xref: /netbsd/sys/dev/ic/iha.c (revision bf9ec67e)
1 /*	$NetBSD: iha.c,v 1.17 2002/04/05 18:27:52 bouyer Exp $ */
2 /*
3  * Initio INI-9xxxU/UW SCSI Device Driver
4  *
5  * Copyright (c) 2000 Ken Westerback
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
21  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23  * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
25  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
26  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *-------------------------------------------------------------------------
30  *
31  * Ported from i91u.c, provided by Initio Corporation, which credits:
32  *
33  * Device driver for the INI-9XXXU/UW or INIC-940/950 PCI SCSI Controller.
34  *
35  * FreeBSD
36  *
37  *  Written for 386bsd and FreeBSD by
38  *	Winston Hung		<winstonh@initio.com>
39  *
40  * Copyright (c) 1997-99 Initio Corp.  All rights reserved.
41  *
42  *-------------------------------------------------------------------------
43  */
44 
45 /*
46  * Ported to NetBSD by Izumi Tsutsui <tsutsui@ceres.dti.ne.jp> from OpenBSD:
47  * $OpenBSD: iha.c,v 1.3 2001/02/20 00:47:33 krw Exp $
48  */
49 
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: iha.c,v 1.17 2002/04/05 18:27:52 bouyer Exp $");
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/buf.h>
57 #include <sys/device.h>
58 #include <sys/malloc.h>
59 
60 #include <uvm/uvm_extern.h>
61 
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64 
65 #include <dev/scsipi/scsi_all.h>
66 #include <dev/scsipi/scsipi_all.h>
67 #include <dev/scsipi/scsiconf.h>
68 #include <dev/scsipi/scsi_message.h>
69 
70 #include <dev/ic/ihareg.h>
71 #include <dev/ic/ihavar.h>
72 
73 /*
74  * SCSI Rate Table, indexed by FLAG_SCSI_RATE field of
75  * tcs flags.
76  */
77 static const u_int8_t iha_rate_tbl[] = {
78 	/* fast 20		  */
79 	/* nanosecond divide by 4 */
80 	12,	/* 50ns,  20M	  */
81 	18,	/* 75ns,  13.3M	  */
82 	25,	/* 100ns, 10M	  */
83 	31,	/* 125ns, 8M	  */
84 	37,	/* 150ns, 6.6M	  */
85 	43,	/* 175ns, 5.7M	  */
86 	50,	/* 200ns, 5M	  */
87 	62	/* 250ns, 4M	  */
88 };
89 #define IHA_MAX_PERIOD	62
90 
91 #ifdef notused
92 static u_int16_t eeprom_default[EEPROM_SIZE] = {
93 	/* -- Header ------------------------------------ */
94 	/* signature */
95 	EEP_SIGNATURE,
96 	/* size, revision */
97 	EEP_WORD(EEPROM_SIZE * 2, 0x01),
98 	/* -- Host Adapter Structure -------------------- */
99 	/* model */
100 	0x0095,
101 	/* model info, number of channel */
102 	EEP_WORD(0x00, 1),
103 	/* BIOS config */
104 	EEP_BIOSCFG_DEFAULT,
105 	/* host adapter config */
106 	0,
107 
108 	/* -- eeprom_adapter[0] ------------------------------- */
109 	/* ID, adapter config 1 */
110 	EEP_WORD(7, CFG_DEFAULT),
111 	/* adapter config 2, number of targets */
112 	EEP_WORD(0x00, 8),
113 	/* target flags */
114 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
115 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
116 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
117 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
118 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
119 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
120 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
121 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
122 
123 	/* -- eeprom_adapter[1] ------------------------------- */
124 	/* ID, adapter config 1 */
125 	EEP_WORD(7, CFG_DEFAULT),
126 	/* adapter config 2, number of targets */
127 	EEP_WORD(0x00, 8),
128 	/* target flags */
129 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
130 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
131 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
132 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
133 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
134 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
135 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
136 	EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
137 	/* reserved[5] */
138 	0, 0, 0, 0, 0,
139 	/* checksum */
140 	0
141 };
142 #endif
143 
144 static void iha_append_free_scb(struct iha_softc *, struct iha_scb *);
145 static void iha_append_done_scb(struct iha_softc *, struct iha_scb *, u_int8_t);
146 static __inline struct iha_scb *iha_pop_done_scb(struct iha_softc *);
147 
148 static struct iha_scb *iha_find_pend_scb(struct iha_softc *);
149 static __inline void iha_append_pend_scb(struct iha_softc *, struct iha_scb *);
150 static __inline void iha_push_pend_scb(struct iha_softc *, struct iha_scb *);
151 static __inline void iha_del_pend_scb(struct iha_softc *, struct iha_scb *);
152 static __inline void iha_mark_busy_scb(struct iha_scb *);
153 
154 static __inline void iha_set_ssig(struct iha_softc *, u_int8_t, u_int8_t);
155 
156 static int iha_alloc_sglist(struct iha_softc *);
157 
158 static void iha_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t,
159     void *);
160 static void iha_update_xfer_mode(struct iha_softc *, int);
161 
162 static void iha_reset_scsi_bus(struct iha_softc *);
163 static void iha_reset_chip(struct iha_softc *);
164 static void iha_reset_dma(struct iha_softc *);
165 static void iha_reset_tcs(struct tcs *, u_int8_t);
166 
167 static void iha_main(struct iha_softc *);
168 static void iha_scsi(struct iha_softc *);
169 static void iha_select(struct iha_softc *, struct iha_scb *, u_int8_t);
170 static int iha_wait(struct iha_softc *, u_int8_t);
171 
172 static void iha_exec_scb(struct iha_softc *, struct iha_scb *);
173 static void iha_done_scb(struct iha_softc *, struct iha_scb *);
174 static int iha_push_sense_request(struct iha_softc *, struct iha_scb *);
175 
176 static void iha_timeout(void *);
177 static void iha_abort_xs(struct iha_softc *, struct scsipi_xfer *, u_int8_t);
178 static u_int8_t iha_data_over_run(struct iha_scb *);
179 
180 static int iha_next_state(struct iha_softc *);
181 static int iha_state_1(struct iha_softc *);
182 static int iha_state_2(struct iha_softc *);
183 static int iha_state_3(struct iha_softc *);
184 static int iha_state_4(struct iha_softc *);
185 static int iha_state_5(struct iha_softc *);
186 static int iha_state_6(struct iha_softc *);
187 static int iha_state_8(struct iha_softc *);
188 
189 static int iha_xfer_data(struct iha_softc *, struct iha_scb *, int);
190 static int iha_xpad_in(struct iha_softc *);
191 static int iha_xpad_out(struct iha_softc *);
192 
193 static int iha_status_msg(struct iha_softc *);
194 static void iha_busfree(struct iha_softc *);
195 static int iha_resel(struct iha_softc *);
196 
197 static int iha_msgin(struct iha_softc *);
198 static int iha_msgin_extended(struct iha_softc *);
199 static int iha_msgin_sdtr(struct iha_softc *);
200 static int iha_msgin_ignore_wid_resid(struct iha_softc *);
201 
202 static int  iha_msgout(struct iha_softc *, u_int8_t);
203 static void iha_msgout_abort(struct iha_softc *, u_int8_t);
204 static int  iha_msgout_reject(struct iha_softc *);
205 static int  iha_msgout_extended(struct iha_softc *);
206 static int  iha_msgout_wdtr(struct iha_softc *);
207 static int  iha_msgout_sdtr(struct iha_softc *);
208 
209 static void iha_wide_done(struct iha_softc *);
210 static void iha_sync_done(struct iha_softc *);
211 
212 static void iha_bad_seq(struct iha_softc *);
213 
214 static void iha_read_eeprom(struct iha_softc *, struct iha_eeprom *);
215 static int iha_se2_rd_all(struct iha_softc *, u_int16_t *);
216 static void iha_se2_instr(struct iha_softc *, int);
217 static u_int16_t iha_se2_rd(struct iha_softc *, int);
218 #ifdef notused
219 static void iha_se2_update_all(struct iha_softc *);
220 static void iha_se2_wr(struct iha_softc *, int, u_int16_t);
221 #endif
222 
223 /*
224  * iha_append_free_scb - append the supplied SCB to the tail of the
225  *			 sc_freescb queue after clearing and resetting
226  *			 everything possible.
227  */
228 static void
229 iha_append_free_scb(sc, scb)
230 	struct iha_softc *sc;
231 	struct iha_scb *scb;
232 {
233 	int s;
234 
235 	s = splbio();
236 
237 	if (scb == sc->sc_actscb)
238 		sc->sc_actscb = NULL;
239 
240 	scb->status = STATUS_QUEUED;
241 	scb->ha_stat = HOST_OK;
242 	scb->ta_stat = SCSI_OK;
243 
244 	scb->nextstat = 0;
245 	scb->scb_tagmsg = 0;
246 
247 	scb->xs = NULL;
248 	scb->tcs = NULL;
249 
250 	/*
251 	 * scb_tagid, sg_addr, sglist
252 	 * SCB_SensePtr are set at initialization
253 	 * and never change
254 	 */
255 
256 	TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
257 
258 	splx(s);
259 }
260 
261 static void
262 iha_append_done_scb(sc, scb, hastat)
263 	struct iha_softc *sc;
264 	struct iha_scb *scb;
265 	u_int8_t hastat;
266 {
267 	struct tcs *tcs;
268 	int s;
269 
270 	s = splbio();
271 
272 	if (scb->xs != NULL)
273 		callout_stop(&scb->xs->xs_callout);
274 
275 	if (scb == sc->sc_actscb)
276 		sc->sc_actscb = NULL;
277 
278 	tcs = scb->tcs;
279 
280 	if (scb->scb_tagmsg != 0) {
281 		if (tcs->tagcnt)
282 			tcs->tagcnt--;
283 	} else if (tcs->ntagscb == scb)
284 		tcs->ntagscb = NULL;
285 
286 	scb->status = STATUS_QUEUED;
287 	scb->ha_stat = hastat;
288 
289 	TAILQ_INSERT_TAIL(&sc->sc_donescb, scb, chain);
290 
291 	splx(s);
292 }
293 
294 static __inline struct iha_scb *
295 iha_pop_done_scb(sc)
296 	struct iha_softc *sc;
297 {
298 	struct iha_scb *scb;
299 	int s;
300 
301 	s = splbio();
302 
303 	scb = TAILQ_FIRST(&sc->sc_donescb);
304 
305 	if (scb != NULL) {
306 		scb->status = STATUS_RENT;
307 		TAILQ_REMOVE(&sc->sc_donescb, scb, chain);
308 	}
309 
310 	splx(s);
311 
312 	return (scb);
313 }
314 
315 /*
316  * iha_find_pend_scb - scan the pending queue for a SCB that can be
317  *		       processed immediately. Return NULL if none found
318  *		       and a pointer to the SCB if one is found. If there
319  *		       is an active SCB, return NULL!
320  */
321 static struct iha_scb *
322 iha_find_pend_scb(sc)
323 	struct iha_softc *sc;
324 {
325 	struct iha_scb *scb;
326 	struct tcs *tcs;
327 	int s;
328 
329 	s = splbio();
330 
331 	if (sc->sc_actscb != NULL)
332 		scb = NULL;
333 
334 	else
335 		TAILQ_FOREACH(scb, &sc->sc_pendscb, chain) {
336 			if ((scb->xs->xs_control & XS_CTL_RESET) != 0)
337 				/* ALWAYS willing to reset a device */
338 				break;
339 
340 			tcs = scb->tcs;
341 
342 			if ((scb->scb_tagmsg) != 0) {
343 				/*
344 				 * A Tagged I/O. OK to start If no
345 				 * non-tagged I/O is active on the same
346 				 * target
347 				 */
348 				if (tcs->ntagscb == NULL)
349 					break;
350 
351 			} else	if (scb->cmd[0] == REQUEST_SENSE) {
352 				/*
353 				 * OK to do a non-tagged request sense
354 				 * even if a non-tagged I/O has been
355 				 * started, 'cuz we don't allow any
356 				 * disconnect during a request sense op
357 				 */
358 				break;
359 
360 			} else	if (tcs->tagcnt == 0) {
361 				/*
362 				 * No tagged I/O active on this target,
363 				 * ok to start a non-tagged one if one
364 				 * is not already active
365 				 */
366 				if (tcs->ntagscb == NULL)
367 					break;
368 			}
369 		}
370 
371 	splx(s);
372 
373 	return (scb);
374 }
375 
376 static __inline void
377 iha_append_pend_scb(sc, scb)
378 	struct iha_softc *sc;
379 	struct iha_scb *scb;
380 {
381 	/* ASSUMPTION: only called within a splbio()/splx() pair */
382 
383 	if (scb == sc->sc_actscb)
384 		sc->sc_actscb = NULL;
385 
386 	scb->status = STATUS_QUEUED;
387 
388 	TAILQ_INSERT_TAIL(&sc->sc_pendscb, scb, chain);
389 }
390 
391 static __inline void
392 iha_push_pend_scb(sc, scb)
393 	struct iha_softc *sc;
394 	struct iha_scb *scb;
395 {
396 	int s;
397 
398 	s = splbio();
399 
400 	if (scb == sc->sc_actscb)
401 		sc->sc_actscb = NULL;
402 
403 	scb->status = STATUS_QUEUED;
404 
405 	TAILQ_INSERT_HEAD(&sc->sc_pendscb, scb, chain);
406 
407 	splx(s);
408 }
409 
410 /*
411  * iha_del_pend_scb - remove scb from sc_pendscb
412  */
413 static __inline void
414 iha_del_pend_scb(sc, scb)
415 	struct iha_softc *sc;
416 	struct iha_scb *scb;
417 {
418 	int s;
419 
420 	s = splbio();
421 
422 	TAILQ_REMOVE(&sc->sc_pendscb, scb, chain);
423 
424 	splx(s);
425 }
426 
427 static __inline void
428 iha_mark_busy_scb(scb)
429 	struct iha_scb *scb;
430 {
431 	int  s;
432 
433 	s = splbio();
434 
435 	scb->status = STATUS_BUSY;
436 
437 	if (scb->scb_tagmsg == 0)
438 		scb->tcs->ntagscb = scb;
439 	else
440 		scb->tcs->tagcnt++;
441 
442 	splx(s);
443 }
444 
445 /*
446  * iha_set_ssig - read the current scsi signal mask, then write a new
447  *		  one which turns off/on the specified signals.
448  */
449 static __inline void
450 iha_set_ssig(sc, offsigs, onsigs)
451 	struct iha_softc *sc;
452 	u_int8_t offsigs, onsigs;
453 {
454 	bus_space_tag_t iot = sc->sc_iot;
455 	bus_space_handle_t ioh = sc->sc_ioh;
456 	u_int8_t currsigs;
457 
458 	currsigs = bus_space_read_1(iot, ioh, TUL_SSIGI);
459 	bus_space_write_1(iot, ioh, TUL_SSIGO, (currsigs & ~offsigs) | onsigs);
460 }
461 
462 /*
463  * iha_intr - the interrupt service routine for the iha driver
464  */
465 int
466 iha_intr(arg)
467 	void *arg;
468 {
469 	bus_space_tag_t iot;
470 	bus_space_handle_t ioh;
471 	struct iha_softc *sc;
472 	int s;
473 
474 	sc  = (struct iha_softc *)arg;
475 	iot = sc->sc_iot;
476 	ioh = sc->sc_ioh;
477 
478 	if ((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
479 		return (0);
480 
481 	s = splbio(); /* XXX - Or are interrupts off when ISR's are called? */
482 
483 	if (sc->sc_semaph != SEMAPH_IN_MAIN) {
484 		/* XXX - need these inside a splbio()/splx()? */
485 		bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
486 		sc->sc_semaph = SEMAPH_IN_MAIN;
487 
488 		iha_main(sc);
489 
490 		sc->sc_semaph = ~SEMAPH_IN_MAIN;
491 		bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
492 	}
493 
494 	splx(s);
495 
496 	return (1);
497 }
498 
499 void
500 iha_attach(sc)
501 	struct iha_softc *sc;
502 {
503 	bus_space_tag_t iot = sc->sc_iot;
504 	bus_space_handle_t ioh = sc->sc_ioh;
505 	struct iha_scb *scb;
506 	struct iha_eeprom eeprom;
507 	struct eeprom_adapter *conf;
508 	int i, error, reg;
509 
510 	iha_read_eeprom(sc, &eeprom);
511 
512 	conf = &eeprom.adapter[0];
513 
514 	/*
515 	 * fill in the rest of the iha_softc fields
516 	 */
517 	sc->sc_id = CFG_ID(conf->config1);
518 	sc->sc_semaph = ~SEMAPH_IN_MAIN;
519 	sc->sc_status0 = 0;
520 	sc->sc_actscb = NULL;
521 
522 	TAILQ_INIT(&sc->sc_freescb);
523 	TAILQ_INIT(&sc->sc_pendscb);
524 	TAILQ_INIT(&sc->sc_donescb);
525 	error = iha_alloc_sglist(sc);
526 	if (error != 0) {
527 		printf(": cannot allocate sglist\n");
528 		return;
529 	}
530 
531 	sc->sc_scb = malloc(sizeof(struct iha_scb) * IHA_MAX_SCB,
532 	    M_DEVBUF, M_NOWAIT|M_ZERO);
533 	if (sc->sc_scb == NULL) {
534 		printf(": cannot allocate SCB\n");
535 		return;
536 	}
537 
538 	for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++) {
539 		scb->scb_tagid = i;
540 		scb->sgoffset = IHA_SG_SIZE * i;
541 		scb->sglist = sc->sc_sglist + IHA_MAX_SG_ENTRIES * i;
542 		scb->sg_addr =
543 		    sc->sc_dmamap->dm_segs[0].ds_addr + scb->sgoffset;
544 
545 		error = bus_dmamap_create(sc->sc_dmat,
546 		    MAXPHYS, IHA_MAX_SG_ENTRIES, MAXPHYS, 0,
547 		    BUS_DMA_NOWAIT, &scb->dmap);
548 
549 		if (error != 0) {
550 			printf(": couldn't create SCB DMA map, error = %d\n",
551 			    error);
552 			return;
553 		}
554 		TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
555 	}
556 
557 	/* Mask all the interrupts */
558 	bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
559 
560 	/* Stop any I/O and reset the scsi module */
561 	iha_reset_dma(sc);
562 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSMOD);
563 
564 	/* Program HBA's SCSI ID */
565 	bus_space_write_1(iot, ioh, TUL_SID, sc->sc_id << 4);
566 
567 	/*
568 	 * Configure the channel as requested by the NVRAM settings read
569 	 * by iha_read_eeprom() above.
570 	 */
571 
572 	sc->sc_sconf1 = SCONFIG0DEFAULT;
573 	if ((conf->config1 & CFG_EN_PAR) != 0)
574 		sc->sc_sconf1 |= SPCHK;
575 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, sc->sc_sconf1);
576 
577 	/* set selection time out 250 ms */
578 	bus_space_write_1(iot, ioh, TUL_STIMO, STIMO_250MS);
579 
580 	/* Enable desired SCSI termination configuration read from eeprom */
581 	reg = 0;
582 	if (conf->config1 & CFG_ACT_TERM1)
583 		reg |= ENTMW;
584 	if (conf->config1 & CFG_ACT_TERM2)
585 		reg |= ENTM;
586 	bus_space_write_1(iot, ioh, TUL_DCTRL0, reg);
587 
588 	reg = bus_space_read_1(iot, ioh, TUL_GCTRL1) & ~ATDEN;
589 	if (conf->config1 & CFG_AUTO_TERM)
590 		reg |= ATDEN;
591 	bus_space_write_1(iot, ioh, TUL_GCTRL1, reg);
592 
593 	for (i = 0; i < IHA_MAX_TARGETS / 2; i++) {
594 		sc->sc_tcs[i * 2    ].flags = EEP_LBYTE(conf->tflags[i]);
595 		sc->sc_tcs[i * 2 + 1].flags = EEP_HBYTE(conf->tflags[i]);
596 		iha_reset_tcs(&sc->sc_tcs[i * 2    ], sc->sc_sconf1);
597 		iha_reset_tcs(&sc->sc_tcs[i * 2 + 1], sc->sc_sconf1);
598 	}
599 
600 	iha_reset_chip(sc);
601 	bus_space_write_1(iot, ioh, TUL_SIEN, ALL_INTERRUPTS);
602 
603 	/*
604 	 * fill in the adapter.
605 	 */
606 	sc->sc_adapter.adapt_dev = &sc->sc_dev;
607 	sc->sc_adapter.adapt_nchannels = 1;
608 	sc->sc_adapter.adapt_openings = IHA_MAX_SCB;
609 	sc->sc_adapter.adapt_max_periph = IHA_MAX_SCB;
610 	sc->sc_adapter.adapt_ioctl = NULL;
611 	sc->sc_adapter.adapt_minphys = minphys;
612 	sc->sc_adapter.adapt_request = iha_scsipi_request;
613 
614 	/*
615 	 * fill in the channel.
616 	 */
617 	sc->sc_channel.chan_adapter = &sc->sc_adapter;
618 	sc->sc_channel.chan_bustype = &scsi_bustype;
619 	sc->sc_channel.chan_channel = 0;
620 	sc->sc_channel.chan_ntargets = CFG_TARGET(conf->config2);
621 	sc->sc_channel.chan_nluns = 8;
622 	sc->sc_channel.chan_id = sc->sc_id;
623 
624 	/*
625 	 * Now try to attach all the sub devices.
626 	 */
627 	config_found(&sc->sc_dev, &sc->sc_channel, scsiprint);
628 }
629 
630 /*
631  * iha_alloc_sglist - allocate and map sglist for SCB's
632  */
633 static int
634 iha_alloc_sglist(sc)
635 	struct iha_softc *sc;
636 {
637 	bus_dma_segment_t seg;
638 	int error, rseg;
639 
640 	/*
641 	 * Allocate dma-safe memory for the SCB's sglist
642 	 */
643 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
644 	    IHA_SG_SIZE * IHA_MAX_SCB,
645 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
646 		printf(": unable to allocate sglist, error = %d\n", error);
647 		return (error);
648 	}
649 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
650 	    IHA_SG_SIZE * IHA_MAX_SCB, (caddr_t *)&sc->sc_sglist,
651 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
652 		printf(": unable to map sglist, error = %d\n", error);
653 		return (error);
654 	}
655 
656 	/*
657 	 * Create and load the DMA map used for the SCBs
658 	 */
659 	if ((error = bus_dmamap_create(sc->sc_dmat,
660 	    IHA_SG_SIZE * IHA_MAX_SCB, 1, IHA_SG_SIZE * IHA_MAX_SCB,
661 	    0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
662 		printf(": unable to create control DMA map, error = %d\n",
663 		    error);
664 		return (error);
665 	}
666 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
667 	    sc->sc_sglist, IHA_SG_SIZE * IHA_MAX_SCB,
668 	    NULL, BUS_DMA_NOWAIT)) != 0) {
669 		printf(": unable to load control DMA map, error = %d\n", error);
670 		return (error);
671 	}
672 
673 	memset(sc->sc_sglist, 0, IHA_SG_SIZE * IHA_MAX_SCB);
674 
675 	return (0);
676 }
677 
678 void
679 iha_scsipi_request(chan, req, arg)
680 	struct scsipi_channel *chan;
681 	scsipi_adapter_req_t req;
682 	void *arg;
683 {
684 	struct scsipi_xfer *xs;
685 	struct scsipi_periph *periph;
686 	struct iha_scb *scb;
687 	struct iha_softc *sc;
688 	int error, s;
689 
690 	sc = (struct iha_softc *)chan->chan_adapter->adapt_dev;
691 
692 	switch (req) {
693 	case ADAPTER_REQ_RUN_XFER:
694 		xs = arg;
695 		periph = xs->xs_periph;
696 
697 		if (xs->cmdlen > sizeof(struct scsi_generic) ||
698 		    periph->periph_target >= IHA_MAX_TARGETS) {
699 			xs->error = XS_DRIVER_STUFFUP;
700 			return;
701 		}
702 
703 		s = splbio();
704 		scb = TAILQ_FIRST(&sc->sc_freescb);
705 		if (scb != NULL) {
706 			scb->status = STATUS_RENT;
707 			TAILQ_REMOVE(&sc->sc_freescb, scb, chain);
708 		}
709 #ifdef DIAGNOSTIC
710 		else {
711 			scsipi_printaddr(periph);
712 			printf("unable to allocate scb\n");
713 			panic("iha_scsipi_request");
714 		}
715 #endif
716 		splx(s);
717 
718 		scb->target = periph->periph_target;
719 		scb->lun = periph->periph_lun;
720 		scb->tcs = &sc->sc_tcs[scb->target];
721 		scb->scb_id = MSG_IDENTIFY(periph->periph_lun,
722 		    (xs->xs_control & XS_CTL_REQSENSE) == 0);
723 
724 		scb->xs = xs;
725 		scb->cmdlen = xs->cmdlen;
726 		memcpy(&scb->cmd, xs->cmd, xs->cmdlen);
727 		scb->buflen = xs->datalen;
728 		scb->flags = 0;
729 		if (xs->xs_control & XS_CTL_DATA_OUT)
730 			scb->flags |= FLAG_DATAOUT;
731 		if (xs->xs_control & XS_CTL_DATA_IN)
732 			scb->flags |= FLAG_DATAIN;
733 
734 		if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
735 			error = bus_dmamap_load(sc->sc_dmat, scb->dmap,
736 			    xs->data, scb->buflen, NULL,
737 			    ((xs->xs_control & XS_CTL_NOSLEEP) ?
738 			     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
739 			    BUS_DMA_STREAMING |
740 			    ((scb->flags & FLAG_DATAIN) ?
741 			     BUS_DMA_READ : BUS_DMA_WRITE));
742 
743 			if (error) {
744 				printf("%s: error %d loading dma map\n",
745 				    sc->sc_dev.dv_xname, error);
746 				iha_append_free_scb(sc, scb);
747 				xs->error = XS_DRIVER_STUFFUP;
748 				scsipi_done(xs);
749 				return;
750 			}
751 			bus_dmamap_sync(sc->sc_dmat, scb->dmap,
752 			    0, scb->dmap->dm_mapsize,
753 			    (scb->flags & FLAG_DATAIN) ?
754 			    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
755 		}
756 
757 		iha_exec_scb(sc, scb);
758 		return;
759 
760 	case ADAPTER_REQ_GROW_RESOURCES:
761 		return; /* XXX */
762 
763 	case ADAPTER_REQ_SET_XFER_MODE:
764 		{
765 			struct tcs *tcs;
766 			struct scsipi_xfer_mode *xm = arg;
767 
768 			tcs = &sc->sc_tcs[xm->xm_target];
769 
770 			if ((xm->xm_mode & PERIPH_CAP_WIDE16) != 0 &&
771 			    (tcs->flags & FLAG_NO_WIDE) == 0)
772 				tcs->flags &= ~(FLAG_WIDE_DONE|FLAG_SYNC_DONE);
773 
774 			if ((xm->xm_mode & PERIPH_CAP_SYNC) != 0 &&
775 			    (tcs->flags & FLAG_NO_SYNC) == 0)
776 				tcs->flags &= ~FLAG_SYNC_DONE;
777 
778 			/*
779 			 * If we're not going to negotiate, send the
780 			 * notification now, since it won't happen later.
781 			 */
782 			if ((tcs->flags & (FLAG_WIDE_DONE|FLAG_SYNC_DONE)) ==
783 			    (FLAG_WIDE_DONE|FLAG_SYNC_DONE))
784 				iha_update_xfer_mode(sc, xm->xm_target);
785 
786 			return;
787 		}
788 	}
789 }
790 
791 void
792 iha_update_xfer_mode(sc, target)
793 	struct iha_softc *sc;
794 	int target;
795 {
796 	struct tcs *tcs = &sc->sc_tcs[target];
797 	struct scsipi_xfer_mode xm;
798 
799 	xm.xm_target = target;
800 	xm.xm_mode = 0;
801 	xm.xm_period = 0;
802 	xm.xm_offset = 0;
803 
804 	if (tcs->syncm & PERIOD_WIDE_SCSI)
805 		xm.xm_mode |= PERIPH_CAP_WIDE16;
806 
807 	if (tcs->period) {
808 		xm.xm_mode |= PERIPH_CAP_SYNC;
809 		xm.xm_period = tcs->period;
810 		xm.xm_offset = tcs->offset;
811 	}
812 
813 	scsipi_async_event(&sc->sc_channel, ASYNC_EVENT_XFER_MODE, &xm);
814 }
815 
816 static void
817 iha_reset_scsi_bus(sc)
818 	struct iha_softc *sc;
819 {
820 	struct iha_scb *scb;
821 	struct tcs *tcs;
822 	int i, s;
823 
824 	s = splbio();
825 
826 	iha_reset_dma(sc);
827 
828 	for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
829 		switch (scb->status) {
830 		case STATUS_BUSY:
831 			iha_append_done_scb(sc, scb, HOST_SCSI_RST);
832 			break;
833 
834 		case STATUS_SELECT:
835 			iha_push_pend_scb(sc, scb);
836 			break;
837 
838 		default:
839 			break;
840 		}
841 
842 	for (i = 0, tcs = sc->sc_tcs; i < IHA_MAX_TARGETS; i++, tcs++)
843 		iha_reset_tcs(tcs, sc->sc_sconf1);
844 
845 	splx(s);
846 }
847 
848 void
849 iha_reset_chip(sc)
850 	struct iha_softc *sc;
851 {
852 	bus_space_tag_t iot = sc->sc_iot;
853 	bus_space_handle_t ioh = sc->sc_ioh;
854 
855 	/* reset tulip chip */
856 
857 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSCSI);
858 
859 	do {
860 		sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
861 	} while ((sc->sc_sistat & SRSTD) == 0);
862 
863 	iha_set_ssig(sc, 0, 0);
864 
865 	bus_space_read_1(iot, ioh, TUL_SISTAT); /* Clear any active interrupt*/
866 }
867 
868 /*
869  * iha_reset_dma - abort any active DMA xfer, reset tulip FIFO.
870  */
871 static void
872 iha_reset_dma(sc)
873 	struct iha_softc *sc;
874 {
875 	bus_space_tag_t iot = sc->sc_iot;
876 	bus_space_handle_t ioh = sc->sc_ioh;
877 
878 	if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
879 		/* if DMA xfer is pending, abort DMA xfer */
880 		bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
881 		/* wait Abort DMA xfer done */
882 		while ((bus_space_read_1(iot, ioh, TUL_ISTUS0) & DABT) == 0)
883 			;
884 	}
885 
886 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
887 }
888 
889 /*
890  * iha_reset_tcs - reset the target control structure pointed
891  *		   to by tcs to default values. tcs flags
892  *		   only has the negotiation done bits reset as
893  *		   the other bits are fixed at initialization.
894  */
895 static void
896 iha_reset_tcs(tcs, config0)
897 	struct tcs *tcs;
898 	u_int8_t config0;
899 {
900 
901 	tcs->flags &= ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
902 	tcs->period = 0;
903 	tcs->offset = 0;
904 	tcs->tagcnt = 0;
905 	tcs->ntagscb  = NULL;
906 	tcs->syncm = 0;
907 	tcs->sconfig0 = config0;
908 }
909 
910 /*
911  * iha_main - process the active SCB, taking one off pending and making it
912  *	      active if necessary, and any done SCB's created as
913  *	      a result until there are no interrupts pending and no pending
914  *	      SCB's that can be started.
915  */
916 static void
917 iha_main(sc)
918 	struct iha_softc *sc;
919 {
920 	bus_space_tag_t iot = sc->sc_iot;
921 	bus_space_handle_t ioh =sc->sc_ioh;
922 	struct iha_scb *scb;
923 
924 	for (;;) {
925 		iha_scsi(sc);
926 
927 		while ((scb = iha_pop_done_scb(sc)) != NULL)
928 			iha_done_scb(sc, scb);
929 
930 		/*
931 		 * If there are no interrupts pending, or we can't start
932 		 * a pending sc, break out of the for(;;). Otherwise
933 		 * continue the good work with another call to
934 		 * iha_scsi().
935 		 */
936 		if (((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
937 		    && (iha_find_pend_scb(sc) == NULL))
938 			break;
939 	}
940 }
941 
942 /*
943  * iha_scsi - service any outstanding interrupts. If there are none, try to
944  *            start another SCB currently in the pending queue.
945  */
946 static void
947 iha_scsi(sc)
948 	struct iha_softc *sc;
949 {
950 	bus_space_tag_t iot = sc->sc_iot;
951 	bus_space_handle_t ioh = sc->sc_ioh;
952 	struct iha_scb *scb;
953 	struct tcs *tcs;
954 	u_int8_t stat;
955 
956 	/* service pending interrupts asap */
957 
958 	stat = bus_space_read_1(iot, ioh, TUL_STAT0);
959 	if ((stat & INTPD) != 0) {
960 		sc->sc_status0 = stat;
961 		sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
962 		sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
963 
964 		sc->sc_phase = sc->sc_status0 & PH_MASK;
965 
966 		if ((sc->sc_sistat & SRSTD) != 0) {
967 			iha_reset_scsi_bus(sc);
968 			return;
969 		}
970 
971 		if ((sc->sc_sistat & RSELED) != 0) {
972 			iha_resel(sc);
973 			return;
974 		}
975 
976 		if ((sc->sc_sistat & (STIMEO | DISCD)) != 0) {
977 			iha_busfree(sc);
978 			return;
979 		}
980 
981 		if ((sc->sc_sistat & (SCMDN | SBSRV)) != 0) {
982 			iha_next_state(sc);
983 			return;
984 		}
985 
986 		if ((sc->sc_sistat & SELED) != 0)
987 			iha_set_ssig(sc, 0, 0);
988 	}
989 
990 	/*
991 	 * There were no interrupts pending which required action elsewhere, so
992 	 * see if it is possible to start the selection phase on a pending SCB
993 	 */
994 	if ((scb = iha_find_pend_scb(sc)) == NULL)
995 		return;
996 
997 	tcs = scb->tcs;
998 
999 	/* program HBA's SCSI ID & target SCSI ID */
1000 	bus_space_write_1(iot, ioh, TUL_SID, (sc->sc_id << 4) | scb->target);
1001 
1002 	if ((scb->xs->xs_control & XS_CTL_RESET) == 0) {
1003 		bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
1004 
1005 		if ((tcs->flags & FLAG_NO_NEG_SYNC) == 0 ||
1006 		    (tcs->flags & FLAG_NO_NEG_WIDE) == 0)
1007 			iha_select(sc, scb, SELATNSTOP);
1008 
1009 		else if (scb->scb_tagmsg != 0)
1010 			iha_select(sc, scb, SEL_ATN3);
1011 
1012 		else
1013 			iha_select(sc, scb, SEL_ATN);
1014 
1015 	} else {
1016 		iha_select(sc, scb, SELATNSTOP);
1017 		scb->nextstat = 8;
1018 	}
1019 
1020 	if ((scb->xs->xs_control & XS_CTL_POLL) != 0) {
1021 		int timeout;
1022 		for (timeout = scb->xs->timeout; timeout > 0; timeout--) {
1023 			if (iha_wait(sc, NO_OP) == -1)
1024 				break;
1025 			if (iha_next_state(sc) == -1)
1026 				break;
1027 			delay(1000); /* Only happens in boot, so it's ok */
1028 		}
1029 
1030 		/*
1031 		 * Since done queue processing not done until AFTER this
1032 		 * function returns, scb is on the done queue, not
1033 		 * the free queue at this point and still has valid data
1034 		 *
1035 		 * Conversely, xs->error has not been set yet
1036 		 */
1037 		if (timeout == 0)
1038 			iha_timeout(scb);
1039 	}
1040 }
1041 
1042 static void
1043 iha_select(sc, scb, select_type)
1044 	struct iha_softc *sc;
1045 	struct iha_scb *scb;
1046 	u_int8_t select_type;
1047 {
1048 	bus_space_tag_t iot = sc->sc_iot;
1049 	bus_space_handle_t ioh = sc->sc_ioh;
1050 
1051 	switch (select_type) {
1052 	case SEL_ATN:
1053 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1054 		bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1055 		    scb->cmd, scb->cmdlen);
1056 
1057 		scb->nextstat = 2;
1058 		break;
1059 
1060 	case SELATNSTOP:
1061 		scb->nextstat = 1;
1062 		break;
1063 
1064 	case SEL_ATN3:
1065 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1066 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagmsg);
1067 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagid);
1068 
1069 		bus_space_write_multi_1(iot, ioh, TUL_SFIFO, scb->cmd,
1070 		    scb->cmdlen);
1071 
1072 		scb->nextstat = 2;
1073 		break;
1074 
1075 	default:
1076 		printf("[debug] iha_select() - unknown select type = 0x%02x\n",
1077 		    select_type);
1078 		return;
1079 	}
1080 
1081 	iha_del_pend_scb(sc, scb);
1082 	scb->status = STATUS_SELECT;
1083 
1084 	sc->sc_actscb = scb;
1085 
1086 	bus_space_write_1(iot, ioh, TUL_SCMD, select_type);
1087 }
1088 
1089 /*
1090  * iha_wait - wait for an interrupt to service or a SCSI bus phase change
1091  *            after writing the supplied command to the tulip chip. If
1092  *            the command is NO_OP, skip the command writing.
1093  */
1094 static int
1095 iha_wait(sc, cmd)
1096 	struct iha_softc *sc;
1097 	u_int8_t cmd;
1098 {
1099 	bus_space_tag_t iot = sc->sc_iot;
1100 	bus_space_handle_t ioh = sc->sc_ioh;
1101 
1102 	if (cmd != NO_OP)
1103 		bus_space_write_1(iot, ioh, TUL_SCMD, cmd);
1104 
1105 	/*
1106 	 * Have to do this here, in addition to in iha_isr, because
1107 	 * interrupts might be turned off when we get here.
1108 	 */
1109 	do {
1110 		sc->sc_status0 = bus_space_read_1(iot, ioh, TUL_STAT0);
1111 	} while ((sc->sc_status0 & INTPD) == 0);
1112 
1113 	sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
1114 	sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
1115 
1116 	sc->sc_phase = sc->sc_status0 & PH_MASK;
1117 
1118 	if ((sc->sc_sistat & SRSTD) != 0) {
1119 		/* SCSI bus reset interrupt */
1120 		iha_reset_scsi_bus(sc);
1121 		return (-1);
1122 	}
1123 
1124 	if ((sc->sc_sistat & RSELED) != 0)
1125 		/* Reselection interrupt */
1126 		return (iha_resel(sc));
1127 
1128 	if ((sc->sc_sistat & STIMEO) != 0) {
1129 		/* selected/reselected timeout interrupt */
1130 		iha_busfree(sc);
1131 		return (-1);
1132 	}
1133 
1134 	if ((sc->sc_sistat & DISCD) != 0) {
1135 		/* BUS disconnection interrupt */
1136 		if ((sc->sc_flags & FLAG_EXPECT_DONE_DISC) != 0) {
1137 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1138 			bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1139 			    SCONFIG0DEFAULT);
1140 			bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1141 			iha_append_done_scb(sc, sc->sc_actscb, HOST_OK);
1142 			sc->sc_flags &= ~FLAG_EXPECT_DONE_DISC;
1143 
1144 		} else if ((sc->sc_flags & FLAG_EXPECT_DISC) != 0) {
1145 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1146 			bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1147 			    SCONFIG0DEFAULT);
1148 			bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1149 			sc->sc_actscb = NULL;
1150 			sc->sc_flags &= ~FLAG_EXPECT_DISC;
1151 
1152 		} else
1153 			iha_busfree(sc);
1154 
1155 		return (-1);
1156 	}
1157 
1158 	return (sc->sc_phase);
1159 }
1160 
1161 static void
1162 iha_exec_scb(sc, scb)
1163 	struct iha_softc *sc;
1164 	struct iha_scb *scb;
1165 {
1166 	bus_space_tag_t iot;
1167 	bus_space_handle_t ioh;
1168 	bus_dmamap_t dm;
1169 	struct scsipi_xfer *xs = scb->xs;
1170 	int nseg, s;
1171 
1172 	dm = scb->dmap;
1173 	nseg = dm->dm_nsegs;
1174 
1175 	if (nseg > 1) {
1176 		struct iha_sg_element *sg = scb->sglist;
1177 		int i;
1178 
1179 		for (i = 0; i < nseg; i++) {
1180 			sg[i].sg_len = htole32(dm->dm_segs[i].ds_len);
1181 			sg[i].sg_addr = htole32(dm->dm_segs[i].ds_addr);
1182 		}
1183 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1184 		    scb->sgoffset, IHA_SG_SIZE,
1185 		    BUS_DMASYNC_PREWRITE);
1186 
1187 		scb->flags |= FLAG_SG;
1188 		scb->sg_size = scb->sg_max = nseg;
1189 		scb->sg_index = 0;
1190 
1191 		scb->bufaddr = scb->sg_addr;
1192 	} else
1193 		scb->bufaddr = dm->dm_segs[0].ds_addr;
1194 
1195 	if ((xs->xs_control & XS_CTL_POLL) == 0) {
1196 		int timeout = mstohz(xs->timeout);
1197 		if (timeout == 0)
1198 			timeout = 1;
1199 		callout_reset(&xs->xs_callout, timeout, iha_timeout, scb);
1200 	}
1201 
1202 	s = splbio();
1203 
1204 	if (((scb->xs->xs_control & XS_RESET) != 0) ||
1205 	    (scb->cmd[0] == REQUEST_SENSE))
1206 		iha_push_pend_scb(sc, scb);   /* Insert SCB at head of Pend */
1207 	else
1208 		iha_append_pend_scb(sc, scb); /* Append SCB to tail of Pend */
1209 
1210 	/*
1211 	 * Run through iha_main() to ensure something is active, if
1212 	 * only this new SCB.
1213 	 */
1214 	if (sc->sc_semaph != SEMAPH_IN_MAIN) {
1215 		iot = sc->sc_iot;
1216 		ioh = sc->sc_ioh;
1217 
1218 		bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
1219 		sc->sc_semaph = SEMAPH_IN_MAIN;;
1220 
1221 		splx(s);
1222 		iha_main(sc);
1223 		s = splbio();
1224 
1225 		sc->sc_semaph = ~SEMAPH_IN_MAIN;;
1226 		bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
1227 	}
1228 
1229 	splx(s);
1230 }
1231 
1232 /*
1233  * iha_done_scb - We have a scb which has been processed by the
1234  *                adaptor, now we look to see how the operation went.
1235  */
1236 static void
1237 iha_done_scb(sc, scb)
1238 	struct iha_softc *sc;
1239 	struct iha_scb *scb;
1240 {
1241 	struct scsipi_xfer *xs = scb->xs;
1242 
1243 	if (xs != NULL) {
1244 		/* Cancel the timeout. */
1245 		callout_stop(&xs->xs_callout);
1246 
1247 		if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
1248 			bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1249 			    0, scb->dmap->dm_mapsize,
1250 			    (scb->flags & FLAG_DATAIN) ?
1251 			    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1252 			bus_dmamap_unload(sc->sc_dmat, scb->dmap);
1253 		}
1254 
1255 		xs->status = scb->ta_stat;
1256 
1257 		switch (scb->ha_stat) {
1258 		case HOST_OK:
1259 			switch (scb->ta_stat) {
1260 			case SCSI_OK:
1261 			case SCSI_CONDITION_MET:
1262 			case SCSI_INTERM:
1263 			case SCSI_INTERM_COND_MET:
1264 				xs->resid = scb->buflen;
1265 				xs->error = XS_NOERROR;
1266 				if ((scb->flags & FLAG_RSENS) != 0)
1267 					xs->error = XS_SENSE;
1268 				break;
1269 
1270 			case SCSI_RESV_CONFLICT:
1271 			case SCSI_BUSY:
1272 			case SCSI_QUEUE_FULL:
1273 				xs->error = XS_BUSY;
1274 				break;
1275 
1276 			case SCSI_TERMINATED:
1277 			case SCSI_ACA_ACTIVE:
1278 			case SCSI_CHECK:
1279 				scb->tcs->flags &=
1280 				    ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
1281 
1282 				if ((scb->flags & FLAG_RSENS) != 0 ||
1283 				    iha_push_sense_request(sc, scb) != 0) {
1284 					scb->flags &= ~FLAG_RSENS;
1285 					printf("%s: request sense failed\n",
1286 					    sc->sc_dev.dv_xname);
1287 					xs->error = XS_DRIVER_STUFFUP;
1288 					break;
1289 				}
1290 
1291 				xs->error = XS_SENSE;
1292 				return;
1293 
1294 			default:
1295 				xs->error = XS_DRIVER_STUFFUP;
1296 				break;
1297 			}
1298 			break;
1299 
1300 		case HOST_SEL_TOUT:
1301 			xs->error = XS_SELTIMEOUT;
1302 			break;
1303 
1304 		case HOST_SCSI_RST:
1305 		case HOST_DEV_RST:
1306 			xs->error = XS_RESET;
1307 			break;
1308 
1309 		case HOST_SPERR:
1310 			printf("%s: SCSI Parity error detected\n",
1311 			    sc->sc_dev.dv_xname);
1312 			xs->error = XS_DRIVER_STUFFUP;
1313 			break;
1314 
1315 		case HOST_TIMED_OUT:
1316 			xs->error = XS_TIMEOUT;
1317 			break;
1318 
1319 		case HOST_DO_DU:
1320 		case HOST_BAD_PHAS:
1321 		default:
1322 			xs->error = XS_DRIVER_STUFFUP;
1323 			break;
1324 		}
1325 
1326 		scsipi_done(xs);
1327 	}
1328 
1329 	iha_append_free_scb(sc, scb);
1330 }
1331 
1332 /*
1333  * iha_push_sense_request - obtain auto sense data by pushing the
1334  *			    SCB needing it back onto the pending
1335  *			    queue with a REQUEST_SENSE CDB.
1336  */
1337 static int
1338 iha_push_sense_request(sc, scb)
1339 	struct iha_softc *sc;
1340 	struct iha_scb *scb;
1341 {
1342 	struct scsipi_xfer *xs = scb->xs;
1343 	struct scsipi_periph *periph = xs->xs_periph;
1344 	struct scsipi_sense *ss = (struct scsipi_sense *)scb->cmd;
1345 	int lun = periph->periph_lun;
1346 	int err;
1347 
1348 	ss->opcode = REQUEST_SENSE;
1349 	ss->byte2 = lun << SCSI_CMD_LUN_SHIFT;
1350 	ss->unused[0] = ss->unused[1] = 0;
1351 	ss->length = sizeof(struct scsipi_sense_data);
1352 	ss->control = 0;
1353 
1354 	scb->flags = FLAG_RSENS | FLAG_DATAIN;
1355 
1356 	scb->scb_id &= ~MSG_IDENTIFY_DISCFLAG;
1357 
1358 	scb->scb_tagmsg = 0;
1359 	scb->ta_stat = SCSI_OK;
1360 
1361 	scb->cmdlen = sizeof(struct scsipi_sense);
1362 	scb->buflen = ss->length;
1363 
1364 	err = bus_dmamap_load(sc->sc_dmat, scb->dmap,
1365 	    &xs->sense.scsi_sense, scb->buflen, NULL,
1366 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1367 	if (err != 0) {
1368 		printf("iha_push_sense_request: cannot bus_dmamap_load()\n");
1369 		xs->error = XS_DRIVER_STUFFUP;
1370 		return 1;
1371 	}
1372 	bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1373 	    0, scb->buflen, BUS_DMASYNC_PREREAD);
1374 
1375 	/* XXX What about queued command? */
1376 	iha_exec_scb(sc, scb);
1377 
1378 	return 0;
1379 }
1380 
1381 static void
1382 iha_timeout(arg)
1383 	void *arg;
1384 {
1385 	struct iha_scb *scb = (struct iha_scb *)arg;
1386 	struct scsipi_xfer *xs = scb->xs;
1387 	struct scsipi_periph *periph = xs->xs_periph;
1388 	struct iha_softc *sc;
1389 
1390 	sc = (void *)periph->periph_channel->chan_adapter->adapt_dev;
1391 
1392 	if (xs == NULL)
1393 		printf("[debug] iha_timeout called with xs == NULL\n");
1394 
1395 	else {
1396 		scsipi_printaddr(periph);
1397 		printf("SCSI OpCode 0x%02x timed out\n", xs->cmd->opcode);
1398 
1399 		iha_abort_xs(sc, xs, HOST_TIMED_OUT);
1400 	}
1401 }
1402 
1403 /*
1404  * iha_abort_xs - find the SCB associated with the supplied xs and
1405  *                stop all processing on it, moving it to the done
1406  *                queue with the supplied host status value.
1407  */
1408 static void
1409 iha_abort_xs(sc, xs, hastat)
1410 	struct iha_softc *sc;
1411 	struct scsipi_xfer *xs;
1412 	u_int8_t hastat;
1413 {
1414 	struct iha_scb *scb;
1415 	int i, s;
1416 
1417 	s = splbio();
1418 
1419 	/* Check the pending queue for the SCB pointing to xs */
1420 
1421 	TAILQ_FOREACH(scb, &sc->sc_pendscb, chain)
1422 		if (scb->xs == xs) {
1423 			iha_del_pend_scb(sc, scb);
1424 			iha_append_done_scb(sc, scb, hastat);
1425 			splx(s);
1426 			return;
1427 		}
1428 
1429 	/*
1430 	 * If that didn't work, check all BUSY/SELECTING SCB's for one
1431 	 * pointing to xs
1432 	 */
1433 
1434 	for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1435 		switch (scb->status) {
1436 		case STATUS_BUSY:
1437 		case STATUS_SELECT:
1438 			if (scb->xs == xs) {
1439 				iha_append_done_scb(sc, scb, hastat);
1440 				splx(s);
1441 				return;
1442 			}
1443 			break;
1444 		default:
1445 			break;
1446 		}
1447 
1448 	splx(s);
1449 }
1450 
1451 /*
1452  * iha_data_over_run - return HOST_OK for all SCSI opcodes where BufLen
1453  *		       is an 'Allocation Length'. All other SCSI opcodes
1454  *		       get HOST_DO_DU as they SHOULD have xferred all the
1455  *		       data requested.
1456  *
1457  *		       The list of opcodes using 'Allocation Length' was
1458  *		       found by scanning all the SCSI-3 T10 drafts. See
1459  *		       www.t10.org for the curious with a .pdf reader.
1460  */
1461 static u_int8_t
1462 iha_data_over_run(scb)
1463 	struct iha_scb *scb;
1464 {
1465 	switch (scb->cmd[0]) {
1466 	case 0x03: /* Request Sense                   SPC-2 */
1467 	case 0x12: /* Inquiry                         SPC-2 */
1468 	case 0x1a: /* Mode Sense (6 byte version)     SPC-2 */
1469 	case 0x1c: /* Receive Diagnostic Results      SPC-2 */
1470 	case 0x23: /* Read Format Capacities          MMC-2 */
1471 	case 0x29: /* Read Generation                 SBC   */
1472 	case 0x34: /* Read Position                   SSC-2 */
1473 	case 0x37: /* Read Defect Data                SBC   */
1474 	case 0x3c: /* Read Buffer                     SPC-2 */
1475 	case 0x42: /* Read Sub Channel                MMC-2 */
1476 	case 0x43: /* Read TOC/PMA/ATIP               MMC   */
1477 
1478 	/* XXX - 2 with same opcode of 0x44? */
1479 	case 0x44: /* Read Header/Read Density Suprt  MMC/SSC*/
1480 
1481 	case 0x46: /* Get Configuration               MMC-2 */
1482 	case 0x4a: /* Get Event/Status Notification   MMC-2 */
1483 	case 0x4d: /* Log Sense                       SPC-2 */
1484 	case 0x51: /* Read Disc Information           MMC   */
1485 	case 0x52: /* Read Track Information          MMC   */
1486 	case 0x59: /* Read Master CUE                 MMC   */
1487 	case 0x5a: /* Mode Sense (10 byte version)    SPC-2 */
1488 	case 0x5c: /* Read Buffer Capacity            MMC   */
1489 	case 0x5e: /* Persistant Reserve In           SPC-2 */
1490 	case 0x84: /* Receive Copy Results            SPC-2 */
1491 	case 0xa0: /* Report LUNs                     SPC-2 */
1492 	case 0xa3: /* Various Report requests         SBC-2/SCC-2*/
1493 	case 0xa4: /* Report Key                      MMC-2 */
1494 	case 0xad: /* Read DVD Structure              MMC-2 */
1495 	case 0xb4: /* Read Element Status (Attached)  SMC   */
1496 	case 0xb5: /* Request Volume Element Address  SMC   */
1497 	case 0xb7: /* Read Defect Data (12 byte ver.) SBC   */
1498 	case 0xb8: /* Read Element Status (Independ.) SMC   */
1499 	case 0xba: /* Report Redundancy               SCC-2 */
1500 	case 0xbd: /* Mechanism Status                MMC   */
1501 	case 0xbe: /* Report Basic Redundancy         SCC-2 */
1502 
1503 		return (HOST_OK);
1504 		break;
1505 
1506 	default:
1507 		return (HOST_DO_DU);
1508 		break;
1509 	}
1510 }
1511 
1512 /*
1513  * iha_next_state - prcess the current SCB as requested in it's
1514  *                  nextstat member.
1515  */
1516 static int
1517 iha_next_state(sc)
1518 	struct iha_softc *sc;
1519 {
1520 
1521 	if (sc->sc_actscb == NULL)
1522 		return (-1);
1523 
1524 	switch (sc->sc_actscb->nextstat) {
1525 	case 1:
1526 		if (iha_state_1(sc) == 3)
1527 			goto state_3;
1528 		break;
1529 
1530 	case 2:
1531 		switch (iha_state_2(sc)) {
1532 		case 3:
1533 			goto state_3;
1534 		case 4:
1535 			goto state_4;
1536 		default:
1537 			break;
1538 		}
1539 		break;
1540 
1541 	case 3:
1542 	state_3:
1543 		if (iha_state_3(sc) == 4)
1544 			goto state_4;
1545 		break;
1546 
1547 	case 4:
1548 	state_4:
1549 		switch (iha_state_4(sc)) {
1550 		case 0:
1551 			return (0);
1552 		case 6:
1553 			goto state_6;
1554 		default:
1555 			break;
1556 		}
1557 		break;
1558 
1559 	case 5:
1560 		switch (iha_state_5(sc)) {
1561 		case 4:
1562 			goto state_4;
1563 		case 6:
1564 			goto state_6;
1565 		default:
1566 			break;
1567 		}
1568 		break;
1569 
1570 	case 6:
1571 	state_6:
1572 		iha_state_6(sc);
1573 		break;
1574 
1575 	case 8:
1576 		iha_state_8(sc);
1577 		break;
1578 
1579 	default:
1580 #ifdef IHA_DEBUG_STATE
1581 		printf("[debug] -unknown state: %i-\n",
1582 		    sc->sc_actscb->nextstat);
1583 #endif
1584 		iha_bad_seq(sc);
1585 		break;
1586 	}
1587 
1588 	return (-1);
1589 }
1590 
1591 /*
1592  * iha_state_1 - selection is complete after a SELATNSTOP. If the target
1593  *               has put the bus into MSG_OUT phase start wide/sync
1594  *               negotiation. Otherwise clear the FIFO and go to state 3,
1595  *	    	 which will send the SCSI CDB to the target.
1596  */
1597 static int
1598 iha_state_1(sc)
1599 	struct iha_softc *sc;
1600 {
1601 	bus_space_tag_t iot = sc->sc_iot;
1602 	bus_space_handle_t ioh = sc->sc_ioh;
1603 	struct iha_scb *scb = sc->sc_actscb;
1604 	struct tcs *tcs;
1605 	int flags;
1606 
1607 	iha_mark_busy_scb(scb);
1608 
1609 	tcs = scb->tcs;
1610 
1611 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
1612 
1613 	/*
1614 	 * If we are in PHASE_MSG_OUT, send
1615 	 *     a) IDENT message (with tags if appropriate)
1616 	 *     b) WDTR if the target is configured to negotiate wide xfers
1617 	 *     ** OR **
1618 	 *     c) SDTR if the target is configured to negotiate sync xfers
1619 	 *	  but not wide ones
1620 	 *
1621 	 * If we are NOT, then the target is not asking for anything but
1622 	 * the data/command, so go straight to state 3.
1623 	 */
1624 	if (sc->sc_phase == PHASE_MSG_OUT) {
1625 		bus_space_write_1(iot, ioh, TUL_SCTRL1, (ESBUSIN | EHRSL));
1626 		bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1627 
1628 		if (scb->scb_tagmsg != 0) {
1629 			bus_space_write_1(iot, ioh, TUL_SFIFO,
1630 			    scb->scb_tagmsg);
1631 			bus_space_write_1(iot, ioh, TUL_SFIFO,
1632 			    scb->scb_tagid);
1633 		}
1634 
1635 		flags = tcs->flags;
1636 		if ((flags & FLAG_NO_NEG_WIDE) == 0) {
1637 			if (iha_msgout_wdtr(sc) == -1)
1638 				return (-1);
1639 		} else if ((flags & FLAG_NO_NEG_SYNC) == 0) {
1640 			if (iha_msgout_sdtr(sc) == -1)
1641 				return (-1);
1642 		}
1643 
1644 	} else {
1645 		bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1646 		iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1647 	}
1648 
1649 	return (3);
1650 }
1651 
1652 /*
1653  * iha_state_2 - selection is complete after a SEL_ATN or SEL_ATN3. If the SCSI
1654  *		 CDB has already been send, go to state 4 to start the data
1655  *		 xfer. Otherwise reset the FIFO and go to state 3, sending
1656  *		 the SCSI CDB.
1657  */
1658 static int
1659 iha_state_2(sc)
1660 	struct iha_softc *sc;
1661 {
1662 	bus_space_tag_t iot = sc->sc_iot;
1663 	bus_space_handle_t ioh = sc->sc_ioh;
1664 	struct iha_scb *scb = sc->sc_actscb;
1665 
1666 	iha_mark_busy_scb(scb);
1667 
1668 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, scb->tcs->sconfig0);
1669 
1670 	if ((sc->sc_status1 & CPDNE) != 0)
1671 		return (4);
1672 
1673 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1674 
1675 	iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1676 
1677 	return (3);
1678 }
1679 
1680 /*
1681  * iha_state_3 - send the SCSI CDB to the target, processing any status
1682  *		 or other messages received until that is done or
1683  *		 abandoned.
1684  */
1685 static int
1686 iha_state_3(sc)
1687 	struct iha_softc *sc;
1688 {
1689 	bus_space_tag_t iot = sc->sc_iot;
1690 	bus_space_handle_t ioh = sc->sc_ioh;
1691 	struct iha_scb *scb = sc->sc_actscb;
1692 	int flags;
1693 
1694 	for (;;) {
1695 		switch (sc->sc_phase) {
1696 		case PHASE_CMD_OUT:
1697 			bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1698 			    scb->cmd, scb->cmdlen);
1699 			if (iha_wait(sc, XF_FIFO_OUT) == -1)
1700 				return (-1);
1701 			else if (sc->sc_phase == PHASE_CMD_OUT) {
1702 				iha_bad_seq(sc);
1703 				return (-1);
1704 			} else
1705 				return (4);
1706 
1707 		case PHASE_MSG_IN:
1708 			scb->nextstat = 3;
1709 			if (iha_msgin(sc) == -1)
1710 				return (-1);
1711 			break;
1712 
1713 		case PHASE_STATUS_IN:
1714 			if (iha_status_msg(sc) == -1)
1715 				return (-1);
1716 			break;
1717 
1718 		case PHASE_MSG_OUT:
1719 			flags = scb->tcs->flags;
1720 			if ((flags & FLAG_NO_NEG_SYNC) != 0) {
1721 				if (iha_msgout(sc, MSG_NOOP) == -1)
1722 					return (-1);
1723 			} else if (iha_msgout_sdtr(sc) == -1)
1724 				return (-1);
1725 			break;
1726 
1727 		default:
1728 			printf("[debug] -s3- bad phase = %d\n", sc->sc_phase);
1729 			iha_bad_seq(sc);
1730 			return (-1);
1731 		}
1732 	}
1733 }
1734 
1735 /*
1736  * iha_state_4 - start a data xfer. Handle any bus state
1737  *               transitions until PHASE_DATA_IN/_OUT
1738  *               or the attempt is abandoned. If there is
1739  *               no data to xfer, go to state 6 and finish
1740  *               processing the current SCB.
1741  */
1742 static int
1743 iha_state_4(sc)
1744 	struct iha_softc *sc;
1745 {
1746 	struct iha_scb *scb = sc->sc_actscb;
1747 
1748 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) ==
1749 	    (FLAG_DATAIN | FLAG_DATAOUT))
1750 		return (6); /* Both dir flags set => NO xfer was requested */
1751 
1752 	for (;;) {
1753 		if (scb->buflen == 0)
1754 			return (6);
1755 
1756 		switch (sc->sc_phase) {
1757 		case PHASE_STATUS_IN:
1758 			if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
1759 				scb->ha_stat = iha_data_over_run(scb);
1760 			if ((iha_status_msg(sc)) == -1)
1761 				return (-1);
1762 			break;
1763 
1764 		case PHASE_MSG_IN:
1765 			scb->nextstat = 4;
1766 			if (iha_msgin(sc) == -1)
1767 				return (-1);
1768 			break;
1769 
1770 		case PHASE_MSG_OUT:
1771 			if ((sc->sc_status0 & SPERR) != 0) {
1772 				scb->buflen = 0;
1773 				scb->ha_stat = HOST_SPERR;
1774 				if (iha_msgout(sc, MSG_INITIATOR_DET_ERR) == -1)
1775 					return (-1);
1776 				else
1777 					return (6);
1778 			} else {
1779 				if (iha_msgout(sc, MSG_NOOP) == -1)
1780 					return (-1);
1781 			}
1782 			break;
1783 
1784 		case PHASE_DATA_IN:
1785 			return (iha_xfer_data(sc, scb, FLAG_DATAIN));
1786 
1787 		case PHASE_DATA_OUT:
1788 			return (iha_xfer_data(sc, scb, FLAG_DATAOUT));
1789 
1790 		default:
1791 			iha_bad_seq(sc);
1792 			return (-1);
1793 		}
1794 	}
1795 }
1796 
1797 /*
1798  * iha_state_5 - handle the partial or final completion of the current
1799  *		 data xfer. If DMA is still active stop it. If there is
1800  *		 more data to xfer, go to state 4 and start the xfer.
1801  *		 If not go to state 6 and finish the SCB.
1802  */
1803 static int
1804 iha_state_5(sc)
1805 	struct iha_softc *sc;
1806 {
1807 	bus_space_tag_t iot = sc->sc_iot;
1808 	bus_space_handle_t ioh = sc->sc_ioh;
1809 	struct iha_scb *scb = sc->sc_actscb;
1810 	struct iha_sg_element *sg;
1811 	u_int32_t cnt;
1812 	u_int8_t period, stat;
1813 	long xcnt;  /* cannot use unsigned!! see code: if (xcnt < 0) */
1814 	int i;
1815 
1816 	cnt = bus_space_read_4(iot, ioh, TUL_STCNT0) & TCNT;
1817 
1818 	/*
1819 	 * Stop any pending DMA activity and check for parity error.
1820 	 */
1821 
1822 	if ((bus_space_read_1(iot, ioh, TUL_DCMD) & XDIR) != 0) {
1823 		/* Input Operation */
1824 		if ((sc->sc_status0 & SPERR) != 0)
1825 			scb->ha_stat = HOST_SPERR;
1826 
1827 		if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1828 			bus_space_write_1(iot, ioh, TUL_DCTRL0,
1829 			    bus_space_read_1(iot, ioh, TUL_DCTRL0) | SXSTP);
1830 			while (bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND)
1831 				;
1832 		}
1833 
1834 	} else {
1835 		/* Output Operation */
1836 		if ((sc->sc_status1 & SXCMP) == 0) {
1837 			period = scb->tcs->syncm;
1838 			if ((period & PERIOD_WIDE_SCSI) != 0)
1839 				cnt += (bus_space_read_1(iot, ioh,
1840 				    TUL_SFIFOCNT) & FIFOC) * 2;
1841 			else
1842 				cnt += bus_space_read_1(iot, ioh,
1843 				    TUL_SFIFOCNT) & FIFOC;
1844 		}
1845 
1846 		if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1847 			bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
1848 			do
1849 				stat = bus_space_read_1(iot, ioh, TUL_ISTUS0);
1850 			while ((stat & DABT) == 0);
1851 		}
1852 
1853 		if ((cnt == 1) && (sc->sc_phase == PHASE_DATA_OUT)) {
1854 			if (iha_wait(sc, XF_FIFO_OUT) == -1)
1855 				return (-1);
1856 			cnt = 0;
1857 
1858 		} else if ((sc->sc_status1 & SXCMP) == 0)
1859 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1860 	}
1861 
1862 	if (cnt == 0) {
1863 		scb->buflen = 0;
1864 		return (6);
1865 	}
1866 
1867 	/* Update active data pointer and restart the I/O at the new point */
1868 
1869 	xcnt = scb->buflen - cnt;	/* xcnt == bytes xferred */
1870 	scb->buflen = cnt;	  	/* cnt  == bytes left    */
1871 
1872 	if ((scb->flags & FLAG_SG) != 0) {
1873 		sg = &scb->sglist[scb->sg_index];
1874 		for (i = scb->sg_index; i < scb->sg_max; sg++, i++) {
1875 			xcnt -= le32toh(sg->sg_len);
1876 			if (xcnt < 0) {
1877 				xcnt += le32toh(sg->sg_len);
1878 
1879 				sg->sg_addr =
1880 				    htole32(le32toh(sg->sg_addr) + xcnt);
1881 				sg->sg_len =
1882 				    htole32(le32toh(sg->sg_len) - xcnt);
1883 				bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1884 				    scb->sgoffset, IHA_SG_SIZE,
1885 				    BUS_DMASYNC_PREWRITE);
1886 
1887 				scb->bufaddr += (i - scb->sg_index) *
1888 				    sizeof(struct iha_sg_element);
1889 				scb->sg_size = scb->sg_max - i;
1890 				scb->sg_index = i;
1891 
1892 				return (4);
1893 			}
1894 		}
1895 		return (6);
1896 
1897 	} else
1898 		scb->bufaddr += xcnt;
1899 
1900 	return (4);
1901 }
1902 
1903 /*
1904  * iha_state_6 - finish off the active scb (may require several
1905  *		 iterations if PHASE_MSG_IN) and return -1 to indicate
1906  *		 the bus is free.
1907  */
1908 static int
1909 iha_state_6(sc)
1910 	struct iha_softc *sc;
1911 {
1912 
1913 	for (;;) {
1914 		switch (sc->sc_phase) {
1915 		case PHASE_STATUS_IN:
1916 			if (iha_status_msg(sc) == -1)
1917 				return (-1);
1918 			break;
1919 
1920 		case PHASE_MSG_IN:
1921 			sc->sc_actscb->nextstat = 6;
1922 			if ((iha_msgin(sc)) == -1)
1923 				return (-1);
1924 			break;
1925 
1926 		case PHASE_MSG_OUT:
1927 			if ((iha_msgout(sc, MSG_NOOP)) == -1)
1928 				return (-1);
1929 			break;
1930 
1931 		case PHASE_DATA_IN:
1932 			if (iha_xpad_in(sc) == -1)
1933 				return (-1);
1934 			break;
1935 
1936 		case PHASE_DATA_OUT:
1937 			if (iha_xpad_out(sc) == -1)
1938 				return (-1);
1939 			break;
1940 
1941 		default:
1942 			iha_bad_seq(sc);
1943 			return (-1);
1944 		}
1945 	}
1946 }
1947 
1948 /*
1949  * iha_state_8 - reset the active device and all busy SCBs using it
1950  */
1951 static int
1952 iha_state_8(sc)
1953 	struct iha_softc *sc;
1954 {
1955 	bus_space_tag_t iot = sc->sc_iot;
1956 	bus_space_handle_t ioh = sc->sc_ioh;
1957 	struct iha_scb *scb;
1958 	int i;
1959 	u_int8_t tar;
1960 
1961 	if (sc->sc_phase == PHASE_MSG_OUT) {
1962 		bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_BUS_DEV_RESET);
1963 
1964 		scb = sc->sc_actscb;
1965 
1966 		/* This SCB finished correctly -- resetting the device */
1967 		iha_append_done_scb(sc, scb, HOST_OK);
1968 
1969 		iha_reset_tcs(scb->tcs, sc->sc_sconf1);
1970 
1971 		tar = scb->target;
1972 		for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1973 			if (scb->target == tar)
1974 				switch (scb->status) {
1975 				case STATUS_BUSY:
1976 					iha_append_done_scb(sc,
1977 					    scb, HOST_DEV_RST);
1978 					break;
1979 
1980 				case STATUS_SELECT:
1981 					iha_push_pend_scb(sc, scb);
1982 					break;
1983 
1984 				default:
1985 					break;
1986 				}
1987 
1988 		sc->sc_flags |= FLAG_EXPECT_DISC;
1989 
1990 		if (iha_wait(sc, XF_FIFO_OUT) == -1)
1991 			return (-1);
1992 	}
1993 
1994 	iha_bad_seq(sc);
1995 	return (-1);
1996 }
1997 
1998 /*
1999  * iha_xfer_data - initiate the DMA xfer of the data
2000  */
2001 static int
2002 iha_xfer_data(sc, scb, direction)
2003 	struct iha_softc *sc;
2004 	struct iha_scb *scb;
2005 	int direction;
2006 {
2007 	bus_space_tag_t iot = sc->sc_iot;
2008 	bus_space_handle_t ioh = sc->sc_ioh;
2009 	u_int32_t xferlen;
2010 	u_int8_t xfercmd;
2011 
2012 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != direction)
2013 		return (6); /* wrong direction, abandon I/O */
2014 
2015 	bus_space_write_4(iot, ioh, TUL_STCNT0, scb->buflen);
2016 
2017 	xfercmd = STRXFR;
2018 	if (direction == FLAG_DATAIN)
2019 		xfercmd |= XDIR;
2020 
2021 	if (scb->flags & FLAG_SG) {
2022 		xferlen = scb->sg_size * sizeof(struct iha_sg_element);
2023 		xfercmd |= SGXFR;
2024 	} else
2025 		xferlen = scb->buflen;
2026 
2027 	bus_space_write_4(iot, ioh, TUL_DXC,  xferlen);
2028 	bus_space_write_4(iot, ioh, TUL_DXPA, scb->bufaddr);
2029 	bus_space_write_1(iot, ioh, TUL_DCMD, xfercmd);
2030 
2031 	bus_space_write_1(iot, ioh, TUL_SCMD,
2032 	    (direction == FLAG_DATAIN) ? XF_DMA_IN : XF_DMA_OUT);
2033 
2034 	scb->nextstat = 5;
2035 
2036 	return (0);
2037 }
2038 
2039 static int
2040 iha_xpad_in(sc)
2041 	struct iha_softc *sc;
2042 {
2043 	bus_space_tag_t iot = sc->sc_iot;
2044 	bus_space_handle_t ioh = sc->sc_ioh;
2045 	struct iha_scb *scb = sc->sc_actscb;
2046 
2047 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2048 		scb->ha_stat = HOST_DO_DU;
2049 
2050 	for (;;) {
2051 		if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2052 			bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2053 		else
2054 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2055 
2056 		switch (iha_wait(sc, XF_FIFO_IN)) {
2057 		case -1:
2058 			return (-1);
2059 
2060 		case PHASE_DATA_IN:
2061 			bus_space_read_1(iot, ioh, TUL_SFIFO);
2062 			break;
2063 
2064 		default:
2065 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2066 			return (6);
2067 		}
2068 	}
2069 }
2070 
2071 static int
2072 iha_xpad_out(sc)
2073 	struct iha_softc *sc;
2074 {
2075 	bus_space_tag_t iot = sc->sc_iot;
2076 	bus_space_handle_t ioh = sc->sc_ioh;
2077 	struct iha_scb *scb = sc->sc_actscb;
2078 
2079 	if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2080 		scb->ha_stat = HOST_DO_DU;
2081 
2082 	for (;;) {
2083 		if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2084 			bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2085 		else
2086 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2087 
2088 		bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2089 
2090 		switch (iha_wait(sc, XF_FIFO_OUT)) {
2091 		case -1:
2092 			return (-1);
2093 
2094 		case PHASE_DATA_OUT:
2095 			break;
2096 
2097 		default:
2098 			/* Disable wide CPU to allow read 16 bits */
2099 			bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2100 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2101 			return (6);
2102 		}
2103 	}
2104 }
2105 
2106 static int
2107 iha_status_msg(sc)
2108 	struct iha_softc *sc;
2109 {
2110 	bus_space_tag_t iot = sc->sc_iot;
2111 	bus_space_handle_t ioh = sc->sc_ioh;
2112 	struct iha_scb *scb;
2113 	u_int8_t msg;
2114 	int phase;
2115 
2116 	if ((phase = iha_wait(sc, CMD_COMP)) == -1)
2117 		return (-1);
2118 
2119 	scb = sc->sc_actscb;
2120 
2121 	scb->ta_stat = bus_space_read_1(iot, ioh, TUL_SFIFO);
2122 
2123 	if (phase == PHASE_MSG_OUT) {
2124 		if ((sc->sc_status0 & SPERR) == 0)
2125 			bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_NOOP);
2126 		else
2127 			bus_space_write_1(iot, ioh, TUL_SFIFO,
2128 			    MSG_PARITY_ERROR);
2129 
2130 		return (iha_wait(sc, XF_FIFO_OUT));
2131 
2132 	} else if (phase == PHASE_MSG_IN) {
2133 		msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2134 
2135 		if ((sc->sc_status0 & SPERR) != 0)
2136 			switch (iha_wait(sc, MSG_ACCEPT)) {
2137 			case -1:
2138 				return (-1);
2139 			case PHASE_MSG_OUT:
2140 				bus_space_write_1(iot, ioh, TUL_SFIFO,
2141 				    MSG_PARITY_ERROR);
2142 				return (iha_wait(sc, XF_FIFO_OUT));
2143 			default:
2144 				iha_bad_seq(sc);
2145 				return (-1);
2146 			}
2147 
2148 		if (msg == MSG_CMDCOMPLETE) {
2149 			if ((scb->ta_stat &
2150 			    (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM) {
2151 				iha_bad_seq(sc);
2152 				return (-1);
2153 			}
2154 			sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2155 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2156 			return (iha_wait(sc, MSG_ACCEPT));
2157 		}
2158 
2159 		if ((msg == MSG_LINK_CMD_COMPLETE)
2160 		    || (msg == MSG_LINK_CMD_COMPLETEF)) {
2161 			if ((scb->ta_stat &
2162 			    (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM)
2163 				return (iha_wait(sc, MSG_ACCEPT));
2164 		}
2165 	}
2166 
2167 	iha_bad_seq(sc);
2168 	return (-1);
2169 }
2170 
2171 /*
2172  * iha_busfree - SCSI bus free detected as a result of a TIMEOUT or
2173  *		 DISCONNECT interrupt. Reset the tulip FIFO and
2174  *		 SCONFIG0 and enable hardware reselect. Move any active
2175  *		 SCB to sc_donescb list. Return an appropriate host status
2176  *		 if an I/O was active.
2177  */
2178 static void
2179 iha_busfree(sc)
2180 	struct iha_softc *sc;
2181 {
2182 	bus_space_tag_t iot = sc->sc_iot;
2183 	bus_space_handle_t ioh = sc->sc_ioh;
2184 	struct iha_scb *scb;
2185 
2186 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2187 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, SCONFIG0DEFAULT);
2188 	bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2189 
2190 	scb = sc->sc_actscb;
2191 
2192 	if (scb != NULL) {
2193 		if (scb->status == STATUS_SELECT)
2194 			/* selection timeout   */
2195 			iha_append_done_scb(sc, scb, HOST_SEL_TOUT);
2196 		else
2197 			/* Unexpected bus free */
2198 			iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2199 	}
2200 }
2201 
2202 /*
2203  * iha_resel - handle a detected SCSI bus reselection request.
2204  */
2205 static int
2206 iha_resel(sc)
2207 	struct iha_softc *sc;
2208 {
2209 	bus_space_tag_t iot = sc->sc_iot;
2210 	bus_space_handle_t ioh = sc->sc_ioh;
2211 	struct iha_scb *scb;
2212 	struct tcs *tcs;
2213 	u_int8_t tag, target, lun, msg, abortmsg;
2214 
2215 	if (sc->sc_actscb != NULL) {
2216 		if ((sc->sc_actscb->status == STATUS_SELECT))
2217 			iha_push_pend_scb(sc, sc->sc_actscb);
2218 		sc->sc_actscb = NULL;
2219 	}
2220 
2221 	target = bus_space_read_1(iot, ioh, TUL_SBID);
2222 	lun = bus_space_read_1(iot, ioh, TUL_SALVC) & MSG_IDENTIFY_LUNMASK;
2223 
2224 	tcs = &sc->sc_tcs[target];
2225 
2226 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2227 	bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2228 
2229 	abortmsg = MSG_ABORT; /* until a valid tag has been obtained */
2230 
2231 	if (tcs->ntagscb != NULL)
2232 		/* There is a non-tagged I/O active on the target */
2233 		scb = tcs->ntagscb;
2234 
2235 	else {
2236 		/*
2237 		 * Since there is no active non-tagged operation
2238 		 * read the tag type, the tag itself, and find
2239 		 * the appropriate scb by indexing sc_scb with
2240 		 * the tag.
2241 		 */
2242 
2243 		switch (iha_wait(sc, MSG_ACCEPT)) {
2244 		case -1:
2245 			return (-1);
2246 		case PHASE_MSG_IN:
2247 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2248 			if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2249 				return (-1);
2250 			break;
2251 		default:
2252 			goto abort;
2253 		}
2254 
2255 		msg = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag Msg */
2256 
2257 		if ((msg < MSG_SIMPLE_Q_TAG) || (msg > MSG_ORDERED_Q_TAG))
2258 			goto abort;
2259 
2260 		switch (iha_wait(sc, MSG_ACCEPT)) {
2261 		case -1:
2262 			return (-1);
2263 		case PHASE_MSG_IN:
2264 			bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2265 			if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2266 				return (-1);
2267 			break;
2268 		default:
2269 			goto abort;
2270 		}
2271 
2272 		tag  = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag ID */
2273 		scb = &sc->sc_scb[tag];
2274 
2275 		abortmsg = MSG_ABORT_TAG; /* Now that we have valdid tag! */
2276 	}
2277 
2278 	if ((scb->target != target)
2279 	    || (scb->lun != lun)
2280 	    || (scb->status != STATUS_BUSY)) {
2281  abort:
2282 		iha_msgout_abort(sc, abortmsg);
2283 		return (-1);
2284 	}
2285 
2286 	sc->sc_actscb = scb;
2287 
2288 	if (iha_wait(sc, MSG_ACCEPT) == -1)
2289 		return (-1);
2290 
2291 	return (iha_next_state(sc));
2292 }
2293 
2294 static int
2295 iha_msgin(sc)
2296 	struct iha_softc *sc;
2297 {
2298 	bus_space_tag_t iot = sc->sc_iot;
2299 	bus_space_handle_t ioh = sc->sc_ioh;
2300 	int flags;
2301 	int phase;
2302 	u_int8_t msg;
2303 
2304 	for (;;) {
2305 		if ((bus_space_read_1(iot, ioh, TUL_SFIFOCNT) & FIFOC) > 0)
2306 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2307 
2308 		bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2309 
2310 		phase = iha_wait(sc, XF_FIFO_IN);
2311 		msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2312 
2313 		switch (msg) {
2314 		case MSG_DISCONNECT:
2315 			sc->sc_flags |= FLAG_EXPECT_DISC;
2316 			if (iha_wait(sc, MSG_ACCEPT) != -1)
2317 				iha_bad_seq(sc);
2318 			phase = -1;
2319 			break;
2320 		case MSG_SAVEDATAPOINTER:
2321 		case MSG_RESTOREPOINTERS:
2322 		case MSG_NOOP:
2323 			phase = iha_wait(sc, MSG_ACCEPT);
2324 			break;
2325 		case MSG_MESSAGE_REJECT:
2326 			/* XXX - need to clear FIFO like other 'Clear ATN'?*/
2327 			iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2328 			flags = sc->sc_actscb->tcs->flags;
2329 			if ((flags & FLAG_NO_NEG_SYNC) == 0)
2330 				iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2331 			phase = iha_wait(sc, MSG_ACCEPT);
2332 			break;
2333 		case MSG_EXTENDED:
2334 			phase = iha_msgin_extended(sc);
2335 			break;
2336 		case MSG_IGN_WIDE_RESIDUE:
2337 			phase = iha_msgin_ignore_wid_resid(sc);
2338 			break;
2339 		case MSG_CMDCOMPLETE:
2340 			sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2341 			bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2342 			phase = iha_wait(sc, MSG_ACCEPT);
2343 			if (phase != -1) {
2344 				iha_bad_seq(sc);
2345 				return (-1);
2346 			}
2347 			break;
2348 		default:
2349 			printf("[debug] iha_msgin: bad msg type: %d\n", msg);
2350 			phase = iha_msgout_reject(sc);
2351 			break;
2352 		}
2353 
2354 		if (phase != PHASE_MSG_IN)
2355 			return (phase);
2356 	}
2357 	/* NOTREACHED */
2358 }
2359 
2360 static int
2361 iha_msgin_extended(sc)
2362 	struct iha_softc *sc;
2363 {
2364 	bus_space_tag_t iot = sc->sc_iot;
2365 	bus_space_handle_t ioh = sc->sc_ioh;
2366 	int flags, i, phase, msglen, msgcode;
2367 
2368 	/*
2369 	 * XXX - can we just stop reading and reject, or do we have to
2370 	 *	 read all input, discarding the excess, and then reject
2371 	 */
2372 	for (i = 0; i < IHA_MAX_EXTENDED_MSG; i++) {
2373 		phase = iha_wait(sc, MSG_ACCEPT);
2374 
2375 		if (phase != PHASE_MSG_IN)
2376 			return (phase);
2377 
2378 		bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2379 
2380 		if (iha_wait(sc, XF_FIFO_IN) == -1)
2381 			return (-1);
2382 
2383 		sc->sc_msg[i] = bus_space_read_1(iot, ioh, TUL_SFIFO);
2384 
2385 		if (sc->sc_msg[0] == i)
2386 			break;
2387 	}
2388 
2389 	msglen	= sc->sc_msg[0];
2390 	msgcode = sc->sc_msg[1];
2391 
2392 	if ((msglen == MSG_EXT_SDTR_LEN) && (msgcode == MSG_EXT_SDTR)) {
2393 		if (iha_msgin_sdtr(sc) == 0) {
2394 			iha_sync_done(sc);
2395 			return (iha_wait(sc, MSG_ACCEPT));
2396 		}
2397 
2398 		iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2399 
2400 		phase = iha_wait(sc, MSG_ACCEPT);
2401 		if (phase != PHASE_MSG_OUT)
2402 			return (phase);
2403 
2404 		/* Clear FIFO for important message - final SYNC offer */
2405 		bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2406 
2407 		iha_sync_done(sc); /* This is our final offer */
2408 
2409 	} else if ((msglen == MSG_EXT_WDTR_LEN) && (msgcode == MSG_EXT_WDTR)) {
2410 
2411 		flags = sc->sc_actscb->tcs->flags;
2412 
2413 		if ((flags & FLAG_NO_WIDE) != 0)
2414 			/* Offer 8bit xfers only */
2415 			sc->sc_msg[2] = MSG_EXT_WDTR_BUS_8_BIT;
2416 
2417 		else if (sc->sc_msg[2] > MSG_EXT_WDTR_BUS_32_BIT)
2418 			/* BAD MSG */
2419 			return (iha_msgout_reject(sc));
2420 
2421 		else if (sc->sc_msg[2] == MSG_EXT_WDTR_BUS_32_BIT)
2422 			/* Offer 16bit instead */
2423 			sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2424 
2425 		else {
2426 			iha_wide_done(sc);
2427 			if ((flags & FLAG_NO_NEG_SYNC) == 0)
2428 				iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2429 			return (iha_wait(sc, MSG_ACCEPT));
2430 		}
2431 
2432 		iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2433 
2434 		phase = iha_wait(sc, MSG_ACCEPT);
2435 		if (phase != PHASE_MSG_OUT)
2436 			return (phase);
2437 	} else
2438 		return (iha_msgout_reject(sc));
2439 
2440 	return (iha_msgout_extended(sc));
2441 }
2442 
2443 /*
2444  * iha_msgin_sdtr - check SDTR msg in sc_msg. If the offer is
2445  *		    acceptable leave sc_msg as is and return 0.
2446  *		    If the negotiation must continue, modify sc_msg
2447  *		    as needed and return 1. Else return 0.
2448  */
2449 static int
2450 iha_msgin_sdtr(sc)
2451 	struct iha_softc *sc;
2452 {
2453 	int flags;
2454 	int newoffer;
2455 	u_int8_t default_period;
2456 
2457 	flags = sc->sc_actscb->tcs->flags;
2458 
2459 	default_period = iha_rate_tbl[flags & FLAG_SCSI_RATE];
2460 
2461 	if (sc->sc_msg[3] == 0)
2462 		/* target offered async only. Accept it. */
2463 		return (0);
2464 
2465 	newoffer = 0;
2466 
2467 	if ((flags & FLAG_NO_SYNC) != 0) {
2468 		sc->sc_msg[3] = 0;
2469 		newoffer = 1;
2470 	}
2471 
2472 	if (sc->sc_msg[3] > IHA_MAX_OFFSET) {
2473 		sc->sc_msg[3] = IHA_MAX_OFFSET;
2474 		newoffer = 1;
2475 	}
2476 
2477 	if (sc->sc_msg[2] < default_period) {
2478 		sc->sc_msg[2] = default_period;
2479 		newoffer = 1;
2480 	}
2481 
2482 	if (sc->sc_msg[2] > IHA_MAX_PERIOD) {
2483 		/* Use async */
2484 		sc->sc_msg[3] = 0;
2485 		newoffer = 1;
2486 	}
2487 
2488 	return (newoffer);
2489 }
2490 
2491 static int
2492 iha_msgin_ignore_wid_resid(sc)
2493 	struct iha_softc *sc;
2494 {
2495 	bus_space_tag_t iot = sc->sc_iot;
2496 	bus_space_handle_t ioh = sc->sc_ioh;
2497 	int phase;
2498 
2499 	phase = iha_wait(sc, MSG_ACCEPT);
2500 
2501 	if (phase == PHASE_MSG_IN) {
2502 		phase = iha_wait(sc, XF_FIFO_IN);
2503 
2504 		if (phase != -1) {
2505 			bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2506 			bus_space_read_1(iot, ioh, TUL_SFIFO);
2507 			bus_space_read_1(iot, ioh, TUL_SFIFO);
2508 
2509 			phase = iha_wait(sc, MSG_ACCEPT);
2510 		}
2511 	}
2512 
2513 	return (phase);
2514 }
2515 
2516 static int
2517 iha_msgout(sc, msg)
2518 	struct iha_softc *sc;
2519 	u_int8_t msg;
2520 {
2521 
2522 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, TUL_SFIFO, msg);
2523 
2524 	return (iha_wait(sc, XF_FIFO_OUT));
2525 }
2526 
2527 static void
2528 iha_msgout_abort(sc, aborttype)
2529 	struct iha_softc *sc;
2530 	u_int8_t aborttype;
2531 {
2532 
2533 	iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2534 
2535 	switch (iha_wait(sc, MSG_ACCEPT)) {
2536 	case -1:
2537 		break;
2538 
2539 	case PHASE_MSG_OUT:
2540 		sc->sc_flags |= FLAG_EXPECT_DISC;
2541 		if (iha_msgout(sc, aborttype) != -1)
2542 			iha_bad_seq(sc);
2543 		break;
2544 
2545 	default:
2546 		iha_bad_seq(sc);
2547 		break;
2548 	}
2549 }
2550 
2551 static int
2552 iha_msgout_reject(sc)
2553 	struct iha_softc *sc;
2554 {
2555 
2556 	iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2557 
2558 	if (iha_wait(sc, MSG_ACCEPT) == PHASE_MSG_OUT)
2559 		return (iha_msgout(sc, MSG_MESSAGE_REJECT));
2560 
2561 	return (-1);
2562 }
2563 
2564 static int
2565 iha_msgout_extended(sc)
2566 	struct iha_softc *sc;
2567 {
2568 	bus_space_tag_t iot = sc->sc_iot;
2569 	bus_space_handle_t ioh = sc->sc_ioh;
2570 	int phase;
2571 
2572 	bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTENDED);
2573 
2574 	bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
2575 	    sc->sc_msg, sc->sc_msg[0] + 1);
2576 
2577 	phase = iha_wait(sc, XF_FIFO_OUT);
2578 
2579 	bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2580 	iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2581 
2582 	return (phase);
2583 }
2584 
2585 static int
2586 iha_msgout_wdtr(sc)
2587 	struct iha_softc *sc;
2588 {
2589 
2590 	sc->sc_actscb->tcs->flags |= FLAG_WIDE_DONE;
2591 
2592 	sc->sc_msg[0] = MSG_EXT_WDTR_LEN;
2593 	sc->sc_msg[1] = MSG_EXT_WDTR;
2594 	sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2595 
2596 	return (iha_msgout_extended(sc));
2597 }
2598 
2599 static int
2600 iha_msgout_sdtr(sc)
2601 	struct iha_softc *sc;
2602 {
2603 	struct tcs *tcs = sc->sc_actscb->tcs;
2604 
2605 	tcs->flags |= FLAG_SYNC_DONE;
2606 
2607 	sc->sc_msg[0] = MSG_EXT_SDTR_LEN;
2608 	sc->sc_msg[1] = MSG_EXT_SDTR;
2609 	sc->sc_msg[2] = iha_rate_tbl[tcs->flags & FLAG_SCSI_RATE];
2610 	sc->sc_msg[3] = IHA_MAX_OFFSET; /* REQ/ACK */
2611 
2612 	return (iha_msgout_extended(sc));
2613 }
2614 
2615 static void
2616 iha_wide_done(sc)
2617 	struct iha_softc *sc;
2618 {
2619 	bus_space_tag_t iot = sc->sc_iot;
2620 	bus_space_handle_t ioh = sc->sc_ioh;
2621 	struct tcs *tcs = sc->sc_actscb->tcs;
2622 
2623 	tcs->syncm = 0;
2624 	tcs->period = 0;
2625 	tcs->offset = 0;
2626 
2627 	if (sc->sc_msg[2] != 0)
2628 		tcs->syncm |= PERIOD_WIDE_SCSI;
2629 
2630 	tcs->sconfig0 &= ~ALTPD;
2631 	tcs->flags &= ~FLAG_SYNC_DONE;
2632 	tcs->flags |=  FLAG_WIDE_DONE;
2633 
2634 	iha_update_xfer_mode(sc, sc->sc_actscb->target);
2635 
2636 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2637 	bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2638 }
2639 
2640 static void
2641 iha_sync_done(sc)
2642 	struct iha_softc *sc;
2643 {
2644 	bus_space_tag_t iot = sc->sc_iot;
2645 	bus_space_handle_t ioh = sc->sc_ioh;
2646 	struct tcs *tcs = sc->sc_actscb->tcs;
2647 	int i;
2648 
2649 	tcs->period = sc->sc_msg[2];
2650 	tcs->offset = sc->sc_msg[3];
2651 	if (tcs->offset != 0) {
2652 		tcs->syncm |= tcs->offset;
2653 
2654 		/* pick the highest possible rate */
2655 		for (i = 0; i < sizeof(iha_rate_tbl); i++)
2656 			if (iha_rate_tbl[i] >= tcs->period)
2657 				break;
2658 
2659 		tcs->syncm |= (i << 4);
2660 		tcs->sconfig0 |= ALTPD;
2661 	}
2662 
2663 	tcs->flags |= FLAG_SYNC_DONE;
2664 
2665 	iha_update_xfer_mode(sc, sc->sc_actscb->target);
2666 
2667 	bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2668 	bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2669 }
2670 
2671 /*
2672  * iha_bad_seq - a SCSI bus phase was encountered out of the
2673  *               correct/expected sequence. Reset the SCSI bus.
2674  */
2675 static void
2676 iha_bad_seq(sc)
2677 	struct iha_softc *sc;
2678 {
2679 	struct iha_scb *scb = sc->sc_actscb;
2680 
2681 	if (scb != NULL)
2682 		iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2683 
2684 	iha_reset_scsi_bus(sc);
2685 	iha_reset_chip(sc);
2686 }
2687 
2688 /*
2689  * iha_read_eeprom - read Serial EEPROM value & set to defaults
2690  *		     if required. XXX - Writing does NOT work!
2691  */
2692 static void
2693 iha_read_eeprom(sc, eeprom)
2694 	struct iha_softc *sc;
2695 	struct iha_eeprom *eeprom;
2696 {
2697 	bus_space_tag_t iot = sc->sc_iot;
2698 	bus_space_handle_t ioh = sc->sc_ioh;
2699 	u_int16_t *buf = (u_int16_t *)eeprom;
2700 	u_int8_t gctrl;
2701 
2702 	/* Enable EEProm programming */
2703 	gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) | EEPRG;
2704 	bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2705 
2706 	/* Read EEProm */
2707 	if (iha_se2_rd_all(sc, buf) == 0)
2708 		panic("%s: cannot read EEPROM\n", sc->sc_dev.dv_xname);
2709 
2710 	/* Disable EEProm programming */
2711 	gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) & ~EEPRG;
2712 	bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2713 }
2714 
2715 #ifdef notused
2716 /*
2717  * iha_se2_update_all - Update SCSI H/A configuration parameters from
2718  *			serial EEPROM Setup default pattern. Only
2719  *			change those values different from the values
2720  *			in iha_eeprom.
2721  */
2722 static void
2723 iha_se2_update_all(sc)
2724 	struct iha_softc *sc;
2725 {
2726 	bus_space_tag_t iot = sc->sc_iot;
2727 	bus_space_handle_t ioh = sc->sc_ioh;
2728 	u_int16_t *np;
2729 	u_int32_t chksum;
2730 	int i;
2731 
2732 	/* Enable erase/write state of EEPROM */
2733 	iha_se2_instr(sc, ENABLE_ERASE);
2734 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2735 	EEP_WAIT();
2736 
2737 	np = (u_int16_t *)&eeprom_default;
2738 
2739 	for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2740 		iha_se2_wr(sc, i, *np);
2741 		chksum += *np++;
2742 	}
2743 
2744 	chksum &= 0x0000ffff;
2745 	iha_se2_wr(sc, 31, chksum);
2746 
2747 	/* Disable erase/write state of EEPROM */
2748 	iha_se2_instr(sc, 0);
2749 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2750 	EEP_WAIT();
2751 }
2752 
2753 /*
2754  * iha_se2_wr - write the given 16 bit value into the Serial EEPROM
2755  *		at the specified offset
2756  */
2757 static void
2758 iha_se2_wr(sc, addr, writeword)
2759 	struct iha_softc *sc;
2760 	int addr;
2761 	u_int16_t writeword;
2762 {
2763 	bus_space_tag_t iot = sc->sc_iot;
2764 	bus_space_handle_t ioh = sc->sc_ioh;
2765 	int i, bit;
2766 
2767 	/* send 'WRITE' Instruction == address | WRITE bit */
2768 	iha_se2_instr(sc, addr | WRITE);
2769 
2770 	for (i = 16; i > 0; i--) {
2771 		if (writeword & (1 << (i - 1)))
2772 			bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRDO);
2773 		else
2774 			bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2775 		EEP_WAIT();
2776 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2777 		EEP_WAIT();
2778 	}
2779 
2780 	bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2781 	EEP_WAIT();
2782 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2783 	EEP_WAIT();
2784 	bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2785 	EEP_WAIT();
2786 
2787 	for (;;) {
2788 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2789 		EEP_WAIT();
2790 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2791 		EEP_WAIT();
2792 		bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI;
2793 		EEP_WAIT();
2794 		if (bit != 0)
2795 			break; /* write complete */
2796 	}
2797 
2798 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2799 }
2800 #endif
2801 
2802 /*
2803  * iha_se2_rd - read & return the 16 bit value at the specified
2804  *		offset in the Serial E2PROM
2805  *
2806  */
2807 static u_int16_t
2808 iha_se2_rd(sc, addr)
2809 	struct iha_softc *sc;
2810 	int addr;
2811 {
2812 	bus_space_tag_t iot = sc->sc_iot;
2813 	bus_space_handle_t ioh = sc->sc_ioh;
2814 	int i, bit;
2815 	u_int16_t readword;
2816 
2817 	/* Send 'READ' instruction == address | READ bit */
2818 	iha_se2_instr(sc, addr | READ);
2819 
2820 	readword = 0;
2821 	for (i = 16; i > 0; i--) {
2822 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2823 		EEP_WAIT();
2824 		bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2825 		EEP_WAIT();
2826 		/* sample data after the following edge of clock     */
2827 		bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI ? 1 : 0;
2828 		EEP_WAIT();
2829 
2830 		readword |= bit << (i - 1);
2831 	}
2832 
2833 	bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2834 
2835 	return (readword);
2836 }
2837 
2838 /*
2839  * iha_se2_rd_all - Read SCSI H/A config parameters from serial EEPROM
2840  */
2841 static int
2842 iha_se2_rd_all(sc, buf)
2843 	struct iha_softc *sc;
2844 	u_int16_t *buf;
2845 {
2846 	struct iha_eeprom *eeprom = (struct iha_eeprom *)buf;
2847 	u_int32_t chksum;
2848 	int i;
2849 
2850 	for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2851 		*buf = iha_se2_rd(sc, i);
2852 		chksum += *buf++;
2853 	}
2854 	*buf = iha_se2_rd(sc, 31); /* read checksum from EEPROM */
2855 
2856 	chksum &= 0x0000ffff; /* lower 16 bits */
2857 
2858 	return (eeprom->signature == EEP_SIGNATURE) &&
2859 	    (eeprom->checksum == chksum);
2860 }
2861 
2862 /*
2863  * iha_se2_instr - write an octet to serial E2PROM one bit at a time
2864  */
2865 static void
2866 iha_se2_instr(sc, instr)
2867 	struct iha_softc *sc;
2868 	int instr;
2869 {
2870 	bus_space_tag_t iot = sc->sc_iot;
2871 	bus_space_handle_t ioh = sc->sc_ioh;
2872 	int b, i;
2873 
2874 	b = NVRCS | NVRDO; /* Write the start bit (== 1) */
2875 
2876 	bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2877 	EEP_WAIT();
2878 	bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2879 	EEP_WAIT();
2880 
2881 	for (i = 8; i > 0; i--) {
2882 		if (instr & (1 << (i - 1)))
2883 			b = NVRCS | NVRDO; /* Write a 1 bit */
2884 		else
2885 			b = NVRCS;	   /* Write a 0 bit */
2886 
2887 		bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2888 		EEP_WAIT();
2889 		bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2890 		EEP_WAIT();
2891 	}
2892 
2893 	bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2894 }
2895