xref: /netbsd/sys/dev/ic/rtw.c (revision 6550d01e)
1 /* $NetBSD: rtw.c,v 1.118 2010/11/15 05:56:29 uebayasi Exp $ */
2 /*-
3  * Copyright (c) 2004, 2005, 2006, 2007 David Young.  All rights
4  * reserved.
5  *
6  * Programmed for NetBSD by David Young.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
20  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
21  * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
28  * OF SUCH DAMAGE.
29  */
30 /*
31  * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.118 2010/11/15 05:56:29 uebayasi Exp $");
36 
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/time.h>
46 #include <sys/types.h>
47 #include <sys/device.h>
48 #include <sys/sockio.h>
49 
50 #include <machine/endian.h>
51 #include <sys/bus.h>
52 #include <sys/intr.h>	/* splnet */
53 
54 #include <net/if.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <net/bpf.h>
63 
64 #include <dev/ic/rtwreg.h>
65 #include <dev/ic/rtwvar.h>
66 #include <dev/ic/rtwphyio.h>
67 #include <dev/ic/rtwphy.h>
68 
69 #include <dev/ic/smc93cx6var.h>
70 
71 static int rtw_rfprog_fallback = 0;
72 static int rtw_host_rfio = 0;
73 
74 #ifdef RTW_DEBUG
75 int rtw_debug = 0;
76 static int rtw_rxbufs_limit = RTW_RXQLEN;
77 #endif /* RTW_DEBUG */
78 
79 #define NEXT_ATTACH_STATE(sc, state) do {			\
80 	DPRINTF(sc, RTW_DEBUG_ATTACH,				\
81 	    ("%s: attach state %s\n", __func__, #state));	\
82 	sc->sc_attach_state = state;				\
83 } while (0)
84 
85 int rtw_dwelltime = 200;	/* milliseconds */
86 static struct ieee80211_cipher rtw_cipher_wep;
87 
88 static void rtw_disable_interrupts(struct rtw_regs *);
89 static void rtw_enable_interrupts(struct rtw_softc *);
90 
91 static int rtw_init(struct ifnet *);
92 
93 static void rtw_start(struct ifnet *);
94 static void rtw_reset_oactive(struct rtw_softc *);
95 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
96     struct ieee80211_node *);
97 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
98 
99 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
100 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
101 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
102     const u_int8_t[IEEE80211_ADDR_LEN]);
103 static void rtw_key_update_end(struct ieee80211com *);
104 static void rtw_key_update_begin(struct ieee80211com *);
105 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
106 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
107 
108 static void rtw_led_attach(struct rtw_led_state *, void *);
109 static void rtw_led_detach(struct rtw_led_state *);
110 static void rtw_led_init(struct rtw_regs *);
111 static void rtw_led_slowblink(void *);
112 static void rtw_led_fastblink(void *);
113 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
114 
115 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
116 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
117 #ifdef RTW_DEBUG
118 static void rtw_dump_rings(struct rtw_softc *sc);
119 static void rtw_print_txdesc(struct rtw_softc *, const char *,
120     struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
121 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
122 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
123 #endif /* RTW_DEBUG */
124 #ifdef RTW_DIAG
125 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
126 #endif /* RTW_DIAG */
127 
128 /*
129  * Setup sysctl(3) MIB, hw.rtw.*
130  *
131  * TBD condition CTLFLAG_PERMANENT on being a module or not
132  */
133 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
134 {
135 	int rc;
136 	const struct sysctlnode *cnode, *rnode;
137 
138 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
139 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
140 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
141 		goto err;
142 
143 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
144 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
145 	    "Realtek RTL818x 802.11 controls",
146 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
147 		goto err;
148 
149 #ifdef RTW_DEBUG
150 	/* control debugging printfs */
151 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
152 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
153 	    "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
154 	    rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
155 	    CTL_CREATE, CTL_EOL)) != 0)
156 		goto err;
157 
158 	/* Limit rx buffers, for simulating resource exhaustion. */
159 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
160 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
161 	    "rxbufs_limit",
162 	    SYSCTL_DESCR("Set rx buffers limit"),
163 	    rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
164 	    CTL_CREATE, CTL_EOL)) != 0)
165 		goto err;
166 
167 #endif /* RTW_DEBUG */
168 	/* set fallback RF programming method */
169 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
170 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
171 	    "rfprog_fallback",
172 	    SYSCTL_DESCR("Set fallback RF programming method"),
173 	    rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
174 	    CTL_CREATE, CTL_EOL)) != 0)
175 		goto err;
176 
177 	/* force host to control RF I/O bus */
178 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
179 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
180 	    "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
181 	    rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
182 	    CTL_CREATE, CTL_EOL)) != 0)
183 		goto err;
184 
185 	return;
186 err:
187 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
188 }
189 
190 static int
191 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
192 {
193 	int error, t;
194 	struct sysctlnode node;
195 
196 	node = *rnode;
197 	t = *(int*)rnode->sysctl_data;
198 	node.sysctl_data = &t;
199 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
200 	if (error || newp == NULL)
201 		return (error);
202 
203 	if (t < lower || t > upper)
204 		return (EINVAL);
205 
206 	*(int*)rnode->sysctl_data = t;
207 
208 	return (0);
209 }
210 
211 static int
212 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
213 {
214 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
215 	    __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
216 }
217 
218 static int
219 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
220 {
221 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
222 }
223 
224 #ifdef RTW_DEBUG
225 static int
226 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
227 {
228 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
229 	    0, RTW_DEBUG_MAX);
230 }
231 
232 static int
233 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
234 {
235 	return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
236 	    0, RTW_RXQLEN);
237 }
238 
239 static void
240 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
241 {
242 #define PRINTREG32(sc, reg)				\
243 	RTW_DPRINTF(RTW_DEBUG_REGDUMP,			\
244 	    ("%s: reg[ " #reg " / %03x ] = %08x\n",	\
245 	    dvname, reg, RTW_READ(regs, reg)))
246 
247 #define PRINTREG16(sc, reg)				\
248 	RTW_DPRINTF(RTW_DEBUG_REGDUMP,			\
249 	    ("%s: reg[ " #reg " / %03x ] = %04x\n",	\
250 	    dvname, reg, RTW_READ16(regs, reg)))
251 
252 #define PRINTREG8(sc, reg)				\
253 	RTW_DPRINTF(RTW_DEBUG_REGDUMP,			\
254 	    ("%s: reg[ " #reg " / %03x ] = %02x\n",	\
255 	    dvname, reg, RTW_READ8(regs, reg)))
256 
257 	RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
258 
259 	PRINTREG32(regs, RTW_IDR0);
260 	PRINTREG32(regs, RTW_IDR1);
261 	PRINTREG32(regs, RTW_MAR0);
262 	PRINTREG32(regs, RTW_MAR1);
263 	PRINTREG32(regs, RTW_TSFTRL);
264 	PRINTREG32(regs, RTW_TSFTRH);
265 	PRINTREG32(regs, RTW_TLPDA);
266 	PRINTREG32(regs, RTW_TNPDA);
267 	PRINTREG32(regs, RTW_THPDA);
268 	PRINTREG32(regs, RTW_TCR);
269 	PRINTREG32(regs, RTW_RCR);
270 	PRINTREG32(regs, RTW_TINT);
271 	PRINTREG32(regs, RTW_TBDA);
272 	PRINTREG32(regs, RTW_ANAPARM);
273 	PRINTREG32(regs, RTW_BB);
274 	PRINTREG32(regs, RTW_PHYCFG);
275 	PRINTREG32(regs, RTW_WAKEUP0L);
276 	PRINTREG32(regs, RTW_WAKEUP0H);
277 	PRINTREG32(regs, RTW_WAKEUP1L);
278 	PRINTREG32(regs, RTW_WAKEUP1H);
279 	PRINTREG32(regs, RTW_WAKEUP2LL);
280 	PRINTREG32(regs, RTW_WAKEUP2LH);
281 	PRINTREG32(regs, RTW_WAKEUP2HL);
282 	PRINTREG32(regs, RTW_WAKEUP2HH);
283 	PRINTREG32(regs, RTW_WAKEUP3LL);
284 	PRINTREG32(regs, RTW_WAKEUP3LH);
285 	PRINTREG32(regs, RTW_WAKEUP3HL);
286 	PRINTREG32(regs, RTW_WAKEUP3HH);
287 	PRINTREG32(regs, RTW_WAKEUP4LL);
288 	PRINTREG32(regs, RTW_WAKEUP4LH);
289 	PRINTREG32(regs, RTW_WAKEUP4HL);
290 	PRINTREG32(regs, RTW_WAKEUP4HH);
291 	PRINTREG32(regs, RTW_DK0);
292 	PRINTREG32(regs, RTW_DK1);
293 	PRINTREG32(regs, RTW_DK2);
294 	PRINTREG32(regs, RTW_DK3);
295 	PRINTREG32(regs, RTW_RETRYCTR);
296 	PRINTREG32(regs, RTW_RDSAR);
297 	PRINTREG32(regs, RTW_FER);
298 	PRINTREG32(regs, RTW_FEMR);
299 	PRINTREG32(regs, RTW_FPSR);
300 	PRINTREG32(regs, RTW_FFER);
301 
302 	/* 16-bit registers */
303 	PRINTREG16(regs, RTW_BRSR);
304 	PRINTREG16(regs, RTW_IMR);
305 	PRINTREG16(regs, RTW_ISR);
306 	PRINTREG16(regs, RTW_BCNITV);
307 	PRINTREG16(regs, RTW_ATIMWND);
308 	PRINTREG16(regs, RTW_BINTRITV);
309 	PRINTREG16(regs, RTW_ATIMTRITV);
310 	PRINTREG16(regs, RTW_CRC16ERR);
311 	PRINTREG16(regs, RTW_CRC0);
312 	PRINTREG16(regs, RTW_CRC1);
313 	PRINTREG16(regs, RTW_CRC2);
314 	PRINTREG16(regs, RTW_CRC3);
315 	PRINTREG16(regs, RTW_CRC4);
316 	PRINTREG16(regs, RTW_CWR);
317 
318 	/* 8-bit registers */
319 	PRINTREG8(regs, RTW_CR);
320 	PRINTREG8(regs, RTW_9346CR);
321 	PRINTREG8(regs, RTW_CONFIG0);
322 	PRINTREG8(regs, RTW_CONFIG1);
323 	PRINTREG8(regs, RTW_CONFIG2);
324 	PRINTREG8(regs, RTW_MSR);
325 	PRINTREG8(regs, RTW_CONFIG3);
326 	PRINTREG8(regs, RTW_CONFIG4);
327 	PRINTREG8(regs, RTW_TESTR);
328 	PRINTREG8(regs, RTW_PSR);
329 	PRINTREG8(regs, RTW_SCR);
330 	PRINTREG8(regs, RTW_PHYDELAY);
331 	PRINTREG8(regs, RTW_CRCOUNT);
332 	PRINTREG8(regs, RTW_PHYADDR);
333 	PRINTREG8(regs, RTW_PHYDATAW);
334 	PRINTREG8(regs, RTW_PHYDATAR);
335 	PRINTREG8(regs, RTW_CONFIG5);
336 	PRINTREG8(regs, RTW_TPPOLL);
337 
338 	PRINTREG16(regs, RTW_BSSID16);
339 	PRINTREG32(regs, RTW_BSSID32);
340 #undef PRINTREG32
341 #undef PRINTREG16
342 #undef PRINTREG8
343 }
344 #endif /* RTW_DEBUG */
345 
346 void
347 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
348 {
349 	struct rtw_regs *regs = &sc->sc_regs;
350 
351 	uint32_t tcr;
352 	tcr = RTW_READ(regs, RTW_TCR);
353 	tcr &= ~RTW_TCR_LBK_MASK;
354 	if (enable)
355 		tcr |= RTW_TCR_LBK_CONT;
356 	else
357 		tcr |= RTW_TCR_LBK_NORMAL;
358 	RTW_WRITE(regs, RTW_TCR, tcr);
359 	RTW_SYNC(regs, RTW_TCR, RTW_TCR);
360 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);
361 	rtw_txdac_enable(sc, !enable);
362 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
363 	rtw_set_access(regs, RTW_ACCESS_NONE);
364 }
365 
366 #ifdef RTW_DEBUG
367 static const char *
368 rtw_access_string(enum rtw_access access)
369 {
370 	switch (access) {
371 	case RTW_ACCESS_NONE:
372 		return "none";
373 	case RTW_ACCESS_CONFIG:
374 		return "config";
375 	case RTW_ACCESS_ANAPARM:
376 		return "anaparm";
377 	default:
378 		return "unknown";
379 	}
380 }
381 #endif /* RTW_DEBUG */
382 
383 static void
384 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
385 {
386 	KASSERT(/* naccess >= RTW_ACCESS_NONE && */
387 	    naccess <= RTW_ACCESS_ANAPARM);
388 	KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
389 	    regs->r_access <= RTW_ACCESS_ANAPARM);
390 
391 	if (naccess == regs->r_access)
392 		return;
393 
394 	switch (naccess) {
395 	case RTW_ACCESS_NONE:
396 		switch (regs->r_access) {
397 		case RTW_ACCESS_ANAPARM:
398 			rtw_anaparm_enable(regs, 0);
399 			/*FALLTHROUGH*/
400 		case RTW_ACCESS_CONFIG:
401 			rtw_config0123_enable(regs, 0);
402 			/*FALLTHROUGH*/
403 		case RTW_ACCESS_NONE:
404 			break;
405 		}
406 		break;
407 	case RTW_ACCESS_CONFIG:
408 		switch (regs->r_access) {
409 		case RTW_ACCESS_NONE:
410 			rtw_config0123_enable(regs, 1);
411 			/*FALLTHROUGH*/
412 		case RTW_ACCESS_CONFIG:
413 			break;
414 		case RTW_ACCESS_ANAPARM:
415 			rtw_anaparm_enable(regs, 0);
416 			break;
417 		}
418 		break;
419 	case RTW_ACCESS_ANAPARM:
420 		switch (regs->r_access) {
421 		case RTW_ACCESS_NONE:
422 			rtw_config0123_enable(regs, 1);
423 			/*FALLTHROUGH*/
424 		case RTW_ACCESS_CONFIG:
425 			rtw_anaparm_enable(regs, 1);
426 			/*FALLTHROUGH*/
427 		case RTW_ACCESS_ANAPARM:
428 			break;
429 		}
430 		break;
431 	}
432 }
433 
434 void
435 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
436 {
437 	rtw_set_access1(regs, access);
438 	RTW_DPRINTF(RTW_DEBUG_ACCESS,
439 	    ("%s: access %s -> %s\n", __func__,
440 	    rtw_access_string(regs->r_access),
441 	    rtw_access_string(access)));
442 	regs->r_access = access;
443 }
444 
445 /*
446  * Enable registers, switch register banks.
447  */
448 void
449 rtw_config0123_enable(struct rtw_regs *regs, int enable)
450 {
451 	uint8_t ecr;
452 	ecr = RTW_READ8(regs, RTW_9346CR);
453 	ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
454 	if (enable)
455 		ecr |= RTW_9346CR_EEM_CONFIG;
456 	else {
457 		RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
458 		ecr |= RTW_9346CR_EEM_NORMAL;
459 	}
460 	RTW_WRITE8(regs, RTW_9346CR, ecr);
461 	RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
462 }
463 
464 /* requires rtw_config0123_enable(, 1) */
465 void
466 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
467 {
468 	uint8_t cfg3;
469 
470 	cfg3 = RTW_READ8(regs, RTW_CONFIG3);
471 	cfg3 |= RTW_CONFIG3_CLKRUNEN;
472 	if (enable)
473 		cfg3 |= RTW_CONFIG3_PARMEN;
474 	else
475 		cfg3 &= ~RTW_CONFIG3_PARMEN;
476 	RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
477 	RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
478 }
479 
480 /* requires rtw_anaparm_enable(, 1) */
481 void
482 rtw_txdac_enable(struct rtw_softc *sc, int enable)
483 {
484 	uint32_t anaparm;
485 	struct rtw_regs *regs = &sc->sc_regs;
486 
487 	anaparm = RTW_READ(regs, RTW_ANAPARM);
488 	if (enable)
489 		anaparm &= ~RTW_ANAPARM_TXDACOFF;
490 	else
491 		anaparm |= RTW_ANAPARM_TXDACOFF;
492 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
493 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
494 }
495 
496 static inline int
497 rtw_chip_reset1(struct rtw_regs *regs, device_t dev)
498 {
499 	uint8_t cr;
500 	int i;
501 
502 	RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
503 
504 	RTW_WBR(regs, RTW_CR, RTW_CR);
505 
506 	for (i = 0; i < 1000; i++) {
507 		if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
508 			RTW_DPRINTF(RTW_DEBUG_RESET,
509 			    ("%s: reset in %dus\n", device_xname(dev), i));
510 			return 0;
511 		}
512 		RTW_RBR(regs, RTW_CR, RTW_CR);
513 		DELAY(10); /* 10us */
514 	}
515 
516 	aprint_error_dev(dev, "reset failed\n");
517 	return ETIMEDOUT;
518 }
519 
520 static inline int
521 rtw_chip_reset(struct rtw_regs *regs, device_t dev)
522 {
523 	uint32_t tcr;
524 
525 	/* from Linux driver */
526 	tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
527 	      __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
528 
529 	RTW_WRITE(regs, RTW_TCR, tcr);
530 
531 	RTW_WBW(regs, RTW_CR, RTW_TCR);
532 
533 	return rtw_chip_reset1(regs, dev);
534 }
535 
536 static int
537 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
538 {
539 	struct ieee80211_key keycopy;
540 
541 	RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
542 
543 	keycopy = *k;
544 	keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
545 
546 	return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
547 }
548 
549 static int
550 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
551 {
552 	struct rtw_softc *sc = ic->ic_ifp->if_softc;
553 
554 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__,
555 	    k->wk_keyix));
556 
557 	KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
558 
559 	if (k->wk_keylen != 0 &&
560 	    k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP)
561 		sc->sc_flags &= ~RTW_F_DK_VALID;
562 
563 	return 1;
564 }
565 
566 static int
567 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
568     const u_int8_t mac[IEEE80211_ADDR_LEN])
569 {
570 	struct rtw_softc *sc = ic->ic_ifp->if_softc;
571 
572 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
573 
574 	KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
575 
576 	sc->sc_flags &= ~RTW_F_DK_VALID;
577 
578 	return 1;
579 }
580 
581 static void
582 rtw_key_update_begin(struct ieee80211com *ic)
583 {
584 #ifdef RTW_DEBUG
585 	struct ifnet *ifp = ic->ic_ifp;
586 	struct rtw_softc *sc = ifp->if_softc;
587 #endif
588 
589 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
590 }
591 
592 static void
593 rtw_tx_kick(struct rtw_regs *regs, uint8_t ringsel)
594 {
595 	uint8_t tppoll;
596 
597 	tppoll = RTW_READ8(regs, RTW_TPPOLL);
598 	tppoll &= ~RTW_TPPOLL_SALL;
599 	tppoll |= ringsel & RTW_TPPOLL_ALL;
600 	RTW_WRITE8(regs, RTW_TPPOLL, tppoll);
601 	RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
602 }
603 
604 static void
605 rtw_key_update_end(struct ieee80211com *ic)
606 {
607 	struct ifnet *ifp = ic->ic_ifp;
608 	struct rtw_softc *sc = ifp->if_softc;
609 
610 	DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
611 
612 	if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
613 	    !device_is_active(sc->sc_dev))
614 		return;
615 
616 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
617 	rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
618 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
619 	    (ifp->if_flags & IFF_RUNNING) != 0);
620 }
621 
622 static bool
623 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
624 {
625 	if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
626 		return false;
627 
628 	return	((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
629 		((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
630 }
631 
632 static void
633 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
634 {
635 	uint8_t psr, scr;
636 	int i, keylen = 0;
637 	struct rtw_regs *regs;
638 	union rtw_keys *rk;
639 
640 	regs = &sc->sc_regs;
641 	rk = &sc->sc_keys;
642 
643 	(void)memset(rk, 0, sizeof(rk));
644 
645 	/* Temporarily use software crypto for all keys. */
646 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
647 		if (wk[i].wk_cipher == &rtw_cipher_wep)
648 			wk[i].wk_cipher = &ieee80211_cipher_wep;
649 	}
650 
651 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
652 
653 	psr = RTW_READ8(regs, RTW_PSR);
654 	scr = RTW_READ8(regs, RTW_SCR);
655 	scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
656 
657 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
658 		goto out;
659 
660 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
661 		if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
662 			continue;
663 		if (i == txkey) {
664 			keylen = wk[i].wk_keylen;
665 			break;
666 		}
667 		keylen = MAX(keylen, wk[i].wk_keylen);
668 	}
669 
670 	if (keylen == 5)
671 		scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
672 	else if (keylen == 13)
673 		scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
674 
675 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
676 		if (wk[i].wk_keylen != keylen ||
677 		    wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
678 			continue;
679 		/* h/w will decrypt, s/w still strips headers */
680 		wk[i].wk_cipher = &rtw_cipher_wep;
681 		(void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
682 	}
683 
684 out:
685 	RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
686 
687 	bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
688 	    RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
689 
690 	bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
691 	    BUS_SPACE_BARRIER_SYNC);
692 
693 	RTW_DPRINTF(RTW_DEBUG_KEY,
694 	    ("%s.%d: scr %02" PRIx8 ", keylen %d\n", __func__, __LINE__, scr,
695 	     keylen));
696 
697 	RTW_WBW(regs, RTW_DK0, RTW_PSR);
698 	RTW_WRITE8(regs, RTW_PSR, psr);
699 	RTW_WBW(regs, RTW_PSR, RTW_SCR);
700 	RTW_WRITE8(regs, RTW_SCR, scr);
701 	RTW_SYNC(regs, RTW_SCR, RTW_SCR);
702 	rtw_set_access(regs, RTW_ACCESS_NONE);
703 	sc->sc_flags |= RTW_F_DK_VALID;
704 }
705 
706 static inline int
707 rtw_recall_eeprom(struct rtw_regs *regs, device_t dev)
708 {
709 	int i;
710 	uint8_t ecr;
711 
712 	ecr = RTW_READ8(regs, RTW_9346CR);
713 	ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
714 	RTW_WRITE8(regs, RTW_9346CR, ecr);
715 
716 	RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
717 
718 	/* wait 25ms for completion */
719 	for (i = 0; i < 250; i++) {
720 		ecr = RTW_READ8(regs, RTW_9346CR);
721 		if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
722 			RTW_DPRINTF(RTW_DEBUG_RESET,
723 			    ("%s: recall EEPROM in %dus\n", device_xname(dev),
724 			    i * 100));
725 			return 0;
726 		}
727 		RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
728 		DELAY(100);
729 	}
730 	aprint_error_dev(dev, "recall EEPROM failed\n");
731 	return ETIMEDOUT;
732 }
733 
734 static inline int
735 rtw_reset(struct rtw_softc *sc)
736 {
737 	int rc;
738 	uint8_t config1;
739 
740 	sc->sc_flags &= ~RTW_F_DK_VALID;
741 
742 	if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0)
743 		return rc;
744 
745 	rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev);
746 
747 	config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
748 	RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
749 	/* TBD turn off maximum power saving? */
750 
751 	return 0;
752 }
753 
754 static inline int
755 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
756     u_int ndescs)
757 {
758 	int i, rc = 0;
759 	for (i = 0; i < ndescs; i++) {
760 		rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
761 		    0, 0, &descs[i].ts_dmamap);
762 		if (rc != 0)
763 			break;
764 	}
765 	return rc;
766 }
767 
768 static inline int
769 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
770     u_int ndescs)
771 {
772 	int i, rc = 0;
773 	for (i = 0; i < ndescs; i++) {
774 		rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
775 		    &descs[i].rs_dmamap);
776 		if (rc != 0)
777 			break;
778 	}
779 	return rc;
780 }
781 
782 static inline void
783 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
784     u_int ndescs)
785 {
786 	int i;
787 	for (i = 0; i < ndescs; i++) {
788 		if (descs[i].rs_dmamap != NULL)
789 			bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
790 	}
791 }
792 
793 static inline void
794 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
795     u_int ndescs)
796 {
797 	int i;
798 	for (i = 0; i < ndescs; i++) {
799 		if (descs[i].ts_dmamap != NULL)
800 			bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
801 	}
802 }
803 
804 static inline void
805 rtw_srom_free(struct rtw_srom *sr)
806 {
807 	sr->sr_size = 0;
808 	if (sr->sr_content == NULL)
809 		return;
810 	free(sr->sr_content, M_DEVBUF);
811 	sr->sr_content = NULL;
812 }
813 
814 static void
815 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
816     uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
817 {
818 	*flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
819 	*cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
820 	*rcr |= RTW_RCR_ENCS1;
821 	*rfchipid = RTW_RFCHIPID_PHILIPS;
822 }
823 
824 static int
825 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
826     enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
827     device_t dev)
828 {
829 	int i;
830 	const char *rfname, *paname;
831 	char scratch[sizeof("unknown 0xXX")];
832 	uint16_t srom_version;
833 	uint8_t mac[IEEE80211_ADDR_LEN];
834 
835 	*flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
836 	*rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
837 
838 	srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
839 
840 	if (srom_version <= 0x0101) {
841 		aprint_error_dev(dev,
842 		    "SROM version %d.%d is not understood, "
843 		    "limping along with defaults\n",
844 		    srom_version >> 8, srom_version & 0xff);
845 		rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
846 		return 0;
847 	} else {
848 		aprint_verbose_dev(dev, "SROM version %d.%d\n",
849 		    srom_version >> 8, srom_version & 0xff);
850 	}
851 
852 	for (i = 0; i < IEEE80211_ADDR_LEN; i++)
853 		mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
854 
855 	RTW_DPRINTF(RTW_DEBUG_ATTACH,
856 	    ("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac)));
857 
858 	*cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
859 
860 	if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
861 		*flags |= RTW_F_ANTDIV;
862 
863 	/* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
864 	 * to be reversed.
865 	 */
866 	if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
867 		*flags |= RTW_F_DIGPHY;
868 	if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
869 		*flags |= RTW_F_DFLANTB;
870 
871 	*rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
872 	    RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
873 
874 	if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
875 		*flags |= RTW_C_RXWEP_104;
876 
877 	*flags |= RTW_C_RXWEP_40;	/* XXX */
878 
879 	*rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
880 	switch (*rfchipid) {
881 	case RTW_RFCHIPID_GCT:		/* this combo seen in the wild */
882 		rfname = "GCT GRF5101";
883 		paname = "Winspring WS9901";
884 		break;
885 	case RTW_RFCHIPID_MAXIM:
886 		rfname = "Maxim MAX2820";	/* guess */
887 		paname = "Maxim MAX2422";	/* guess */
888 		break;
889 	case RTW_RFCHIPID_INTERSIL:
890 		rfname = "Intersil HFA3873";	/* guess */
891 		paname = "Intersil <unknown>";
892 		break;
893 	case RTW_RFCHIPID_PHILIPS:	/* this combo seen in the wild */
894 		rfname = "Philips SA2400A";
895 		paname = "Philips SA2411";
896 		break;
897 	case RTW_RFCHIPID_RFMD:
898 		/* this is the same front-end as an atw(4)! */
899 		rfname = "RFMD RF2948B, "	/* mentioned in Realtek docs */
900 			 "LNA: RFMD RF2494, "	/* mentioned in Realtek docs */
901 			 "SYN: Silicon Labs Si4126";	/* inferred from
902 			 				 * reference driver
903 							 */
904 		paname = "RFMD RF2189";		/* mentioned in Realtek docs */
905 		break;
906 	case RTW_RFCHIPID_RESERVED:
907 		rfname = paname = "reserved";
908 		break;
909 	default:
910 		snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
911 		rfname = paname = scratch;
912 	}
913 	aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname);
914 
915 	switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
916 	case RTW_CONFIG0_GL_USA:
917 	case _RTW_CONFIG0_GL_USA:
918 		*locale = RTW_LOCALE_USA;
919 		break;
920 	case RTW_CONFIG0_GL_EUROPE:
921 		*locale = RTW_LOCALE_EUROPE;
922 		break;
923 	case RTW_CONFIG0_GL_JAPAN:
924 		*locale = RTW_LOCALE_JAPAN;
925 		break;
926 	default:
927 		*locale = RTW_LOCALE_UNKNOWN;
928 		break;
929 	}
930 	return 0;
931 }
932 
933 /* Returns -1 on failure. */
934 static int
935 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
936     device_t dev)
937 {
938 	int rc;
939 	struct seeprom_descriptor sd;
940 	uint8_t ecr;
941 
942 	(void)memset(&sd, 0, sizeof(sd));
943 
944 	ecr = RTW_READ8(regs, RTW_9346CR);
945 
946 	if ((flags & RTW_F_9356SROM) != 0) {
947 		RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n",
948 		    device_xname(dev)));
949 		sr->sr_size = 256;
950 		sd.sd_chip = C56_66;
951 	} else {
952 		RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n",
953 		    device_xname(dev)));
954 		sr->sr_size = 128;
955 		sd.sd_chip = C46;
956 	}
957 
958 	ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
959 	    RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
960 	ecr |= RTW_9346CR_EEM_PROGRAM;
961 
962 	RTW_WRITE8(regs, RTW_9346CR, ecr);
963 
964 	sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
965 
966 	if (sr->sr_content == NULL) {
967 		aprint_error_dev(dev, "unable to allocate SROM buffer\n");
968 		return ENOMEM;
969 	}
970 
971 	(void)memset(sr->sr_content, 0, sr->sr_size);
972 
973 	/* RTL8180 has a single 8-bit register for controlling the
974 	 * 93cx6 SROM.  There is no "ready" bit. The RTL8180
975 	 * input/output sense is the reverse of read_seeprom's.
976 	 */
977 	sd.sd_tag = regs->r_bt;
978 	sd.sd_bsh = regs->r_bh;
979 	sd.sd_regsize = 1;
980 	sd.sd_control_offset = RTW_9346CR;
981 	sd.sd_status_offset = RTW_9346CR;
982 	sd.sd_dataout_offset = RTW_9346CR;
983 	sd.sd_CK = RTW_9346CR_EESK;
984 	sd.sd_CS = RTW_9346CR_EECS;
985 	sd.sd_DI = RTW_9346CR_EEDO;
986 	sd.sd_DO = RTW_9346CR_EEDI;
987 	/* make read_seeprom enter EEPROM read/write mode */
988 	sd.sd_MS = ecr;
989 	sd.sd_RDY = 0;
990 
991 	/* TBD bus barriers */
992 	if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
993 		aprint_error_dev(dev, "could not read SROM\n");
994 		free(sr->sr_content, M_DEVBUF);
995 		sr->sr_content = NULL;
996 		return -1;	/* XXX */
997 	}
998 
999 	/* end EEPROM read/write mode */
1000 	RTW_WRITE8(regs, RTW_9346CR,
1001 	    (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
1002 	RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
1003 
1004 	if ((rc = rtw_recall_eeprom(regs, dev)) != 0)
1005 		return rc;
1006 
1007 #ifdef RTW_DEBUG
1008 	{
1009 		int i;
1010 		RTW_DPRINTF(RTW_DEBUG_ATTACH,
1011 		    ("\n%s: serial ROM:\n\t", device_xname(dev)));
1012 		for (i = 0; i < sr->sr_size/2; i++) {
1013 			if (((i % 8) == 0) && (i != 0))
1014 				RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1015 			RTW_DPRINTF(RTW_DEBUG_ATTACH,
1016 			    (" %04x", sr->sr_content[i]));
1017 		}
1018 		RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1019 	}
1020 #endif /* RTW_DEBUG */
1021 	return 0;
1022 }
1023 
1024 static void
1025 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1026     device_t dev)
1027 {
1028 	uint8_t cfg4;
1029 	const char *method;
1030 
1031 	cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1032 
1033 	switch (rfchipid) {
1034 	default:
1035 		cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1036 		method = "fallback";
1037 		break;
1038 	case RTW_RFCHIPID_INTERSIL:
1039 		cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1040 		method = "Intersil";
1041 		break;
1042 	case RTW_RFCHIPID_PHILIPS:
1043 		cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1044 		method = "Philips";
1045 		break;
1046 	case RTW_RFCHIPID_GCT:	/* XXX a guess */
1047 	case RTW_RFCHIPID_RFMD:
1048 		cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1049 		method = "RFMD";
1050 		break;
1051 	}
1052 
1053 	RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1054 
1055 	RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1056 
1057 	RTW_DPRINTF(RTW_DEBUG_INIT,
1058 	    ("%s: %s RF programming method, %#02x\n", device_xname(dev), method,
1059 	    RTW_READ8(regs, RTW_CONFIG4)));
1060 }
1061 
1062 static inline void
1063 rtw_init_channels(enum rtw_locale locale,
1064     struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev)
1065 {
1066 	int i;
1067 	const char *name = NULL;
1068 #define ADD_CHANNEL(_chans, _chan) do {			\
1069 	(*_chans)[_chan].ic_flags = IEEE80211_CHAN_B;		\
1070 	(*_chans)[_chan].ic_freq =				\
1071 	    ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1072 } while (0)
1073 
1074 	switch (locale) {
1075 	case RTW_LOCALE_USA:	/* 1-11 */
1076 		name = "USA";
1077 		for (i = 1; i <= 11; i++)
1078 			ADD_CHANNEL(chans, i);
1079 		break;
1080 	case RTW_LOCALE_JAPAN:	/* 1-14 */
1081 		name = "Japan";
1082 		ADD_CHANNEL(chans, 14);
1083 		for (i = 1; i <= 14; i++)
1084 			ADD_CHANNEL(chans, i);
1085 		break;
1086 	case RTW_LOCALE_EUROPE:	/* 1-13 */
1087 		name = "Europe";
1088 		for (i = 1; i <= 13; i++)
1089 			ADD_CHANNEL(chans, i);
1090 		break;
1091 	default:			/* 10-11 allowed by most countries */
1092 		name = "<unknown>";
1093 		for (i = 10; i <= 11; i++)
1094 			ADD_CHANNEL(chans, i);
1095 		break;
1096 	}
1097 	aprint_normal_dev(dev, "Geographic Location %s\n", name);
1098 #undef ADD_CHANNEL
1099 }
1100 
1101 
1102 static inline void
1103 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1104 {
1105 	uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1106 
1107 	switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1108 	case RTW_CONFIG0_GL_USA:
1109 	case _RTW_CONFIG0_GL_USA:
1110 		*locale = RTW_LOCALE_USA;
1111 		break;
1112 	case RTW_CONFIG0_GL_JAPAN:
1113 		*locale = RTW_LOCALE_JAPAN;
1114 		break;
1115 	case RTW_CONFIG0_GL_EUROPE:
1116 		*locale = RTW_LOCALE_EUROPE;
1117 		break;
1118 	default:
1119 		*locale = RTW_LOCALE_UNKNOWN;
1120 		break;
1121 	}
1122 }
1123 
1124 static inline int
1125 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1126     device_t dev)
1127 {
1128 	static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1129 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1130 	};
1131 	uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1132 	          idr1 = RTW_READ(regs, RTW_IDR1);
1133 
1134 	(*addr)[0] = __SHIFTOUT(idr0, __BITS(0,  7));
1135 	(*addr)[1] = __SHIFTOUT(idr0, __BITS(8,  15));
1136 	(*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1137 	(*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1138 
1139 	(*addr)[4] = __SHIFTOUT(idr1, __BITS(0,  7));
1140 	(*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1141 
1142 	if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1143 		aprint_error_dev(dev,
1144 		    "could not get mac address, attach failed\n");
1145 		return ENXIO;
1146 	}
1147 
1148 	aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr));
1149 
1150 	return 0;
1151 }
1152 
1153 static uint8_t
1154 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1155     struct ieee80211_channel *chan)
1156 {
1157 	u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1158 	KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
1159 	return RTW_SR_GET(sr, idx);
1160 }
1161 
1162 static void
1163 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1164 {
1165 	int pri;
1166 	/* nfree: the number of free descriptors in each ring.
1167 	 * The beacon ring is a special case: I do not let the
1168 	 * driver use all of the descriptors on the beacon ring.
1169 	 * The reasons are two-fold:
1170 	 *
1171 	 * (1) A BEACON descriptor's OWN bit is (apparently) not
1172 	 * updated, so the driver cannot easily know if the descriptor
1173 	 * belongs to it, or if it is racing the NIC.  If the NIC
1174 	 * does not OWN every descriptor, then the driver can safely
1175 	 * update the descriptors when RTW_TBDA points at tdb_next.
1176 	 *
1177 	 * (2) I hope that the NIC will process more than one BEACON
1178 	 * descriptor in a single beacon interval, since that will
1179 	 * enable multiple-BSS support.  Since the NIC does not
1180 	 * clear the OWN bit, there is no natural place for it to
1181 	 * stop processing BEACON desciptors.  Maybe it will *not*
1182 	 * stop processing them!  I do not want to chance the NIC
1183 	 * looping around and around a saturated beacon ring, so
1184 	 * I will leave one descriptor unOWNed at all times.
1185 	 */
1186 	u_int nfree[RTW_NTXPRI] =
1187 	    {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1188 	     RTW_NTXDESCBCN - 1};
1189 
1190 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1191 		tdb[pri].tdb_nfree = nfree[pri];
1192 		tdb[pri].tdb_next = 0;
1193 	}
1194 }
1195 
1196 static int
1197 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1198 {
1199 	int i;
1200 	struct rtw_txsoft *ts;
1201 
1202 	SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1203 	SIMPLEQ_INIT(&tsb->tsb_freeq);
1204 	for (i = 0; i < tsb->tsb_ndesc; i++) {
1205 		ts = &tsb->tsb_desc[i];
1206 		ts->ts_mbuf = NULL;
1207 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1208 	}
1209 	tsb->tsb_tx_timer = 0;
1210 	return 0;
1211 }
1212 
1213 static void
1214 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1215 {
1216 	int pri;
1217 	for (pri = 0; pri < RTW_NTXPRI; pri++)
1218 		rtw_txsoft_blk_init(&tsb[pri]);
1219 }
1220 
1221 static inline void
1222 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1223 {
1224 	KASSERT(nsync <= rdb->rdb_ndesc);
1225 	/* sync to end of ring */
1226 	if (desc0 + nsync > rdb->rdb_ndesc) {
1227 		bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1228 		    offsetof(struct rtw_descs, hd_rx[desc0]),
1229 		    sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1230 		nsync -= (rdb->rdb_ndesc - desc0);
1231 		desc0 = 0;
1232 	}
1233 
1234 	KASSERT(desc0 < rdb->rdb_ndesc);
1235 	KASSERT(nsync <= rdb->rdb_ndesc);
1236 	KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1237 
1238 	/* sync what remains */
1239 	bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1240 	    offsetof(struct rtw_descs, hd_rx[desc0]),
1241 	    sizeof(struct rtw_rxdesc) * nsync, ops);
1242 }
1243 
1244 static void
1245 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1246 {
1247 	/* sync to end of ring */
1248 	if (desc0 + nsync > tdb->tdb_ndesc) {
1249 		bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1250 		    tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1251 		    sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1252 		    ops);
1253 		nsync -= (tdb->tdb_ndesc - desc0);
1254 		desc0 = 0;
1255 	}
1256 
1257 	/* sync what remains */
1258 	bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1259 	    tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1260 	    sizeof(struct rtw_txdesc) * nsync, ops);
1261 }
1262 
1263 static void
1264 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1265 {
1266 	int pri;
1267 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1268 		rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1269 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1270 	}
1271 }
1272 
1273 static void
1274 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1275 {
1276 	int i;
1277 	struct rtw_rxsoft *rs;
1278 
1279 	for (i = 0; i < RTW_RXQLEN; i++) {
1280 		rs = &desc[i];
1281 		if (rs->rs_mbuf == NULL)
1282 			continue;
1283 		bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1284 		    rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1285 		bus_dmamap_unload(dmat, rs->rs_dmamap);
1286 		m_freem(rs->rs_mbuf);
1287 		rs->rs_mbuf = NULL;
1288 	}
1289 }
1290 
1291 static inline int
1292 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1293 {
1294 	int rc;
1295 	struct mbuf *m;
1296 
1297 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1298 	if (m == NULL)
1299 		return ENOBUFS;
1300 
1301 	MCLGET(m, M_DONTWAIT);
1302 	if ((m->m_flags & M_EXT) == 0) {
1303 		m_freem(m);
1304 		return ENOBUFS;
1305 	}
1306 
1307 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1308 
1309 	if (rs->rs_mbuf != NULL)
1310 		bus_dmamap_unload(dmat, rs->rs_dmamap);
1311 
1312 	rs->rs_mbuf = NULL;
1313 
1314 	rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1315 	if (rc != 0) {
1316 		m_freem(m);
1317 		return -1;
1318 	}
1319 
1320 	rs->rs_mbuf = m;
1321 
1322 	return 0;
1323 }
1324 
1325 static int
1326 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1327     int *ndesc, device_t dev)
1328 {
1329 	int i, rc = 0;
1330 	struct rtw_rxsoft *rs;
1331 
1332 	for (i = 0; i < RTW_RXQLEN; i++) {
1333 		rs = &desc[i];
1334 		/* we're in rtw_init, so there should be no mbufs allocated */
1335 		KASSERT(rs->rs_mbuf == NULL);
1336 #ifdef RTW_DEBUG
1337 		if (i == rtw_rxbufs_limit) {
1338 			aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i);
1339 			rc = ENOBUFS;
1340 			break;
1341 		}
1342 #endif /* RTW_DEBUG */
1343 		if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1344 			aprint_error_dev(dev,
1345 			    "rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
1346 			    i, rc);
1347 			break;
1348 		}
1349 	}
1350 	*ndesc = i;
1351 	return rc;
1352 }
1353 
1354 static inline void
1355 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1356     int idx, int kick)
1357 {
1358 	int is_last = (idx == rdb->rdb_ndesc - 1);
1359 	uint32_t ctl, octl, obuf;
1360 	struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1361 
1362 	/* sync the mbuf before the descriptor */
1363 	bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1364 	    rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1365 
1366 	obuf = rd->rd_buf;
1367 	rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1368 
1369 	ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1370 	    RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1371 
1372 	if (is_last)
1373 		ctl |= RTW_RXCTL_EOR;
1374 
1375 	octl = rd->rd_ctl;
1376 	rd->rd_ctl = htole32(ctl);
1377 
1378 	RTW_DPRINTF(
1379 	    kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1380 	         : RTW_DEBUG_RECV_DESC,
1381 	    ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1382 	     le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1383 	     le32toh(rd->rd_ctl)));
1384 
1385 	/* sync the descriptor */
1386 	bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1387 	    RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1388 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1389 }
1390 
1391 static void
1392 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1393 {
1394 	int i;
1395 	struct rtw_rxdesc *rd;
1396 	struct rtw_rxsoft *rs;
1397 
1398 	for (i = 0; i < rdb->rdb_ndesc; i++) {
1399 		rd = &rdb->rdb_desc[i];
1400 		rs = &ctl[i];
1401 		rtw_rxdesc_init(rdb, rs, i, kick);
1402 	}
1403 }
1404 
1405 static void
1406 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1407 {
1408 	struct rtw_regs *regs = &sc->sc_regs;
1409 	uint8_t cr;
1410 
1411 	RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1412 	    enable ? "enable" : "disable", flags));
1413 
1414 	cr = RTW_READ8(regs, RTW_CR);
1415 
1416 	/* XXX reference source does not enable MULRW */
1417 	/* enable PCI Read/Write Multiple */
1418 	cr |= RTW_CR_MULRW;
1419 
1420 	/* The receive engine will always start at RDSAR.  */
1421 	if (enable && (flags & ~cr & RTW_CR_RE)) {
1422 		struct rtw_rxdesc_blk *rdb;
1423 		rdb = &sc->sc_rxdesc_blk;
1424 		rdb->rdb_next = 0;
1425 	}
1426 
1427 	RTW_RBW(regs, RTW_CR, RTW_CR);	/* XXX paranoia? */
1428 	if (enable)
1429 		cr |= flags;
1430 	else
1431 		cr &= ~flags;
1432 	RTW_WRITE8(regs, RTW_CR, cr);
1433 	RTW_SYNC(regs, RTW_CR, RTW_CR);
1434 
1435 #ifdef RTW_DIAG
1436 	if (cr & RTW_CR_TE)
1437 		rtw_txring_fixup(sc, __func__, __LINE__);
1438 #endif
1439 	if (cr & RTW_CR_TE) {
1440 		rtw_tx_kick(&sc->sc_regs,
1441 		    RTW_TPPOLL_HPQ | RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ);
1442 	}
1443 }
1444 
1445 static void
1446 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1447 {
1448 #define	IS_BEACON(__fc0)						\
1449     ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1450      (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1451 
1452 	static const int ratetbl[4] = {2, 4, 11, 22};	/* convert rates:
1453 							 * hardware -> net80211
1454 							 */
1455 	u_int next, nproc = 0;
1456 	int hwrate, len, rate, rssi, sq;
1457 	uint32_t hrssi, hstat, htsfth, htsftl;
1458 	struct rtw_rxdesc *rd;
1459 	struct rtw_rxsoft *rs;
1460 	struct rtw_rxdesc_blk *rdb;
1461 	struct mbuf *m;
1462 	struct ifnet *ifp = &sc->sc_if;
1463 
1464 	struct ieee80211_node *ni;
1465 	struct ieee80211_frame_min *wh;
1466 
1467 	rdb = &sc->sc_rxdesc_blk;
1468 
1469 	for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1470 		KASSERT(next < rdb->rdb_ndesc);
1471 
1472 		rtw_rxdescs_sync(rdb, next, 1,
1473 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1474 		rd = &rdb->rdb_desc[next];
1475 		rs = &sc->sc_rxsoft[next];
1476 
1477 		hstat = le32toh(rd->rd_stat);
1478 		hrssi = le32toh(rd->rd_rssi);
1479 		htsfth = le32toh(rd->rd_tsfth);
1480 		htsftl = le32toh(rd->rd_tsftl);
1481 
1482 		RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1483 		    ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1484 		    __func__, next, hstat, hrssi, htsfth, htsftl));
1485 
1486 		++nproc;
1487 
1488 		/* still belongs to NIC */
1489 		if ((hstat & RTW_RXSTAT_OWN) != 0) {
1490 			rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1491 			break;
1492 		}
1493 
1494                 /* ieee80211_input() might reset the receive engine
1495                  * (e.g. by indirectly calling rtw_tune()), so save
1496                  * the next pointer here and retrieve it again on
1497                  * the next round.
1498 		 */
1499 		rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1500 
1501 #ifdef RTW_DEBUG
1502 #define PRINTSTAT(flag) do { \
1503 	if ((hstat & flag) != 0) { \
1504 		printf("%s" #flag, delim); \
1505 		delim = ","; \
1506 	} \
1507 } while (0)
1508 		if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1509 			const char *delim = "<";
1510 			printf("%s: ", device_xname(sc->sc_dev));
1511 			if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1512 				printf("status %08x", hstat);
1513 				PRINTSTAT(RTW_RXSTAT_SPLCP);
1514 				PRINTSTAT(RTW_RXSTAT_MAR);
1515 				PRINTSTAT(RTW_RXSTAT_PAR);
1516 				PRINTSTAT(RTW_RXSTAT_BAR);
1517 				PRINTSTAT(RTW_RXSTAT_PWRMGT);
1518 				PRINTSTAT(RTW_RXSTAT_CRC32);
1519 				PRINTSTAT(RTW_RXSTAT_ICV);
1520 				printf(">, ");
1521 			}
1522 		}
1523 #endif /* RTW_DEBUG */
1524 
1525 		if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1526 			aprint_error_dev(sc->sc_dev,
1527 			    "DMA error/FIFO overflow %08" PRIx32 ", "
1528 			    "rx descriptor %d\n", hstat, next);
1529 			ifp->if_ierrors++;
1530 			goto next;
1531 		}
1532 
1533 		len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1534 		if (len < IEEE80211_MIN_LEN) {
1535 			sc->sc_ic.ic_stats.is_rx_tooshort++;
1536 			goto next;
1537 		}
1538 		if (len > rs->rs_mbuf->m_len) {
1539 			aprint_error_dev(sc->sc_dev,
1540 			    "rx frame too long, %d > %d, %08" PRIx32
1541 			    ", desc %d\n",
1542 			    len, rs->rs_mbuf->m_len, hstat, next);
1543 			ifp->if_ierrors++;
1544 			goto next;
1545 		}
1546 
1547 		hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1548 		if (hwrate >= __arraycount(ratetbl)) {
1549 			aprint_error_dev(sc->sc_dev,
1550 			    "unknown rate #%" __PRIuBITS "\n",
1551 			    __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1552 			ifp->if_ierrors++;
1553 			goto next;
1554 		}
1555 		rate = ratetbl[hwrate];
1556 
1557 #ifdef RTW_DEBUG
1558 		RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1559 		    ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1560 		     (rate * 5) % 10, htsfth, htsftl));
1561 #endif /* RTW_DEBUG */
1562 
1563 		/* if bad flags, skip descriptor */
1564 		if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1565 			aprint_error_dev(sc->sc_dev, "too many rx segments, "
1566 			    "next=%d, %08" PRIx32 "\n", next, hstat);
1567 			goto next;
1568 		}
1569 
1570 		bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1571 		    rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1572 
1573 		m = rs->rs_mbuf;
1574 
1575 		/* if temporarily out of memory, re-use mbuf */
1576 		switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1577 		case 0:
1578 			break;
1579 		case ENOBUFS:
1580 			aprint_error_dev(sc->sc_dev,
1581 			    "rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
1582 			    next);
1583 			goto next;
1584 		default:
1585 			/* XXX shorten rx ring, instead? */
1586 			aprint_error_dev(sc->sc_dev,
1587 			    "could not load DMA map\n");
1588 		}
1589 
1590 		sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1591 
1592 		if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1593 			rssi = UINT8_MAX - sq;
1594 		else {
1595 			rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1596 			/* TBD find out each front-end's LNA gain in the
1597 			 * front-end's units
1598 			 */
1599 			if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1600 				rssi |= 0x80;
1601 		}
1602 
1603 		/* Note well: now we cannot recycle the rs_mbuf unless
1604 		 * we restore its original length.
1605 		 */
1606 		m->m_pkthdr.rcvif = ifp;
1607 		m->m_pkthdr.len = m->m_len = len;
1608 
1609 		wh = mtod(m, struct ieee80211_frame_min *);
1610 
1611 		if (!IS_BEACON(wh->i_fc[0]))
1612 			sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1613 
1614 		sc->sc_tsfth = htsfth;
1615 
1616 #ifdef RTW_DEBUG
1617 		if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1618 		    (IFF_DEBUG|IFF_LINK2)) {
1619 			ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1620 			    rate, rssi);
1621 		}
1622 #endif /* RTW_DEBUG */
1623 
1624 		if (sc->sc_radiobpf != NULL) {
1625 			struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1626 
1627 			rr->rr_tsft =
1628 			    htole64(((uint64_t)htsfth << 32) | htsftl);
1629 
1630 			rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1631 
1632 			if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1633 				rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1634 			if ((hstat & RTW_RXSTAT_CRC32) != 0)
1635 				rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1636 
1637 			rr->rr_rate = rate;
1638 
1639 			if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1640 				rr->rr_u.u_philips.p_antsignal = rssi;
1641 			else {
1642 				rr->rr_u.u_other.o_antsignal = rssi;
1643 				rr->rr_u.u_other.o_barker_lock =
1644 				    htole16(UINT8_MAX - sq);
1645 			}
1646 
1647 			bpf_mtap2(sc->sc_radiobpf,
1648 			    rr, sizeof(sc->sc_rxtapu), m);
1649 		}
1650 
1651 		if ((hstat & RTW_RXSTAT_RES) != 0) {
1652 			m_freem(m);
1653 			goto next;
1654 		}
1655 
1656 		/* CRC is included with the packet; trim it off. */
1657 		m_adj(m, -IEEE80211_CRC_LEN);
1658 
1659 		/* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1660 		ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1661 		ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1662 		ieee80211_free_node(ni);
1663 next:
1664 		rtw_rxdesc_init(rdb, rs, next, 0);
1665 	}
1666 #undef IS_BEACON
1667 }
1668 
1669 static void
1670 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1671     struct rtw_txsoft *ts)
1672 {
1673 	struct mbuf *m;
1674 	struct ieee80211_node *ni;
1675 
1676 	m = ts->ts_mbuf;
1677 	ni = ts->ts_ni;
1678 	KASSERT(m != NULL);
1679 	KASSERT(ni != NULL);
1680 	ts->ts_mbuf = NULL;
1681 	ts->ts_ni = NULL;
1682 
1683 	bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1684 	    BUS_DMASYNC_POSTWRITE);
1685 	bus_dmamap_unload(dmat, ts->ts_dmamap);
1686 	m_freem(m);
1687 	ieee80211_free_node(ni);
1688 }
1689 
1690 static void
1691 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1692     struct rtw_txsoft_blk *tsb)
1693 {
1694 	struct rtw_txsoft *ts;
1695 
1696 	while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1697 		rtw_txsoft_release(dmat, ic, ts);
1698 		SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1699 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1700 	}
1701 	tsb->tsb_tx_timer = 0;
1702 }
1703 
1704 static inline void
1705 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1706     struct rtw_txsoft *ts, int ndesc)
1707 {
1708 	uint32_t hstat;
1709 	int data_retry, rts_retry;
1710 	struct rtw_txdesc *tdn;
1711 	const char *condstring;
1712 	struct ifnet *ifp = &sc->sc_if;
1713 
1714 	rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1715 
1716 	tdb->tdb_nfree += ndesc;
1717 
1718 	tdn = &tdb->tdb_desc[ts->ts_last];
1719 
1720 	hstat = le32toh(tdn->td_stat);
1721 	rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1722 	data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1723 
1724 	ifp->if_collisions += rts_retry + data_retry;
1725 
1726 	if ((hstat & RTW_TXSTAT_TOK) != 0)
1727 		condstring = "ok";
1728 	else {
1729 		ifp->if_oerrors++;
1730 		condstring = "error";
1731 	}
1732 
1733 	DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1734 	    ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1735 	    device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last,
1736 	    condstring, rts_retry, data_retry));
1737 }
1738 
1739 static void
1740 rtw_reset_oactive(struct rtw_softc *sc)
1741 {
1742 	short oflags;
1743 	int pri;
1744 	struct rtw_txsoft_blk *tsb;
1745 	struct rtw_txdesc_blk *tdb;
1746 	oflags = sc->sc_if.if_flags;
1747 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1748 		tsb = &sc->sc_txsoft_blk[pri];
1749 		tdb = &sc->sc_txdesc_blk[pri];
1750 		if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1751 			sc->sc_if.if_flags &= ~IFF_OACTIVE;
1752 	}
1753 	if (oflags != sc->sc_if.if_flags) {
1754 		DPRINTF(sc, RTW_DEBUG_OACTIVE,
1755 		    ("%s: reset OACTIVE\n", __func__));
1756 	}
1757 }
1758 
1759 /* Collect transmitted packets. */
1760 static bool
1761 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1762     struct rtw_txdesc_blk *tdb, int force)
1763 {
1764 	bool collected = false;
1765 	int ndesc;
1766 	struct rtw_txsoft *ts;
1767 
1768 #ifdef RTW_DEBUG
1769 	rtw_dump_rings(sc);
1770 #endif
1771 
1772 	while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1773 		/* If we're clearing a failed transmission, only clear
1774 		   up to the last packet the hardware has processed.  */
1775 		if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1776 			break;
1777 
1778 		ndesc = 1 + ts->ts_last - ts->ts_first;
1779 		if (ts->ts_last < ts->ts_first)
1780 			ndesc += tdb->tdb_ndesc;
1781 
1782 		KASSERT(ndesc > 0);
1783 
1784 		rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1785 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1786 
1787 		if (force) {
1788 			int next;
1789 #ifdef RTW_DIAG
1790 			printf("%s: clearing packet, stats", __func__);
1791 #endif
1792 			for (next = ts->ts_first; ;
1793 			    next = RTW_NEXT_IDX(tdb, next)) {
1794 #ifdef RTW_DIAG
1795 				printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1796 #endif
1797 				tdb->tdb_desc[next].td_stat &=
1798 				    ~htole32(RTW_TXSTAT_OWN);
1799 				if (next == ts->ts_last)
1800 					break;
1801 			}
1802 			rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1803 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1804 #ifdef RTW_DIAG
1805 			next = RTW_NEXT_IDX(tdb, next);
1806 			printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1807 			    le32toh(tdb->tdb_desc[next].td_stat),
1808 			    rtw_txring_next(&sc->sc_regs, tdb));
1809 #endif
1810 		} else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1811 		    htole32(RTW_TXSTAT_OWN)) != 0) {
1812 			rtw_txdescs_sync(tdb, ts->ts_last, 1,
1813 			    BUS_DMASYNC_PREREAD);
1814 			break;
1815 		}
1816 
1817 		collected = true;
1818 
1819 		rtw_collect_txpkt(sc, tdb, ts, ndesc);
1820 		SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1821 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1822 	}
1823 
1824 	/* no more pending transmissions, cancel watchdog */
1825 	if (ts == NULL)
1826 		tsb->tsb_tx_timer = 0;
1827 	rtw_reset_oactive(sc);
1828 
1829 	return collected;
1830 }
1831 
1832 static void
1833 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1834 {
1835 	int pri;
1836 	struct rtw_txsoft_blk	*tsb;
1837 	struct rtw_txdesc_blk	*tdb;
1838 	struct ifnet *ifp = &sc->sc_if;
1839 
1840 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1841 		tsb = &sc->sc_txsoft_blk[pri];
1842 		tdb = &sc->sc_txdesc_blk[pri];
1843 		rtw_collect_txring(sc, tsb, tdb, 0);
1844 	}
1845 
1846 	if ((isr & RTW_INTR_TX) != 0)
1847 		rtw_start(ifp);
1848 
1849 	return;
1850 }
1851 
1852 static void
1853 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1854 {
1855 	u_int next;
1856 	uint32_t tsfth, tsftl;
1857 	struct ieee80211com *ic;
1858 	struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1859 	struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1860 	struct mbuf *m;
1861 
1862 	tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1863 	tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1864 
1865 	if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1866 		next = rtw_txring_next(&sc->sc_regs, tdb);
1867 		RTW_DPRINTF(RTW_DEBUG_BEACON,
1868 		    ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1869 		     ", next %u expected %u, %" PRIu64 "\n", __func__,
1870 		     (next == tdb->tdb_next) ? "" : "un", isr, next,
1871 		     tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1872 		if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1873 			rtw_collect_txring(sc, tsb, tdb, 1);
1874 	}
1875 	/* Start beacon transmission. */
1876 
1877 	if ((isr & RTW_INTR_BCNINT) != 0 &&
1878 	    sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1879 	    SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1880 		RTW_DPRINTF(RTW_DEBUG_BEACON,
1881 		    ("%s: beacon prep. time, isr = %#04" PRIx16
1882 		     ", %16" PRIu64 "\n", __func__, isr,
1883 		     (uint64_t)tsfth << 32 | tsftl));
1884 		ic = &sc->sc_ic;
1885 		m = rtw_beacon_alloc(sc, ic->ic_bss);
1886 
1887 		if (m == NULL) {
1888 			aprint_error_dev(sc->sc_dev,
1889 			    "could not allocate beacon\n");
1890 			return;
1891 		}
1892 		m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1893 		IF_ENQUEUE(&sc->sc_beaconq, m);
1894 		rtw_start(&sc->sc_if);
1895 	}
1896 }
1897 
1898 static void
1899 rtw_intr_atim(struct rtw_softc *sc)
1900 {
1901 	/* TBD */
1902 	return;
1903 }
1904 
1905 #ifdef RTW_DEBUG
1906 static void
1907 rtw_dump_rings(struct rtw_softc *sc)
1908 {
1909 	struct rtw_txdesc_blk *tdb;
1910 	struct rtw_rxdesc *rd;
1911 	struct rtw_rxdesc_blk *rdb;
1912 	int desc, pri;
1913 
1914 	if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1915 		return;
1916 
1917 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1918 		tdb = &sc->sc_txdesc_blk[pri];
1919 		printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1920 		    tdb->tdb_ndesc, tdb->tdb_nfree);
1921 		for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1922 			rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1923 	}
1924 
1925 	rdb = &sc->sc_rxdesc_blk;
1926 
1927 	for (desc = 0; desc < RTW_RXQLEN; desc++) {
1928 		rd = &rdb->rdb_desc[desc];
1929 		printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1930 		    "rsvd1/tsfth %08x\n", __func__,
1931 		    (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1932 		    le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1933 		    le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1934 	}
1935 }
1936 #endif /* RTW_DEBUG */
1937 
1938 static void
1939 rtw_hwring_setup(struct rtw_softc *sc)
1940 {
1941 	int pri;
1942 	struct rtw_regs *regs = &sc->sc_regs;
1943 	struct rtw_txdesc_blk *tdb;
1944 
1945 	sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1946 	sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1947 	sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1948 	sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1949 	sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1950 	sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1951 	sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1952 	sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1953 
1954 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
1955 		tdb = &sc->sc_txdesc_blk[pri];
1956 		RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1957 		RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1958 		    ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1959 		     (uintptr_t)tdb->tdb_base));
1960 	}
1961 
1962 	RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1963 
1964 	RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1965 	    ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1966 	     (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1967 
1968 	RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1969 
1970 }
1971 
1972 static int
1973 rtw_swring_setup(struct rtw_softc *sc)
1974 {
1975 	int rc;
1976 	struct rtw_rxdesc_blk *rdb;
1977 
1978 	rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1979 
1980 	rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1981 
1982 	rdb = &sc->sc_rxdesc_blk;
1983 	if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1984 	     sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) {
1985 		aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n");
1986 		return rc;
1987 	}
1988 
1989 	rdb = &sc->sc_rxdesc_blk;
1990 	rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
1991 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1992 	rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
1993 	rdb->rdb_next = 0;
1994 
1995 	rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
1996 	return 0;
1997 }
1998 
1999 static void
2000 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
2001 {
2002 	int i;
2003 
2004 	(void)memset(tdb->tdb_desc, 0,
2005 	    sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
2006 	for (i = 0; i < tdb->tdb_ndesc; i++)
2007 		tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
2008 }
2009 
2010 static u_int
2011 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
2012 {
2013 	return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
2014 	    sizeof(struct rtw_txdesc);
2015 }
2016 
2017 #ifdef RTW_DIAG
2018 static void
2019 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
2020 {
2021 	int pri;
2022 	u_int next;
2023 	struct rtw_txdesc_blk *tdb;
2024 	struct rtw_regs *regs = &sc->sc_regs;
2025 
2026 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
2027 		int i;
2028 		tdb = &sc->sc_txdesc_blk[pri];
2029 		next = rtw_txring_next(regs, tdb);
2030 		if (tdb->tdb_next == next)
2031 			continue;
2032 		for (i = 0; next != tdb->tdb_next;
2033 		    next = RTW_NEXT_IDX(tdb, next), i++) {
2034 			if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2035 				break;
2036 		}
2037 		printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2038 		    ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2039 		if (tdb->tdb_next == next)
2040 			continue;
2041 		tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2042 	}
2043 }
2044 #endif
2045 
2046 static void
2047 rtw_txdescs_reset(struct rtw_softc *sc)
2048 {
2049 	int pri;
2050 	struct rtw_txsoft_blk	*tsb;
2051 	struct rtw_txdesc_blk	*tdb;
2052 
2053 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
2054 		tsb = &sc->sc_txsoft_blk[pri];
2055 		tdb = &sc->sc_txdesc_blk[pri];
2056 		rtw_collect_txring(sc, tsb, tdb, 1);
2057 #ifdef RTW_DIAG
2058 		if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2059 			printf("%s: packets left in ring %d\n", __func__, pri);
2060 #endif
2061 	}
2062 }
2063 
2064 static void
2065 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2066 {
2067 	aprint_error_dev(sc->sc_dev, "tx fifo underflow\n");
2068 
2069 	RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2070 	    "\n", device_xname(sc->sc_dev), isr));
2071 
2072 #ifdef RTW_DEBUG
2073 	rtw_dump_rings(sc);
2074 #endif /* RTW_DEBUG */
2075 
2076 	/* Collect tx'd packets.  XXX let's hope this stops the transmit
2077 	 * timeouts.
2078 	 */
2079 	rtw_txdescs_reset(sc);
2080 
2081 #ifdef RTW_DEBUG
2082 	rtw_dump_rings(sc);
2083 #endif /* RTW_DEBUG */
2084 }
2085 
2086 static inline void
2087 rtw_suspend_ticks(struct rtw_softc *sc)
2088 {
2089 	RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2090 	    ("%s: suspending ticks\n", device_xname(sc->sc_dev)));
2091 	sc->sc_do_tick = 0;
2092 }
2093 
2094 static inline void
2095 rtw_resume_ticks(struct rtw_softc *sc)
2096 {
2097 	uint32_t tsftrl0, tsftrl1, next_tint;
2098 
2099 	tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2100 
2101 	tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2102 	next_tint = tsftrl1 + 1000000;
2103 	RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tint);
2104 
2105 	sc->sc_do_tick = 1;
2106 
2107 	RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2108 	    ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2109 	    device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tint));
2110 }
2111 
2112 static void
2113 rtw_intr_timeout(struct rtw_softc *sc)
2114 {
2115 	RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev)));
2116 	if (sc->sc_do_tick)
2117 		rtw_resume_ticks(sc);
2118 	return;
2119 }
2120 
2121 int
2122 rtw_intr(void *arg)
2123 {
2124 	int i;
2125 	struct rtw_softc *sc = arg;
2126 	struct rtw_regs *regs = &sc->sc_regs;
2127 	uint16_t isr;
2128 	struct ifnet *ifp = &sc->sc_if;
2129 
2130 	/*
2131 	 * If the interface isn't running, the interrupt couldn't
2132 	 * possibly have come from us.
2133 	 */
2134 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2135 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
2136 		RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
2137 		    device_xname(sc->sc_dev)));
2138 		return (0);
2139 	}
2140 
2141 	for (i = 0; i < 10; i++) {
2142 		isr = RTW_READ16(regs, RTW_ISR);
2143 
2144 		RTW_WRITE16(regs, RTW_ISR, isr);
2145 		RTW_WBR(regs, RTW_ISR, RTW_ISR);
2146 
2147 		if (sc->sc_intr_ack != NULL)
2148 			(*sc->sc_intr_ack)(regs);
2149 
2150 		if (isr == 0)
2151 			break;
2152 
2153 #ifdef RTW_DEBUG
2154 #define PRINTINTR(flag) do { \
2155 	if ((isr & flag) != 0) { \
2156 		printf("%s" #flag, delim); \
2157 		delim = ","; \
2158 	} \
2159 } while (0)
2160 
2161 		if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2162 			const char *delim = "<";
2163 
2164 			printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev),
2165 			    isr);
2166 
2167 			PRINTINTR(RTW_INTR_TXFOVW);
2168 			PRINTINTR(RTW_INTR_TIMEOUT);
2169 			PRINTINTR(RTW_INTR_BCNINT);
2170 			PRINTINTR(RTW_INTR_ATIMINT);
2171 			PRINTINTR(RTW_INTR_TBDER);
2172 			PRINTINTR(RTW_INTR_TBDOK);
2173 			PRINTINTR(RTW_INTR_THPDER);
2174 			PRINTINTR(RTW_INTR_THPDOK);
2175 			PRINTINTR(RTW_INTR_TNPDER);
2176 			PRINTINTR(RTW_INTR_TNPDOK);
2177 			PRINTINTR(RTW_INTR_RXFOVW);
2178 			PRINTINTR(RTW_INTR_RDU);
2179 			PRINTINTR(RTW_INTR_TLPDER);
2180 			PRINTINTR(RTW_INTR_TLPDOK);
2181 			PRINTINTR(RTW_INTR_RER);
2182 			PRINTINTR(RTW_INTR_ROK);
2183 
2184 			printf(">\n");
2185 		}
2186 #undef PRINTINTR
2187 #endif /* RTW_DEBUG */
2188 
2189 		if ((isr & RTW_INTR_RX) != 0)
2190 			rtw_intr_rx(sc, isr);
2191 		if ((isr & RTW_INTR_TX) != 0)
2192 			rtw_intr_tx(sc, isr);
2193 		if ((isr & RTW_INTR_BEACON) != 0)
2194 			rtw_intr_beacon(sc, isr);
2195 		if ((isr & RTW_INTR_ATIMINT) != 0)
2196 			rtw_intr_atim(sc);
2197 		if ((isr & RTW_INTR_IOERROR) != 0)
2198 			rtw_intr_ioerror(sc, isr);
2199 		if ((isr & RTW_INTR_TIMEOUT) != 0)
2200 			rtw_intr_timeout(sc);
2201 	}
2202 
2203 	return 1;
2204 }
2205 
2206 /* Must be called at splnet. */
2207 static void
2208 rtw_stop(struct ifnet *ifp, int disable)
2209 {
2210 	int pri;
2211 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2212 	struct ieee80211com *ic = &sc->sc_ic;
2213 	struct rtw_regs *regs = &sc->sc_regs;
2214 
2215 	rtw_suspend_ticks(sc);
2216 
2217 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2218 
2219 	if (device_has_power(sc->sc_dev)) {
2220 		/* Disable interrupts. */
2221 		RTW_WRITE16(regs, RTW_IMR, 0);
2222 
2223 		RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2224 
2225 		/* Stop the transmit and receive processes. First stop DMA,
2226 		 * then disable receiver and transmitter.
2227 		 */
2228 		RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2229 
2230 		RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2231 
2232 		rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2233 	}
2234 
2235 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
2236 		rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2237 		    &sc->sc_txsoft_blk[pri]);
2238 	}
2239 
2240 	rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2241 
2242 	/* Mark the interface as not running.  Cancel the watchdog timer. */
2243 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2244 	ifp->if_timer = 0;
2245 
2246 	if (disable)
2247 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2248 
2249 	return;
2250 }
2251 
2252 const char *
2253 rtw_pwrstate_string(enum rtw_pwrstate power)
2254 {
2255 	switch (power) {
2256 	case RTW_ON:
2257 		return "on";
2258 	case RTW_SLEEP:
2259 		return "sleep";
2260 	case RTW_OFF:
2261 		return "off";
2262 	default:
2263 		return "unknown";
2264 	}
2265 }
2266 
2267 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2268  * reference driver, plus a magic Maxim "ON" value that comes from
2269  * the Realtek document "Windows PG for Rtl8180."
2270  */
2271 static void
2272 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2273     int before_rf, int digphy)
2274 {
2275 	uint32_t anaparm;
2276 
2277 	anaparm = RTW_READ(regs, RTW_ANAPARM);
2278 	anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2279 
2280 	switch (power) {
2281 	case RTW_OFF:
2282 		if (before_rf)
2283 			return;
2284 		anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2285 		anaparm |= RTW_ANAPARM_TXDACOFF;
2286 		break;
2287 	case RTW_SLEEP:
2288 		if (!before_rf)
2289 			return;
2290 		anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2291 		anaparm |= RTW_ANAPARM_TXDACOFF;
2292 		break;
2293 	case RTW_ON:
2294 		if (!before_rf)
2295 			return;
2296 		anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2297 		break;
2298 	}
2299 	RTW_DPRINTF(RTW_DEBUG_PWR,
2300 	    ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2301 	    __func__, rtw_pwrstate_string(power),
2302 	    (before_rf) ? "before" : "after", anaparm));
2303 
2304 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2305 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2306 }
2307 
2308 /* XXX I am using the RFMD settings gleaned from the reference
2309  * driver.  They agree
2310  */
2311 static void
2312 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2313     int before_rf, int digphy)
2314 {
2315 	uint32_t anaparm;
2316 
2317 	anaparm = RTW_READ(regs, RTW_ANAPARM);
2318 	anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2319 
2320 	switch (power) {
2321 	case RTW_OFF:
2322 		if (before_rf)
2323 			return;
2324 		anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2325 		anaparm |= RTW_ANAPARM_TXDACOFF;
2326 		break;
2327 	case RTW_SLEEP:
2328 		if (!before_rf)
2329 			return;
2330 		anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2331 		anaparm |= RTW_ANAPARM_TXDACOFF;
2332 		break;
2333 	case RTW_ON:
2334 		if (!before_rf)
2335 			return;
2336 		anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2337 		break;
2338 	}
2339 	RTW_DPRINTF(RTW_DEBUG_PWR,
2340 	    ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2341 	    __func__, rtw_pwrstate_string(power),
2342 	    (before_rf) ? "before" : "after", anaparm));
2343 
2344 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2345 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2346 }
2347 
2348 static void
2349 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2350     int before_rf, int digphy)
2351 {
2352 	uint32_t anaparm;
2353 
2354 	anaparm = RTW_READ(regs, RTW_ANAPARM);
2355 	anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2356 
2357 	switch (power) {
2358 	case RTW_OFF:
2359 		if (before_rf)
2360 			return;
2361 		anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2362 		anaparm |= RTW_ANAPARM_TXDACOFF;
2363 		break;
2364 	case RTW_SLEEP:
2365 		if (!before_rf)
2366 			return;
2367 		anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2368 		anaparm |= RTW_ANAPARM_TXDACOFF;
2369 		break;
2370 	case RTW_ON:
2371 		if (!before_rf)
2372 			return;
2373 		if (digphy) {
2374 			anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2375 			/* XXX guess */
2376 			anaparm |= RTW_ANAPARM_TXDACOFF;
2377 		} else
2378 			anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2379 		break;
2380 	}
2381 	RTW_DPRINTF(RTW_DEBUG_PWR,
2382 	    ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2383 	    __func__, rtw_pwrstate_string(power),
2384 	    (before_rf) ? "before" : "after", anaparm));
2385 
2386 	RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2387 	RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2388 }
2389 
2390 static void
2391 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2392     int digphy)
2393 {
2394 	struct rtw_regs *regs = &sc->sc_regs;
2395 
2396 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2397 
2398 	(*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2399 
2400 	rtw_set_access(regs, RTW_ACCESS_NONE);
2401 
2402 	return;
2403 }
2404 
2405 static int
2406 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2407 {
2408 	int rc;
2409 
2410 	RTW_DPRINTF(RTW_DEBUG_PWR,
2411 	    ("%s: %s->%s\n", __func__,
2412 	    rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2413 
2414 	if (sc->sc_pwrstate == power)
2415 		return 0;
2416 
2417 	rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2418 	rc = rtw_rf_pwrstate(sc->sc_rf, power);
2419 	rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2420 
2421 	switch (power) {
2422 	case RTW_ON:
2423 		/* TBD set LEDs */
2424 		break;
2425 	case RTW_SLEEP:
2426 		/* TBD */
2427 		break;
2428 	case RTW_OFF:
2429 		/* TBD */
2430 		break;
2431 	}
2432 	if (rc == 0)
2433 		sc->sc_pwrstate = power;
2434 	else
2435 		sc->sc_pwrstate = RTW_OFF;
2436 	return rc;
2437 }
2438 
2439 static int
2440 rtw_tune(struct rtw_softc *sc)
2441 {
2442 	struct ieee80211com *ic = &sc->sc_ic;
2443 	struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2444 	struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2445 	u_int chan;
2446 	int rc;
2447 	int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2448 	    dflantb = sc->sc_flags & RTW_F_DFLANTB;
2449 
2450 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2451 	KASSERT(chan != IEEE80211_CHAN_ANY);
2452 
2453 	rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2454 	rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2455 
2456 	rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2457 	rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2458 
2459 	if (chan == sc->sc_cur_chan) {
2460 		RTW_DPRINTF(RTW_DEBUG_TUNE,
2461 		    ("%s: already tuned chan #%d\n", __func__, chan));
2462 		return 0;
2463 	}
2464 
2465 	rtw_suspend_ticks(sc);
2466 
2467 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2468 
2469 	/* TBD wait for Tx to complete */
2470 
2471 	KASSERT(device_has_power(sc->sc_dev));
2472 
2473 	if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2474 	    rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2475 	        ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2476 		/* XXX condition on powersaving */
2477 		aprint_error_dev(sc->sc_dev, "phy init failed\n");
2478 	}
2479 
2480 	sc->sc_cur_chan = chan;
2481 
2482 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2483 
2484 	rtw_resume_ticks(sc);
2485 
2486 	return rc;
2487 }
2488 
2489 bool
2490 rtw_suspend(device_t self, const pmf_qual_t *qual)
2491 {
2492 	int rc;
2493 	struct rtw_softc *sc = device_private(self);
2494 
2495 	sc->sc_flags &= ~RTW_F_DK_VALID;
2496 
2497 	if (!device_has_power(self))
2498 		return false;
2499 
2500 	/* turn off PHY */
2501 	if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2502 		aprint_error_dev(self, "failed to turn off PHY (%d)\n", rc);
2503 		return false;
2504 	}
2505 
2506 	rtw_disable_interrupts(&sc->sc_regs);
2507 
2508 	return true;
2509 }
2510 
2511 bool
2512 rtw_resume(device_t self, const pmf_qual_t *qual)
2513 {
2514 	struct rtw_softc *sc = device_private(self);
2515 
2516 	/* Power may have been removed, resetting WEP keys.
2517 	 */
2518 	sc->sc_flags &= ~RTW_F_DK_VALID;
2519 	rtw_enable_interrupts(sc);
2520 
2521 	return true;
2522 }
2523 
2524 static void
2525 rtw_transmit_config(struct rtw_regs *regs)
2526 {
2527 	uint32_t tcr;
2528 
2529 	tcr = RTW_READ(regs, RTW_TCR);
2530 
2531 	tcr |= RTW_TCR_CWMIN;
2532 	tcr &= ~RTW_TCR_MXDMA_MASK;
2533 	tcr |= RTW_TCR_MXDMA_256;
2534 	tcr |= RTW_TCR_SAT;		/* send ACK as fast as possible */
2535 	tcr &= ~RTW_TCR_LBK_MASK;
2536 	tcr |= RTW_TCR_LBK_NORMAL;	/* normal operating mode */
2537 
2538 	/* set short/long retry limits */
2539 	tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2540 	tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2541 
2542 	tcr &= ~RTW_TCR_CRC;	/* NIC appends CRC32 */
2543 
2544 	RTW_WRITE(regs, RTW_TCR, tcr);
2545 	RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2546 }
2547 
2548 static void
2549 rtw_disable_interrupts(struct rtw_regs *regs)
2550 {
2551 	RTW_WRITE16(regs, RTW_IMR, 0);
2552 	RTW_WBW(regs, RTW_IMR, RTW_ISR);
2553 	RTW_WRITE16(regs, RTW_ISR, 0xffff);
2554 	RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2555 }
2556 
2557 static void
2558 rtw_enable_interrupts(struct rtw_softc *sc)
2559 {
2560 	struct rtw_regs *regs = &sc->sc_regs;
2561 
2562 	sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2563 	sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2564 
2565 	RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2566 	RTW_WBW(regs, RTW_IMR, RTW_ISR);
2567 	RTW_WRITE16(regs, RTW_ISR, 0xffff);
2568 	RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2569 
2570 	/* XXX necessary? */
2571 	if (sc->sc_intr_ack != NULL)
2572 		(*sc->sc_intr_ack)(regs);
2573 }
2574 
2575 static void
2576 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2577 {
2578 	uint8_t msr;
2579 
2580 	/* I'm guessing that MSR is protected as CONFIG[0123] are. */
2581 	rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2582 
2583 	msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2584 
2585 	switch (opmode) {
2586 	case IEEE80211_M_AHDEMO:
2587 	case IEEE80211_M_IBSS:
2588 		msr |= RTW_MSR_NETYPE_ADHOC_OK;
2589 		break;
2590 	case IEEE80211_M_HOSTAP:
2591 		msr |= RTW_MSR_NETYPE_AP_OK;
2592 		break;
2593 	case IEEE80211_M_MONITOR:
2594 		/* XXX */
2595 		msr |= RTW_MSR_NETYPE_NOLINK;
2596 		break;
2597 	case IEEE80211_M_STA:
2598 		msr |= RTW_MSR_NETYPE_INFRA_OK;
2599 		break;
2600 	}
2601 	RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2602 
2603 	rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2604 }
2605 
2606 #define	rtw_calchash(addr) \
2607 	(ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2608 
2609 static void
2610 rtw_pktfilt_load(struct rtw_softc *sc)
2611 {
2612 	struct rtw_regs *regs = &sc->sc_regs;
2613 	struct ieee80211com *ic = &sc->sc_ic;
2614 	struct ethercom *ec = &sc->sc_ec;
2615 	struct ifnet *ifp = &sc->sc_if;
2616 	int hash;
2617 	uint32_t hashes[2] = { 0, 0 };
2618 	struct ether_multi *enm;
2619 	struct ether_multistep step;
2620 
2621 	/* XXX might be necessary to stop Rx/Tx engines while setting filters */
2622 
2623 	sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2624 	sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2625 
2626 	sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2627 	/* MAC auto-reset PHY (huh?) */
2628 	sc->sc_rcr |= RTW_RCR_ENMARP;
2629 	/* DMA whole Rx packets, only.  Set Tx DMA burst size to 1024 bytes. */
2630 	sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2631 
2632 	switch (ic->ic_opmode) {
2633 	case IEEE80211_M_MONITOR:
2634 		sc->sc_rcr |= RTW_RCR_MONITOR;
2635 		break;
2636 	case IEEE80211_M_AHDEMO:
2637 	case IEEE80211_M_IBSS:
2638 		/* receive broadcasts in our BSS */
2639 		sc->sc_rcr |= RTW_RCR_ADD3;
2640 		break;
2641 	default:
2642 		break;
2643 	}
2644 
2645 	ifp->if_flags &= ~IFF_ALLMULTI;
2646 
2647 	/*
2648 	 * Program the 64-bit multicast hash filter.
2649 	 */
2650 	ETHER_FIRST_MULTI(step, ec, enm);
2651 	while (enm != NULL) {
2652 		/* XXX */
2653 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2654 		    ETHER_ADDR_LEN) != 0) {
2655 			ifp->if_flags |= IFF_ALLMULTI;
2656 			break;
2657 		}
2658 
2659 		hash = rtw_calchash(enm->enm_addrlo);
2660 		hashes[hash >> 5] |= (1 << (hash & 0x1f));
2661 		ETHER_NEXT_MULTI(step, enm);
2662 	}
2663 
2664 	/* XXX accept all broadcast if scanning */
2665 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2666 		sc->sc_rcr |= RTW_RCR_AB;	/* accept all broadcast */
2667 
2668 	if (ifp->if_flags & IFF_PROMISC) {
2669 		sc->sc_rcr |= RTW_RCR_AB;	/* accept all broadcast */
2670 		sc->sc_rcr |= RTW_RCR_ACRC32;	/* accept frames failing CRC */
2671 		sc->sc_rcr |= RTW_RCR_AICV;	/* accept frames failing ICV */
2672 		ifp->if_flags |= IFF_ALLMULTI;
2673 	}
2674 
2675 	if (ifp->if_flags & IFF_ALLMULTI)
2676 		hashes[0] = hashes[1] = 0xffffffff;
2677 
2678 	if ((hashes[0] | hashes[1]) != 0)
2679 		sc->sc_rcr |= RTW_RCR_AM;	/* accept multicast */
2680 
2681 	RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2682 	RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2683 	RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2684 	RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2685 
2686 	DPRINTF(sc, RTW_DEBUG_PKTFILT,
2687 	    ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2688 	    device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0),
2689 	    RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2690 }
2691 
2692 static struct mbuf *
2693 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2694 {
2695 	struct ieee80211com *ic = &sc->sc_ic;
2696 	struct mbuf *m;
2697 	struct ieee80211_beacon_offsets	boff;
2698 
2699 	if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2700 		RTW_DPRINTF(RTW_DEBUG_BEACON,
2701 		    ("%s: m %p len %u\n", __func__, m, m->m_len));
2702 	}
2703 	return m;
2704 }
2705 
2706 /* Must be called at splnet. */
2707 static int
2708 rtw_init(struct ifnet *ifp)
2709 {
2710 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2711 	struct ieee80211com *ic = &sc->sc_ic;
2712 	struct rtw_regs *regs = &sc->sc_regs;
2713 	int rc;
2714 
2715 	if (device_is_active(sc->sc_dev)) {
2716 		/* Cancel pending I/O and reset. */
2717 		rtw_stop(ifp, 0);
2718 	} else if (!pmf_device_resume(sc->sc_dev, &sc->sc_qual) ||
2719 	           !device_is_active(sc->sc_dev))
2720 		return 0;
2721 
2722 	DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2723 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2724 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2725 
2726 	if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2727 		goto out;
2728 
2729 	if ((rc = rtw_swring_setup(sc)) != 0)
2730 		goto out;
2731 
2732 	rtw_transmit_config(regs);
2733 
2734 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
2735 
2736 	RTW_WRITE8(regs, RTW_MSR, 0x0);	/* no link */
2737 	RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2738 
2739 	/* long PLCP header, 1Mb/2Mb basic rate */
2740 	RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2741 	RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2742 
2743 	rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2744 	rtw_set_access(regs, RTW_ACCESS_NONE);
2745 
2746 	/* XXX from reference sources */
2747 	RTW_WRITE(regs, RTW_FEMR, 0xffff);
2748 	RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2749 
2750 	rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev);
2751 
2752 	RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2753 	/* from Linux driver */
2754 	RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2755 
2756 	RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2757 
2758 	rtw_enable_interrupts(sc);
2759 
2760 	rtw_pktfilt_load(sc);
2761 
2762 	rtw_hwring_setup(sc);
2763 
2764 	rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2765 
2766 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2767 
2768 	ifp->if_flags |= IFF_RUNNING;
2769 	ic->ic_state = IEEE80211_S_INIT;
2770 
2771 	RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2772 	RTW_WRITE(regs, RTW_BSSID32, 0x0);
2773 
2774 	rtw_resume_ticks(sc);
2775 
2776 	rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2777 
2778 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2779 		return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2780 	else
2781 		return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2782 
2783 out:
2784 	aprint_error_dev(sc->sc_dev, "interface not running\n");
2785 	return rc;
2786 }
2787 
2788 static inline void
2789 rtw_led_init(struct rtw_regs *regs)
2790 {
2791 	uint8_t cfg0, cfg1;
2792 
2793 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
2794 
2795 	cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2796 	cfg0 |= RTW_CONFIG0_LEDGPOEN;
2797 	RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2798 
2799 	cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2800 	RTW_DPRINTF(RTW_DEBUG_LED,
2801 	    ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2802 
2803 	cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2804 	cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2805 	RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2806 
2807 	rtw_set_access(regs, RTW_ACCESS_NONE);
2808 }
2809 
2810 /*
2811  * IEEE80211_S_INIT: 		LED1 off
2812  *
2813  * IEEE80211_S_AUTH,
2814  * IEEE80211_S_ASSOC,
2815  * IEEE80211_S_SCAN: 		LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2816  *
2817  * IEEE80211_S_RUN: 		LED1 on, blinks @ 5Hz for tx/rx
2818  */
2819 static void
2820 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2821 {
2822 	struct rtw_led_state *ls;
2823 
2824 	ls = &sc->sc_led_state;
2825 
2826 	switch (nstate) {
2827 	case IEEE80211_S_INIT:
2828 		rtw_led_init(&sc->sc_regs);
2829 		aprint_debug_dev(sc->sc_dev, "stopping blink\n");
2830 		callout_stop(&ls->ls_slow_ch);
2831 		callout_stop(&ls->ls_fast_ch);
2832 		ls->ls_slowblink = 0;
2833 		ls->ls_actblink = 0;
2834 		ls->ls_default = 0;
2835 		break;
2836 	case IEEE80211_S_SCAN:
2837 		aprint_debug_dev(sc->sc_dev, "scheduling blink\n");
2838 		callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2839 		callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2840 		/*FALLTHROUGH*/
2841 	case IEEE80211_S_AUTH:
2842 	case IEEE80211_S_ASSOC:
2843 		ls->ls_default = RTW_LED1;
2844 		ls->ls_actblink = RTW_LED1;
2845 		ls->ls_slowblink = RTW_LED1;
2846 		break;
2847 	case IEEE80211_S_RUN:
2848 		ls->ls_slowblink = 0;
2849 		break;
2850 	}
2851 	rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2852 }
2853 
2854 static void
2855 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2856 {
2857 	uint8_t led_condition;
2858 	bus_size_t ofs;
2859 	uint8_t mask, newval, val;
2860 
2861 	led_condition = ls->ls_default;
2862 
2863 	if (ls->ls_state & RTW_LED_S_SLOW)
2864 		led_condition ^= ls->ls_slowblink;
2865 	if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2866 		led_condition ^= ls->ls_actblink;
2867 
2868 	RTW_DPRINTF(RTW_DEBUG_LED,
2869 	    ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2870 
2871 	switch (hwverid) {
2872 	default:
2873 	case 'F':
2874 		ofs = RTW_PSR;
2875 		newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2876 		if (led_condition & RTW_LED0)
2877 			newval &= ~RTW_PSR_LEDGPO0;
2878 		if (led_condition & RTW_LED1)
2879 			newval &= ~RTW_PSR_LEDGPO1;
2880 		break;
2881 	case 'D':
2882 		ofs = RTW_9346CR;
2883 		mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2884 		newval = RTW_9346CR_EEM_PROGRAM;
2885 		if (led_condition & RTW_LED0)
2886 			newval |= RTW_9346CR_EEDI;
2887 		if (led_condition & RTW_LED1)
2888 			newval |= RTW_9346CR_EECS;
2889 		break;
2890 	}
2891 	val = RTW_READ8(regs, ofs);
2892 	RTW_DPRINTF(RTW_DEBUG_LED,
2893 	    ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2894 	     (uintptr_t)ofs));
2895 	val &= ~mask;
2896 	val |= newval;
2897 	RTW_WRITE8(regs, ofs, val);
2898 	RTW_DPRINTF(RTW_DEBUG_LED,
2899 	    ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2900 	     (uintptr_t)ofs));
2901 	RTW_SYNC(regs, ofs, ofs);
2902 }
2903 
2904 static void
2905 rtw_led_fastblink(void *arg)
2906 {
2907 	int ostate, s;
2908 	struct rtw_softc *sc = (struct rtw_softc *)arg;
2909 	struct rtw_led_state *ls = &sc->sc_led_state;
2910 
2911 	s = splnet();
2912 	ostate = ls->ls_state;
2913 	ls->ls_state ^= ls->ls_event;
2914 
2915 	if ((ls->ls_event & RTW_LED_S_TX) == 0)
2916 		ls->ls_state &= ~RTW_LED_S_TX;
2917 
2918 	if ((ls->ls_event & RTW_LED_S_RX) == 0)
2919 		ls->ls_state &= ~RTW_LED_S_RX;
2920 
2921 	ls->ls_event = 0;
2922 
2923 	if (ostate != ls->ls_state)
2924 		rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2925 	splx(s);
2926 
2927 	aprint_debug_dev(sc->sc_dev, "scheduling fast blink\n");
2928 	callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2929 }
2930 
2931 static void
2932 rtw_led_slowblink(void *arg)
2933 {
2934 	int s;
2935 	struct rtw_softc *sc = (struct rtw_softc *)arg;
2936 	struct rtw_led_state *ls = &sc->sc_led_state;
2937 
2938 	s = splnet();
2939 	ls->ls_state ^= RTW_LED_S_SLOW;
2940 	rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2941 	splx(s);
2942 	aprint_debug_dev(sc->sc_dev, "scheduling slow blink\n");
2943 	callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2944 }
2945 
2946 static void
2947 rtw_led_detach(struct rtw_led_state *ls)
2948 {
2949 	callout_destroy(&ls->ls_fast_ch);
2950 	callout_destroy(&ls->ls_slow_ch);
2951 }
2952 
2953 static void
2954 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2955 {
2956 	callout_init(&ls->ls_fast_ch, 0);
2957 	callout_init(&ls->ls_slow_ch, 0);
2958 	callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2959 	callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2960 }
2961 
2962 static int
2963 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2964 {
2965 	int rc = 0, s;
2966 	struct rtw_softc *sc = ifp->if_softc;
2967 
2968 	s = splnet();
2969 	if (cmd == SIOCSIFFLAGS) {
2970 		if ((rc = ifioctl_common(ifp, cmd, data)) != 0)
2971 			;
2972 		else switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2973 		case IFF_UP:
2974 			rc = rtw_init(ifp);
2975 			RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2976 			break;
2977 		case IFF_UP|IFF_RUNNING:
2978 			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2979 				rtw_pktfilt_load(sc);
2980 			RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2981 			break;
2982 		case IFF_RUNNING:
2983 			RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2984 			rtw_stop(ifp, 1);
2985 			break;
2986 		default:
2987 			break;
2988 		}
2989 	} else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2990 		;	/* nothing to do */
2991 	else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
2992 		/* reload packet filter if running */
2993 		if (ifp->if_flags & IFF_RUNNING)
2994 			rtw_pktfilt_load(sc);
2995 		rc = 0;
2996 	} else if ((ifp->if_flags & IFF_UP) != 0)
2997 		rc = rtw_init(ifp);
2998 	else
2999 		rc = 0;
3000 	splx(s);
3001 	return rc;
3002 }
3003 
3004 /* Select a transmit ring with at least one h/w and s/w descriptor free.
3005  * Return 0 on success, -1 on failure.
3006  */
3007 static inline int
3008 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
3009     struct rtw_txdesc_blk **tdbp, int pri)
3010 {
3011 	struct rtw_txsoft_blk *tsb;
3012 	struct rtw_txdesc_blk *tdb;
3013 
3014 	KASSERT(pri >= 0 && pri < RTW_NTXPRI);
3015 
3016 	tsb = &sc->sc_txsoft_blk[pri];
3017 	tdb = &sc->sc_txdesc_blk[pri];
3018 
3019 	if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
3020 		if (tsb->tsb_tx_timer == 0)
3021 			tsb->tsb_tx_timer = 5;
3022 		*tsbp = NULL;
3023 		*tdbp = NULL;
3024 		return -1;
3025 	}
3026 	*tsbp = tsb;
3027 	*tdbp = tdb;
3028 	return 0;
3029 }
3030 
3031 static inline struct mbuf *
3032 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
3033     struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
3034     struct ieee80211_node **nip, short *if_flagsp)
3035 {
3036 	struct mbuf *m;
3037 
3038 	if (IF_IS_EMPTY(ifq))
3039 		return NULL;
3040 	if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3041 		DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3042 		    __func__, pri));
3043 		*if_flagsp |= IFF_OACTIVE;
3044 		sc->sc_if.if_timer = 1;
3045 		return NULL;
3046 	}
3047 	IF_DEQUEUE(ifq, m);
3048 	*nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3049 	m->m_pkthdr.rcvif = NULL;
3050 	KASSERT(*nip != NULL);
3051 	return m;
3052 }
3053 
3054 /* Point *mp at the next 802.11 frame to transmit.  Point *tsbp
3055  * at the driver's selection of transmit control block for the packet.
3056  */
3057 static inline int
3058 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3059     struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3060     struct ieee80211_node **nip)
3061 {
3062 	int pri;
3063 	struct ether_header *eh;
3064 	struct mbuf *m0;
3065 	struct rtw_softc *sc;
3066 	short *if_flagsp;
3067 
3068 	*mp = NULL;
3069 
3070 	sc = (struct rtw_softc *)ifp->if_softc;
3071 
3072 	DPRINTF(sc, RTW_DEBUG_XMIT,
3073 	    ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3074 
3075 	if_flagsp = &ifp->if_flags;
3076 
3077 	if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3078 	    (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3079 		                     tdbp, nip, if_flagsp)) != NULL) {
3080 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3081 		    __func__));
3082 		return 0;
3083 	}
3084 
3085 	if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3086 		                     tdbp, nip, if_flagsp)) != NULL) {
3087 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3088 		    __func__));
3089 		return 0;
3090 	}
3091 
3092 	if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3093 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3094 		return 0;
3095 	}
3096 
3097 	IFQ_POLL(&ifp->if_snd, m0);
3098 	if (m0 == NULL) {
3099 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3100 		    __func__));
3101 		return 0;
3102 	}
3103 
3104 	pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3105 
3106 	if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3107 		DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3108 		    __func__, pri));
3109 		*if_flagsp |= IFF_OACTIVE;
3110 		sc->sc_if.if_timer = 1;
3111 		return 0;
3112 	}
3113 
3114 	IFQ_DEQUEUE(&ifp->if_snd, m0);
3115 	if (m0 == NULL) {
3116 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3117 		    __func__));
3118 		return 0;
3119 	}
3120 	DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3121 	ifp->if_opackets++;
3122 	bpf_mtap(ifp, m0);
3123 	eh = mtod(m0, struct ether_header *);
3124 	*nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3125 	if (*nip == NULL) {
3126 		/* NB: ieee80211_find_txnode does stat+msg */
3127 		m_freem(m0);
3128 		return -1;
3129 	}
3130 	if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3131 		DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3132 		ifp->if_oerrors++;
3133 		return -1;
3134 	}
3135 	DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3136 	*mp = m0;
3137 	return 0;
3138 }
3139 
3140 static int
3141 rtw_seg_too_short(bus_dmamap_t dmamap)
3142 {
3143 	int i;
3144 	for (i = 0; i < dmamap->dm_nsegs; i++) {
3145 		if (dmamap->dm_segs[i].ds_len < 4)
3146 			return 1;
3147 	}
3148 	return 0;
3149 }
3150 
3151 /* TBD factor with atw_start */
3152 static struct mbuf *
3153 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3154     u_int ndescfree, device_t dev)
3155 {
3156 	int first, rc;
3157 	struct mbuf *m, *m0;
3158 
3159 	m0 = chain;
3160 
3161 	/*
3162 	 * Load the DMA map.  Copy and try (once) again if the packet
3163 	 * didn't fit in the alloted number of segments.
3164 	 */
3165 	for (first = 1;
3166 	     ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3167 			  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3168 	      dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3169 	     first = 0) {
3170 		if (rc == 0) {
3171 #ifdef RTW_DIAGxxx
3172 			if (rtw_seg_too_short(dmam)) {
3173 				printf("%s: short segment, mbuf lengths:", __func__);
3174 				for (m = m0; m; m = m->m_next)
3175 					printf(" %d", m->m_len);
3176 				printf("\n");
3177 			}
3178 #endif
3179 			bus_dmamap_unload(dmat, dmam);
3180 		}
3181 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3182 		if (m == NULL) {
3183 			aprint_error_dev(dev, "unable to allocate Tx mbuf\n");
3184 			break;
3185 		}
3186 		if (m0->m_pkthdr.len > MHLEN) {
3187 			MCLGET(m, M_DONTWAIT);
3188 			if ((m->m_flags & M_EXT) == 0) {
3189 				aprint_error_dev(dev,
3190 				    "cannot allocate Tx cluster\n");
3191 				m_freem(m);
3192 				break;
3193 			}
3194 		}
3195 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3196 		m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3197 		m_freem(m0);
3198 		m0 = m;
3199 		m = NULL;
3200 	}
3201 	if (rc != 0) {
3202 		aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc);
3203 		m_freem(m0);
3204 		return NULL;
3205 	} else if (rtw_seg_too_short(dmam)) {
3206 		aprint_error_dev(dev,
3207 		    "cannot load Tx buffer, segment too short\n");
3208 		bus_dmamap_unload(dmat, dmam);
3209 		m_freem(m0);
3210 		return NULL;
3211 	} else if (dmam->dm_nsegs > ndescfree) {
3212 		aprint_error_dev(dev, "too many tx segments\n");
3213 		bus_dmamap_unload(dmat, dmam);
3214 		m_freem(m0);
3215 		return NULL;
3216 	}
3217 	return m0;
3218 }
3219 
3220 #ifdef RTW_DEBUG
3221 static void
3222 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3223     struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3224 {
3225 	struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3226 	DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3227 	    "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3228 	    device_xname(sc->sc_dev), ts, action, desc,
3229 	    le32toh(td->td_buf), le32toh(td->td_next),
3230 	    le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3231 	    le32toh(td->td_len)));
3232 }
3233 #endif /* RTW_DEBUG */
3234 
3235 static void
3236 rtw_start(struct ifnet *ifp)
3237 {
3238 	int desc, i, lastdesc, npkt, rate;
3239 	uint32_t proto_ctl0, ctl0, ctl1;
3240 	bus_dmamap_t		dmamap;
3241 	struct ieee80211com	*ic;
3242 	struct ieee80211_duration *d0;
3243 	struct ieee80211_frame_min	*wh;
3244 	struct ieee80211_node	*ni = NULL;	/* XXX: GCC */
3245 	struct mbuf		*m0;
3246 	struct rtw_softc	*sc;
3247 	struct rtw_txsoft_blk	*tsb = NULL;	/* XXX: GCC */
3248 	struct rtw_txdesc_blk	*tdb = NULL;	/* XXX: GCC */
3249 	struct rtw_txsoft	*ts;
3250 	struct rtw_txdesc	*td;
3251 	struct ieee80211_key	*k;
3252 
3253 	sc = (struct rtw_softc *)ifp->if_softc;
3254 	ic = &sc->sc_ic;
3255 
3256 	DPRINTF(sc, RTW_DEBUG_XMIT,
3257 	    ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3258 
3259 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3260 		goto out;
3261 
3262 	/* XXX do real rate control */
3263 	proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3264 
3265 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3266 		proto_ctl0 |= RTW_TXCTL0_SPLCP;
3267 
3268 	for (;;) {
3269 		if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3270 			continue;
3271 		if (m0 == NULL)
3272 			break;
3273 
3274 		wh = mtod(m0, struct ieee80211_frame_min *);
3275 
3276 		if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3277 		    (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3278 			m_freem(m0);
3279 			break;
3280 		} else
3281 			k = NULL;
3282 
3283 		ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3284 
3285 		dmamap = ts->ts_dmamap;
3286 
3287 		m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3288 		    tdb->tdb_nfree, sc->sc_dev);
3289 
3290 		if (m0 == NULL || dmamap->dm_nsegs == 0) {
3291 			DPRINTF(sc, RTW_DEBUG_XMIT,
3292 			    ("%s: fail dmamap load\n", __func__));
3293 			goto post_dequeue_err;
3294 		}
3295 
3296 		/* Note well: rtw_dmamap_load_txbuf may have created
3297 		 * a new chain, so we must find the header once
3298 		 * more.
3299 		 */
3300 		wh = mtod(m0, struct ieee80211_frame_min *);
3301 
3302 		/* XXX do real rate control */
3303 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3304 		    IEEE80211_FC0_TYPE_MGT)
3305 			rate = 2;
3306 		else
3307 			rate = MAX(2, ieee80211_get_rate(ni));
3308 
3309 #ifdef RTW_DEBUG
3310 		if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3311 		    (IFF_DEBUG|IFF_LINK2)) {
3312 			ieee80211_dump_pkt(mtod(m0, uint8_t *),
3313 			    (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3314 			                            : sizeof(wh),
3315 			    rate, 0);
3316 		}
3317 #endif /* RTW_DEBUG */
3318 		ctl0 = proto_ctl0 |
3319 		    __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3320 
3321 		switch (rate) {
3322 		default:
3323 		case 2:
3324 			ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3325 			break;
3326 		case 4:
3327 			ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3328 			break;
3329 		case 11:
3330 			ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3331 			break;
3332 		case 22:
3333 			ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3334 			break;
3335 		}
3336 		/* XXX >= ? Compare after fragmentation? */
3337 		if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3338 			ctl0 |= RTW_TXCTL0_RTSEN;
3339 
3340                 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3341                  * seem to care, since we don't activate h/w Tx
3342                  * encryption.
3343 		 */
3344 		if (k != NULL &&
3345 		    k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) {
3346 			ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3347 			    RTW_TXCTL0_KEYID_MASK;
3348 		}
3349 
3350 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3351 		    IEEE80211_FC0_TYPE_MGT) {
3352 			ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3353 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3354 			    IEEE80211_FC0_SUBTYPE_BEACON)
3355 				ctl0 |= RTW_TXCTL0_BEACON;
3356 		}
3357 
3358 		if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3359 		    ic->ic_flags, ic->ic_fragthreshold,
3360 		    rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3361 		    (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3362 		    (IFF_DEBUG|IFF_LINK2)) == -1) {
3363 			DPRINTF(sc, RTW_DEBUG_XMIT,
3364 			    ("%s: fail compute duration\n", __func__));
3365 			goto post_load_err;
3366 		}
3367 
3368 		d0 = &ts->ts_d0;
3369 
3370 		*(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3371 
3372 		ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3373 		    __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3374 
3375 		if (d0->d_residue)
3376 			ctl1 |= RTW_TXCTL1_LENGEXT;
3377 
3378 		/* TBD fragmentation */
3379 
3380 		ts->ts_first = tdb->tdb_next;
3381 
3382 		rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3383 		    BUS_DMASYNC_PREWRITE);
3384 
3385 		KASSERT(ts->ts_first < tdb->tdb_ndesc);
3386 
3387 		bpf_mtap3(ic->ic_rawbpf, m0);
3388 
3389 		if (sc->sc_radiobpf != NULL) {
3390 			struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3391 
3392 			rt->rt_rate = rate;
3393 
3394 			bpf_mtap2(sc->sc_radiobpf, rt, sizeof(sc->sc_txtapu),
3395 			    m0);
3396 		}
3397 
3398 		for (i = 0, lastdesc = desc = ts->ts_first;
3399 		     i < dmamap->dm_nsegs;
3400 		     i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3401 			if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3402 				DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3403 				    ("%s: seg too long\n", __func__));
3404 				goto post_load_err;
3405 			}
3406 			td = &tdb->tdb_desc[desc];
3407 			td->td_ctl0 = htole32(ctl0);
3408 			td->td_ctl1 = htole32(ctl1);
3409 			td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3410 			td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3411 			td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3412 			if (i != 0)
3413 				td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3414 			lastdesc = desc;
3415 #ifdef RTW_DEBUG
3416 			rtw_print_txdesc(sc, "load", ts, tdb, desc);
3417 #endif /* RTW_DEBUG */
3418 		}
3419 
3420 		KASSERT(desc < tdb->tdb_ndesc);
3421 
3422 		ts->ts_ni = ni;
3423 		KASSERT(ni != NULL);
3424 		ts->ts_mbuf = m0;
3425 		ts->ts_last = lastdesc;
3426 		tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3427 		tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3428 		   htole32(RTW_TXCTL0_FS);
3429 
3430 #ifdef RTW_DEBUG
3431 		rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3432 		rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3433 #endif /* RTW_DEBUG */
3434 
3435 		tdb->tdb_nfree -= dmamap->dm_nsegs;
3436 		tdb->tdb_next = desc;
3437 
3438 		rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3439 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3440 
3441 		tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3442 		    htole32(RTW_TXCTL0_OWN);
3443 
3444 #ifdef RTW_DEBUG
3445 		rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3446 #endif /* RTW_DEBUG */
3447 
3448 		rtw_txdescs_sync(tdb, ts->ts_first, 1,
3449 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3450 
3451 		SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3452 		SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3453 
3454 		if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3455 			sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3456 		tsb->tsb_tx_timer = 5;
3457 		ifp->if_timer = 1;
3458 		rtw_tx_kick(&sc->sc_regs, tsb->tsb_poll);
3459 	}
3460 out:
3461 	DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3462 	return;
3463 post_load_err:
3464 	bus_dmamap_unload(sc->sc_dmat, dmamap);
3465 	m_freem(m0);
3466 post_dequeue_err:
3467 	ieee80211_free_node(ni);
3468 	return;
3469 }
3470 
3471 static void
3472 rtw_idle(struct rtw_regs *regs)
3473 {
3474 	int active;
3475 	uint8_t tppoll;
3476 
3477 	/* request stop DMA; wait for packets to stop transmitting. */
3478 
3479 	RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3480 	RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3481 
3482 	for (active = 0; active < 300 &&
3483 	     (tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0;
3484 	     active++)
3485 		DELAY(10);
3486 	printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__,
3487 	    active * 10, tppoll);
3488 }
3489 
3490 static void
3491 rtw_watchdog(struct ifnet *ifp)
3492 {
3493 	int pri, tx_timeouts = 0;
3494 	struct rtw_softc *sc;
3495 	struct rtw_txsoft_blk *tsb;
3496 
3497 	sc = ifp->if_softc;
3498 
3499 	ifp->if_timer = 0;
3500 
3501 	if (!device_is_active(sc->sc_dev))
3502 		return;
3503 
3504 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
3505 		tsb = &sc->sc_txsoft_blk[pri];
3506 
3507 		if (tsb->tsb_tx_timer == 0)
3508 			continue;
3509 		else if (--tsb->tsb_tx_timer == 0) {
3510 			if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3511 				continue;
3512 			else if (rtw_collect_txring(sc, tsb,
3513 			    &sc->sc_txdesc_blk[pri], 0))
3514 				continue;
3515 			printf("%s: transmit timeout, priority %d\n",
3516 			    ifp->if_xname, pri);
3517 			ifp->if_oerrors++;
3518 			if (pri != RTW_TXPRIBCN)
3519 				tx_timeouts++;
3520 		} else
3521 			ifp->if_timer = 1;
3522 	}
3523 
3524 	if (tx_timeouts > 0) {
3525 		/* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3526 		 * reset s/w tx-ring pointers, and start transmission.
3527 		 *
3528 		 * TBD Stop/restart just the broken rings?
3529 		 */
3530 		rtw_idle(&sc->sc_regs);
3531 		rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
3532 		rtw_txdescs_reset(sc);
3533 		rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3534 		rtw_start(ifp);
3535 	}
3536 	ieee80211_watchdog(&sc->sc_ic);
3537 	return;
3538 }
3539 
3540 static void
3541 rtw_next_scan(void *arg)
3542 {
3543 	struct ieee80211com *ic = arg;
3544 	int s;
3545 
3546 	/* don't call rtw_start w/o network interrupts blocked */
3547 	s = splnet();
3548 	if (ic->ic_state == IEEE80211_S_SCAN)
3549 		ieee80211_next_scan(ic);
3550 	splx(s);
3551 }
3552 
3553 static void
3554 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3555 {
3556 	uint16_t bcnitv, bintritv, intval;
3557 	int i;
3558 	struct rtw_regs *regs = &sc->sc_regs;
3559 
3560 	for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3561 		RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3562 
3563 	RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3564 
3565 	rtw_set_access(regs, RTW_ACCESS_CONFIG);
3566 
3567 	intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3568 
3569 	bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3570 	bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3571 	RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3572 	/* interrupt host 1ms before the TBTT */
3573 	bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3574 	bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3575 	RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3576 	/* magic from Linux */
3577 	RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3578 	RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3579 	rtw_set_access(regs, RTW_ACCESS_NONE);
3580 
3581 	rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3582 }
3583 
3584 /* Synchronize the hardware state with the software state. */
3585 static int
3586 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3587 {
3588 	struct ifnet *ifp = ic->ic_ifp;
3589 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3590 	enum ieee80211_state ostate;
3591 	int error;
3592 
3593 	ostate = ic->ic_state;
3594 
3595 	aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3596 	rtw_led_newstate(sc, nstate);
3597 
3598 	aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3599 	if (nstate == IEEE80211_S_INIT) {
3600 		callout_stop(&sc->sc_scan_ch);
3601 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3602 		return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3603 	}
3604 
3605 	if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3606 		rtw_pwrstate(sc, RTW_ON);
3607 
3608 	if ((error = rtw_tune(sc)) != 0)
3609 		return error;
3610 
3611 	switch (nstate) {
3612 	case IEEE80211_S_INIT:
3613 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3614 		break;
3615 	case IEEE80211_S_SCAN:
3616 		if (ostate != IEEE80211_S_SCAN) {
3617 			(void)memset(ic->ic_bss->ni_bssid, 0,
3618 			    IEEE80211_ADDR_LEN);
3619 			rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3620 		}
3621 
3622 		callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3623 		    rtw_next_scan, ic);
3624 
3625 		break;
3626 	case IEEE80211_S_RUN:
3627 		switch (ic->ic_opmode) {
3628 		case IEEE80211_M_HOSTAP:
3629 		case IEEE80211_M_IBSS:
3630 			rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3631 			/*FALLTHROUGH*/
3632 		case IEEE80211_M_AHDEMO:
3633 		case IEEE80211_M_STA:
3634 			rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3635 			    ic->ic_bss->ni_intval);
3636 			break;
3637 		case IEEE80211_M_MONITOR:
3638 			break;
3639 		}
3640 		rtw_set_nettype(sc, ic->ic_opmode);
3641 		break;
3642 	case IEEE80211_S_ASSOC:
3643 	case IEEE80211_S_AUTH:
3644 		break;
3645 	}
3646 
3647 	if (nstate != IEEE80211_S_SCAN)
3648 		callout_stop(&sc->sc_scan_ch);
3649 
3650 	return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3651 }
3652 
3653 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3654 static uint64_t
3655 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3656 {
3657 	uint32_t tsftl, tsfth;
3658 
3659 	tsfth = RTW_READ(regs, RTW_TSFTRH);
3660 	tsftl = RTW_READ(regs, RTW_TSFTRL);
3661 	if (tsftl < rstamp)	/* Compensate for rollover. */
3662 		tsfth--;
3663 	return ((uint64_t)tsfth << 32) | rstamp;
3664 }
3665 
3666 static void
3667 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3668     struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3669 {
3670 	struct ifnet *ifp = ic->ic_ifp;
3671 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3672 
3673 	(*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3674 
3675 	switch (subtype) {
3676 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3677 	case IEEE80211_FC0_SUBTYPE_BEACON:
3678 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
3679 		    ic->ic_state == IEEE80211_S_RUN &&
3680 		    device_is_active(sc->sc_dev)) {
3681 			uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3682 			if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3683 				(void)ieee80211_ibss_merge(ni);
3684 		}
3685 		break;
3686 	default:
3687 		break;
3688 	}
3689 	return;
3690 }
3691 
3692 static struct ieee80211_node *
3693 rtw_node_alloc(struct ieee80211_node_table *nt)
3694 {
3695 	struct ifnet *ifp = nt->nt_ic->ic_ifp;
3696 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3697 	struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3698 
3699 	DPRINTF(sc, RTW_DEBUG_NODE,
3700 	    ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
3701 	return ni;
3702 }
3703 
3704 static void
3705 rtw_node_free(struct ieee80211_node *ni)
3706 {
3707 	struct ieee80211com *ic = ni->ni_ic;
3708 	struct ifnet *ifp = ic->ic_ifp;
3709 	struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3710 
3711 	DPRINTF(sc, RTW_DEBUG_NODE,
3712 	    ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
3713 	    ether_sprintf(ni->ni_bssid)));
3714 	(*sc->sc_mtbl.mt_node_free)(ni);
3715 }
3716 
3717 static int
3718 rtw_media_change(struct ifnet *ifp)
3719 {
3720 	int error;
3721 
3722 	error = ieee80211_media_change(ifp);
3723 	if (error == ENETRESET) {
3724 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3725 		    (IFF_RUNNING|IFF_UP))
3726 			rtw_init(ifp);		/* XXX lose error */
3727 		error = 0;
3728 	}
3729 	return error;
3730 }
3731 
3732 static void
3733 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3734 {
3735 	struct rtw_softc *sc = ifp->if_softc;
3736 
3737 	if (!device_is_active(sc->sc_dev)) {
3738 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3739 		imr->ifm_status = 0;
3740 		return;
3741 	}
3742 	ieee80211_media_status(ifp, imr);
3743 }
3744 
3745 static inline void
3746 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3747 {
3748 	(void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ);
3749 	ifp->if_softc = softc;
3750 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3751 	    IFF_NOTRAILERS;
3752 	ifp->if_ioctl = rtw_ioctl;
3753 	ifp->if_start = rtw_start;
3754 	ifp->if_watchdog = rtw_watchdog;
3755 	ifp->if_init = rtw_init;
3756 	ifp->if_stop = rtw_stop;
3757 }
3758 
3759 static inline void
3760 rtw_set80211props(struct ieee80211com *ic)
3761 {
3762 	int nrate;
3763 	ic->ic_phytype = IEEE80211_T_DS;
3764 	ic->ic_opmode = IEEE80211_M_STA;
3765 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3766 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
3767 
3768 	nrate = 0;
3769 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3770 	    IEEE80211_RATE_BASIC | 2;
3771 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3772 	    IEEE80211_RATE_BASIC | 4;
3773 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3774 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3775 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3776 }
3777 
3778 static inline void
3779 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3780 {
3781 	mtbl->mt_newstate = ic->ic_newstate;
3782 	ic->ic_newstate = rtw_newstate;
3783 
3784 	mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3785 	ic->ic_recv_mgmt = rtw_recv_mgmt;
3786 
3787 	mtbl->mt_node_free = ic->ic_node_free;
3788 	ic->ic_node_free = rtw_node_free;
3789 
3790 	mtbl->mt_node_alloc = ic->ic_node_alloc;
3791 	ic->ic_node_alloc = rtw_node_alloc;
3792 
3793 	ic->ic_crypto.cs_key_delete = rtw_key_delete;
3794 	ic->ic_crypto.cs_key_set = rtw_key_set;
3795 	ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3796 	ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3797 }
3798 
3799 static inline void
3800 rtw_init_radiotap(struct rtw_softc *sc)
3801 {
3802 	uint32_t present;
3803 
3804 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3805 	sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3806 
3807 	if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3808 		present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3809 	else
3810 		present = htole32(RTW_RX_RADIOTAP_PRESENT);
3811 	sc->sc_rxtap.rr_ihdr.it_present = present;
3812 
3813 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3814 	sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3815 	sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3816 }
3817 
3818 static int
3819 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3820 {
3821 	SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3822 	SIMPLEQ_INIT(&tsb->tsb_freeq);
3823 	tsb->tsb_ndesc = qlen;
3824 	tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3825 	    M_NOWAIT);
3826 	if (tsb->tsb_desc == NULL)
3827 		return ENOMEM;
3828 	return 0;
3829 }
3830 
3831 static void
3832 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3833 {
3834 	int pri;
3835 	struct rtw_txsoft_blk *tsb;
3836 
3837 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
3838 		tsb = &sc->sc_txsoft_blk[pri];
3839 		free(tsb->tsb_desc, M_DEVBUF);
3840 		tsb->tsb_desc = NULL;
3841 	}
3842 }
3843 
3844 static int
3845 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3846 {
3847 	int pri, rc = 0;
3848 	int qlen[RTW_NTXPRI] =
3849 	     {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3850 	struct rtw_txsoft_blk *tsbs;
3851 
3852 	tsbs = sc->sc_txsoft_blk;
3853 
3854 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
3855 		rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3856 		if (rc != 0)
3857 			break;
3858 	}
3859 	tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3860 	tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3861 	tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3862 	tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3863 	return rc;
3864 }
3865 
3866 static void
3867 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3868     u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3869 {
3870 	tdb->tdb_ndesc = ndesc;
3871 	tdb->tdb_desc = desc;
3872 	tdb->tdb_physbase = physbase;
3873 	tdb->tdb_ofs = ofs;
3874 
3875 	(void)memset(tdb->tdb_desc, 0,
3876 	    sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3877 
3878 	rtw_txdesc_blk_init(tdb);
3879 	tdb->tdb_next = 0;
3880 }
3881 
3882 static void
3883 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3884 {
3885 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3886 	    &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3887 	    RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3888 
3889 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3890 	    &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3891 	    RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3892 
3893 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3894 	    &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3895 	    RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3896 
3897 	rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3898 	    &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3899 	    RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3900 }
3901 
3902 static struct rtw_rf *
3903 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3904 {
3905 	rtw_rf_write_t rf_write;
3906 	struct rtw_rf *rf;
3907 
3908 	switch (rfchipid) {
3909 	default:
3910 		rf_write = rtw_rf_hostwrite;
3911 		break;
3912 	case RTW_RFCHIPID_INTERSIL:
3913 	case RTW_RFCHIPID_PHILIPS:
3914 	case RTW_RFCHIPID_GCT:	/* XXX a guess */
3915 	case RTW_RFCHIPID_RFMD:
3916 		rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3917 		break;
3918 	}
3919 
3920 	switch (rfchipid) {
3921 	case RTW_RFCHIPID_GCT:
3922 		rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3923 		sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3924 		break;
3925 	case RTW_RFCHIPID_MAXIM:
3926 		rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3927 		sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3928 		break;
3929 	case RTW_RFCHIPID_PHILIPS:
3930 		rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3931 		sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3932 		break;
3933 	case RTW_RFCHIPID_RFMD:
3934 		/* XXX RFMD has no RF constructor */
3935 		sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3936 		/*FALLTHROUGH*/
3937 	default:
3938 		return NULL;
3939 	}
3940 	rf->rf_continuous_tx_cb =
3941 	    (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3942 	rf->rf_continuous_tx_arg = (void *)sc;
3943 	return rf;
3944 }
3945 
3946 /* Revision C and later use a different PHY delay setting than
3947  * revisions A and B.
3948  */
3949 static uint8_t
3950 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3951 {
3952 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3953 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3954 
3955 	uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3956 
3957 	RTW_WRITE(regs, RTW_RCR, REVAB);
3958 	RTW_WBW(regs, RTW_RCR, RTW_RCR);
3959 	RTW_WRITE(regs, RTW_RCR, REVC);
3960 
3961 	RTW_WBR(regs, RTW_RCR, RTW_RCR);
3962 	if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3963 		phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3964 
3965 	RTW_WRITE(regs, RTW_RCR, old_rcr);	/* restore RCR */
3966 	RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3967 
3968 	return phydelay;
3969 #undef REVC
3970 }
3971 
3972 void
3973 rtw_attach(struct rtw_softc *sc)
3974 {
3975 	struct ifnet *ifp = &sc->sc_if;
3976 	struct ieee80211com *ic = &sc->sc_ic;
3977 	struct rtw_txsoft_blk *tsb;
3978 	int pri, rc;
3979 
3980 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
3981 
3982 	rtw_cipher_wep = ieee80211_cipher_wep;
3983 	rtw_cipher_wep.ic_decap = rtw_wep_decap;
3984 
3985 	NEXT_ATTACH_STATE(sc, DETACHED);
3986 
3987 	switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3988 	case RTW_TCR_HWVERID_F:
3989 		sc->sc_hwverid = 'F';
3990 		break;
3991 	case RTW_TCR_HWVERID_D:
3992 		sc->sc_hwverid = 'D';
3993 		break;
3994 	default:
3995 		sc->sc_hwverid = '?';
3996 		break;
3997 	}
3998 	aprint_verbose_dev(sc->sc_dev, "hardware version %c\n",
3999 	    sc->sc_hwverid);
4000 
4001 	rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
4002 	    RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
4003 	    0);
4004 
4005 	if (rc != 0) {
4006 		aprint_error_dev(sc->sc_dev,
4007 		    "could not allocate hw descriptors, error %d\n", rc);
4008 		goto err;
4009 	}
4010 
4011 	NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4012 
4013 	rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4014 	    sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4015 	    (void **)&sc->sc_descs, BUS_DMA_COHERENT);
4016 
4017 	if (rc != 0) {
4018 		aprint_error_dev(sc->sc_dev,
4019 		    "could not map hw descriptors, error %d\n", rc);
4020 		goto err;
4021 	}
4022 	NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4023 
4024 	rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4025 	    sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4026 
4027 	if (rc != 0) {
4028 		aprint_error_dev(sc->sc_dev,
4029 		    "could not create DMA map for hw descriptors, error %d\n",
4030 		    rc);
4031 		goto err;
4032 	}
4033 	NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4034 
4035 	sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4036 	sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4037 
4038 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
4039 		sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4040 		sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4041 	}
4042 
4043 	rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4044 	    sizeof(struct rtw_descs), NULL, 0);
4045 
4046 	if (rc != 0) {
4047 		aprint_error_dev(sc->sc_dev,
4048 		    "could not load DMA map for hw descriptors, error %d\n",
4049 		    rc);
4050 		goto err;
4051 	}
4052 	NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4053 
4054 	if (rtw_txsoft_blk_setup_all(sc) != 0)
4055 		goto err;
4056 	NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4057 
4058 	rtw_txdesc_blk_setup_all(sc);
4059 
4060 	NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4061 
4062 	sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4063 
4064 	for (pri = 0; pri < RTW_NTXPRI; pri++) {
4065 		tsb = &sc->sc_txsoft_blk[pri];
4066 
4067 		if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4068 		    &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4069 			aprint_error_dev(sc->sc_dev,
4070 			    "could not load DMA map for hw tx descriptors, "
4071 			    "error %d\n", rc);
4072 			goto err;
4073 		}
4074 	}
4075 
4076 	NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4077 	if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4078 	                                    RTW_RXQLEN)) != 0) {
4079 		aprint_error_dev(sc->sc_dev,
4080 		    "could not load DMA map for hw rx descriptors, error %d\n",
4081 		    rc);
4082 		goto err;
4083 	}
4084 	NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4085 
4086 	/* Reset the chip to a known state. */
4087 	if (rtw_reset(sc) != 0)
4088 		goto err;
4089 	NEXT_ATTACH_STATE(sc, FINISH_RESET);
4090 
4091 	sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4092 
4093 	if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4094 		sc->sc_flags |= RTW_F_9356SROM;
4095 
4096 	if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4097 	    sc->sc_dev) != 0)
4098 		goto err;
4099 
4100 	NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4101 
4102 	if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4103 	    &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4104 	    sc->sc_dev) != 0) {
4105 		aprint_error_dev(sc->sc_dev,
4106 		    "attach failed, malformed serial ROM\n");
4107 		goto err;
4108 	}
4109 
4110 	aprint_verbose_dev(sc->sc_dev, "%s PHY\n",
4111 	    ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4112 
4113 	aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n",
4114 	    sc->sc_csthr);
4115 
4116 	NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4117 
4118 	sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4119 	    sc->sc_flags & RTW_F_DIGPHY);
4120 
4121 	if (sc->sc_rf == NULL) {
4122 		aprint_verbose_dev(sc->sc_dev,
4123 		    "attach failed, could not attach RF\n");
4124 		goto err;
4125 	}
4126 
4127 	NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4128 
4129 	sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4130 
4131 	RTW_DPRINTF(RTW_DEBUG_ATTACH,
4132 	    ("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay));
4133 
4134 	if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4135 		rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4136 
4137 	rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev);
4138 
4139 	if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4140 	    sc->sc_dev) != 0)
4141 		goto err;
4142 	NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4143 
4144 	rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc);
4145 
4146 	IFQ_SET_READY(&ifp->if_snd);
4147 
4148 	sc->sc_ic.ic_ifp = ifp;
4149 	rtw_set80211props(&sc->sc_ic);
4150 
4151 	rtw_led_attach(&sc->sc_led_state, (void *)sc);
4152 
4153 	/*
4154 	 * Call MI attach routines.
4155 	 */
4156 	if_attach(ifp);
4157 	ieee80211_ifattach(&sc->sc_ic);
4158 
4159 	rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4160 
4161 	/* possibly we should fill in our own sc_send_prresp, since
4162 	 * the RTL8180 is probably sending probe responses in ad hoc
4163 	 * mode.
4164 	 */
4165 
4166 	/* complete initialization */
4167 	ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4168 	callout_init(&sc->sc_scan_ch, 0);
4169 
4170 	rtw_init_radiotap(sc);
4171 
4172 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
4173 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4174 
4175 	NEXT_ATTACH_STATE(sc, FINISHED);
4176 
4177 	ieee80211_announce(ic);
4178 	return;
4179 err:
4180 	rtw_detach(sc);
4181 	return;
4182 }
4183 
4184 int
4185 rtw_detach(struct rtw_softc *sc)
4186 {
4187 	struct ifnet *ifp = &sc->sc_if;
4188 	int pri, s;
4189 
4190 	s = splnet();
4191 
4192 	switch (sc->sc_attach_state) {
4193 	case FINISHED:
4194 		rtw_stop(ifp, 1);
4195 
4196 		pmf_device_deregister(sc->sc_dev);
4197 		callout_stop(&sc->sc_scan_ch);
4198 		ieee80211_ifdetach(&sc->sc_ic);
4199 		if_detach(ifp);
4200 		rtw_led_detach(&sc->sc_led_state);
4201 		/*FALLTHROUGH*/
4202 	case FINISH_ID_STA:
4203 	case FINISH_RF_ATTACH:
4204 		rtw_rf_destroy(sc->sc_rf);
4205 		sc->sc_rf = NULL;
4206 		/*FALLTHROUGH*/
4207 	case FINISH_PARSE_SROM:
4208 	case FINISH_READ_SROM:
4209 		rtw_srom_free(&sc->sc_srom);
4210 		/*FALLTHROUGH*/
4211 	case FINISH_RESET:
4212 	case FINISH_RXMAPS_CREATE:
4213 		rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4214 		    RTW_RXQLEN);
4215 		/*FALLTHROUGH*/
4216 	case FINISH_TXMAPS_CREATE:
4217 		for (pri = 0; pri < RTW_NTXPRI; pri++) {
4218 			rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4219 			    sc->sc_txsoft_blk[pri].tsb_desc,
4220 			    sc->sc_txsoft_blk[pri].tsb_ndesc);
4221 		}
4222 		/*FALLTHROUGH*/
4223 	case FINISH_TXDESCBLK_SETUP:
4224 	case FINISH_TXCTLBLK_SETUP:
4225 		rtw_txsoft_blk_cleanup_all(sc);
4226 		/*FALLTHROUGH*/
4227 	case FINISH_DESCMAP_LOAD:
4228 		bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4229 		/*FALLTHROUGH*/
4230 	case FINISH_DESCMAP_CREATE:
4231 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4232 		/*FALLTHROUGH*/
4233 	case FINISH_DESC_MAP:
4234 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4235 		    sizeof(struct rtw_descs));
4236 		/*FALLTHROUGH*/
4237 	case FINISH_DESC_ALLOC:
4238 		bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4239 		    sc->sc_desc_nsegs);
4240 		/*FALLTHROUGH*/
4241 	case DETACHED:
4242 		NEXT_ATTACH_STATE(sc, DETACHED);
4243 		break;
4244 	}
4245 	splx(s);
4246 	return 0;
4247 }
4248