xref: /netbsd/sys/dev/ic/nvme.c (revision 3bee0c11)
1 /*	$NetBSD: nvme.c,v 1.55 2021/04/24 23:36:55 thorpej Exp $	*/
2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2014 David Gwynne <dlg@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.55 2021/04/24 23:36:55 thorpej Exp $");
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36 
37 #include <uvm/uvm_extern.h>
38 
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42 
43 #include "ioconf.h"
44 #include "locators.h"
45 
46 #define	B4_CHK_RDY_DELAY_MS	2300	/* workaround controller bug */
47 
48 int nvme_adminq_size = 32;
49 int nvme_ioq_size = 1024;
50 
51 static int	nvme_print(void *, const char *);
52 
53 static int	nvme_ready(struct nvme_softc *, uint32_t);
54 static int	nvme_enable(struct nvme_softc *, u_int);
55 static int	nvme_disable(struct nvme_softc *);
56 static int	nvme_shutdown(struct nvme_softc *);
57 
58 #ifdef NVME_DEBUG
59 static void	nvme_dumpregs(struct nvme_softc *);
60 #endif
61 static int	nvme_identify(struct nvme_softc *, u_int);
62 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
63 		    void *);
64 
65 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
66 static void	nvme_ccbs_free(struct nvme_queue *);
67 
68 static struct nvme_ccb *
69 		nvme_ccb_get(struct nvme_queue *, bool);
70 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
71 
72 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
73 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
74 		    struct nvme_ccb *, void *), int);
75 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
76 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
77 		    struct nvme_cqe *);
78 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
79 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
80 		    struct nvme_cqe *);
81 
82 static struct nvme_queue *
83 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
84 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
85 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
86 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
87 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
88 		    struct nvme_ccb *, void *));
89 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
90 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
91 static void	nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
92 		    bool (*)(void *), void *);
93 
94 static struct nvme_dmamem *
95 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
96 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
97 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
98 		    int);
99 
100 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
101 		    void *);
102 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
103 		    struct nvme_cqe *);
104 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
105 		    void *);
106 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
107 		    struct nvme_cqe *);
108 static void	nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
109 		    void *);
110 static void	nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
111 		    struct nvme_cqe *);
112 
113 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
114 		    void *);
115 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
116 		    struct nvme_cqe *);
117 static int	nvme_command_passthrough(struct nvme_softc *,
118 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
119 
120 static int	nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
121 		    u_int *);
122 
123 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
124 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
125 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
126 #define NVME_TIMO_SY		60	/* sync cache timeout */
127 
128 #define nvme_read4(_s, _r) \
129 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
130 #define nvme_write4(_s, _r, _v) \
131 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
132 /*
133  * Some controllers, at least Apple NVMe, always require split
134  * transfers, so don't use bus_space_{read,write}_8() on LP64.
135  */
136 static inline uint64_t
137 nvme_read8(struct nvme_softc *sc, bus_size_t r)
138 {
139 	uint64_t v;
140 	uint32_t *a = (uint32_t *)&v;
141 
142 #if _BYTE_ORDER == _LITTLE_ENDIAN
143 	a[0] = nvme_read4(sc, r);
144 	a[1] = nvme_read4(sc, r + 4);
145 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
146 	a[1] = nvme_read4(sc, r);
147 	a[0] = nvme_read4(sc, r + 4);
148 #endif
149 
150 	return v;
151 }
152 
153 static inline void
154 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
155 {
156 	uint32_t *a = (uint32_t *)&v;
157 
158 #if _BYTE_ORDER == _LITTLE_ENDIAN
159 	nvme_write4(sc, r, a[0]);
160 	nvme_write4(sc, r + 4, a[1]);
161 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
162 	nvme_write4(sc, r, a[1]);
163 	nvme_write4(sc, r + 4, a[0]);
164 #endif
165 }
166 #define nvme_barrier(_s, _r, _l, _f) \
167 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
168 
169 #ifdef NVME_DEBUG
170 static __used void
171 nvme_dumpregs(struct nvme_softc *sc)
172 {
173 	uint64_t r8;
174 	uint32_t r4;
175 
176 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
177 	r8 = nvme_read8(sc, NVME_CAP);
178 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
179 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
180 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
181 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
182 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
183 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
184 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
185 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
186 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
187 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
188 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
189 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
190 
191 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
192 
193 	r4 = nvme_read4(sc, NVME_CC);
194 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
195 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
196 	    (1 << NVME_CC_IOCQES_R(r4)));
197 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
198 	    (1 << NVME_CC_IOSQES_R(r4)));
199 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
200 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
201 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
202 	    (1 << NVME_CC_MPS_R(r4)));
203 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
204 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
205 
206 	r4 = nvme_read4(sc, NVME_CSTS);
207 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
208 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
209 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
210 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
211 
212 	r4 = nvme_read4(sc, NVME_AQA);
213 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
214 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
215 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
216 
217 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
218 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
219 #undef	DEVNAME
220 }
221 #endif	/* NVME_DEBUG */
222 
223 static int
224 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
225 {
226 	u_int i = 0;
227 
228 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
229 		if (i++ > sc->sc_rdy_to)
230 			return ENXIO;
231 
232 		delay(1000);
233 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
234 	}
235 
236 	return 0;
237 }
238 
239 static int
240 nvme_enable(struct nvme_softc *sc, u_int mps)
241 {
242 	uint32_t cc, csts;
243 	int error;
244 
245 	cc = nvme_read4(sc, NVME_CC);
246 	csts = nvme_read4(sc, NVME_CSTS);
247 
248 	/*
249 	 * See note in nvme_disable. Short circuit if we're already enabled.
250 	 */
251 	if (ISSET(cc, NVME_CC_EN)) {
252 		if (ISSET(csts, NVME_CSTS_RDY))
253 			return 0;
254 
255 		goto waitready;
256 	} else {
257 		/* EN == 0 already wait for RDY == 0 or fail */
258 		error = nvme_ready(sc, 0);
259 		if (error)
260 			return error;
261 	}
262 
263 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
264 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
265 	delay(5000);
266 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
267 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
268 	delay(5000);
269 
270 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
271 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
272 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
273 	delay(5000);
274 
275 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
276 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
277 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
278 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
279 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
280 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
281 	SET(cc, NVME_CC_MPS(mps));
282 	SET(cc, NVME_CC_EN);
283 
284 	nvme_write4(sc, NVME_CC, cc);
285 	nvme_barrier(sc, 0, sc->sc_ios,
286 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
287 
288     waitready:
289 	return nvme_ready(sc, NVME_CSTS_RDY);
290 }
291 
292 static int
293 nvme_disable(struct nvme_softc *sc)
294 {
295 	uint32_t cc, csts;
296 	int error;
297 
298 	cc = nvme_read4(sc, NVME_CC);
299 	csts = nvme_read4(sc, NVME_CSTS);
300 
301 	/*
302 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
303 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
304 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
305 	 * isn't the desired value. Short circuit if we're already disabled.
306 	 */
307 	if (ISSET(cc, NVME_CC_EN)) {
308 		if (!ISSET(csts, NVME_CSTS_RDY)) {
309 			/* EN == 1, wait for RDY == 1 or fail */
310 			error = nvme_ready(sc, NVME_CSTS_RDY);
311 			if (error)
312 				return error;
313 		}
314 	} else {
315 		/* EN == 0 already wait for RDY == 0 */
316 		if (!ISSET(csts, NVME_CSTS_RDY))
317 			return 0;
318 
319 		goto waitready;
320 	}
321 
322 	CLR(cc, NVME_CC_EN);
323 	nvme_write4(sc, NVME_CC, cc);
324 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
325 
326 	/*
327 	 * Some drives have issues with accessing the mmio after we disable,
328 	 * so delay for a bit after we write the bit to cope with these issues.
329 	 */
330 	if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
331 		delay(B4_CHK_RDY_DELAY_MS);
332 
333     waitready:
334 	return nvme_ready(sc, 0);
335 }
336 
337 int
338 nvme_attach(struct nvme_softc *sc)
339 {
340 	uint64_t cap;
341 	uint32_t reg;
342 	u_int dstrd;
343 	u_int mps = PAGE_SHIFT;
344 	u_int ncq, nsq;
345 	uint16_t adminq_entries = nvme_adminq_size;
346 	uint16_t ioq_entries = nvme_ioq_size;
347 	int i;
348 
349 	reg = nvme_read4(sc, NVME_VS);
350 	if (reg == 0xffffffff) {
351 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
352 		return 1;
353 	}
354 
355 	if (NVME_VS_TER(reg) == 0)
356 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
357 		    NVME_VS_MNR(reg));
358 	else
359 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
360 		    NVME_VS_MNR(reg), NVME_VS_TER(reg));
361 
362 	cap = nvme_read8(sc, NVME_CAP);
363 	dstrd = NVME_CAP_DSTRD(cap);
364 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
365 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
366 		    "is greater than CPU page size %u\n",
367 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
368 		return 1;
369 	}
370 	if (NVME_CAP_MPSMAX(cap) < mps)
371 		mps = NVME_CAP_MPSMAX(cap);
372 	if (ioq_entries > NVME_CAP_MQES(cap))
373 		ioq_entries = NVME_CAP_MQES(cap);
374 
375 	/* set initial values to be used for admin queue during probe */
376 	sc->sc_rdy_to = NVME_CAP_TO(cap);
377 	sc->sc_mps = 1 << mps;
378 	sc->sc_mdts = MAXPHYS;
379 	sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
380 
381 	if (nvme_disable(sc) != 0) {
382 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
383 		return 1;
384 	}
385 
386 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
387 	if (sc->sc_admin_q == NULL) {
388 		aprint_error_dev(sc->sc_dev,
389 		    "unable to allocate admin queue\n");
390 		return 1;
391 	}
392 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
393 		goto free_admin_q;
394 
395 	if (nvme_enable(sc, mps) != 0) {
396 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
397 		goto disestablish_admin_q;
398 	}
399 
400 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
401 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
402 		goto disable;
403 	}
404 	if (sc->sc_nn == 0) {
405 		aprint_error_dev(sc->sc_dev, "namespace not found\n");
406 		goto disable;
407 	}
408 
409 	/* we know how big things are now */
410 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
411 
412 	/* reallocate ccbs of admin queue with new max sgl. */
413 	nvme_ccbs_free(sc->sc_admin_q);
414 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
415 
416 	if (sc->sc_use_mq) {
417 		/* Limit the number of queues to the number allocated in HW */
418 		if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
419 			aprint_error_dev(sc->sc_dev,
420 			    "unable to get number of queues\n");
421 			goto disable;
422 		}
423 		if (sc->sc_nq > ncq)
424 			sc->sc_nq = ncq;
425 		if (sc->sc_nq > nsq)
426 			sc->sc_nq = nsq;
427 	}
428 
429 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
430 	for (i = 0; i < sc->sc_nq; i++) {
431 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
432 		if (sc->sc_q[i] == NULL) {
433 			aprint_error_dev(sc->sc_dev,
434 			    "unable to allocate io queue\n");
435 			goto free_q;
436 		}
437 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
438 			aprint_error_dev(sc->sc_dev,
439 			    "unable to create io queue\n");
440 			nvme_q_free(sc, sc->sc_q[i]);
441 			goto free_q;
442 		}
443 	}
444 
445 	if (!sc->sc_use_mq)
446 		nvme_write4(sc, NVME_INTMC, 1);
447 
448 	/* probe subdevices */
449 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
450 	    KM_SLEEP);
451 	nvme_rescan(sc->sc_dev, NULL, NULL);
452 
453 	return 0;
454 
455 free_q:
456 	while (--i >= 0) {
457 		nvme_q_delete(sc, sc->sc_q[i]);
458 		nvme_q_free(sc, sc->sc_q[i]);
459 	}
460 disable:
461 	nvme_disable(sc);
462 disestablish_admin_q:
463 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
464 free_admin_q:
465 	nvme_q_free(sc, sc->sc_admin_q);
466 
467 	return 1;
468 }
469 
470 int
471 nvme_rescan(device_t self, const char *ifattr, const int *locs)
472 {
473 	struct nvme_softc *sc = device_private(self);
474 	struct nvme_attach_args naa;
475 	struct nvm_namespace_format *f;
476 	struct nvme_namespace *ns;
477 	uint64_t cap;
478 	int ioq_entries = nvme_ioq_size;
479 	int i, mlocs[NVMECF_NLOCS];
480 	int error;
481 
482 	cap = nvme_read8(sc, NVME_CAP);
483 	if (ioq_entries > NVME_CAP_MQES(cap))
484 		ioq_entries = NVME_CAP_MQES(cap);
485 
486 	for (i = 1; i <= sc->sc_nn; i++) {
487 		if (sc->sc_namespaces[i - 1].dev)
488 			continue;
489 
490 		/* identify to check for availability */
491 		error = nvme_ns_identify(sc, i);
492 		if (error) {
493 			aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
494 			continue;
495 		}
496 
497 		ns = nvme_ns_get(sc, i);
498 		KASSERT(ns);
499 
500 		f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
501 
502 		/*
503 		 * NVME1.0e 6.11 Identify command
504 		 *
505 		 * LBADS values smaller than 9 are not supported, a value
506 		 * of zero means that the format is not used.
507 		 */
508 		if (f->lbads < 9) {
509 			if (f->lbads > 0)
510 				aprint_error_dev(self,
511 						 "unsupported logical data size %u\n", f->lbads);
512 			continue;
513 		}
514 
515 		mlocs[NVMECF_NSID] = i;
516 
517 		memset(&naa, 0, sizeof(naa));
518 		naa.naa_nsid = i;
519 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
520 		naa.naa_maxphys = sc->sc_mdts;
521 		naa.naa_typename = sc->sc_modelname;
522 		sc->sc_namespaces[i - 1].dev =
523 		    config_found(sc->sc_dev, &naa, nvme_print,
524 				 CFARG_SUBMATCH, config_stdsubmatch,
525 				 CFARG_LOCATORS, mlocs,
526 				 CFARG_EOL);
527 	}
528 	return 0;
529 }
530 
531 static int
532 nvme_print(void *aux, const char *pnp)
533 {
534 	struct nvme_attach_args *naa = aux;
535 
536 	if (pnp)
537 		aprint_normal("ld at %s", pnp);
538 
539 	if (naa->naa_nsid > 0)
540 		aprint_normal(" nsid %d", naa->naa_nsid);
541 
542 	return UNCONF;
543 }
544 
545 int
546 nvme_detach(struct nvme_softc *sc, int flags)
547 {
548 	int i, error;
549 
550 	error = config_detach_children(sc->sc_dev, flags);
551 	if (error)
552 		return error;
553 
554 	error = nvme_shutdown(sc);
555 	if (error)
556 		return error;
557 
558 	/* from now on we are committed to detach, following will never fail */
559 	for (i = 0; i < sc->sc_nq; i++)
560 		nvme_q_free(sc, sc->sc_q[i]);
561 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
562 	nvme_q_free(sc, sc->sc_admin_q);
563 
564 	return 0;
565 }
566 
567 static int
568 nvme_shutdown(struct nvme_softc *sc)
569 {
570 	uint32_t cc, csts;
571 	bool disabled = false;
572 	int i;
573 
574 	if (!sc->sc_use_mq)
575 		nvme_write4(sc, NVME_INTMS, 1);
576 
577 	for (i = 0; i < sc->sc_nq; i++) {
578 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
579 			aprint_error_dev(sc->sc_dev,
580 			    "unable to delete io queue %d, disabling\n", i + 1);
581 			disabled = true;
582 		}
583 	}
584 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
585 	if (disabled)
586 		goto disable;
587 
588 	cc = nvme_read4(sc, NVME_CC);
589 	CLR(cc, NVME_CC_SHN_MASK);
590 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
591 	nvme_write4(sc, NVME_CC, cc);
592 
593 	for (i = 0; i < 4000; i++) {
594 		nvme_barrier(sc, 0, sc->sc_ios,
595 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
596 		csts = nvme_read4(sc, NVME_CSTS);
597 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
598 			return 0;
599 
600 		delay(1000);
601 	}
602 
603 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
604 
605 disable:
606 	nvme_disable(sc);
607 	return 0;
608 }
609 
610 void
611 nvme_childdet(device_t self, device_t child)
612 {
613 	struct nvme_softc *sc = device_private(self);
614 	int i;
615 
616 	for (i = 0; i < sc->sc_nn; i++) {
617 		if (sc->sc_namespaces[i].dev == child) {
618 			/* Already freed ns->ident. */
619 			sc->sc_namespaces[i].dev = NULL;
620 			break;
621 		}
622 	}
623 }
624 
625 int
626 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
627 {
628 	struct nvme_sqe sqe;
629 	struct nvm_identify_namespace *identify;
630 	struct nvme_dmamem *mem;
631 	struct nvme_ccb *ccb;
632 	struct nvme_namespace *ns;
633 	int rv;
634 
635 	KASSERT(nsid > 0);
636 
637 	ns = nvme_ns_get(sc, nsid);
638 	KASSERT(ns);
639 
640 	if (ns->ident != NULL)
641 		return 0;
642 
643 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
644 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
645 
646 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
647 	if (mem == NULL) {
648 		nvme_ccb_put(sc->sc_admin_q, ccb);
649 		return ENOMEM;
650 	}
651 
652 	memset(&sqe, 0, sizeof(sqe));
653 	sqe.opcode = NVM_ADMIN_IDENTIFY;
654 	htolem32(&sqe.nsid, nsid);
655 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
656 	htolem32(&sqe.cdw10, 0);
657 
658 	ccb->ccb_done = nvme_empty_done;
659 	ccb->ccb_cookie = &sqe;
660 
661 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
662 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
663 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
664 
665 	nvme_ccb_put(sc->sc_admin_q, ccb);
666 
667 	if (rv != 0) {
668 		rv = EIO;
669 		goto done;
670 	}
671 
672 	/* commit */
673 
674 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
675 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
676 
677 	/* Convert data to host endian */
678 	nvme_identify_namespace_swapbytes(identify);
679 
680 	ns->ident = identify;
681 
682 done:
683 	nvme_dmamem_free(sc, mem);
684 
685 	return rv;
686 }
687 
688 int
689 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
690     struct buf *bp, void *data, size_t datasize,
691     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
692 {
693 	struct nvme_queue *q = nvme_get_q(sc, bp, false);
694 	struct nvme_ccb *ccb;
695 	bus_dmamap_t dmap;
696 	int i, error;
697 
698 	ccb = nvme_ccb_get(q, false);
699 	if (ccb == NULL)
700 		return EAGAIN;
701 
702 	ccb->ccb_done = nvme_ns_io_done;
703 	ccb->ccb_cookie = cookie;
704 
705 	/* namespace context */
706 	ccb->nnc_nsid = nsid;
707 	ccb->nnc_flags = flags;
708 	ccb->nnc_buf = bp;
709 	ccb->nnc_datasize = datasize;
710 	ccb->nnc_secsize = secsize;
711 	ccb->nnc_blkno = blkno;
712 	ccb->nnc_done = nnc_done;
713 
714 	dmap = ccb->ccb_dmamap;
715 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
716 	    datasize, NULL,
717 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
718 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
719 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
720 	      BUS_DMA_READ : BUS_DMA_WRITE));
721 	if (error) {
722 		nvme_ccb_put(q, ccb);
723 		return error;
724 	}
725 
726 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
727 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
728 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
729 
730 	if (dmap->dm_nsegs > 2) {
731 		for (i = 1; i < dmap->dm_nsegs; i++) {
732 			htolem64(&ccb->ccb_prpl[i - 1],
733 			    dmap->dm_segs[i].ds_addr);
734 		}
735 		bus_dmamap_sync(sc->sc_dmat,
736 		    NVME_DMA_MAP(q->q_ccb_prpls),
737 		    ccb->ccb_prpl_off,
738 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
739 		    BUS_DMASYNC_PREWRITE);
740 	}
741 
742 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
743 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
744 			return EIO;
745 		return 0;
746 	}
747 
748 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
749 	return 0;
750 }
751 
752 static void
753 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
754 {
755 	struct nvme_sqe_io *sqe = slot;
756 	bus_dmamap_t dmap = ccb->ccb_dmamap;
757 
758 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
759 	    NVM_CMD_READ : NVM_CMD_WRITE;
760 	htolem32(&sqe->nsid, ccb->nnc_nsid);
761 
762 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
763 	switch (dmap->dm_nsegs) {
764 	case 1:
765 		break;
766 	case 2:
767 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
768 		break;
769 	default:
770 		/* the prp list is already set up and synced */
771 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
772 		break;
773 	}
774 
775 	htolem64(&sqe->slba, ccb->nnc_blkno);
776 
777 	if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
778 		htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
779 
780 	/* guaranteed by upper layers, but check just in case */
781 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
782 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
783 }
784 
785 static void
786 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
787     struct nvme_cqe *cqe)
788 {
789 	struct nvme_softc *sc = q->q_sc;
790 	bus_dmamap_t dmap = ccb->ccb_dmamap;
791 	void *nnc_cookie = ccb->ccb_cookie;
792 	nvme_nnc_done nnc_done = ccb->nnc_done;
793 	struct buf *bp = ccb->nnc_buf;
794 
795 	if (dmap->dm_nsegs > 2) {
796 		bus_dmamap_sync(sc->sc_dmat,
797 		    NVME_DMA_MAP(q->q_ccb_prpls),
798 		    ccb->ccb_prpl_off,
799 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
800 		    BUS_DMASYNC_POSTWRITE);
801 	}
802 
803 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
804 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
805 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
806 
807 	bus_dmamap_unload(sc->sc_dmat, dmap);
808 	nvme_ccb_put(q, ccb);
809 
810 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
811 }
812 
813 /*
814  * If there is no volatile write cache, it makes no sense to issue
815  * flush commands or query for the status.
816  */
817 static bool
818 nvme_has_volatile_write_cache(struct nvme_softc *sc)
819 {
820 	/* sc_identify is filled during attachment */
821 	return  ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
822 }
823 
824 static bool
825 nvme_ns_sync_finished(void *cookie)
826 {
827 	int *result = cookie;
828 
829 	return (*result != 0);
830 }
831 
832 int
833 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
834 {
835 	struct nvme_queue *q = nvme_get_q(sc, NULL, true);
836 	struct nvme_ccb *ccb;
837 	int result = 0;
838 
839 	if (!nvme_has_volatile_write_cache(sc)) {
840 		/* cache not present, no value in trying to flush it */
841 		return 0;
842 	}
843 
844 	ccb = nvme_ccb_get(q, true);
845 	KASSERT(ccb != NULL);
846 
847 	ccb->ccb_done = nvme_ns_sync_done;
848 	ccb->ccb_cookie = &result;
849 
850 	/* namespace context */
851 	ccb->nnc_nsid = nsid;
852 	ccb->nnc_flags = flags;
853 	ccb->nnc_done = NULL;
854 
855 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
856 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
857 			return EIO;
858 		return 0;
859 	}
860 
861 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
862 
863 	/* wait for completion */
864 	nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
865 	KASSERT(result != 0);
866 
867 	return (result > 0) ? 0 : EIO;
868 }
869 
870 static void
871 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
872 {
873 	struct nvme_sqe *sqe = slot;
874 
875 	sqe->opcode = NVM_CMD_FLUSH;
876 	htolem32(&sqe->nsid, ccb->nnc_nsid);
877 }
878 
879 static void
880 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
881     struct nvme_cqe *cqe)
882 {
883 	int *result = ccb->ccb_cookie;
884 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
885 
886 	if (status == NVME_CQE_SC_SUCCESS)
887 		*result = 1;
888 	else
889 		*result = -1;
890 
891 	nvme_ccb_put(q, ccb);
892 }
893 
894 static bool
895 nvme_getcache_finished(void *xc)
896 {
897 	int *addr = xc;
898 
899 	return (*addr != 0);
900 }
901 
902 /*
903  * Get status of volatile write cache. Always asynchronous.
904  */
905 int
906 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
907 {
908 	struct nvme_ccb *ccb;
909 	struct nvme_queue *q = sc->sc_admin_q;
910 	int result = 0, error;
911 
912 	if (!nvme_has_volatile_write_cache(sc)) {
913 		/* cache simply not present */
914 		*addr = 0;
915 		return 0;
916 	}
917 
918 	ccb = nvme_ccb_get(q, true);
919 	KASSERT(ccb != NULL);
920 
921 	ccb->ccb_done = nvme_getcache_done;
922 	ccb->ccb_cookie = &result;
923 
924 	/* namespace context */
925 	ccb->nnc_flags = 0;
926 	ccb->nnc_done = NULL;
927 
928 	nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
929 
930 	/* wait for completion */
931 	nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
932 	KASSERT(result != 0);
933 
934 	if (result > 0) {
935 		*addr = result;
936 		error = 0;
937 	} else
938 		error = EINVAL;
939 
940 	return error;
941 }
942 
943 static void
944 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
945 {
946 	struct nvme_sqe *sqe = slot;
947 
948 	sqe->opcode = NVM_ADMIN_GET_FEATURES;
949 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
950 	htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
951 }
952 
953 static void
954 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
955     struct nvme_cqe *cqe)
956 {
957 	int *addr = ccb->ccb_cookie;
958 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
959 	uint32_t cdw0 = lemtoh32(&cqe->cdw0);
960 	int result;
961 
962 	if (status == NVME_CQE_SC_SUCCESS) {
963 		result = 0;
964 
965 		/*
966 		 * DPO not supported, Dataset Management (DSM) field doesn't
967 		 * specify the same semantics. FUA is always supported.
968 		 */
969 		result = DKCACHE_FUA;
970 
971 		if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
972 			result |= DKCACHE_WRITE;
973 
974 		/*
975 		 * If volatile write cache is present, the flag shall also be
976 		 * settable.
977 		 */
978 		result |= DKCACHE_WCHANGE;
979 
980 		/*
981 		 * ONCS field indicates whether the optional SAVE is also
982 		 * supported for Set Features. According to spec v1.3,
983 		 * Volatile Write Cache however doesn't support persistency
984 		 * across power cycle/reset.
985 		 */
986 
987 	} else {
988 		result = -1;
989 	}
990 
991 	*addr = result;
992 
993 	nvme_ccb_put(q, ccb);
994 }
995 
996 struct nvme_setcache_state {
997 	int dkcache;
998 	int result;
999 };
1000 
1001 static bool
1002 nvme_setcache_finished(void *xc)
1003 {
1004 	struct nvme_setcache_state *st = xc;
1005 
1006 	return (st->result != 0);
1007 }
1008 
1009 static void
1010 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1011 {
1012 	struct nvme_sqe *sqe = slot;
1013 	struct nvme_setcache_state *st = ccb->ccb_cookie;
1014 
1015 	sqe->opcode = NVM_ADMIN_SET_FEATURES;
1016 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1017 	if (st->dkcache & DKCACHE_WRITE)
1018 		htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1019 }
1020 
1021 static void
1022 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1023     struct nvme_cqe *cqe)
1024 {
1025 	struct nvme_setcache_state *st = ccb->ccb_cookie;
1026 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1027 
1028 	if (status == NVME_CQE_SC_SUCCESS) {
1029 		st->result = 1;
1030 	} else {
1031 		st->result = -1;
1032 	}
1033 
1034 	nvme_ccb_put(q, ccb);
1035 }
1036 
1037 /*
1038  * Set status of volatile write cache. Always asynchronous.
1039  */
1040 int
1041 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1042 {
1043 	struct nvme_ccb *ccb;
1044 	struct nvme_queue *q = sc->sc_admin_q;
1045 	int error;
1046 	struct nvme_setcache_state st;
1047 
1048 	if (!nvme_has_volatile_write_cache(sc)) {
1049 		/* cache simply not present */
1050 		return EOPNOTSUPP;
1051 	}
1052 
1053 	if (dkcache & ~(DKCACHE_WRITE)) {
1054 		/* unsupported parameters */
1055 		return EOPNOTSUPP;
1056 	}
1057 
1058 	ccb = nvme_ccb_get(q, true);
1059 	KASSERT(ccb != NULL);
1060 
1061 	memset(&st, 0, sizeof(st));
1062 	st.dkcache = dkcache;
1063 
1064 	ccb->ccb_done = nvme_setcache_done;
1065 	ccb->ccb_cookie = &st;
1066 
1067 	/* namespace context */
1068 	ccb->nnc_flags = 0;
1069 	ccb->nnc_done = NULL;
1070 
1071 	nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1072 
1073 	/* wait for completion */
1074 	nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1075 	KASSERT(st.result != 0);
1076 
1077 	if (st.result > 0)
1078 		error = 0;
1079 	else
1080 		error = EINVAL;
1081 
1082 	return error;
1083 }
1084 
1085 void
1086 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1087 {
1088 	struct nvme_namespace *ns;
1089 	struct nvm_identify_namespace *identify;
1090 
1091 	ns = nvme_ns_get(sc, nsid);
1092 	KASSERT(ns);
1093 
1094 	identify = ns->ident;
1095 	ns->ident = NULL;
1096 	if (identify != NULL)
1097 		kmem_free(identify, sizeof(*identify));
1098 }
1099 
1100 struct nvme_pt_state {
1101 	struct nvme_pt_command *pt;
1102 	bool finished;
1103 };
1104 
1105 static void
1106 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1107 {
1108 	struct nvme_softc *sc = q->q_sc;
1109 	struct nvme_sqe *sqe = slot;
1110 	struct nvme_pt_state *state = ccb->ccb_cookie;
1111 	struct nvme_pt_command *pt = state->pt;
1112 	bus_dmamap_t dmap = ccb->ccb_dmamap;
1113 	int i;
1114 
1115 	sqe->opcode = pt->cmd.opcode;
1116 	htolem32(&sqe->nsid, pt->cmd.nsid);
1117 
1118 	if (pt->buf != NULL && pt->len > 0) {
1119 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1120 		switch (dmap->dm_nsegs) {
1121 		case 1:
1122 			break;
1123 		case 2:
1124 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1125 			break;
1126 		default:
1127 			for (i = 1; i < dmap->dm_nsegs; i++) {
1128 				htolem64(&ccb->ccb_prpl[i - 1],
1129 				    dmap->dm_segs[i].ds_addr);
1130 			}
1131 			bus_dmamap_sync(sc->sc_dmat,
1132 			    NVME_DMA_MAP(q->q_ccb_prpls),
1133 			    ccb->ccb_prpl_off,
1134 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1135 			    BUS_DMASYNC_PREWRITE);
1136 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1137 			break;
1138 		}
1139 	}
1140 
1141 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
1142 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
1143 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
1144 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
1145 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
1146 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
1147 }
1148 
1149 static void
1150 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1151 {
1152 	struct nvme_softc *sc = q->q_sc;
1153 	struct nvme_pt_state *state = ccb->ccb_cookie;
1154 	struct nvme_pt_command *pt = state->pt;
1155 	bus_dmamap_t dmap = ccb->ccb_dmamap;
1156 
1157 	if (pt->buf != NULL && pt->len > 0) {
1158 		if (dmap->dm_nsegs > 2) {
1159 			bus_dmamap_sync(sc->sc_dmat,
1160 			    NVME_DMA_MAP(q->q_ccb_prpls),
1161 			    ccb->ccb_prpl_off,
1162 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1163 			    BUS_DMASYNC_POSTWRITE);
1164 		}
1165 
1166 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1167 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1168 		bus_dmamap_unload(sc->sc_dmat, dmap);
1169 	}
1170 
1171 	pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1172 	pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1173 
1174 	state->finished = true;
1175 
1176 	nvme_ccb_put(q, ccb);
1177 }
1178 
1179 static bool
1180 nvme_pt_finished(void *cookie)
1181 {
1182 	struct nvme_pt_state *state = cookie;
1183 
1184 	return state->finished;
1185 }
1186 
1187 static int
1188 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1189     uint16_t nsid, struct lwp *l, bool is_adminq)
1190 {
1191 	struct nvme_queue *q;
1192 	struct nvme_ccb *ccb;
1193 	void *buf = NULL;
1194 	struct nvme_pt_state state;
1195 	int error;
1196 
1197 	/* limit command size to maximum data transfer size */
1198 	if ((pt->buf == NULL && pt->len > 0) ||
1199 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1200 		return EINVAL;
1201 
1202 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
1203 	ccb = nvme_ccb_get(q, true);
1204 	KASSERT(ccb != NULL);
1205 
1206 	if (pt->buf != NULL) {
1207 		KASSERT(pt->len > 0);
1208 		buf = kmem_alloc(pt->len, KM_SLEEP);
1209 		if (!pt->is_read) {
1210 			error = copyin(pt->buf, buf, pt->len);
1211 			if (error)
1212 				goto kmem_free;
1213 		}
1214 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1215 		    pt->len, NULL,
1216 		    BUS_DMA_WAITOK |
1217 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1218 		if (error)
1219 			goto kmem_free;
1220 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1221 		    0, ccb->ccb_dmamap->dm_mapsize,
1222 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1223 	}
1224 
1225 	memset(&state, 0, sizeof(state));
1226 	state.pt = pt;
1227 	state.finished = false;
1228 
1229 	ccb->ccb_done = nvme_pt_done;
1230 	ccb->ccb_cookie = &state;
1231 
1232 	pt->cmd.nsid = nsid;
1233 
1234 	nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1235 
1236 	/* wait for completion */
1237 	nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1238 	KASSERT(state.finished);
1239 
1240 	error = 0;
1241 
1242 	if (buf != NULL) {
1243 		if (error == 0 && pt->is_read)
1244 			error = copyout(buf, pt->buf, pt->len);
1245 kmem_free:
1246 		kmem_free(buf, pt->len);
1247 	}
1248 
1249 	return error;
1250 }
1251 
1252 static void
1253 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1254     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1255 {
1256 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1257 	uint32_t tail;
1258 
1259 	mutex_enter(&q->q_sq_mtx);
1260 	tail = q->q_sq_tail;
1261 	if (++q->q_sq_tail >= q->q_entries)
1262 		q->q_sq_tail = 0;
1263 
1264 	sqe += tail;
1265 
1266 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1267 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1268 	memset(sqe, 0, sizeof(*sqe));
1269 	(*fill)(q, ccb, sqe);
1270 	htolem16(&sqe->cid, ccb->ccb_id);
1271 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1272 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1273 
1274 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
1275 	mutex_exit(&q->q_sq_mtx);
1276 }
1277 
1278 struct nvme_poll_state {
1279 	struct nvme_sqe s;
1280 	struct nvme_cqe c;
1281 	void *cookie;
1282 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1283 };
1284 
1285 static int
1286 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1287     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1288 {
1289 	struct nvme_poll_state state;
1290 	uint16_t flags;
1291 	int step = 10;
1292 	int maxloop = timo_sec * 1000000 / step;
1293 	int error = 0;
1294 
1295 	memset(&state, 0, sizeof(state));
1296 	(*fill)(q, ccb, &state.s);
1297 
1298 	state.done = ccb->ccb_done;
1299 	state.cookie = ccb->ccb_cookie;
1300 
1301 	ccb->ccb_done = nvme_poll_done;
1302 	ccb->ccb_cookie = &state;
1303 
1304 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1305 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1306 		if (nvme_q_complete(sc, q) == 0)
1307 			delay(step);
1308 
1309 		if (timo_sec >= 0 && --maxloop <= 0) {
1310 			error = ETIMEDOUT;
1311 			break;
1312 		}
1313 	}
1314 
1315 	if (error == 0) {
1316 		flags = lemtoh16(&state.c.flags);
1317 		return flags & ~NVME_CQE_PHASE;
1318 	} else {
1319 		/*
1320 		 * If it succeds later, it would hit ccb which will have been
1321 		 * already reused for something else. Not good. Cross
1322 		 * fingers and hope for best. XXX do controller reset?
1323 		 */
1324 		aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1325 
1326 		/* Invoke the callback to clean state anyway */
1327 		struct nvme_cqe cqe;
1328 		memset(&cqe, 0, sizeof(cqe));
1329 		ccb->ccb_done(q, ccb, &cqe);
1330 
1331 		return 1;
1332 	}
1333 }
1334 
1335 static void
1336 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1337 {
1338 	struct nvme_sqe *sqe = slot;
1339 	struct nvme_poll_state *state = ccb->ccb_cookie;
1340 
1341 	*sqe = state->s;
1342 }
1343 
1344 static void
1345 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1346     struct nvme_cqe *cqe)
1347 {
1348 	struct nvme_poll_state *state = ccb->ccb_cookie;
1349 
1350 	state->c = *cqe;
1351 	SET(state->c.flags, htole16(NVME_CQE_PHASE));
1352 
1353 	ccb->ccb_cookie = state->cookie;
1354 	state->done(q, ccb, &state->c);
1355 }
1356 
1357 static void
1358 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1359 {
1360 	struct nvme_sqe *src = ccb->ccb_cookie;
1361 	struct nvme_sqe *dst = slot;
1362 
1363 	*dst = *src;
1364 }
1365 
1366 static void
1367 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1368     struct nvme_cqe *cqe)
1369 {
1370 }
1371 
1372 static int
1373 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1374 {
1375 	struct nvme_ccb *ccb;
1376 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1377 	uint16_t flags;
1378 	int rv = 0;
1379 
1380 	mutex_enter(&q->q_cq_mtx);
1381 
1382 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1383 	for (;;) {
1384 		cqe = &ring[q->q_cq_head];
1385 		flags = lemtoh16(&cqe->flags);
1386 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1387 			break;
1388 
1389 		ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
1390 
1391 		if (++q->q_cq_head >= q->q_entries) {
1392 			q->q_cq_head = 0;
1393 			q->q_cq_phase ^= NVME_CQE_PHASE;
1394 		}
1395 
1396 #ifdef DEBUG
1397 		/*
1398 		 * If we get spurious completion notification, something
1399 		 * is seriously hosed up. Very likely DMA to some random
1400 		 * memory place happened, so just bail out.
1401 		 */
1402 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1403 			panic("%s: invalid ccb detected",
1404 			    device_xname(sc->sc_dev));
1405 			/* NOTREACHED */
1406 		}
1407 #endif
1408 
1409 		rv++;
1410 
1411 		/*
1412 		 * Unlock the mutex before calling the ccb_done callback
1413 		 * and re-lock afterwards. The callback triggers lddone()
1414 		 * which schedules another i/o, and also calls nvme_ccb_put().
1415 		 * Unlock/relock avoids possibility of deadlock.
1416 		 */
1417 		mutex_exit(&q->q_cq_mtx);
1418 		ccb->ccb_done(q, ccb, cqe);
1419 		mutex_enter(&q->q_cq_mtx);
1420 	}
1421 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1422 
1423 	if (rv)
1424 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1425 
1426 	mutex_exit(&q->q_cq_mtx);
1427 
1428 	return rv;
1429 }
1430 
1431 static void
1432 nvme_q_wait_complete(struct nvme_softc *sc,
1433     struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1434 {
1435 	mutex_enter(&q->q_ccb_mtx);
1436 	if (finished(cookie))
1437 		goto out;
1438 
1439 	for(;;) {
1440 		q->q_ccb_waiting = true;
1441 		cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1442 
1443 		if (finished(cookie))
1444 			break;
1445 	}
1446 
1447 out:
1448 	mutex_exit(&q->q_ccb_mtx);
1449 }
1450 
1451 static int
1452 nvme_identify(struct nvme_softc *sc, u_int mps)
1453 {
1454 	char sn[41], mn[81], fr[17];
1455 	struct nvm_identify_controller *identify;
1456 	struct nvme_dmamem *mem;
1457 	struct nvme_ccb *ccb;
1458 	u_int mdts;
1459 	int rv = 1;
1460 
1461 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1462 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1463 
1464 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1465 	if (mem == NULL)
1466 		return 1;
1467 
1468 	ccb->ccb_done = nvme_empty_done;
1469 	ccb->ccb_cookie = mem;
1470 
1471 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1472 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1473 	    NVME_TIMO_IDENT);
1474 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1475 
1476 	nvme_ccb_put(sc->sc_admin_q, ccb);
1477 
1478 	if (rv != 0)
1479 		goto done;
1480 
1481 	identify = NVME_DMA_KVA(mem);
1482 	sc->sc_identify = *identify;
1483 	identify = NULL;
1484 
1485 	/* Convert data to host endian */
1486 	nvme_identify_controller_swapbytes(&sc->sc_identify);
1487 
1488 	strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1489 	    sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1490 	strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1491 	    sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1492 	strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1493 	    sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1494 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1495 	    sn);
1496 
1497 	strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1498 
1499 	if (sc->sc_identify.mdts > 0) {
1500 		mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1501 		if (mdts < sc->sc_mdts)
1502 			sc->sc_mdts = mdts;
1503 	}
1504 
1505 	sc->sc_nn = sc->sc_identify.nn;
1506 
1507 done:
1508 	nvme_dmamem_free(sc, mem);
1509 
1510 	return rv;
1511 }
1512 
1513 static int
1514 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1515 {
1516 	struct nvme_sqe_q sqe;
1517 	struct nvme_ccb *ccb;
1518 	int rv;
1519 
1520 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1521 		return 1;
1522 
1523 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1524 	KASSERT(ccb != NULL);
1525 
1526 	ccb->ccb_done = nvme_empty_done;
1527 	ccb->ccb_cookie = &sqe;
1528 
1529 	memset(&sqe, 0, sizeof(sqe));
1530 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1531 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1532 	htolem16(&sqe.qsize, q->q_entries - 1);
1533 	htolem16(&sqe.qid, q->q_id);
1534 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1535 	if (sc->sc_use_mq)
1536 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
1537 
1538 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1539 	if (rv != 0)
1540 		goto fail;
1541 
1542 	ccb->ccb_done = nvme_empty_done;
1543 	ccb->ccb_cookie = &sqe;
1544 
1545 	memset(&sqe, 0, sizeof(sqe));
1546 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1547 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1548 	htolem16(&sqe.qsize, q->q_entries - 1);
1549 	htolem16(&sqe.qid, q->q_id);
1550 	htolem16(&sqe.cqid, q->q_id);
1551 	sqe.qflags = NVM_SQE_Q_PC;
1552 
1553 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1554 	if (rv != 0)
1555 		goto fail;
1556 
1557 	nvme_ccb_put(sc->sc_admin_q, ccb);
1558 	return 0;
1559 
1560 fail:
1561 	if (sc->sc_use_mq)
1562 		sc->sc_intr_disestablish(sc, q->q_id);
1563 
1564 	nvme_ccb_put(sc->sc_admin_q, ccb);
1565 	return rv;
1566 }
1567 
1568 static int
1569 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1570 {
1571 	struct nvme_sqe_q sqe;
1572 	struct nvme_ccb *ccb;
1573 	int rv;
1574 
1575 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1576 	KASSERT(ccb != NULL);
1577 
1578 	ccb->ccb_done = nvme_empty_done;
1579 	ccb->ccb_cookie = &sqe;
1580 
1581 	memset(&sqe, 0, sizeof(sqe));
1582 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1583 	htolem16(&sqe.qid, q->q_id);
1584 
1585 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1586 	if (rv != 0)
1587 		goto fail;
1588 
1589 	ccb->ccb_done = nvme_empty_done;
1590 	ccb->ccb_cookie = &sqe;
1591 
1592 	memset(&sqe, 0, sizeof(sqe));
1593 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1594 	htolem16(&sqe.qid, q->q_id);
1595 
1596 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1597 	if (rv != 0)
1598 		goto fail;
1599 
1600 fail:
1601 	nvme_ccb_put(sc->sc_admin_q, ccb);
1602 
1603 	if (rv == 0 && sc->sc_use_mq) {
1604 		if (sc->sc_intr_disestablish(sc, q->q_id))
1605 			rv = 1;
1606 	}
1607 
1608 	return rv;
1609 }
1610 
1611 static void
1612 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1613 {
1614 	struct nvme_sqe *sqe = slot;
1615 	struct nvme_dmamem *mem = ccb->ccb_cookie;
1616 
1617 	sqe->opcode = NVM_ADMIN_IDENTIFY;
1618 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1619 	htolem32(&sqe->cdw10, 1);
1620 }
1621 
1622 static int
1623 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
1624     u_int *nsqa)
1625 {
1626 	struct nvme_pt_state state;
1627 	struct nvme_pt_command pt;
1628 	struct nvme_ccb *ccb;
1629 	int rv;
1630 
1631 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1632 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1633 
1634 	memset(&pt, 0, sizeof(pt));
1635 	pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
1636 	pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1637 	pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
1638 
1639 	memset(&state, 0, sizeof(state));
1640 	state.pt = &pt;
1641 	state.finished = false;
1642 
1643 	ccb->ccb_done = nvme_pt_done;
1644 	ccb->ccb_cookie = &state;
1645 
1646 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1647 
1648 	if (rv != 0) {
1649 		*ncqa = *nsqa = 0;
1650 		return EIO;
1651 	}
1652 
1653 	*ncqa = (pt.cpl.cdw0 >> 16) + 1;
1654 	*nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
1655 
1656 	return 0;
1657 }
1658 
1659 static int
1660 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1661 {
1662 	struct nvme_softc *sc = q->q_sc;
1663 	struct nvme_ccb *ccb;
1664 	bus_addr_t off;
1665 	uint64_t *prpl;
1666 	u_int i;
1667 
1668 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1669 	cv_init(&q->q_ccb_wait, "nvmeqw");
1670 	q->q_ccb_waiting = false;
1671 	SIMPLEQ_INIT(&q->q_ccb_list);
1672 
1673 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1674 
1675 	q->q_nccbs = nccbs;
1676 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1677 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1678 
1679 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1680 	off = 0;
1681 
1682 	for (i = 0; i < nccbs; i++) {
1683 		ccb = &q->q_ccbs[i];
1684 
1685 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1686 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1687 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1688 		    &ccb->ccb_dmamap) != 0)
1689 			goto free_maps;
1690 
1691 		ccb->ccb_id = i;
1692 		ccb->ccb_prpl = prpl;
1693 		ccb->ccb_prpl_off = off;
1694 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1695 
1696 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1697 
1698 		prpl += sc->sc_max_sgl;
1699 		off += sizeof(*prpl) * sc->sc_max_sgl;
1700 	}
1701 
1702 	return 0;
1703 
1704 free_maps:
1705 	nvme_ccbs_free(q);
1706 	return 1;
1707 }
1708 
1709 static struct nvme_ccb *
1710 nvme_ccb_get(struct nvme_queue *q, bool wait)
1711 {
1712 	struct nvme_ccb *ccb = NULL;
1713 
1714 	mutex_enter(&q->q_ccb_mtx);
1715 again:
1716 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1717 	if (ccb != NULL) {
1718 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1719 #ifdef DEBUG
1720 		ccb->ccb_cookie = NULL;
1721 #endif
1722 	} else {
1723 		if (__predict_false(wait)) {
1724 			q->q_ccb_waiting = true;
1725 			cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1726 			goto again;
1727 		}
1728 	}
1729 	mutex_exit(&q->q_ccb_mtx);
1730 
1731 	return ccb;
1732 }
1733 
1734 static void
1735 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1736 {
1737 
1738 	mutex_enter(&q->q_ccb_mtx);
1739 #ifdef DEBUG
1740 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1741 #endif
1742 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1743 
1744 	/* It's unlikely there are any waiters, it's not used for regular I/O */
1745 	if (__predict_false(q->q_ccb_waiting)) {
1746 		q->q_ccb_waiting = false;
1747 		cv_broadcast(&q->q_ccb_wait);
1748 	}
1749 
1750 	mutex_exit(&q->q_ccb_mtx);
1751 }
1752 
1753 static void
1754 nvme_ccbs_free(struct nvme_queue *q)
1755 {
1756 	struct nvme_softc *sc = q->q_sc;
1757 	struct nvme_ccb *ccb;
1758 
1759 	mutex_enter(&q->q_ccb_mtx);
1760 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1761 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1762 		/*
1763 		 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
1764 		 * internally. don't hold spin mutex
1765 		 */
1766 		mutex_exit(&q->q_ccb_mtx);
1767 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1768 		mutex_enter(&q->q_ccb_mtx);
1769 	}
1770 	mutex_exit(&q->q_ccb_mtx);
1771 
1772 	nvme_dmamem_free(sc, q->q_ccb_prpls);
1773 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1774 	q->q_ccbs = NULL;
1775 	cv_destroy(&q->q_ccb_wait);
1776 	mutex_destroy(&q->q_ccb_mtx);
1777 }
1778 
1779 static struct nvme_queue *
1780 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1781 {
1782 	struct nvme_queue *q;
1783 
1784 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
1785 	q->q_sc = sc;
1786 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1787 	    sizeof(struct nvme_sqe) * entries);
1788 	if (q->q_sq_dmamem == NULL)
1789 		goto free;
1790 
1791 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1792 	    sizeof(struct nvme_cqe) * entries);
1793 	if (q->q_cq_dmamem == NULL)
1794 		goto free_sq;
1795 
1796 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1797 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1798 
1799 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1800 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1801 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1802 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1803 	q->q_id = id;
1804 	q->q_entries = entries;
1805 	q->q_sq_tail = 0;
1806 	q->q_cq_head = 0;
1807 	q->q_cq_phase = NVME_CQE_PHASE;
1808 
1809 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1810 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1811 
1812 	/*
1813 	 * Due to definition of full and empty queue (queue is empty
1814 	 * when head == tail, full when tail is one less then head),
1815 	 * we can actually only have (entries - 1) in-flight commands.
1816 	 */
1817 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1818 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1819 		goto free_cq;
1820 	}
1821 
1822 	return q;
1823 
1824 free_cq:
1825 	nvme_dmamem_free(sc, q->q_cq_dmamem);
1826 free_sq:
1827 	nvme_dmamem_free(sc, q->q_sq_dmamem);
1828 free:
1829 	kmem_free(q, sizeof(*q));
1830 
1831 	return NULL;
1832 }
1833 
1834 static void
1835 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1836 {
1837 	nvme_ccbs_free(q);
1838 	mutex_destroy(&q->q_sq_mtx);
1839 	mutex_destroy(&q->q_cq_mtx);
1840 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1841 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1842 	nvme_dmamem_free(sc, q->q_cq_dmamem);
1843 	nvme_dmamem_free(sc, q->q_sq_dmamem);
1844 	kmem_free(q, sizeof(*q));
1845 }
1846 
1847 int
1848 nvme_intr(void *xsc)
1849 {
1850 	struct nvme_softc *sc = xsc;
1851 
1852 	/*
1853 	 * INTx is level triggered, controller deasserts the interrupt only
1854 	 * when we advance command queue head via write to the doorbell.
1855 	 * Tell the controller to block the interrupts while we process
1856 	 * the queue(s).
1857 	 */
1858 	nvme_write4(sc, NVME_INTMS, 1);
1859 
1860 	softint_schedule(sc->sc_softih[0]);
1861 
1862 	/* don't know, might not have been for us */
1863 	return 1;
1864 }
1865 
1866 void
1867 nvme_softintr_intx(void *xq)
1868 {
1869 	struct nvme_queue *q = xq;
1870 	struct nvme_softc *sc = q->q_sc;
1871 
1872 	nvme_q_complete(sc, sc->sc_admin_q);
1873 	if (sc->sc_q != NULL)
1874 	        nvme_q_complete(sc, sc->sc_q[0]);
1875 
1876 	/*
1877 	 * Processing done, tell controller to issue interrupts again. There
1878 	 * is no race, as NVMe spec requires the controller to maintain state,
1879 	 * and assert the interrupt whenever there are unacknowledged
1880 	 * completion queue entries.
1881 	 */
1882 	nvme_write4(sc, NVME_INTMC, 1);
1883 }
1884 
1885 int
1886 nvme_intr_msi(void *xq)
1887 {
1888 	struct nvme_queue *q = xq;
1889 
1890 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
1891 	    && q->q_sc->sc_softih[q->q_id]);
1892 
1893 	/*
1894 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
1895 	 * without masking the interrupt.
1896 	 */
1897 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
1898 
1899 	return 1;
1900 }
1901 
1902 void
1903 nvme_softintr_msi(void *xq)
1904 {
1905 	struct nvme_queue *q = xq;
1906 	struct nvme_softc *sc = q->q_sc;
1907 
1908 	nvme_q_complete(sc, q);
1909 }
1910 
1911 static struct nvme_dmamem *
1912 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1913 {
1914 	struct nvme_dmamem *ndm;
1915 	int nsegs;
1916 
1917 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1918 	if (ndm == NULL)
1919 		return NULL;
1920 
1921 	ndm->ndm_size = size;
1922 
1923 	if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
1924 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1925 		goto ndmfree;
1926 
1927 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1928 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
1929 		goto destroy;
1930 
1931 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1932 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1933 		goto free;
1934 
1935 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1936 	    NULL, BUS_DMA_WAITOK) != 0)
1937 		goto unmap;
1938 
1939 	memset(ndm->ndm_kva, 0, size);
1940 	bus_dmamap_sync(sc->sc_dmat, ndm->ndm_map, 0, size, BUS_DMASYNC_PREREAD);
1941 
1942 	return ndm;
1943 
1944 unmap:
1945 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1946 free:
1947 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1948 destroy:
1949 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1950 ndmfree:
1951 	kmem_free(ndm, sizeof(*ndm));
1952 	return NULL;
1953 }
1954 
1955 static void
1956 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1957 {
1958 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1959 	    0, NVME_DMA_LEN(mem), ops);
1960 }
1961 
1962 void
1963 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1964 {
1965 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1966 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1967 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1968 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1969 	kmem_free(ndm, sizeof(*ndm));
1970 }
1971 
1972 /*
1973  * ioctl
1974  */
1975 
1976 dev_type_open(nvmeopen);
1977 dev_type_close(nvmeclose);
1978 dev_type_ioctl(nvmeioctl);
1979 
1980 const struct cdevsw nvme_cdevsw = {
1981 	.d_open = nvmeopen,
1982 	.d_close = nvmeclose,
1983 	.d_read = noread,
1984 	.d_write = nowrite,
1985 	.d_ioctl = nvmeioctl,
1986 	.d_stop = nostop,
1987 	.d_tty = notty,
1988 	.d_poll = nopoll,
1989 	.d_mmap = nommap,
1990 	.d_kqfilter = nokqfilter,
1991 	.d_discard = nodiscard,
1992 	.d_flag = D_OTHER,
1993 };
1994 
1995 /*
1996  * Accept an open operation on the control device.
1997  */
1998 int
1999 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
2000 {
2001 	struct nvme_softc *sc;
2002 	int unit = minor(dev) / 0x10000;
2003 	int nsid = minor(dev) & 0xffff;
2004 	int nsidx;
2005 
2006 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
2007 		return ENXIO;
2008 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
2009 		return ENXIO;
2010 
2011 	if (nsid == 0) {
2012 		/* controller */
2013 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
2014 			return EBUSY;
2015 		SET(sc->sc_flags, NVME_F_OPEN);
2016 	} else {
2017 		/* namespace */
2018 		nsidx = nsid - 1;
2019 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
2020 			return ENXIO;
2021 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
2022 			return EBUSY;
2023 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2024 	}
2025 	return 0;
2026 }
2027 
2028 /*
2029  * Accept the last close on the control device.
2030  */
2031 int
2032 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
2033 {
2034 	struct nvme_softc *sc;
2035 	int unit = minor(dev) / 0x10000;
2036 	int nsid = minor(dev) & 0xffff;
2037 	int nsidx;
2038 
2039 	sc = device_lookup_private(&nvme_cd, unit);
2040 	if (sc == NULL)
2041 		return ENXIO;
2042 
2043 	if (nsid == 0) {
2044 		/* controller */
2045 		CLR(sc->sc_flags, NVME_F_OPEN);
2046 	} else {
2047 		/* namespace */
2048 		nsidx = nsid - 1;
2049 		if (nsidx >= sc->sc_nn)
2050 			return ENXIO;
2051 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2052 	}
2053 
2054 	return 0;
2055 }
2056 
2057 /*
2058  * Handle control operations.
2059  */
2060 int
2061 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2062 {
2063 	struct nvme_softc *sc;
2064 	int unit = minor(dev) / 0x10000;
2065 	int nsid = minor(dev) & 0xffff;
2066 	struct nvme_pt_command *pt;
2067 
2068 	sc = device_lookup_private(&nvme_cd, unit);
2069 	if (sc == NULL)
2070 		return ENXIO;
2071 
2072 	switch (cmd) {
2073 	case NVME_PASSTHROUGH_CMD:
2074 		pt = data;
2075 		return nvme_command_passthrough(sc, data,
2076 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
2077 	}
2078 
2079 	return ENOTTY;
2080 }
2081