmamap_create(sc->sc_dmat,
308 	    sizeof(struct fxp_control_data), 1,
309 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
310 		printf("%s: unable to create control data DMA map, "
311 		    "error = %d\n", sc->sc_dev.dv_xname, error);
312 		goto fail_2;
313 	}
314 
315 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
316 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
317 	    0)) != 0) {
318 		printf("%s: can't load control data DMA map, error = %d\n",
319 		    sc->sc_dev.dv_xname, error);
320 		goto fail_3;
321 	}
322 
323 	/*
324 	 * Create the transmit buffer DMA maps.
325 	 */
326 	for (i = 0; i < FXP_NTXCB; i++) {
327 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
328 		    FXP_NTXSEG, MCLBYTES, 0, 0,
329 		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
330 			printf("%s: unable to create tx DMA map %d, "
331 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
332 			goto fail_4;
333 		}
334 	}
335 
336 	/*
337 	 * Create the receive buffer DMA maps.
338 	 */
339 	for (i = 0; i < FXP_NRFABUFS; i++) {
340 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
341 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
342 			printf("%s: unable to create rx DMA map %d, "
343 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
344 			goto fail_5;
345 		}
346 	}
347 
348 	/* Initialize MAC address and media structures. */
349 	fxp_get_info(sc, enaddr);
350 
351 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
352 	    ether_sprintf(enaddr));
353 
354 	ifp = &sc->sc_ethercom.ec_if;
355 
356 	/*
357 	 * Get info about our media interface, and initialize it.  Note
358 	 * the table terminates itself with a phy of -1, indicating
359 	 * that we're using MII.
360 	 */
361 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
362 		if (fp->fp_phy == sc->phy_primary_device)
363 			break;
364 	(*fp->fp_init)(sc);
365 
366 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
367 	ifp->if_softc = sc;
368 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 	ifp->if_ioctl = fxp_ioctl;
370 	ifp->if_start = fxp_start;
371 	ifp->if_watchdog = fxp_watchdog;
372 	ifp->if_init = fxp_init;
373 	ifp->if_stop = fxp_stop;
374 	IFQ_SET_READY(&ifp->if_snd);
375 
376 	/*
377 	 * We can support 802.1Q VLAN-sized frames.
378 	 */
379 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
380 
381 	/*
382 	 * Attach the interface.
383 	 */
384 	if_attach(ifp);
385 	ether_ifattach(ifp, enaddr);
386 #if NRND > 0
387 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
388 	    RND_TYPE_NET, 0);
389 #endif
390 
391 #ifdef FXP_EVENT_COUNTERS
392 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
393 	    NULL, sc->sc_dev.dv_xname, "txstall");
394 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
395 	    NULL, sc->sc_dev.dv_xname, "txintr");
396 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
397 	    NULL, sc->sc_dev.dv_xname, "rxintr");
398 #endif /* FXP_EVENT_COUNTERS */
399 
400 	/*
401 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
402 	 * doing do could allow DMA to corrupt kernel memory during the
403 	 * reboot before the driver initializes.
404 	 */
405 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
406 	if (sc->sc_sdhook == NULL)
407 		printf("%s: WARNING: unable to establish shutdown hook\n",
408 		    sc->sc_dev.dv_xname);
409 	/*
410   	 * Add suspend hook, for similar reasons..
411 	 */
412 	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
413 	if (sc->sc_powerhook == NULL)
414 		printf("%s: WARNING: unable to establish power hook\n",
415 		    sc->sc_dev.dv_xname);
416 
417 	/* The attach is successful. */
418 	sc->sc_flags |= FXPF_ATTACHED;
419 
420 	return;
421 
422 	/*
423 	 * Free any resources we've allocated during the failed attach
424 	 * attempt.  Do this in reverse order and fall though.
425 	 */
426  fail_5:
427 	for (i = 0; i < FXP_NRFABUFS; i++) {
428 		if (sc->sc_rxmaps[i] != NULL)
429 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
430 	}
431  fail_4:
432 	for (i = 0; i < FXP_NTXCB; i++) {
433 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
434 			bus_dmamap_destroy(sc->sc_dmat,
435 			    FXP_DSTX(sc, i)->txs_dmamap);
436 	}
437 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
438  fail_3:
439 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
440  fail_2:
441 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
442 	    sizeof(struct fxp_control_data));
443  fail_1:
444 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
445  fail_0:
446 	return;
447 }
448 
449 void
450 fxp_mii_initmedia(struct fxp_softc *sc)
451 {
452 	int flags;
453 
454 	sc->sc_flags |= FXPF_MII;
455 
456 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
457 	sc->sc_mii.mii_readreg = fxp_mdi_read;
458 	sc->sc_mii.mii_writereg = fxp_mdi_write;
459 	sc->sc_mii.mii_statchg = fxp_statchg;
460 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
461 	    fxp_mii_mediastatus);
462 
463 	flags = MIIF_NOISOLATE;
464 	if (sc->sc_rev >= FXP_REV_82558_A4)
465 		flags |= MIIF_DOPAUSE;
466 	/*
467 	 * The i82557 wedges if all of its PHYs are isolated!
468 	 */
469 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
470 	    MII_OFFSET_ANY, flags);
471 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
472 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
473 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
474 	} else
475 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
476 }
477 
478 void
479 fxp_80c24_initmedia(struct fxp_softc *sc)
480 {
481 
482 	/*
483 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
484 	 * doesn't have a programming interface of any sort.  The
485 	 * media is sensed automatically based on how the link partner
486 	 * is configured.  This is, in essence, manual configuration.
487 	 */
488 	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
489 	    sc->sc_dev.dv_xname);
490 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
491 	    fxp_80c24_mediastatus);
492 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
493 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
494 }
495 
496 /*
497  * Device shutdown routine. Called at system shutdown after sync. The
498  * main purpose of this routine is to shut off receiver DMA so that
499  * kernel memory doesn't get clobbered during warmboot.
500  */
501 void
502 fxp_shutdown(void *arg)
503 {
504 	struct fxp_softc *sc = arg;
505 
506 	/*
507 	 * Since the system's going to halt shortly, don't bother
508 	 * freeing mbufs.
509 	 */
510 	fxp_stop(&sc->sc_ethercom.ec_if, 0);
511 }
512 /*
513  * Power handler routine. Called when the system is transitioning
514  * into/out of power save modes.  As with fxp_shutdown, the main
515  * purpose of this routine is to shut off receiver DMA so it doesn't
516  * clobber kernel memory at the wrong time.
517  */
518 void
519 fxp_power(int why, void *arg)
520 {
521 	struct fxp_softc *sc = arg;
522 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
523 	int s;
524 
525 	s = splnet();
526 	switch (why) {
527 	case PWR_SUSPEND:
528 	case PWR_STANDBY:
529 		fxp_stop(ifp, 0);
530 		break;
531 	case PWR_RESUME:
532 		if (ifp->if_flags & IFF_UP)
533 			fxp_init(ifp);
534 		break;
535 	case PWR_SOFTSUSPEND:
536 	case PWR_SOFTSTANDBY:
537 	case PWR_SOFTRESUME:
538 		break;
539 	}
540 	splx(s);
541 }
542 
543 /*
544  * Initialize the interface media.
545  */
546 void
547 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
548 {
549 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
550 
551 	/*
552 	 * Reset to a stable state.
553 	 */
554 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
555 	DELAY(10);
556 
557 	sc->sc_eeprom_size = 0;
558 	fxp_autosize_eeprom(sc);
559 	if (sc->sc_eeprom_size == 0) {
560 		printf("%s: failed to detect EEPROM size\n",
561 		    sc->sc_dev.dv_xname);
562 		sc->sc_eeprom_size = 6; /* XXX panic here? */
563 	}
564 #ifdef DEBUG
565 	printf("%s: detected %d word EEPROM\n",
566 	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
567 #endif
568 
569 	/*
570 	 * Get info about the primary PHY
571 	 */
572 	fxp_read_eeprom(sc, &data, 6, 1);
573 	sc->phy_primary_device =
574 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
575 
576 	/*
577 	 * Read MAC address.
578 	 */
579 	fxp_read_eeprom(sc, myea, 0, 3);
580 	enaddr[0] = myea[0] & 0xff;
581 	enaddr[1] = myea[0] >> 8;
582 	enaddr[2] = myea[1] & 0xff;
583 	enaddr[3] = myea[1] >> 8;
584 	enaddr[4] = myea[2] & 0xff;
585 	enaddr[5] = myea[2] >> 8;
586 
587 	/*
588 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
589 	 * as some i82559 designs, have a defect where the chip can
590 	 * cause a PCI protocol violation if it receives a CU_RESUME
591 	 * command when it is entering the IDLE state.
592 	 *
593 	 * The work-around is to disable Dynamic Standby Mode, so that
594 	 * the chip never deasserts #CLKRUN, and always remains in the
595 	 * active state.
596 	 *
597 	 * Unfortunately, the only way to disable Dynamic Standby is
598 	 * to frob an EEPROM setting and reboot (the EEPROM setting
599 	 * is only consulted when the PCI bus comes out of reset).
600 	 *
601 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
602 	 */
603 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
604 		fxp_read_eeprom(sc, &data, 10, 1);
605 		if (data & 0x02) {		/* STB enable */
606 			printf("%s: WARNING: "
607 			    "Disabling dynamic standby mode in EEPROM "
608 			    "to work around a\n",
609 			    sc->sc_dev.dv_xname);
610 			printf("%s: WARNING: hardware bug.  You must reset "
611 			    "the system before using this\n",
612 			    sc->sc_dev.dv_xname);
613 			printf("%s: WARNING: interface.\n",
614 			    sc->sc_dev.dv_xname);
615 			data &= ~0x02;
616 			fxp_write_eeprom(sc, &data, 10, 1);
617 			printf("%s: new EEPROM ID: 0x%04x\n",
618 			    sc->sc_dev.dv_xname, data);
619 			fxp_eeprom_update_cksum(sc);
620 		}
621 	}
622 }
623 
624 static void
625 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
626 {
627 	uint16_t reg;
628 	int x;
629 
630 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
631 		if (data & x)
632 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
633 		else
634 			reg = FXP_EEPROM_EECS;
635 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
636 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
637 		    reg | FXP_EEPROM_EESK);
638 		DELAY(4);
639 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
640 		DELAY(4);
641 	}
642 }
643 
644 /*
645  * Figure out EEPROM size.
646  *
647  * 559's can have either 64-word or 256-word EEPROMs, the 558
648  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
649  * talks about the existance of 16 to 256 word EEPROMs.
650  *
651  * The only known sizes are 64 and 256, where the 256 version is used
652  * by CardBus cards to store CIS information.
653  *
654  * The address is shifted in msb-to-lsb, and after the last
655  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
656  * after which follows the actual data. We try to detect this zero, by
657  * probing the data-out bit in the EEPROM control register just after
658  * having shifted in a bit. If the bit is zero, we assume we've
659  * shifted enough address bits. The data-out should be tri-state,
660  * before this, which should translate to a logical one.
661  *
662  * Other ways to do this would be to try to read a register with known
663  * contents with a varying number of address bits, but no such
664  * register seem to be available. The high bits of register 10 are 01
665  * on the 558 and 559, but apparently not on the 557.
666  *
667  * The Linux driver computes a checksum on the EEPROM data, but the
668  * value of this checksum is not very well documented.
669  */
670 
671 void
672 fxp_autosize_eeprom(struct fxp_softc *sc)
673 {
674 	int x;
675 
676 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
677 
678 	/* Shift in read opcode. */
679 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
680 
681 	/*
682 	 * Shift in address, wait for the dummy zero following a correct
683 	 * address shift.
684 	 */
685 	for (x = 1; x <= 8; x++) {
686 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
687 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
688 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
689 		DELAY(4);
690 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
691 		    FXP_EEPROM_EEDO) == 0)
692 			break;
693 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
694 		DELAY(4);
695 	}
696 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
697 	DELAY(4);
698 	if (x != 6 && x != 8) {
699 #ifdef DEBUG
700 		printf("%s: strange EEPROM size (%d)\n",
701 		    sc->sc_dev.dv_xname, 1 << x);
702 #endif
703 	} else
704 		sc->sc_eeprom_size = x;
705 }
706 
707 /*
708  * Read from the serial EEPROM. Basically, you manually shift in
709  * the read opcode (one bit at a time) and then shift in the address,
710  * and then you shift out the data (all of this one bit at a time).
711  * The word size is 16 bits, so you have to provide the address for
712  * every 16 bits of data.
713  */
714 void
715 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
716 {
717 	u_int16_t reg;
718 	int i, x;
719 
720 	for (i = 0; i < words; i++) {
721 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
722 
723 		/* Shift in read opcode. */
724 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
725 
726 		/* Shift in address. */
727 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
728 
729 		reg = FXP_EEPROM_EECS;
730 		data[i] = 0;
731 
732 		/* Shift out data. */
733 		for (x = 16; x > 0; x--) {
734 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
735 			    reg | FXP_EEPROM_EESK);
736 			DELAY(4);
737 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
738 			    FXP_EEPROM_EEDO)
739 				data[i] |= (1 << (x - 1));
740 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
741 			DELAY(4);
742 		}
743 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
744 		DELAY(4);
745 	}
746 }
747 
748 /*
749  * Write data to the serial EEPROM.
750  */
751 void
752 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
753 {
754 	int i, j;
755 
756 	for (i = 0; i < words; i++) {
757 		/* Erase/write enable. */
758 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
759 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
760 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
761 		    sc->sc_eeprom_size);
762 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
763 		DELAY(4);
764 
765 		/* Shift in write opcode, address, data. */
766 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
767 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
768 		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
769 		fxp_eeprom_shiftin(sc, data[i], 16);
770 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
771 		DELAY(4);
772 
773 		/* Wait for the EEPROM to finish up. */
774 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
775 		DELAY(4);
776 		for (j = 0; j < 1000; j++) {
777 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
778 			    FXP_EEPROM_EEDO)
779 				break;
780 			DELAY(50);
781 		}
782 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
783 		DELAY(4);
784 
785 		/* Erase/write disable. */
786 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
787 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
788 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
789 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
790 		DELAY(4);
791 	}
792 }
793 
794 /*
795  * Update the checksum of the EEPROM.
796  */
797 void
798 fxp_eeprom_update_cksum(struct fxp_softc *sc)
799 {
800 	int i;
801 	uint16_t data, cksum;
802 
803 	cksum = 0;
804 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
805 		fxp_read_eeprom(sc, &data, i, 1);
806 		cksum += data;
807 	}
808 	i = (1 << sc->sc_eeprom_size) - 1;
809 	cksum = 0xbaba - cksum;
810 	fxp_read_eeprom(sc, &data, i, 1);
811 	fxp_write_eeprom(sc, &cksum, i, 1);
812 	printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
813 	    sc->sc_dev.dv_xname, i, data, cksum);
814 }
815 
816 /*
817  * Start packet transmission on the interface.
818  */
819 void
820 fxp_start(struct ifnet *ifp)
821 {
822 	struct fxp_softc *sc = ifp->if_softc;
823 	struct mbuf *m0, *m;
824 	struct fxp_txdesc *txd;
825 	struct fxp_txsoft *txs;
826 	bus_dmamap_t dmamap;
827 	int error, lasttx, nexttx, opending, seg;
828 
829 	/*
830 	 * If we want a re-init, bail out now.
831 	 */
832 	if (sc->sc_flags & FXPF_WANTINIT) {
833 		ifp->if_flags |= IFF_OACTIVE;
834 		return;
835 	}
836 
837 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
838 		return;
839 
840 	/*
841 	 * Remember the previous txpending and the current lasttx.
842 	 */
843 	opending = sc->sc_txpending;
844 	lasttx = sc->sc_txlast;
845 
846 	/*
847 	 * Loop through the send queue, setting up transmit descriptors
848 	 * until we drain the queue, or use up all available transmit
849 	 * descriptors.
850 	 */
851 	for (;;) {
852 		/*
853 		 * Grab a packet off the queue.
854 		 */
855 		IFQ_POLL(&ifp->if_snd, m0);
856 		if (m0 == NULL)
857 			break;
858 		m = NULL;
859 
860 		if (sc->sc_txpending == FXP_NTXCB) {
861 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
862 			break;
863 		}
864 
865 		/*
866 		 * Get the next available transmit descriptor.
867 		 */
868 		nexttx = FXP_NEXTTX(sc->sc_txlast);
869 		txd = FXP_CDTX(sc, nexttx);
870 		txs = FXP_DSTX(sc, nexttx);
871 		dmamap = txs->txs_dmamap;
872 
873 		/*
874 		 * Load the DMA map.  If this fails, the packet either
875 		 * didn't fit in the allotted number of frags, or we were
876 		 * short on resources.  In this case, we'll copy and try
877 		 * again.
878 		 */
879 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
880 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
881 			MGETHDR(m, M_DONTWAIT, MT_DATA);
882 			if (m == NULL) {
883 				printf("%s: unable to allocate Tx mbuf\n",
884 				    sc->sc_dev.dv_xname);
885 				break;
886 			}
887 			if (m0->m_pkthdr.len > MHLEN) {
888 				MCLGET(m, M_DONTWAIT);
889 				if ((m->m_flags & M_EXT) == 0) {
890 					printf("%s: unable to allocate Tx "
891 					    "cluster\n", sc->sc_dev.dv_xname);
892 					m_freem(m);
893 					break;
894 				}
895 			}
896 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
897 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
898 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
899 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
900 			if (error) {
901 				printf("%s: unable to load Tx buffer, "
902 				    "error = %d\n", sc->sc_dev.dv_xname, error);
903 				break;
904 			}
905 		}
906 
907 		IFQ_DEQUEUE(&ifp->if_snd, m0);
908 		if (m != NULL) {
909 			m_freem(m0);
910 			m0 = m;
911 		}
912 
913 		/* Initialize the fraglist. */
914 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
915 			txd->txd_tbd[seg].tb_addr =
916 			    htole32(dmamap->dm_segs[seg].ds_addr);
917 			txd->txd_tbd[seg].tb_size =
918 			    htole32(dmamap->dm_segs[seg].ds_len);
919 		}
920 
921 		/* Sync the DMA map. */
922 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
923 		    BUS_DMASYNC_PREWRITE);
924 
925 		/*
926 		 * Store a pointer to the packet so we can free it later.
927 		 */
928 		txs->txs_mbuf = m0;
929 
930 		/*
931 		 * Initialize the transmit descriptor.
932 		 */
933 		/* BIG_ENDIAN: no need to swap to store 0 */
934 		txd->txd_txcb.cb_status = 0;
935 		txd->txd_txcb.cb_command =
936 		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
937 		txd->txd_txcb.tx_threshold = tx_threshold;
938 		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
939 
940 		FXP_CDTXSYNC(sc, nexttx,
941 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
942 
943 		/* Advance the tx pointer. */
944 		sc->sc_txpending++;
945 		sc->sc_txlast = nexttx;
946 
947 #if NBPFILTER > 0
948 		/*
949 		 * Pass packet to bpf if there is a listener.
950 		 */
951 		if (ifp->if_bpf)
952 			bpf_mtap(ifp->if_bpf, m0);
953 #endif
954 	}
955 
956 	if (sc->sc_txpending == FXP_NTXCB) {
957 		/* No more slots; notify upper layer. */
958 		ifp->if_flags |= IFF_OACTIVE;
959 	}
960 
961 	if (sc->sc_txpending != opending) {
962 		/*
963 		 * We enqueued packets.  If the transmitter was idle,
964 		 * reset the txdirty pointer.
965 		 */
966 		if (opending == 0)
967 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
968 
969 		/*
970 		 * Cause the chip to interrupt and suspend command
971 		 * processing once the last packet we've enqueued
972 		 * has been transmitted.
973 		 */
974 		FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
975 		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
976 		FXP_CDTXSYNC(sc, sc->sc_txlast,
977 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
978 
979 		/*
980 		 * The entire packet chain is set up.  Clear the suspend bit
981 		 * on the command prior to the first packet we set up.
982 		 */
983 		FXP_CDTXSYNC(sc, lasttx,
984 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
985 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
986 		    htole16(~FXP_CB_COMMAND_S);
987 		FXP_CDTXSYNC(sc, lasttx,
988 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
989 
990 		/*
991 		 * Issue a Resume command in case the chip was suspended.
992 		 */
993 		fxp_scb_wait(sc);
994 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
995 
996 		/* Set a watchdog timer in case the chip flakes out. */
997 		ifp->if_timer = 5;
998 	}
999 }
1000 
1001 /*
1002  * Process interface interrupts.
1003  */
1004 int
1005 fxp_intr(void *arg)
1006 {
1007 	struct fxp_softc *sc = arg;
1008 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1009 	bus_dmamap_t rxmap;
1010 	int claimed = 0;
1011 	u_int8_t statack;
1012 
1013 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1014 		return (0);
1015 	/*
1016 	 * If the interface isn't running, don't try to
1017 	 * service the interrupt.. just ack it and bail.
1018 	 */
1019 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1020 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1021 		if (statack) {
1022 			claimed = 1;
1023 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1024 		}
1025 		return (claimed);
1026 	}
1027 
1028 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1029 		claimed = 1;
1030 
1031 		/*
1032 		 * First ACK all the interrupts in this pass.
1033 		 */
1034 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1035 
1036 		/*
1037 		 * Process receiver interrupts. If a no-resource (RNR)
1038 		 * condition exists, get whatever packets we can and
1039 		 * re-start the receiver.
1040 		 */
1041 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1042 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1043 			fxp_rxintr(sc);
1044 		}
1045 
1046 		if (statack & FXP_SCB_STATACK_RNR) {
1047 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1048 			fxp_scb_wait(sc);
1049 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1050 			    rxmap->dm_segs[0].ds_addr +
1051 			    RFA_ALIGNMENT_FUDGE);
1052 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1053 		}
1054 
1055 		/*
1056 		 * Free any finished transmit mbuf chains.
1057 		 */
1058 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1059 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1060 			fxp_txintr(sc);
1061 
1062 			/*
1063 			 * Try to get more packets going.
1064 			 */
1065 			fxp_start(ifp);
1066 
1067 			if (sc->sc_txpending == 0) {
1068 				/*
1069 				 * If we want a re-init, do that now.
1070 				 */
1071 				if (sc->sc_flags & FXPF_WANTINIT)
1072 					(void) fxp_init(ifp);
1073 			}
1074 		}
1075 	}
1076 
1077 #if NRND > 0
1078 	if (claimed)
1079 		rnd_add_uint32(&sc->rnd_source, statack);
1080 #endif
1081 	return (claimed);
1082 }
1083 
1084 /*
1085  * Handle transmit completion interrupts.
1086  */
1087 void
1088 fxp_txintr(struct fxp_softc *sc)
1089 {
1090 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1091 	struct fxp_txdesc *txd;
1092 	struct fxp_txsoft *txs;
1093 	int i;
1094 	u_int16_t txstat;
1095 
1096 	ifp->if_flags &= ~IFF_OACTIVE;
1097 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1098 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1099 		txd = FXP_CDTX(sc, i);
1100 		txs = FXP_DSTX(sc, i);
1101 
1102 		FXP_CDTXSYNC(sc, i,
1103 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1104 
1105 		txstat = le16toh(txd->txd_txcb.cb_status);
1106 
1107 		if ((txstat & FXP_CB_STATUS_C) == 0)
1108 			break;
1109 
1110 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1111 		    0, txs->txs_dmamap->dm_mapsize,
1112 		    BUS_DMASYNC_POSTWRITE);
1113 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1114 		m_freem(txs->txs_mbuf);
1115 		txs->txs_mbuf = NULL;
1116 	}
1117 
1118 	/* Update the dirty transmit buffer pointer. */
1119 	sc->sc_txdirty = i;
1120 
1121 	/*
1122 	 * Cancel the watchdog timer if there are no pending
1123 	 * transmissions.
1124 	 */
1125 	if (sc->sc_txpending == 0)
1126 		ifp->if_timer = 0;
1127 }
1128 
1129 /*
1130  * Handle receive interrupts.
1131  */
1132 void
1133 fxp_rxintr(struct fxp_softc *sc)
1134 {
1135 	struct ethercom *ec = &sc->sc_ethercom;
1136 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1137 	struct mbuf *m, *m0;
1138 	bus_dmamap_t rxmap;
1139 	struct fxp_rfa *rfa;
1140 	u_int16_t len, rxstat;
1141 
1142 	for (;;) {
1143 		m = sc->sc_rxq.ifq_head;
1144 		rfa = FXP_MTORFA(m);
1145 		rxmap = M_GETCTX(m, bus_dmamap_t);
1146 
1147 		FXP_RFASYNC(sc, m,
1148 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1149 
1150 		rxstat = le16toh(rfa->rfa_status);
1151 
1152 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1153 			/*
1154 			 * We have processed all of the
1155 			 * receive buffers.
1156 			 */
1157 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1158 			return;
1159 		}
1160 
1161 		IF_DEQUEUE(&sc->sc_rxq, m);
1162 
1163 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1164 
1165 		len = le16toh(rfa->actual_size) &
1166 		    (m->m_ext.ext_size - 1);
1167 
1168 		if (len < sizeof(struct ether_header)) {
1169 			/*
1170 			 * Runt packet; drop it now.
1171 			 */
1172 			FXP_INIT_RFABUF(sc, m);
1173 			continue;
1174 		}
1175 
1176 		/*
1177 		 * If support for 802.1Q VLAN sized frames is
1178 		 * enabled, we need to do some additional error
1179 		 * checking (as we are saving bad frames, in
1180 		 * order to receive the larger ones).
1181 		 */
1182 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1183 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1184 			       FXP_RFA_STATUS_RNR|
1185 			       FXP_RFA_STATUS_ALIGN|
1186 			       FXP_RFA_STATUS_CRC)) != 0) {
1187 			FXP_INIT_RFABUF(sc, m);
1188 			continue;
1189 		}
1190 
1191 		/*
1192 		 * If the packet is small enough to fit in a
1193 		 * single header mbuf, allocate one and copy
1194 		 * the data into it.  This greatly reduces
1195 		 * memory consumption when we receive lots
1196 		 * of small packets.
1197 		 *
1198 		 * Otherwise, we add a new buffer to the receive
1199 		 * chain.  If this fails, we drop the packet and
1200 		 * recycle the old buffer.
1201 		 */
1202 		if (fxp_copy_small != 0 && len <= MHLEN) {
1203 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1204 			if (m == NULL)
1205 				goto dropit;
1206 			memcpy(mtod(m0, caddr_t),
1207 			    mtod(m, caddr_t), len);
1208 			FXP_INIT_RFABUF(sc, m);
1209 			m = m0;
1210 		} else {
1211 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1212  dropit:
1213 				ifp->if_ierrors++;
1214 				FXP_INIT_RFABUF(sc, m);
1215 				continue;
1216 			}
1217 		}
1218 
1219 		m->m_pkthdr.rcvif = ifp;
1220 		m->m_pkthdr.len = m->m_len = len;
1221 
1222 #if NBPFILTER > 0
1223 		/*
1224 		 * Pass this up to any BPF listeners, but only
1225 		 * pass it up the stack it its for us.
1226 		 */
1227 		if (ifp->if_bpf)
1228 			bpf_mtap(ifp->if_bpf, m);
1229 #endif
1230 
1231 		/* Pass it on. */
1232 		(*ifp->if_input)(ifp, m);
1233 	}
1234 }
1235 
1236 /*
1237  * Update packet in/out/collision statistics. The i82557 doesn't
1238  * allow you to access these counters without doing a fairly
1239  * expensive DMA to get _all_ of the statistics it maintains, so
1240  * we do this operation here only once per second. The statistics
1241  * counters in the kernel are updated from the previous dump-stats
1242  * DMA and then a new dump-stats DMA is started. The on-chip
1243  * counters are zeroed when the DMA completes. If we can't start
1244  * the DMA immediately, we don't wait - we just prepare to read
1245  * them again next time.
1246  */
1247 void
1248 fxp_tick(void *arg)
1249 {
1250 	struct fxp_softc *sc = arg;
1251 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1252 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1253 	int s;
1254 
1255 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1256 		return;
1257 
1258 	s = splnet();
1259 
1260 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1261 
1262 	ifp->if_opackets += le32toh(sp->tx_good);
1263 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1264 	if (sp->rx_good) {
1265 		ifp->if_ipackets += le32toh(sp->rx_good);
1266 		sc->sc_rxidle = 0;
1267 	} else {
1268 		sc->sc_rxidle++;
1269 	}
1270 	ifp->if_ierrors +=
1271 	    le32toh(sp->rx_crc_errors) +
1272 	    le32toh(sp->rx_alignment_errors) +
1273 	    le32toh(sp->rx_rnr_errors) +
1274 	    le32toh(sp->rx_overrun_errors);
1275 	/*
1276 	 * If any transmit underruns occurred, bump up the transmit
1277 	 * threshold by another 512 bytes (64 * 8).
1278 	 */
1279 	if (sp->tx_underruns) {
1280 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1281 		if (tx_threshold < 192)
1282 			tx_threshold += 64;
1283 	}
1284 
1285 	/*
1286 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1287 	 * then assume the receiver has locked up and attempt to clear
1288 	 * the condition by reprogramming the multicast filter (actually,
1289 	 * resetting the interface). This is a work-around for a bug in
1290 	 * the 82557 where the receiver locks up if it gets certain types
1291 	 * of garbage in the syncronization bits prior to the packet header.
1292 	 * This bug is supposed to only occur in 10Mbps mode, but has been
1293 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1294 	 * speed transition).
1295 	 */
1296 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1297 		(void) fxp_init(ifp);
1298 		splx(s);
1299 		return;
1300 	}
1301 	/*
1302 	 * If there is no pending command, start another stats
1303 	 * dump. Otherwise punt for now.
1304 	 */
1305 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1306 		/*
1307 		 * Start another stats dump.
1308 		 */
1309 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1310 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1311 	} else {
1312 		/*
1313 		 * A previous command is still waiting to be accepted.
1314 		 * Just zero our copy of the stats and wait for the
1315 		 * next timer event to update them.
1316 		 */
1317 		/* BIG_ENDIAN: no swap required to store 0 */
1318 		sp->tx_good = 0;
1319 		sp->tx_underruns = 0;
1320 		sp->tx_total_collisions = 0;
1321 
1322 		sp->rx_good = 0;
1323 		sp->rx_crc_errors = 0;
1324 		sp->rx_alignment_errors = 0;
1325 		sp->rx_rnr_errors = 0;
1326 		sp->rx_overrun_errors = 0;
1327 	}
1328 
1329 	if (sc->sc_flags & FXPF_MII) {
1330 		/* Tick the MII clock. */
1331 		mii_tick(&sc->sc_mii);
1332 	}
1333 
1334 	splx(s);
1335 
1336 	/*
1337 	 * Schedule another timeout one second from now.
1338 	 */
1339 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1340 }
1341 
1342 /*
1343  * Drain the receive queue.
1344  */
1345 void
1346 fxp_rxdrain(struct fxp_softc *sc)
1347 {
1348 	bus_dmamap_t rxmap;
1349 	struct mbuf *m;
1350 
1351 	for (;;) {
1352 		IF_DEQUEUE(&sc->sc_rxq, m);
1353 		if (m == NULL)
1354 			break;
1355 		rxmap = M_GETCTX(m, bus_dmamap_t);
1356 		bus_dmamap_unload(sc->sc_dmat, rxmap);
1357 		FXP_RXMAP_PUT(sc, rxmap);
1358 		m_freem(m);
1359 	}
1360 }
1361 
1362 /*
1363  * Stop the interface. Cancels the statistics updater and resets
1364  * the interface.
1365  */
1366 void
1367 fxp_stop(struct ifnet *ifp, int disable)
1368 {
1369 	struct fxp_softc *sc = ifp->if_softc;
1370 	struct fxp_txsoft *txs;
1371 	int i;
1372 
1373 	/*
1374 	 * Turn down interface (done early to avoid bad interactions
1375 	 * between panics, shutdown hooks, and the watchdog timer)
1376 	 */
1377 	ifp->if_timer = 0;
1378 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1379 
1380 	/*
1381 	 * Cancel stats updater.
1382 	 */
1383 	callout_stop(&sc->sc_callout);
1384 	if (sc->sc_flags & FXPF_MII) {
1385 		/* Down the MII. */
1386 		mii_down(&sc->sc_mii);
1387 	}
1388 
1389 	/*
1390 	 * Issue software reset.  This unloads any microcode that
1391 	 * might already be loaded.
1392 	 */
1393 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1394 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1395 	DELAY(50);
1396 
1397 	/*
1398 	 * Release any xmit buffers.
1399 	 */
1400 	for (i = 0; i < FXP_NTXCB; i++) {
1401 		txs = FXP_DSTX(sc, i);
1402 		if (txs->txs_mbuf != NULL) {
1403 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1404 			m_freem(txs->txs_mbuf);
1405 			txs->txs_mbuf = NULL;
1406 		}
1407 	}
1408 	sc->sc_txpending = 0;
1409 
1410 	if (disable) {
1411 		fxp_rxdrain(sc);
1412 		fxp_disable(sc);
1413 	}
1414 
1415 }
1416 
1417 /*
1418  * Watchdog/transmission transmit timeout handler. Called when a
1419  * transmission is started on the interface, but no interrupt is
1420  * received before the timeout. This usually indicates that the
1421  * card has wedged for some reason.
1422  */
1423 void
1424 fxp_watchdog(struct ifnet *ifp)
1425 {
1426 	struct fxp_softc *sc = ifp->if_softc;
1427 
1428 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1429 	ifp->if_oerrors++;
1430 
1431 	(void) fxp_init(ifp);
1432 }
1433 
1434 /*
1435  * Initialize the interface.  Must be called at splnet().
1436  */
1437 int
1438 fxp_init(struct ifnet *ifp)
1439 {
1440 	struct fxp_softc *sc = ifp->if_softc;
1441 	struct fxp_cb_config *cbp;
1442 	struct fxp_cb_ias *cb_ias;
1443 	struct fxp_txdesc *txd;
1444 	bus_dmamap_t rxmap;
1445 	int i, prm, save_bf, lrxen, allm, error = 0;
1446 
1447 	if ((error = fxp_enable(sc)) != 0)
1448 		goto out;
1449 
1450 	/*
1451 	 * Cancel any pending I/O
1452 	 */
1453 	fxp_stop(ifp, 0);
1454 
1455 	/*
1456 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1457 	 * flag, and this prevents the MII from detaching resulting in
1458 	 * a panic. The flags field should perhaps be split in runtime
1459 	 * flags and more static information. For now, just clear the
1460 	 * only other flag set.
1461 	 */
1462 
1463 	sc->sc_flags &= ~FXPF_WANTINIT;
1464 
1465 	/*
1466 	 * Initialize base of CBL and RFA memory. Loading with zero
1467 	 * sets it up for regular linear addressing.
1468 	 */
1469 	fxp_scb_wait(sc);
1470 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1471 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1472 
1473 	fxp_scb_wait(sc);
1474 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1475 
1476 	/*
1477 	 * Initialize the multicast filter.  Do this now, since we might
1478 	 * have to setup the config block differently.
1479 	 */
1480 	fxp_mc_setup(sc);
1481 
1482 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1483 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1484 
1485 	/*
1486 	 * In order to support receiving 802.1Q VLAN frames, we have to
1487 	 * enable "save bad frames", since they are 4 bytes larger than
1488 	 * the normal Ethernet maximum frame length.  On i82558 and later,
1489 	 * we have a better mechanism for this.
1490 	 */
1491 	save_bf = 0;
1492 	lrxen = 0;
1493 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1494 		if (sc->sc_rev < FXP_REV_82558_A4)
1495 			save_bf = 1;
1496 		else
1497 			lrxen = 1;
1498 	}
1499 
1500 	/*
1501 	 * Initialize base of dump-stats buffer.
1502 	 */
1503 	fxp_scb_wait(sc);
1504 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1505 	    sc->sc_cddma + FXP_CDSTATSOFF);
1506 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1507 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1508 
1509 	cbp = &sc->sc_control_data->fcd_configcb;
1510 	memset(cbp, 0, sizeof(struct fxp_cb_config));
1511 
1512 	/*
1513 	 * Load microcode for this controller.
1514 	 */
1515 	fxp_load_ucode(sc);
1516 
1517 	/*
1518 	 * This copy is kind of disgusting, but there are a bunch of must be
1519 	 * zero and must be one bits in this structure and this is the easiest
1520 	 * way to initialize them all to proper values.
1521 	 */
1522 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1523 
1524 	/* BIG_ENDIAN: no need to swap to store 0 */
1525 	cbp->cb_status =	0;
1526 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1527 				    FXP_CB_COMMAND_EL);
1528 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1529 	cbp->link_addr =	0xffffffff; /* (no) next command */
1530 					/* bytes in config block */
1531 	cbp->byte_count =	FXP_CONFIG_LEN;
1532 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1533 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1534 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1535 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1536 	cbp->type_enable =	0;	/* actually reserved */
1537 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1538 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1539 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1540 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1541 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1542 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1543 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1544 	cbp->ci_int =		1;	/* interrupt on CU idle */
1545 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1546 	cbp->ext_stats_dis =	1;	/* disable extended counters */
1547 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1548 	cbp->save_bf =		save_bf;/* save bad frames */
1549 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1550 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1551 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1552 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1553 					/* interface mode */
1554 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1555 	cbp->csma_dis =		0;	/* (don't) disable link */
1556 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1557 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1558 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1559 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1560 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1561 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1562 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1563 	cbp->loopback =		0;	/* (don't) loopback */
1564 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1565 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1566 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1567 	cbp->promiscuous =	prm;	/* promiscuous mode */
1568 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1569 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1570 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1571 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1572 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1573 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1574 	cbp->padding =		1;	/* (do) pad short tx packets */
1575 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1576 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1577 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1578 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1579 					/* must set wake_en in PMCSR also */
1580 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1581 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1582 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1583 	cbp->mc_all =		allm;	/* accept all multicasts */
1584 
1585 	if (sc->sc_rev < FXP_REV_82558_A4) {
1586 		/*
1587 		 * The i82557 has no hardware flow control, the values
1588 		 * here are the defaults for the chip.
1589 		 */
1590 		cbp->fc_delay_lsb =	0;
1591 		cbp->fc_delay_msb =	0x40;
1592 		cbp->pri_fc_thresh =	3;
1593 		cbp->tx_fc_dis =	0;
1594 		cbp->rx_fc_restop =	0;
1595 		cbp->rx_fc_restart =	0;
1596 		cbp->fc_filter =	0;
1597 		cbp->pri_fc_loc =	1;
1598 	} else {
1599 		cbp->fc_delay_lsb =	0x1f;
1600 		cbp->fc_delay_msb =	0x01;
1601 		cbp->pri_fc_thresh =	3;
1602 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1603 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1604 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1605 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1606 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1607 	}
1608 
1609 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1610 
1611 	/*
1612 	 * Start the config command/DMA.
1613 	 */
1614 	fxp_scb_wait(sc);
1615 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1616 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1617 	/* ...and wait for it to complete. */
1618 	i = 1000;
1619 	do {
1620 		FXP_CDCONFIGSYNC(sc,
1621 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1622 		DELAY(1);
1623 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1624 	if (i == 0) {
1625 		printf("%s at line %d: dmasync timeout\n",
1626 		    sc->sc_dev.dv_xname, __LINE__);
1627 		return (ETIMEDOUT);
1628 	}
1629 
1630 	/*
1631 	 * Initialize the station address.
1632 	 */
1633 	cb_ias = &sc->sc_control_data->fcd_iascb;
1634 	/* BIG_ENDIAN: no need to swap to store 0 */
1635 	cb_ias->cb_status = 0;
1636 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1637 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1638 	cb_ias->link_addr = 0xffffffff;
1639 	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1640 
1641 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1642 
1643 	/*
1644 	 * Start the IAS (Individual Address Setup) command/DMA.
1645 	 */
1646 	fxp_scb_wait(sc);
1647 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1648 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1649 	/* ...and wait for it to complete. */
1650 	i = 1000;
1651 	do {
1652 		FXP_CDIASSYNC(sc,
1653 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1654 		DELAY(1);
1655 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1656 	if (i == 0) {
1657 		printf("%s at line %d: dmasync timeout\n",
1658 		    sc->sc_dev.dv_xname, __LINE__);
1659 		return (ETIMEDOUT);
1660 	}
1661 
1662 	/*
1663 	 * Initialize the transmit descriptor ring.  txlast is initialized
1664 	 * to the end of the list so that it will wrap around to the first
1665 	 * descriptor when the first packet is transmitted.
1666 	 */
1667 	for (i = 0; i < FXP_NTXCB; i++) {
1668 		txd = FXP_CDTX(sc, i);
1669 		memset(txd, 0, sizeof(*txd));
1670 		txd->txd_txcb.cb_command =
1671 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1672 		txd->txd_txcb.link_addr =
1673 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1674 		if (sc->sc_flags & FXPF_EXT_TXCB)
1675 			txd->txd_txcb.tbd_array_addr =
1676 			    htole32(FXP_CDTBDADDR(sc, i) +
1677 				    (2 * sizeof(struct fxp_tbd)));
1678 		else
1679 			txd->txd_txcb.tbd_array_addr =
1680 			    htole32(FXP_CDTBDADDR(sc, i));
1681 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1682 	}
1683 	sc->sc_txpending = 0;
1684 	sc->sc_txdirty = 0;
1685 	sc->sc_txlast = FXP_NTXCB - 1;
1686 
1687 	/*
1688 	 * Initialize the receive buffer list.
1689 	 */
1690 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1691 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1692 		rxmap = FXP_RXMAP_GET(sc);
1693 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1694 			printf("%s: unable to allocate or map rx "
1695 			    "buffer %d, error = %d\n",
1696 			    sc->sc_dev.dv_xname,
1697 			    sc->sc_rxq.ifq_len, error);
1698 			/*
1699 			 * XXX Should attempt to run with fewer receive
1700 			 * XXX buffers instead of just failing.
1701 			 */
1702 			FXP_RXMAP_PUT(sc, rxmap);
1703 			fxp_rxdrain(sc);
1704 			goto out;
1705 		}
1706 	}
1707 	sc->sc_rxidle = 0;
1708 
1709 	/*
1710 	 * Give the transmit ring to the chip.  We do this by pointing
1711 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1712 	 * issuing a start command.  It will execute the NOP and then
1713 	 * suspend, pointing at the first descriptor.
1714 	 */
1715 	fxp_scb_wait(sc);
1716 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1717 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1718 
1719 	/*
1720 	 * Initialize receiver buffer area - RFA.
1721 	 */
1722 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1723 	fxp_scb_wait(sc);
1724 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1725 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1726 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1727 
1728 	if (sc->sc_flags & FXPF_MII) {
1729 		/*
1730 		 * Set current media.
1731 		 */
1732 		mii_mediachg(&sc->sc_mii);
1733 	}
1734 
1735 	/*
1736 	 * ...all done!
1737 	 */
1738 	ifp->if_flags |= IFF_RUNNING;
1739 	ifp->if_flags &= ~IFF_OACTIVE;
1740 
1741 	/*
1742 	 * Start the one second timer.
1743 	 */
1744 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1745 
1746 	/*
1747 	 * Attempt to start output on the interface.
1748 	 */
1749 	fxp_start(ifp);
1750 
1751  out:
1752 	if (error) {
1753 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1754 		ifp->if_timer = 0;
1755 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1756 	}
1757 	return (error);
1758 }
1759 
1760 /*
1761  * Change media according to request.
1762  */
1763 int
1764 fxp_mii_mediachange(struct ifnet *ifp)
1765 {
1766 	struct fxp_softc *sc = ifp->if_softc;
1767 
1768 	if (ifp->if_flags & IFF_UP)
1769 		mii_mediachg(&sc->sc_mii);
1770 	return (0);
1771 }
1772 
1773 /*
1774  * Notify the world which media we're using.
1775  */
1776 void
1777 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1778 {
1779 	struct fxp_softc *sc = ifp->if_softc;
1780 
1781 	if (sc->sc_enabled == 0) {
1782 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1783 		ifmr->ifm_status = 0;
1784 		return;
1785 	}
1786 
1787 	mii_pollstat(&sc->sc_mii);
1788 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1789 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1790 }
1791 
1792 int
1793 fxp_80c24_mediachange(struct ifnet *ifp)
1794 {
1795 
1796 	/* Nothing to do here. */
1797 	return (0);
1798 }
1799 
1800 void
1801 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1802 {
1803 	struct fxp_softc *sc = ifp->if_softc;
1804 
1805 	/*
1806 	 * Media is currently-selected media.  We cannot determine
1807 	 * the link status.
1808 	 */
1809 	ifmr->ifm_status = 0;
1810 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1811 }
1812 
1813 /*
1814  * Add a buffer to the end of the RFA buffer list.
1815  * Return 0 if successful, error code on failure.
1816  *
1817  * The RFA struct is stuck at the beginning of mbuf cluster and the
1818  * data pointer is fixed up to point just past it.
1819  */
1820 int
1821 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1822 {
1823 	struct mbuf *m;
1824 	int error;
1825 
1826 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1827 	if (m == NULL)
1828 		return (ENOBUFS);
1829 
1830 	MCLGET(m, M_DONTWAIT);
1831 	if ((m->m_flags & M_EXT) == 0) {
1832 		m_freem(m);
1833 		return (ENOBUFS);
1834 	}
1835 
1836 	if (unload)
1837 		bus_dmamap_unload(sc->sc_dmat, rxmap);
1838 
1839 	M_SETCTX(m, rxmap);
1840 
1841 	error = bus_dmamap_load(sc->sc_dmat, rxmap,
1842 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1843 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1844 	if (error) {
1845 		printf("%s: can't load rx DMA map %d, error = %d\n",
1846 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1847 		panic("fxp_add_rfabuf");		/* XXX */
1848 	}
1849 
1850 	FXP_INIT_RFABUF(sc, m);
1851 
1852 	return (0);
1853 }
1854 
1855 int
1856 fxp_mdi_read(struct device *self, int phy, int reg)
1857 {
1858 	struct fxp_softc *sc = (struct fxp_softc *)self;
1859 	int count = 10000;
1860 	int value;
1861 
1862 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1863 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1864 
1865 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
1866 	    0x10000000) == 0 && count--)
1867 		DELAY(10);
1868 
1869 	if (count <= 0)
1870 		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1871 
1872 	return (value & 0xffff);
1873 }
1874 
1875 void
1876 fxp_statchg(struct device *self)
1877 {
1878 
1879 	/* Nothing to do. */
1880 }
1881 
1882 void
1883 fxp_mdi_write(struct device *self, int phy, int reg, int value)
1884 {
1885 	struct fxp_softc *sc = (struct fxp_softc *)self;
1886 	int count = 10000;
1887 
1888 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1889 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1890 	    (value & 0xffff));
1891 
1892 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1893 	    count--)
1894 		DELAY(10);
1895 
1896 	if (count <= 0)
1897 		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1898 }
1899 
1900 int
1901 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1902 {
1903 	struct fxp_softc *sc = ifp->if_softc;
1904 	struct ifreq *ifr = (struct ifreq *)data;
1905 	int s, error;
1906 
1907 	s = splnet();
1908 
1909 	switch (cmd) {
1910 	case SIOCSIFMEDIA:
1911 	case SIOCGIFMEDIA:
1912 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1913 		break;
1914 
1915 	default:
1916 		error = ether_ioctl(ifp, cmd, data);
1917 		if (error == ENETRESET) {
1918 			if (sc->sc_enabled) {
1919 				/*
1920 				 * Multicast list has changed; set the
1921 				 * hardware filter accordingly.
1922 				 */
1923 				if (sc->sc_txpending) {
1924 					sc->sc_flags |= FXPF_WANTINIT;
1925 					error = 0;
1926 				} else
1927 					error = fxp_init(ifp);
1928 			} else
1929 				error = 0;
1930 		}
1931 		break;
1932 	}
1933 
1934 	/* Try to get more packets going. */
1935 	if (sc->sc_enabled)
1936 		fxp_start(ifp);
1937 
1938 	splx(s);
1939 	return (error);
1940 }
1941 
1942 /*
1943  * Program the multicast filter.
1944  *
1945  * This function must be called at splnet().
1946  */
1947 void
1948 fxp_mc_setup(struct fxp_softc *sc)
1949 {
1950 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1951 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1952 	struct ethercom *ec = &sc->sc_ethercom;
1953 	struct ether_multi *enm;
1954 	struct ether_multistep step;
1955 	int count, nmcasts;
1956 
1957 #ifdef DIAGNOSTIC
1958 	if (sc->sc_txpending)
1959 		panic("fxp_mc_setup: pending transmissions");
1960 #endif
1961 
1962 	ifp->if_flags &= ~IFF_ALLMULTI;
1963 
1964 	/*
1965 	 * Initialize multicast setup descriptor.
1966 	 */
1967 	nmcasts = 0;
1968 	ETHER_FIRST_MULTI(step, ec, enm);
1969 	while (enm != NULL) {
1970 		/*
1971 		 * Check for too many multicast addresses or if we're
1972 		 * listening to a range.  Either way, we simply have
1973 		 * to accept all multicasts.
1974 		 */
1975 		if (nmcasts >= MAXMCADDR ||
1976 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
1977 		    ETHER_ADDR_LEN) != 0) {
1978 			/*
1979 			 * Callers of this function must do the
1980 			 * right thing with this.  If we're called
1981 			 * from outside fxp_init(), the caller must
1982 			 * detect if the state if IFF_ALLMULTI changes.
1983 			 * If it does, the caller must then call
1984 			 * fxp_init(), since allmulti is handled by
1985 			 * the config block.
1986 			 */
1987 			ifp->if_flags |= IFF_ALLMULTI;
1988 			return;
1989 		}
1990 		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1991 		    ETHER_ADDR_LEN);
1992 		nmcasts++;
1993 		ETHER_NEXT_MULTI(step, enm);
1994 	}
1995 
1996 	/* BIG_ENDIAN: no need to swap to store 0 */
1997 	mcsp->cb_status = 0;
1998 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1999 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2000 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2001 
2002 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2003 
2004 	/*
2005 	 * Wait until the command unit is not active.  This should never
2006 	 * happen since nothing is queued, but make sure anyway.
2007 	 */
2008 	count = 100;
2009 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2010 	    FXP_SCB_CUS_ACTIVE && --count)
2011 		DELAY(1);
2012 	if (count == 0) {
2013 		printf("%s at line %d: command queue timeout\n",
2014 		    sc->sc_dev.dv_xname, __LINE__);
2015 		return;
2016 	}
2017 
2018 	/*
2019 	 * Start the multicast setup command/DMA.
2020 	 */
2021 	fxp_scb_wait(sc);
2022 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2023 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2024 
2025 	/* ...and wait for it to complete. */
2026 	count = 1000;
2027 	do {
2028 		FXP_CDMCSSYNC(sc,
2029 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2030 		DELAY(1);
2031 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2032 	if (count == 0) {
2033 		printf("%s at line %d: dmasync timeout\n",
2034 		    sc->sc_dev.dv_xname, __LINE__);
2035 		return;
2036 	}
2037 }
2038 
2039 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2040 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2041 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2042 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2043 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2044 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2045 
2046 #define	UCODE(x)	x, sizeof(x)
2047 
2048 static const struct ucode {
2049 	int32_t		revision;
2050 	const uint32_t	*ucode;
2051 	size_t		length;
2052 	uint16_t	int_delay_offset;
2053 	uint16_t	bundle_max_offset;
2054 } ucode_table[] = {
2055 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2056 	  D101_CPUSAVER_DWORD, 0 },
2057 
2058 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2059 	  D101_CPUSAVER_DWORD, 0 },
2060 
2061 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2062 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2063 
2064 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2065 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2066 
2067 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2068 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2069 
2070 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2071 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2072 
2073 	{ 0, NULL, 0, 0, 0 }
2074 };
2075 
2076 void
2077 fxp_load_ucode(struct fxp_softc *sc)
2078 {
2079 	const struct ucode *uc;
2080 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2081 	int count;
2082 
2083 	if (sc->sc_flags & FXPF_UCODE_LOADED)
2084 		return;
2085 
2086 	/*
2087 	 * Only load the uCode if the user has requested that
2088 	 * we do so.
2089 	 */
2090 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2091 		sc->sc_int_delay = 0;
2092 		sc->sc_bundle_max = 0;
2093 		return;
2094 	}
2095 
2096 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2097 		if (sc->sc_rev == uc->revision)
2098 			break;
2099 	}
2100 	if (uc->ucode == NULL)
2101 		return;
2102 
2103 	/* BIG ENDIAN: no need to swap to store 0 */
2104 	cbp->cb_status = 0;
2105 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2106 	cbp->link_addr = 0xffffffff;		/* (no) next command */
2107 	memcpy((void *) cbp->ucode, uc->ucode, uc->length);
2108 
2109 	if (uc->int_delay_offset)
2110 		*(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2111 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2112 
2113 	if (uc->bundle_max_offset)
2114 		*(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2115 		    htole16(fxp_bundle_max);
2116 
2117 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2118 
2119 	/*
2120 	 * Download the uCode to the chip.
2121 	 */
2122 	fxp_scb_wait(sc);
2123 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2124 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2125 
2126 	/* ...and wait for it to complete. */
2127 	count = 10000;
2128 	do {
2129 		FXP_CDUCODESYNC(sc,
2130 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2131 		DELAY(2);
2132 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2133 	if (count == 0) {
2134 		sc->sc_int_delay = 0;
2135 		sc->sc_bundle_max = 0;
2136 		printf("%s: timeout loading microcode\n",
2137 		    sc->sc_dev.dv_xname);
2138 		return;
2139 	}
2140 
2141 	if (sc->sc_int_delay != fxp_int_delay ||
2142 	    sc->sc_bundle_max != fxp_bundle_max) {
2143 		sc->sc_int_delay = fxp_int_delay;
2144 		sc->sc_bundle_max = fxp_bundle_max;
2145 		printf("%s: Microcode loaded: int delay: %d usec, "
2146 		    "max bundle: %d\n", sc->sc_dev.dv_xname,
2147 		    sc->sc_int_delay,
2148 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2149 	}
2150 
2151 	sc->sc_flags |= FXPF_UCODE_LOADED;
2152 }
2153 
2154 int
2155 fxp_enable(struct fxp_softc *sc)
2156 {
2157 
2158 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2159 		if ((*sc->sc_enable)(sc) != 0) {
2160 			printf("%s: device enable failed\n",
2161 			    sc->sc_dev.dv_xname);
2162 			return (EIO);
2163 		}
2164 	}
2165 
2166 	sc->sc_enabled = 1;
2167 	return (0);
2168 }
2169 
2170 void
2171 fxp_disable(struct fxp_softc *sc)
2172 {
2173 
2174 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2175 		(*sc->sc_disable)(sc);
2176 		sc->sc_enabled = 0;
2177 	}
2178 }
2179 
2180 /*
2181  * fxp_activate:
2182  *
2183  *	Handle device activation/deactivation requests.
2184  */
2185 int
2186 fxp_activate(struct device *self, enum devact act)
2187 {
2188 	struct fxp_softc *sc = (void *) self;
2189 	int s, error = 0;
2190 
2191 	s = splnet();
2192 	switch (act) {
2193 	case DVACT_ACTIVATE:
2194 		error = EOPNOTSUPP;
2195 		break;
2196 
2197 	case DVACT_DEACTIVATE:
2198 		if (sc->sc_flags & FXPF_MII)
2199 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2200 			    MII_OFFSET_ANY);
2201 		if_deactivate(&sc->sc_ethercom.ec_if);
2202 		break;
2203 	}
2204 	splx(s);
2205 
2206 	return (error);
2207 }
2208 
2209 /*
2210  * fxp_detach:
2211  *
2212  *	Detach an i82557 interface.
2213  */
2214 int
2215 fxp_detach(struct fxp_softc *sc)
2216 {
2217 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2218 	int i;
2219 
2220 	/* Succeed now if there's no work to do. */
2221 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2222 		return (0);
2223 
2224 	/* Unhook our tick handler. */
2225 	callout_stop(&sc->sc_callout);
2226 
2227 	if (sc->sc_flags & FXPF_MII) {
2228 		/* Detach all PHYs */
2229 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2230 	}
2231 
2232 	/* Delete all remaining media. */
2233 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2234 
2235 #if NRND > 0
2236 	rnd_detach_source(&sc->rnd_source);
2237 #endif
2238 	ether_ifdetach(ifp);
2239 	if_detach(ifp);
2240 
2241 	for (i = 0; i < FXP_NRFABUFS; i++) {
2242 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2243 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2244 	}
2245 
2246 	for (i = 0; i < FXP_NTXCB; i++) {
2247 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2248 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2249 	}
2250 
2251 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2252 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2253 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2254 	    sizeof(struct fxp_control_data));
2255 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2256 
2257 	shutdownhook_disestablish(sc->sc_sdhook);
2258 	powerhook_disestablish(sc->sc_powerhook);
2259 
2260 	return (0);
2261 }
2262