xref: /netbsd/sys/dev/ic/rtwphy.c (revision 6550d01e)
1 /* $NetBSD: rtwphy.c,v 1.15 2009/10/19 23:19:39 rmind Exp $ */
2 /*-
3  * Copyright (c) 2004, 2005 David Young.  All rights reserved.
4  *
5  * Programmed for NetBSD by David Young.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
18  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
19  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
20  * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
27  * OF SUCH DAMAGE.
28  */
29 /*
30  * Control the Philips SA2400 RF front-end and the baseband processor
31  * built into the Realtek RTL8180.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.15 2009/10/19 23:19:39 rmind Exp $");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/device.h>
41 
42 #include <sys/bus.h>
43 
44 #include <net/if.h>
45 #include <net/if_media.h>
46 #include <net/if_ether.h>
47 
48 #include <net80211/ieee80211_netbsd.h>
49 #include <net80211/ieee80211_radiotap.h>
50 #include <net80211/ieee80211_var.h>
51 
52 #include <dev/ic/rtwreg.h>
53 #include <dev/ic/max2820reg.h>
54 #include <dev/ic/sa2400reg.h>
55 #include <dev/ic/rtwvar.h>
56 #include <dev/ic/rtwphyio.h>
57 #include <dev/ic/rtwphy.h>
58 
59 static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
60 static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
61 
62 #define	GCT_WRITE(__gr, __addr, __val, __label)				\
63 	do {								\
64 		if (rtw_rfbus_write(&(__gr)->gr_bus, RTW_RFCHIPID_GCT,	\
65 		    (__addr), (__val)) == -1)				\
66 			goto __label;					\
67 	} while(0)
68 
69 static int
70 rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb,
71     u_int freq)
72 {
73 	u_int antatten = antatten0;
74 	if (dflantb)
75 		antatten |= RTW_BBP_ANTATTEN_DFLANTB;
76 	if (freq == 2484) /* channel 14 */
77 		antatten |= RTW_BBP_ANTATTEN_CHAN14;
78 	return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten);
79 }
80 
81 static int
82 rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv,
83     int dflantb, uint8_t cs_threshold, u_int freq)
84 {
85 	int rc;
86 	uint32_t sys2, sys3;
87 
88 	sys2 = bb->bb_sys2;
89 	if (antdiv)
90 		sys2 |= RTW_BBP_SYS2_ANTDIV;
91 	sys3 = bb->bb_sys3 |
92 	    __SHIFTIN(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK);
93 
94 #define	RTW_BBP_WRITE_OR_RETURN(reg, val) \
95 	if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \
96 		return rc;
97 
98 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1,		bb->bb_sys1);
99 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC,		bb->bb_txagc);
100 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET,		bb->bb_lnadet);
101 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI,	bb->bb_ifagcini);
102 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT,	bb->bb_ifagclimit);
103 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET,	bb->bb_ifagcdet);
104 
105 	if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0)
106 		return rc;
107 
108 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL,		bb->bb_trl);
109 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2,		sys2);
110 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3,		sys3);
111 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM,	bb->bb_chestlim);
112 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM,	bb->bb_chsqlim);
113 	return 0;
114 }
115 
116 static int
117 rtw_sa2400_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
118 {
119 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
120 	struct rtw_rfbus *bus = &sa->sa_bus;
121 
122 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX,
123 	    opaque_txpower);
124 }
125 
126 /* make sure we're using the same settings as the reference driver */
127 static void
128 verify_syna(u_int freq, uint32_t val)
129 {
130 	uint32_t expected_val = ~val;
131 
132 	switch (freq) {
133 	case 2412:
134 		expected_val = 0x0000096c; /* ch 1 */
135 		break;
136 	case 2417:
137 		expected_val = 0x00080970; /* ch 2 */
138 		break;
139 	case 2422:
140 		expected_val = 0x00100974; /* ch 3 */
141 		break;
142 	case 2427:
143 		expected_val = 0x00180978; /* ch 4 */
144 		break;
145 	case 2432:
146 		expected_val = 0x00000980; /* ch 5 */
147 		break;
148 	case 2437:
149 		expected_val = 0x00080984; /* ch 6 */
150 		break;
151 	case 2442:
152 		expected_val = 0x00100988; /* ch 7 */
153 		break;
154 	case 2447:
155 		expected_val = 0x0018098c; /* ch 8 */
156 		break;
157 	case 2452:
158 		expected_val = 0x00000994; /* ch 9 */
159 		break;
160 	case 2457:
161 		expected_val = 0x00080998; /* ch 10 */
162 		break;
163 	case 2462:
164 		expected_val = 0x0010099c; /* ch 11 */
165 		break;
166 	case 2467:
167 		expected_val = 0x001809a0; /* ch 12 */
168 		break;
169         case 2472:
170 		expected_val = 0x000009a8; /* ch 13 */
171 		break;
172         case 2484:
173 		expected_val = 0x000009b4; /* ch 14 */
174 		break;
175 	}
176 	KASSERT(val == expected_val);
177 }
178 
179 /* freq is in MHz */
180 static int
181 rtw_sa2400_tune(struct rtw_rf *rf, u_int freq)
182 {
183 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
184 	struct rtw_rfbus *bus = &sa->sa_bus;
185 	int rc;
186 	uint32_t syna, synb, sync;
187 
188 	/* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz.
189 	 *
190 	 * The channel spacing (5MHz) is not divisible by 4MHz, so
191 	 * we set the fractional part of N to compensate.
192 	 */
193 	int n = freq / 4, nf = (freq % 4) * 2;
194 
195 	syna = __SHIFTIN(nf, SA2400_SYNA_NF_MASK) | __SHIFTIN(n, SA2400_SYNA_N_MASK);
196 	verify_syna(freq, syna);
197 
198 	/* Divide the 44MHz crystal down to 4MHz. Set the fractional
199 	 * compensation charge pump value to agree with the fractional
200 	 * modulus.
201 	 */
202 	synb = __SHIFTIN(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL |
203 	    SA2400_SYNB_ON | SA2400_SYNB_ONE |
204 	    __SHIFTIN(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */
205 
206 	sync = SA2400_SYNC_CP_NORMAL;
207 
208 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA,
209 	    syna)) != 0)
210 		return rc;
211 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB,
212 	    synb)) != 0)
213 		return rc;
214 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC,
215 	    sync)) != 0)
216 		return rc;
217 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0);
218 }
219 
220 static int
221 rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
222 {
223 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
224 	struct rtw_rfbus *bus = &sa->sa_bus;
225 	uint32_t opmode;
226 	opmode = SA2400_OPMODE_DEFAULTS;
227 	switch (power) {
228 	case RTW_ON:
229 		opmode |= SA2400_OPMODE_MODE_TXRX;
230 		break;
231 	case RTW_SLEEP:
232 		opmode |= SA2400_OPMODE_MODE_WAIT;
233 		break;
234 	case RTW_OFF:
235 		opmode |= SA2400_OPMODE_MODE_SLEEP;
236 		break;
237 	}
238 
239 	if (sa->sa_digphy)
240 		opmode |= SA2400_OPMODE_DIGIN;
241 
242 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
243 	    opmode);
244 }
245 
246 static int
247 rtw_sa2400_manrx_init(struct rtw_sa2400 *sa)
248 {
249 	uint32_t manrx;
250 
251 	/* XXX we are not supposed to be in RXMGC mode when we do
252 	 * this?
253 	 */
254 	manrx = SA2400_MANRX_AHSN;
255 	manrx |= SA2400_MANRX_TEN;
256 	manrx |= __SHIFTIN(1023, SA2400_MANRX_RXGAIN_MASK);
257 
258 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX,
259 	    manrx);
260 }
261 
262 static int
263 rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start)
264 {
265 	uint32_t opmode;
266 
267 	opmode = SA2400_OPMODE_DEFAULTS;
268 	if (start)
269 		opmode |= SA2400_OPMODE_MODE_VCOCALIB;
270 	else
271 		opmode |= SA2400_OPMODE_MODE_SLEEP;
272 
273 	if (sa->sa_digphy)
274 		opmode |= SA2400_OPMODE_DIGIN;
275 
276 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
277 	    opmode);
278 }
279 
280 static int
281 rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa)
282 {
283 	int rc;
284 	/* calibrate VCO */
285 	if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0)
286 		return rc;
287 	DELAY(2200);	/* 2.2 milliseconds */
288 	/* XXX superfluous: SA2400 automatically entered SLEEP mode. */
289 	return rtw_sa2400_vcocal_start(sa, 0);
290 }
291 
292 static int
293 rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa)
294 {
295 	uint32_t opmode;
296 
297 	opmode = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_FCALIB;
298 	if (sa->sa_digphy)
299 		opmode |= SA2400_OPMODE_DIGIN;
300 
301 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
302 	    opmode);
303 }
304 
305 static int
306 rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa)
307 {
308 	struct rtw_rf *rf = &sa->sa_rf;
309 	int rc;
310 	uint32_t dccal;
311 
312 	(*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1);
313 
314 	dccal = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_TXRX;
315 
316 	rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
317 	    dccal);
318 	if (rc != 0)
319 		return rc;
320 
321 	DELAY(5);	/* DCALIB after being in Tx mode for 5
322 			 * microseconds
323 			 */
324 
325 	dccal &= ~SA2400_OPMODE_MODE_MASK;
326 	dccal |= SA2400_OPMODE_MODE_DCALIB;
327 
328 	rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
329 	   dccal);
330 	if (rc != 0)
331 		return rc;
332 
333 	DELAY(20);	/* calibration takes at most 20 microseconds */
334 
335 	(*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0);
336 
337 	return 0;
338 }
339 
340 static int
341 rtw_sa2400_agc_init(struct rtw_sa2400 *sa)
342 {
343 	uint32_t agc;
344 
345 	agc = __SHIFTIN(25, SA2400_AGC_MAXGAIN_MASK);
346 	agc |= __SHIFTIN(7, SA2400_AGC_BBPDELAY_MASK);
347 	agc |= __SHIFTIN(15, SA2400_AGC_LNADELAY_MASK);
348 	agc |= __SHIFTIN(27, SA2400_AGC_RXONDELAY_MASK);
349 
350 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC,
351 	    agc);
352 }
353 
354 static void
355 rtw_sa2400_destroy(struct rtw_rf *rf)
356 {
357 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
358 	memset(sa, 0, sizeof(*sa));
359 	free(sa, M_DEVBUF);
360 }
361 
362 static int
363 rtw_sa2400_calibrate(struct rtw_rf *rf, u_int freq)
364 {
365 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
366 	int i, rc;
367 
368 	/* XXX reference driver calibrates VCO twice. Is it a bug? */
369 	for (i = 0; i < 2; i++) {
370 		if ((rc = rtw_sa2400_vco_calibration(sa)) != 0)
371 			return rc;
372 	}
373 	/* VCO calibration erases synthesizer registers, so re-tune */
374 	if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
375 		return rc;
376 	if ((rc = rtw_sa2400_filter_calibration(sa)) != 0)
377 		return rc;
378 	/* analog PHY needs DC calibration */
379 	if (!sa->sa_digphy)
380 		return rtw_sa2400_dc_calibration(sa);
381 	return 0;
382 }
383 
384 static int
385 rtw_sa2400_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
386     enum rtw_pwrstate power)
387 {
388 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
389 	int rc;
390 
391 	if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0)
392 		return rc;
393 
394 	/* skip configuration if it's time to sleep or to power-down. */
395 	if (power == RTW_SLEEP || power == RTW_OFF)
396 		return rtw_sa2400_pwrstate(rf, power);
397 
398 	/* go to sleep for configuration */
399 	if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0)
400 		return rc;
401 
402 	if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
403 		return rc;
404 	if ((rc = rtw_sa2400_agc_init(sa)) != 0)
405 		return rc;
406 	if ((rc = rtw_sa2400_manrx_init(sa)) != 0)
407 		return rc;
408 	if ((rc = rtw_sa2400_calibrate(rf, freq)) != 0)
409 		return rc;
410 
411 	/* enter Tx/Rx mode */
412 	return rtw_sa2400_pwrstate(rf, power);
413 }
414 
415 struct rtw_rf *
416 rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy)
417 {
418 	struct rtw_sa2400 *sa;
419 	struct rtw_rfbus *bus;
420 	struct rtw_rf *rf;
421 	struct rtw_bbpset *bb;
422 
423 	sa = malloc(sizeof(*sa), M_DEVBUF, M_NOWAIT | M_ZERO);
424 	if (sa == NULL)
425 		return NULL;
426 
427 	sa->sa_digphy = digphy;
428 
429 	rf = &sa->sa_rf;
430 	bus = &sa->sa_bus;
431 
432 	rf->rf_init = rtw_sa2400_init;
433 	rf->rf_destroy = rtw_sa2400_destroy;
434 	rf->rf_txpower = rtw_sa2400_txpower;
435 	rf->rf_tune = rtw_sa2400_tune;
436 	rf->rf_pwrstate = rtw_sa2400_pwrstate;
437 	bb = &rf->rf_bbpset;
438 
439 	/* XXX magic */
440 	bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC;
441 	bb->bb_chestlim =	0x00;
442 	bb->bb_chsqlim =	0xa0;
443 	bb->bb_ifagcdet =	0x64;
444 	bb->bb_ifagcini =	0x90;
445 	bb->bb_ifagclimit =	0x1a;
446 	bb->bb_lnadet =		0xe0;
447 	bb->bb_sys1 =		0x98;
448 	bb->bb_sys2 =		0x47;
449 	bb->bb_sys3 =		0x90;
450 	bb->bb_trl =		0x88;
451 	bb->bb_txagc =		0x38;
452 
453 	bus->b_regs = regs;
454 	bus->b_write = rf_write;
455 
456 	return &sa->sa_rf;
457 }
458 
459 static int
460 rtw_grf5101_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
461 {
462 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
463 
464 	GCT_WRITE(gr, 0x15, 0, err);
465 	GCT_WRITE(gr, 0x06, opaque_txpower, err);
466 	GCT_WRITE(gr, 0x15, 0x10, err);
467 	GCT_WRITE(gr, 0x15, 0x00, err);
468 	return 0;
469 err:
470 	return -1;
471 }
472 
473 static int
474 rtw_grf5101_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
475 {
476 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
477 	switch (power) {
478 	case RTW_OFF:
479 	case RTW_SLEEP:
480 		GCT_WRITE(gr, 0x07, 0x0000, err);
481 		GCT_WRITE(gr, 0x1f, 0x0045, err);
482 		GCT_WRITE(gr, 0x1f, 0x0005, err);
483 		GCT_WRITE(gr, 0x00, 0x08e4, err);
484 	default:
485 		break;
486 	case RTW_ON:
487 		GCT_WRITE(gr, 0x1f, 0x0001, err);
488 		DELAY(10);
489 		GCT_WRITE(gr, 0x1f, 0x0001, err);
490 		DELAY(10);
491 		GCT_WRITE(gr, 0x1f, 0x0041, err);
492 		DELAY(10);
493 		GCT_WRITE(gr, 0x1f, 0x0061, err);
494 		DELAY(10);
495 		GCT_WRITE(gr, 0x00, 0x0ae4, err);
496 		DELAY(10);
497 		GCT_WRITE(gr, 0x07, 0x1000, err);
498 		DELAY(100);
499 		break;
500 	}
501 
502 	return 0;
503 err:
504 	return -1;
505 }
506 
507 static int
508 rtw_grf5101_tune(struct rtw_rf *rf, u_int freq)
509 {
510 	int channel;
511 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
512 
513 	if (freq == 2484)
514 		channel = 14;
515 	else if ((channel = (freq - 2412) / 5 + 1) < 1 || channel > 13) {
516 		RTW_DPRINTF(RTW_DEBUG_PHY,
517 		    ("%s: invalid channel %d (freq %d)\n", __func__, channel,
518 		     freq));
519 		return -1;
520 	}
521 
522 	GCT_WRITE(gr, 0x07, 0, err);
523 	GCT_WRITE(gr, 0x0b, channel - 1, err);
524 	GCT_WRITE(gr, 0x07, 0x1000, err);
525 	return 0;
526 err:
527 	return -1;
528 }
529 
530 static int
531 rtw_grf5101_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
532     enum rtw_pwrstate power)
533 {
534 	int rc;
535 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
536 
537 	/*
538          * These values have been derived from the rtl8180-sa2400
539          * Linux driver.  It is unknown what they all do, GCT refuse
540          * to release any documentation so these are more than
541          * likely sub optimal settings
542 	 */
543 
544 	GCT_WRITE(gr, 0x01, 0x1a23, err);
545 	GCT_WRITE(gr, 0x02, 0x4971, err);
546 	GCT_WRITE(gr, 0x03, 0x41de, err);
547 	GCT_WRITE(gr, 0x04, 0x2d80, err);
548 
549 	GCT_WRITE(gr, 0x05, 0x61ff, err);
550 
551 	GCT_WRITE(gr, 0x06, 0x0, err);
552 
553 	GCT_WRITE(gr, 0x08, 0x7533, err);
554 	GCT_WRITE(gr, 0x09, 0xc401, err);
555 	GCT_WRITE(gr, 0x0a, 0x0, err);
556 	GCT_WRITE(gr, 0x0c, 0x1c7, err);
557 	GCT_WRITE(gr, 0x0d, 0x29d3, err);
558 	GCT_WRITE(gr, 0x0e, 0x2e8, err);
559 	GCT_WRITE(gr, 0x10, 0x192, err);
560 	GCT_WRITE(gr, 0x11, 0x248, err);
561 	GCT_WRITE(gr, 0x12, 0x0, err);
562 	GCT_WRITE(gr, 0x13, 0x20c4, err);
563 	GCT_WRITE(gr, 0x14, 0xf4fc, err);
564 	GCT_WRITE(gr, 0x15, 0x0, err);
565 	GCT_WRITE(gr, 0x16, 0x1500, err);
566 
567 	if ((rc = rtw_grf5101_txpower(rf, opaque_txpower)) != 0)
568 		return rc;
569 
570 	if ((rc = rtw_grf5101_tune(rf, freq)) != 0)
571 		return rc;
572 
573 	return 0;
574 err:
575 	return -1;
576 }
577 
578 static void
579 rtw_grf5101_destroy(struct rtw_rf *rf)
580 {
581 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
582 	memset(gr, 0, sizeof(*gr));
583 	free(gr, M_DEVBUF);
584 }
585 
586 struct rtw_rf *
587 rtw_grf5101_create(struct rtw_regs *regs, rtw_rf_write_t rf_write,
588     int digphy)
589 {
590 	struct rtw_grf5101 *gr;
591 	struct rtw_rfbus *bus;
592 	struct rtw_rf *rf;
593 	struct rtw_bbpset *bb;
594 
595 	gr = malloc(sizeof(*gr), M_DEVBUF, M_NOWAIT | M_ZERO);
596 	if (gr == NULL)
597 		return NULL;
598 
599 	rf = &gr->gr_rf;
600 	bus = &gr->gr_bus;
601 
602 	rf->rf_init = rtw_grf5101_init;
603 	rf->rf_destroy = rtw_grf5101_destroy;
604 	rf->rf_txpower = rtw_grf5101_txpower;
605 	rf->rf_tune = rtw_grf5101_tune;
606 	rf->rf_pwrstate = rtw_grf5101_pwrstate;
607 	bb = &rf->rf_bbpset;
608 
609 	/* XXX magic */
610 	bb->bb_antatten = RTW_BBP_ANTATTEN_GCT_MAGIC;
611 	bb->bb_chestlim =       0x00;
612 	bb->bb_chsqlim =        0xa0;
613 	bb->bb_ifagcdet =       0x64;
614 	bb->bb_ifagcini =       0x90;
615 	bb->bb_ifagclimit =     0x1e;
616 	bb->bb_lnadet =         0xc0;
617 	bb->bb_sys1 =           0xa8;
618 	bb->bb_sys2 =           0x47;
619 	bb->bb_sys3 =           0x9b;
620 	bb->bb_trl =            0x88;
621 	bb->bb_txagc =          0x08;
622 
623 	bus->b_regs = regs;
624 	bus->b_write = rf_write;
625 
626 	return &gr->gr_rf;
627 }
628 
629 /* freq is in MHz */
630 static int
631 rtw_max2820_tune(struct rtw_rf *rf, u_int freq)
632 {
633 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
634 	struct rtw_rfbus *bus = &mx->mx_bus;
635 
636 	if (freq < 2400 || freq > 2499)
637 		return -1;
638 
639 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL,
640 	    __SHIFTIN(freq - 2400, MAX2820_CHANNEL_CF_MASK));
641 }
642 
643 static void
644 rtw_max2820_destroy(struct rtw_rf *rf)
645 {
646 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
647 	memset(mx, 0, sizeof(*mx));
648 	free(mx, M_DEVBUF);
649 }
650 
651 static int
652 rtw_max2820_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
653     enum rtw_pwrstate power)
654 {
655 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
656 	struct rtw_rfbus *bus = &mx->mx_bus;
657 	int rc;
658 
659 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST,
660 	    MAX2820_TEST_DEFAULT)) != 0)
661 		return rc;
662 
663 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE,
664 	    MAX2820_ENABLE_DEFAULT)) != 0)
665 		return rc;
666 
667 	/* skip configuration if it's time to sleep or to power-down. */
668 	if ((rc = rtw_max2820_pwrstate(rf, power)) != 0)
669 		return rc;
670 	else if (power == RTW_OFF || power == RTW_SLEEP)
671 		return 0;
672 
673 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH,
674 	    MAX2820_SYNTH_R_44MHZ)) != 0)
675 		return rc;
676 
677 	if ((rc = rtw_max2820_tune(rf, freq)) != 0)
678 		return rc;
679 
680 	/* XXX The MAX2820 datasheet indicates that 1C and 2C should not
681 	 * be changed from 7, however, the reference driver sets them
682 	 * to 4 and 1, respectively.
683 	 */
684 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE,
685 	    MAX2820_RECEIVE_DL_DEFAULT |
686 	    __SHIFTIN(4, MAX2820A_RECEIVE_1C_MASK) |
687 	    __SHIFTIN(1, MAX2820A_RECEIVE_2C_MASK))) != 0)
688 		return rc;
689 
690 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT,
691 	    MAX2820_TRANSMIT_PA_DEFAULT);
692 }
693 
694 static int
695 rtw_max2820_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
696 {
697 	/* TBD */
698 	return 0;
699 }
700 
701 static int
702 rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
703 {
704 	uint32_t enable;
705 	struct rtw_max2820 *mx;
706 	struct rtw_rfbus *bus;
707 
708 	mx = (struct rtw_max2820 *)rf;
709 	bus = &mx->mx_bus;
710 
711 	switch (power) {
712 	case RTW_OFF:
713 	case RTW_SLEEP:
714 	default:
715 		enable = 0x0;
716 		break;
717 	case RTW_ON:
718 		enable = MAX2820_ENABLE_DEFAULT;
719 		break;
720 	}
721 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable);
722 }
723 
724 struct rtw_rf *
725 rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a)
726 {
727 	struct rtw_max2820 *mx;
728 	struct rtw_rfbus *bus;
729 	struct rtw_rf *rf;
730 	struct rtw_bbpset *bb;
731 
732 	mx = malloc(sizeof(*mx), M_DEVBUF, M_NOWAIT | M_ZERO);
733 	if (mx == NULL)
734 		return NULL;
735 
736 	mx->mx_is_a = is_a;
737 
738 	rf = &mx->mx_rf;
739 	bus = &mx->mx_bus;
740 
741 	rf->rf_init = rtw_max2820_init;
742 	rf->rf_destroy = rtw_max2820_destroy;
743 	rf->rf_txpower = rtw_max2820_txpower;
744 	rf->rf_tune = rtw_max2820_tune;
745 	rf->rf_pwrstate = rtw_max2820_pwrstate;
746 	bb = &rf->rf_bbpset;
747 
748 	/* XXX magic */
749 	bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC;
750 	bb->bb_chestlim =	0;
751 	bb->bb_chsqlim =	159;
752 	bb->bb_ifagcdet =	100;
753 	bb->bb_ifagcini =	144;
754 	bb->bb_ifagclimit =	26;
755 	bb->bb_lnadet =		248;
756 	bb->bb_sys1 =		136;
757 	bb->bb_sys2 =		71;
758 	bb->bb_sys3 =		155;
759 	bb->bb_trl =		136;
760 	bb->bb_txagc =		8;
761 
762 	bus->b_regs = regs;
763 	bus->b_write = rf_write;
764 
765 	return &mx->mx_rf;
766 }
767 
768 /* freq is in MHz */
769 int
770 rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, uint8_t opaque_txpower,
771     uint8_t cs_threshold, u_int freq, int antdiv, int dflantb,
772     enum rtw_pwrstate power)
773 {
774 	int rc;
775 	RTW_DPRINTF(RTW_DEBUG_PHY,
776 	    ("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u "
777 	     "pwrstate %s\n", __func__, opaque_txpower, cs_threshold, freq,
778 	     antdiv, dflantb, rtw_pwrstate_string(power)));
779 
780 	/* XXX is this really necessary? */
781 	if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
782 		return rc;
783 	if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb,
784 	    freq)) != 0)
785 		return rc;
786 	if ((rc = rtw_rf_tune(rf, freq)) != 0)
787 		return rc;
788 	/* initialize RF  */
789 	if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0)
790 		return rc;
791 #if 0	/* what is this redundant tx power setting here for? */
792 	if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
793 		return rc;
794 #endif
795 	return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb,
796 	    cs_threshold, freq);
797 }
798