xref: /netbsd/sys/dev/ic/smc83c170.c (revision bf9ec67e)
1 /*	$NetBSD: smc83c170.c,v 1.49 2001/11/13 13:14:44 lukem Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Device driver for the Standard Microsystems Corp. 83C170
42  * Ethernet PCI Integrated Controller (EPIC/100).
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.49 2001/11/13 13:14:44 lukem Exp $");
47 
48 #include "bpfilter.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/callout.h>
53 #include <sys/mbuf.h>
54 #include <sys/malloc.h>
55 #include <sys/kernel.h>
56 #include <sys/socket.h>
57 #include <sys/ioctl.h>
58 #include <sys/errno.h>
59 #include <sys/device.h>
60 
61 #include <uvm/uvm_extern.h>
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74 
75 #include <dev/mii/miivar.h>
76 #include <dev/mii/lxtphyreg.h>
77 
78 #include <dev/ic/smc83c170reg.h>
79 #include <dev/ic/smc83c170var.h>
80 
81 void	epic_start __P((struct ifnet *));
82 void	epic_watchdog __P((struct ifnet *));
83 int	epic_ioctl __P((struct ifnet *, u_long, caddr_t));
84 int	epic_init __P((struct ifnet *));
85 void	epic_stop __P((struct ifnet *, int));
86 
87 void	epic_shutdown __P((void *));
88 
89 void	epic_reset __P((struct epic_softc *));
90 void	epic_rxdrain __P((struct epic_softc *));
91 int	epic_add_rxbuf __P((struct epic_softc *, int));
92 void	epic_read_eeprom __P((struct epic_softc *, int, int, u_int16_t *));
93 void	epic_set_mchash __P((struct epic_softc *));
94 void	epic_fixup_clock_source __P((struct epic_softc *));
95 int	epic_mii_read __P((struct device *, int, int));
96 void	epic_mii_write __P((struct device *, int, int, int));
97 int	epic_mii_wait __P((struct epic_softc *, u_int32_t));
98 void	epic_tick __P((void *));
99 
100 void	epic_statchg __P((struct device *));
101 int	epic_mediachange __P((struct ifnet *));
102 void	epic_mediastatus __P((struct ifnet *, struct ifmediareq *));
103 
104 #define	INTMASK	(INTSTAT_FATAL_INT | INTSTAT_TXU | \
105 	    INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
106 
107 int	epic_copy_small = 0;
108 
109 /*
110  * Attach an EPIC interface to the system.
111  */
112 void
113 epic_attach(sc)
114 	struct epic_softc *sc;
115 {
116 	bus_space_tag_t st = sc->sc_st;
117 	bus_space_handle_t sh = sc->sc_sh;
118 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
119 	int i, rseg, error, miiflags;
120 	bus_dma_segment_t seg;
121 	u_int8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
122 	u_int16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
123 
124 	callout_init(&sc->sc_mii_callout);
125 
126 	/*
127 	 * Allocate the control data structures, and create and load the
128 	 * DMA map for it.
129 	 */
130 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
131 	    sizeof(struct epic_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
132 	    BUS_DMA_NOWAIT)) != 0) {
133 		printf("%s: unable to allocate control data, error = %d\n",
134 		    sc->sc_dev.dv_xname, error);
135 		goto fail_0;
136 	}
137 
138 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
139 	    sizeof(struct epic_control_data), (caddr_t *)&sc->sc_control_data,
140 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
141 		printf("%s: unable to map control data, error = %d\n",
142 		    sc->sc_dev.dv_xname, error);
143 		goto fail_1;
144 	}
145 
146 	if ((error = bus_dmamap_create(sc->sc_dmat,
147 	    sizeof(struct epic_control_data), 1,
148 	    sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
149 	    &sc->sc_cddmamap)) != 0) {
150 		printf("%s: unable to create control data DMA map, "
151 		    "error = %d\n", sc->sc_dev.dv_xname, error);
152 		goto fail_2;
153 	}
154 
155 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
156 	    sc->sc_control_data, sizeof(struct epic_control_data), NULL,
157 	    BUS_DMA_NOWAIT)) != 0) {
158 		printf("%s: unable to load control data DMA map, error = %d\n",
159 		    sc->sc_dev.dv_xname, error);
160 		goto fail_3;
161 	}
162 
163 	/*
164 	 * Create the transmit buffer DMA maps.
165 	 */
166 	for (i = 0; i < EPIC_NTXDESC; i++) {
167 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
168 		    EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
169 		    &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
170 			printf("%s: unable to create tx DMA map %d, "
171 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
172 			goto fail_4;
173 		}
174 	}
175 
176 	/*
177 	 * Create the receive buffer DMA maps.
178 	 */
179 	for (i = 0; i < EPIC_NRXDESC; i++) {
180 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
181 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
182 		    &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
183 			printf("%s: unable to create rx DMA map %d, "
184 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
185 			goto fail_5;
186 		}
187 		EPIC_DSRX(sc, i)->ds_mbuf = NULL;
188 	}
189 
190 
191 	/*
192 	 * Bring the chip out of low-power mode and reset it to a known state.
193 	 */
194 	bus_space_write_4(st, sh, EPIC_GENCTL, 0);
195 	epic_reset(sc);
196 
197 	/*
198 	 * Read the Ethernet address from the EEPROM.
199 	 */
200 	epic_read_eeprom(sc, 0, (sizeof(myea) / sizeof(myea[0])), myea);
201 	for (i = 0; i < sizeof(myea)/ sizeof(myea[0]); i++) {
202 		enaddr[i * 2]     = myea[i] & 0xff;
203 		enaddr[i * 2 + 1] = myea[i] >> 8;
204 	}
205 
206 	/*
207 	 * ...and the device name.
208 	 */
209 	epic_read_eeprom(sc, 0x2c, (sizeof(mydevname) / sizeof(mydevname[0])),
210 	    mydevname);
211 	for (i = 0; i < sizeof(mydevname) / sizeof(mydevname[0]); i++) {
212 		devname[i * 2]     = mydevname[i] & 0xff;
213 		devname[i * 2 + 1] = mydevname[i] >> 8;
214 	}
215 
216 	devname[sizeof(mydevname)] = '\0';
217 	for (i = sizeof(mydevname) - 1; i >= 0; i--) {
218 		if (devname[i] == ' ')
219 			devname[i] = '\0';
220 		else
221 			break;
222 	}
223 
224 	printf("%s: %s, Ethernet address %s\n", sc->sc_dev.dv_xname,
225 	    devname, ether_sprintf(enaddr));
226 
227 	miiflags = 0;
228 	if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
229 		miiflags |= MIIF_HAVEFIBER;
230 
231 	/*
232 	 * Initialize our media structures and probe the MII.
233 	 */
234 	sc->sc_mii.mii_ifp = ifp;
235 	sc->sc_mii.mii_readreg = epic_mii_read;
236 	sc->sc_mii.mii_writereg = epic_mii_write;
237 	sc->sc_mii.mii_statchg = epic_statchg;
238 	ifmedia_init(&sc->sc_mii.mii_media, 0, epic_mediachange,
239 	    epic_mediastatus);
240 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
241 	    MII_OFFSET_ANY, miiflags);
242 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
243 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
244 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
245 	} else
246 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
247 
248 	if (sc->sc_hwflags & EPIC_HAS_BNC) {
249 		/* use the next free media instance */
250 		sc->sc_serinst = sc->sc_mii.mii_instance++;
251 		ifmedia_add(&sc->sc_mii.mii_media,
252 			    IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0,
253 					 sc->sc_serinst),
254 			    0, NULL);
255 		printf("%s: 10base2/BNC\n", sc->sc_dev.dv_xname);
256 	} else
257 		sc->sc_serinst = -1;
258 
259 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
260 	ifp->if_softc = sc;
261 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
262 	ifp->if_ioctl = epic_ioctl;
263 	ifp->if_start = epic_start;
264 	ifp->if_watchdog = epic_watchdog;
265 	ifp->if_init = epic_init;
266 	ifp->if_stop = epic_stop;
267 	IFQ_SET_READY(&ifp->if_snd);
268 
269 	/*
270 	 * We can support 802.1Q VLAN-sized frames.
271 	 */
272 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
273 
274 	/*
275 	 * Attach the interface.
276 	 */
277 	if_attach(ifp);
278 	ether_ifattach(ifp, enaddr);
279 
280 	/*
281 	 * Make sure the interface is shutdown during reboot.
282 	 */
283 	sc->sc_sdhook = shutdownhook_establish(epic_shutdown, sc);
284 	if (sc->sc_sdhook == NULL)
285 		printf("%s: WARNING: unable to establish shutdown hook\n",
286 		    sc->sc_dev.dv_xname);
287 	return;
288 
289 	/*
290 	 * Free any resources we've allocated during the failed attach
291 	 * attempt.  Do this in reverse order and fall through.
292 	 */
293  fail_5:
294 	for (i = 0; i < EPIC_NRXDESC; i++) {
295 		if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
296 			bus_dmamap_destroy(sc->sc_dmat,
297 			    EPIC_DSRX(sc, i)->ds_dmamap);
298 	}
299  fail_4:
300 	for (i = 0; i < EPIC_NTXDESC; i++) {
301 		if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
302 			bus_dmamap_destroy(sc->sc_dmat,
303 			    EPIC_DSTX(sc, i)->ds_dmamap);
304 	}
305 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
306  fail_3:
307 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
308  fail_2:
309 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
310 	    sizeof(struct epic_control_data));
311  fail_1:
312 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
313  fail_0:
314 	return;
315 }
316 
317 /*
318  * Shutdown hook.  Make sure the interface is stopped at reboot.
319  */
320 void
321 epic_shutdown(arg)
322 	void *arg;
323 {
324 	struct epic_softc *sc = arg;
325 
326 	epic_stop(&sc->sc_ethercom.ec_if, 1);
327 }
328 
329 /*
330  * Start packet transmission on the interface.
331  * [ifnet interface function]
332  */
333 void
334 epic_start(ifp)
335 	struct ifnet *ifp;
336 {
337 	struct epic_softc *sc = ifp->if_softc;
338 	struct mbuf *m0, *m;
339 	struct epic_txdesc *txd;
340 	struct epic_descsoft *ds;
341 	struct epic_fraglist *fr;
342 	bus_dmamap_t dmamap;
343 	int error, firsttx, nexttx, opending, seg;
344 
345 	/*
346 	 * Remember the previous txpending and the first transmit
347 	 * descriptor we use.
348 	 */
349 	opending = sc->sc_txpending;
350 	firsttx = EPIC_NEXTTX(sc->sc_txlast);
351 
352 	/*
353 	 * Loop through the send queue, setting up transmit descriptors
354 	 * until we drain the queue, or use up all available transmit
355 	 * descriptors.
356 	 */
357 	while (sc->sc_txpending < EPIC_NTXDESC) {
358 		/*
359 		 * Grab a packet off the queue.
360 		 */
361 		IFQ_POLL(&ifp->if_snd, m0);
362 		if (m0 == NULL)
363 			break;
364 		m = NULL;
365 
366 		/*
367 		 * Get the last and next available transmit descriptor.
368 		 */
369 		nexttx = EPIC_NEXTTX(sc->sc_txlast);
370 		txd = EPIC_CDTX(sc, nexttx);
371 		fr = EPIC_CDFL(sc, nexttx);
372 		ds = EPIC_DSTX(sc, nexttx);
373 		dmamap = ds->ds_dmamap;
374 
375 		/*
376 		 * Load the DMA map.  If this fails, the packet either
377 		 * didn't fit in the alloted number of frags, or we were
378 		 * short on resources.  In this case, we'll copy and try
379 		 * again.
380 		 */
381 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
382 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
383 			MGETHDR(m, M_DONTWAIT, MT_DATA);
384 			if (m == NULL) {
385 				printf("%s: unable to allocate Tx mbuf\n",
386 				    sc->sc_dev.dv_xname);
387 				break;
388 			}
389 			if (m0->m_pkthdr.len > MHLEN) {
390 				MCLGET(m, M_DONTWAIT);
391 				if ((m->m_flags & M_EXT) == 0) {
392 					printf("%s: unable to allocate Tx "
393 					    "cluster\n", sc->sc_dev.dv_xname);
394 					m_freem(m);
395 					break;
396 				}
397 			}
398 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
399 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
400 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
401 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
402 			if (error) {
403 				printf("%s: unable to load Tx buffer, "
404 				    "error = %d\n", sc->sc_dev.dv_xname, error);
405 				break;
406 			}
407 		}
408 		IFQ_DEQUEUE(&ifp->if_snd, m0);
409 		if (m != NULL) {
410 			m_freem(m0);
411 			m0 = m;
412 		}
413 
414 		/* Initialize the fraglist. */
415 		fr->ef_nfrags = dmamap->dm_nsegs;
416 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
417 			fr->ef_frags[seg].ef_addr =
418 			    dmamap->dm_segs[seg].ds_addr;
419 			fr->ef_frags[seg].ef_length =
420 			    dmamap->dm_segs[seg].ds_len;
421 		}
422 
423 		EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
424 
425 		/* Sync the DMA map. */
426 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
427 		    BUS_DMASYNC_PREWRITE);
428 
429 		/*
430 		 * Store a pointer to the packet so we can free it later.
431 		 */
432 		ds->ds_mbuf = m0;
433 
434 		/*
435 		 * Fill in the transmit descriptor.  The EPIC doesn't
436 		 * auto-pad, so we have to do this ourselves.
437 		 */
438 		txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
439 		txd->et_txlength = max(m0->m_pkthdr.len,
440 		    ETHER_MIN_LEN - ETHER_CRC_LEN);
441 
442 		/*
443 		 * If this is the first descriptor we're enqueueing,
444 		 * don't give it to the EPIC yet.  That could cause
445 		 * a race condition.  We'll do it below.
446 		 */
447 		if (nexttx == firsttx)
448 			txd->et_txstatus = 0;
449 		else
450 			txd->et_txstatus = ET_TXSTAT_OWNER;
451 
452 		EPIC_CDTXSYNC(sc, nexttx,
453 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
454 
455 		/* Advance the tx pointer. */
456 		sc->sc_txpending++;
457 		sc->sc_txlast = nexttx;
458 
459 #if NBPFILTER > 0
460 		/*
461 		 * Pass the packet to any BPF listeners.
462 		 */
463 		if (ifp->if_bpf)
464 			bpf_mtap(ifp->if_bpf, m0);
465 #endif
466 	}
467 
468 	if (sc->sc_txpending == EPIC_NTXDESC) {
469 		/* No more slots left; notify upper layer. */
470 		ifp->if_flags |= IFF_OACTIVE;
471 	}
472 
473 	if (sc->sc_txpending != opending) {
474 		/*
475 		 * We enqueued packets.  If the transmitter was idle,
476 		 * reset the txdirty pointer.
477 		 */
478 		if (opending == 0)
479 			sc->sc_txdirty = firsttx;
480 
481 		/*
482 		 * Cause a transmit interrupt to happen on the
483 		 * last packet we enqueued.
484 		 */
485 		EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
486 		EPIC_CDTXSYNC(sc, sc->sc_txlast,
487 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
488 
489 		/*
490 		 * The entire packet chain is set up.  Give the
491 		 * first descriptor to the EPIC now.
492 		 */
493 		EPIC_CDTX(sc, firsttx)->et_txstatus = ET_TXSTAT_OWNER;
494 		EPIC_CDTXSYNC(sc, firsttx,
495 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
496 
497 		/* Start the transmitter. */
498 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
499 		    COMMAND_TXQUEUED);
500 
501 		/* Set a watchdog timer in case the chip flakes out. */
502 		ifp->if_timer = 5;
503 	}
504 }
505 
506 /*
507  * Watchdog timer handler.
508  * [ifnet interface function]
509  */
510 void
511 epic_watchdog(ifp)
512 	struct ifnet *ifp;
513 {
514 	struct epic_softc *sc = ifp->if_softc;
515 
516 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
517 	ifp->if_oerrors++;
518 
519 	(void) epic_init(ifp);
520 }
521 
522 /*
523  * Handle control requests from the operator.
524  * [ifnet interface function]
525  */
526 int
527 epic_ioctl(ifp, cmd, data)
528 	struct ifnet *ifp;
529 	u_long cmd;
530 	caddr_t data;
531 {
532 	struct epic_softc *sc = ifp->if_softc;
533 	struct ifreq *ifr = (struct ifreq *)data;
534 	int s, error;
535 
536 	s = splnet();
537 
538 	switch (cmd) {
539 	case SIOCSIFMEDIA:
540 	case SIOCGIFMEDIA:
541 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
542 		break;
543 
544 	default:
545 		error = ether_ioctl(ifp, cmd, data);
546 		if (error == ENETRESET) {
547 			/*
548 			 * Multicast list has changed; set the hardware filter
549 			 * accordingly.  Update our idea of the current media;
550 			 * epic_set_mchash() needs to know what it is.
551 			 */
552 			mii_pollstat(&sc->sc_mii);
553 			epic_set_mchash(sc);
554 			error = 0;
555 		}
556 		break;
557 	}
558 
559 	splx(s);
560 	return (error);
561 }
562 
563 /*
564  * Interrupt handler.
565  */
566 int
567 epic_intr(arg)
568 	void *arg;
569 {
570 	struct epic_softc *sc = arg;
571 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
572 	struct epic_rxdesc *rxd;
573 	struct epic_txdesc *txd;
574 	struct epic_descsoft *ds;
575 	struct mbuf *m;
576 	u_int32_t intstat;
577 	int i, len, claimed = 0;
578 
579  top:
580 	/*
581 	 * Get the interrupt status from the EPIC.
582 	 */
583 	intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
584 	if ((intstat & INTSTAT_INT_ACTV) == 0)
585 		return (claimed);
586 
587 	claimed = 1;
588 
589 	/*
590 	 * Acknowledge the interrupt.
591 	 */
592 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
593 	    intstat & INTMASK);
594 
595 	/*
596 	 * Check for receive interrupts.
597 	 */
598 	if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
599 		for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
600 			rxd = EPIC_CDRX(sc, i);
601 			ds = EPIC_DSRX(sc, i);
602 
603 			EPIC_CDRXSYNC(sc, i,
604 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
605 
606 			if (rxd->er_rxstatus & ER_RXSTAT_OWNER) {
607 				/*
608 				 * We have processed all of the
609 				 * receive buffers.
610 				 */
611 				break;
612 			}
613 
614 			/*
615 			 * Make sure the packet arrived intact.  If an error
616 			 * occurred, update stats and reset the descriptor.
617 			 * The buffer will be reused the next time the
618 			 * descriptor comes up in the ring.
619 			 */
620 			if ((rxd->er_rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
621 				if (rxd->er_rxstatus & ER_RXSTAT_CRCERROR)
622 					printf("%s: CRC error\n",
623 					    sc->sc_dev.dv_xname);
624 				if (rxd->er_rxstatus & ER_RXSTAT_ALIGNERROR)
625 					printf("%s: alignment error\n",
626 					    sc->sc_dev.dv_xname);
627 				ifp->if_ierrors++;
628 				EPIC_INIT_RXDESC(sc, i);
629 				continue;
630 			}
631 
632 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
633 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
634 
635 			/*
636 			 * The EPIC includes the CRC with every packet.
637 			 */
638 			len = rxd->er_rxlength;
639 
640 			if (len < sizeof(struct ether_header)) {
641 				/*
642 				 * Runt packet; drop it now.
643 				 */
644 				ifp->if_ierrors++;
645 				EPIC_INIT_RXDESC(sc, i);
646 				bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
647 				    ds->ds_dmamap->dm_mapsize,
648 				    BUS_DMASYNC_PREREAD);
649 				continue;
650 			}
651 
652 			/*
653 			 * If the packet is small enough to fit in a
654 			 * single header mbuf, allocate one and copy
655 			 * the data into it.  This greatly reduces
656 			 * memory consumption when we receive lots
657 			 * of small packets.
658 			 *
659 			 * Otherwise, we add a new buffer to the receive
660 			 * chain.  If this fails, we drop the packet and
661 			 * recycle the old buffer.
662 			 */
663 			if (epic_copy_small != 0 && len <= MHLEN) {
664 				MGETHDR(m, M_DONTWAIT, MT_DATA);
665 				if (m == NULL)
666 					goto dropit;
667 				memcpy(mtod(m, caddr_t),
668 				    mtod(ds->ds_mbuf, caddr_t), len);
669 				EPIC_INIT_RXDESC(sc, i);
670 				bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
671 				    ds->ds_dmamap->dm_mapsize,
672 				    BUS_DMASYNC_PREREAD);
673 			} else {
674 				m = ds->ds_mbuf;
675 				if (epic_add_rxbuf(sc, i) != 0) {
676  dropit:
677 					ifp->if_ierrors++;
678 					EPIC_INIT_RXDESC(sc, i);
679 					bus_dmamap_sync(sc->sc_dmat,
680 					    ds->ds_dmamap, 0,
681 					    ds->ds_dmamap->dm_mapsize,
682 					    BUS_DMASYNC_PREREAD);
683 					continue;
684 				}
685 			}
686 
687 			m->m_flags |= M_HASFCS;
688 			m->m_pkthdr.rcvif = ifp;
689 			m->m_pkthdr.len = m->m_len = len;
690 
691 #if NBPFILTER > 0
692 			/*
693 			 * Pass this up to any BPF listeners, but only
694 			 * pass it up the stack if its for us.
695 			 */
696 			if (ifp->if_bpf)
697 				bpf_mtap(ifp->if_bpf, m);
698 #endif
699 
700 			/* Pass it on. */
701 			(*ifp->if_input)(ifp, m);
702 			ifp->if_ipackets++;
703 		}
704 
705 		/* Update the receive pointer. */
706 		sc->sc_rxptr = i;
707 
708 		/*
709 		 * Check for receive queue underflow.
710 		 */
711 		if (intstat & INTSTAT_RQE) {
712 			printf("%s: receiver queue empty\n",
713 			    sc->sc_dev.dv_xname);
714 			/*
715 			 * Ring is already built; just restart the
716 			 * receiver.
717 			 */
718 			bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
719 			    EPIC_CDRXADDR(sc, sc->sc_rxptr));
720 			bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
721 			    COMMAND_RXQUEUED | COMMAND_START_RX);
722 		}
723 	}
724 
725 	/*
726 	 * Check for transmission complete interrupts.
727 	 */
728 	if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
729 		ifp->if_flags &= ~IFF_OACTIVE;
730 		for (i = sc->sc_txdirty; sc->sc_txpending != 0;
731 		     i = EPIC_NEXTTX(i), sc->sc_txpending--) {
732 			txd = EPIC_CDTX(sc, i);
733 			ds = EPIC_DSTX(sc, i);
734 
735 			EPIC_CDTXSYNC(sc, i,
736 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
737 
738 			if (txd->et_txstatus & ET_TXSTAT_OWNER)
739 				break;
740 
741 			EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
742 
743 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
744 			    0, ds->ds_dmamap->dm_mapsize,
745 			    BUS_DMASYNC_POSTWRITE);
746 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
747 			m_freem(ds->ds_mbuf);
748 			ds->ds_mbuf = NULL;
749 
750 			/*
751 			 * Check for errors and collisions.
752 			 */
753 			if ((txd->et_txstatus & ET_TXSTAT_PACKETTX) == 0)
754 				ifp->if_oerrors++;
755 			else
756 				ifp->if_opackets++;
757 			ifp->if_collisions +=
758 			    TXSTAT_COLLISIONS(txd->et_txstatus);
759 			if (txd->et_txstatus & ET_TXSTAT_CARSENSELOST)
760 				printf("%s: lost carrier\n",
761 				    sc->sc_dev.dv_xname);
762 		}
763 
764 		/* Update the dirty transmit buffer pointer. */
765 		sc->sc_txdirty = i;
766 
767 		/*
768 		 * Cancel the watchdog timer if there are no pending
769 		 * transmissions.
770 		 */
771 		if (sc->sc_txpending == 0)
772 			ifp->if_timer = 0;
773 
774 		/*
775 		 * Kick the transmitter after a DMA underrun.
776 		 */
777 		if (intstat & INTSTAT_TXU) {
778 			printf("%s: transmit underrun\n", sc->sc_dev.dv_xname);
779 			bus_space_write_4(sc->sc_st, sc->sc_sh,
780 			    EPIC_COMMAND, COMMAND_TXUGO);
781 			if (sc->sc_txpending)
782 				bus_space_write_4(sc->sc_st, sc->sc_sh,
783 				    EPIC_COMMAND, COMMAND_TXQUEUED);
784 		}
785 
786 		/*
787 		 * Try to get more packets going.
788 		 */
789 		epic_start(ifp);
790 	}
791 
792 	/*
793 	 * Check for fatal interrupts.
794 	 */
795 	if (intstat & INTSTAT_FATAL_INT) {
796 		if (intstat & INTSTAT_PTA)
797 			printf("%s: PCI target abort error\n",
798 			    sc->sc_dev.dv_xname);
799 		else if (intstat & INTSTAT_PMA)
800 			printf("%s: PCI master abort error\n",
801 			    sc->sc_dev.dv_xname);
802 		else if (intstat & INTSTAT_APE)
803 			printf("%s: PCI address parity error\n",
804 			    sc->sc_dev.dv_xname);
805 		else if (intstat & INTSTAT_DPE)
806 			printf("%s: PCI data parity error\n",
807 			    sc->sc_dev.dv_xname);
808 		else
809 			printf("%s: unknown fatal error\n",
810 			    sc->sc_dev.dv_xname);
811 		(void) epic_init(ifp);
812 	}
813 
814 	/*
815 	 * Check for more interrupts.
816 	 */
817 	goto top;
818 }
819 
820 /*
821  * One second timer, used to tick the MII.
822  */
823 void
824 epic_tick(arg)
825 	void *arg;
826 {
827 	struct epic_softc *sc = arg;
828 	int s;
829 
830 	s = splnet();
831 	mii_tick(&sc->sc_mii);
832 	splx(s);
833 
834 	callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
835 }
836 
837 /*
838  * Fixup the clock source on the EPIC.
839  */
840 void
841 epic_fixup_clock_source(sc)
842 	struct epic_softc *sc;
843 {
844 	int i;
845 
846 	/*
847 	 * According to SMC Application Note 7-15, the EPIC's clock
848 	 * source is incorrect following a reset.  This manifests itself
849 	 * as failure to recognize when host software has written to
850 	 * a register on the EPIC.  The appnote recommends issuing at
851 	 * least 16 consecutive writes to the CLOCK TEST bit to correctly
852 	 * configure the clock source.
853 	 */
854 	for (i = 0; i < 16; i++)
855 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
856 		    TEST_CLOCKTEST);
857 }
858 
859 /*
860  * Perform a soft reset on the EPIC.
861  */
862 void
863 epic_reset(sc)
864 	struct epic_softc *sc;
865 {
866 
867 	epic_fixup_clock_source(sc);
868 
869 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
870 	delay(100);
871 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
872 	delay(100);
873 
874 	epic_fixup_clock_source(sc);
875 }
876 
877 /*
878  * Initialize the interface.  Must be called at splnet().
879  */
880 int
881 epic_init(ifp)
882 	struct ifnet *ifp;
883 {
884 	struct epic_softc *sc = ifp->if_softc;
885 	bus_space_tag_t st = sc->sc_st;
886 	bus_space_handle_t sh = sc->sc_sh;
887 	u_int8_t *enaddr = LLADDR(ifp->if_sadl);
888 	struct epic_txdesc *txd;
889 	struct epic_descsoft *ds;
890 	u_int32_t genctl, reg0;
891 	int i, error = 0;
892 
893 	/*
894 	 * Cancel any pending I/O.
895 	 */
896 	epic_stop(ifp, 0);
897 
898 	/*
899 	 * Reset the EPIC to a known state.
900 	 */
901 	epic_reset(sc);
902 
903 	/*
904 	 * Magical mystery initialization.
905 	 */
906 	bus_space_write_4(st, sh, EPIC_TXTEST, 0);
907 
908 	/*
909 	 * Initialize the EPIC genctl register:
910 	 *
911 	 *	- 64 byte receive FIFO threshold
912 	 *	- automatic advance to next receive frame
913 	 */
914 	genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
915 #if BYTE_ORDER == BIG_ENDIAN
916 	genctl |= GENCTL_BIG_ENDIAN;
917 #endif
918 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
919 
920 	/*
921 	 * Reset the MII bus and PHY.
922 	 */
923 	reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
924 	bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
925 	bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
926 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
927 	delay(100);
928 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
929 	delay(1000);
930 	bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
931 
932 	/*
933 	 * Initialize Ethernet address.
934 	 */
935 	reg0 = enaddr[1] << 8 | enaddr[0];
936 	bus_space_write_4(st, sh, EPIC_LAN0, reg0);
937 	reg0 = enaddr[3] << 8 | enaddr[2];
938 	bus_space_write_4(st, sh, EPIC_LAN1, reg0);
939 	reg0 = enaddr[5] << 8 | enaddr[4];
940 	bus_space_write_4(st, sh, EPIC_LAN2, reg0);
941 
942 	/*
943 	 * Initialize receive control.  Remember the external buffer
944 	 * size setting.
945 	 */
946 	reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
947 	    (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
948 	reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
949 	if (ifp->if_flags & IFF_PROMISC)
950 		reg0 |= RXCON_PROMISCMODE;
951 	bus_space_write_4(st, sh, EPIC_RXCON, reg0);
952 
953 	/* Set the current media. */
954 	epic_mediachange(ifp);
955 
956 	/* Set up the multicast hash table. */
957 	epic_set_mchash(sc);
958 
959 	/*
960 	 * Initialize the transmit descriptor ring.  txlast is initialized
961 	 * to the end of the list so that it will wrap around to the first
962 	 * descriptor when the first packet is transmitted.
963 	 */
964 	for (i = 0; i < EPIC_NTXDESC; i++) {
965 		txd = EPIC_CDTX(sc, i);
966 		memset(txd, 0, sizeof(struct epic_txdesc));
967 		txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
968 		txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
969 		EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
970 	}
971 	sc->sc_txpending = 0;
972 	sc->sc_txdirty = 0;
973 	sc->sc_txlast = EPIC_NTXDESC - 1;
974 
975 	/*
976 	 * Initialize the receive descriptor ring.
977 	 */
978 	for (i = 0; i < EPIC_NRXDESC; i++) {
979 		ds = EPIC_DSRX(sc, i);
980 		if (ds->ds_mbuf == NULL) {
981 			if ((error = epic_add_rxbuf(sc, i)) != 0) {
982 				printf("%s: unable to allocate or map rx "
983 				    "buffer %d error = %d\n",
984 				    sc->sc_dev.dv_xname, i, error);
985 				/*
986 				 * XXX Should attempt to run with fewer receive
987 				 * XXX buffers instead of just failing.
988 				 */
989 				epic_rxdrain(sc);
990 				goto out;
991 			}
992 		} else
993 			EPIC_INIT_RXDESC(sc, i);
994 	}
995 	sc->sc_rxptr = 0;
996 
997 	/*
998 	 * Initialize the interrupt mask and enable interrupts.
999 	 */
1000 	bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
1001 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
1002 
1003 	/*
1004 	 * Give the transmit and receive rings to the EPIC.
1005 	 */
1006 	bus_space_write_4(st, sh, EPIC_PTCDAR,
1007 	    EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
1008 	bus_space_write_4(st, sh, EPIC_PRCDAR,
1009 	    EPIC_CDRXADDR(sc, sc->sc_rxptr));
1010 
1011 	/*
1012 	 * Set the EPIC in motion.
1013 	 */
1014 	bus_space_write_4(st, sh, EPIC_COMMAND,
1015 	    COMMAND_RXQUEUED | COMMAND_START_RX);
1016 
1017 	/*
1018 	 * ...all done!
1019 	 */
1020 	ifp->if_flags |= IFF_RUNNING;
1021 	ifp->if_flags &= ~IFF_OACTIVE;
1022 
1023 	/*
1024 	 * Start the one second clock.
1025 	 */
1026 	callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
1027 
1028 	/*
1029 	 * Attempt to start output on the interface.
1030 	 */
1031 	epic_start(ifp);
1032 
1033  out:
1034 	if (error)
1035 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1036 	return (error);
1037 }
1038 
1039 /*
1040  * Drain the receive queue.
1041  */
1042 void
1043 epic_rxdrain(sc)
1044 	struct epic_softc *sc;
1045 {
1046 	struct epic_descsoft *ds;
1047 	int i;
1048 
1049 	for (i = 0; i < EPIC_NRXDESC; i++) {
1050 		ds = EPIC_DSRX(sc, i);
1051 		if (ds->ds_mbuf != NULL) {
1052 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1053 			m_freem(ds->ds_mbuf);
1054 			ds->ds_mbuf = NULL;
1055 		}
1056 	}
1057 }
1058 
1059 /*
1060  * Stop transmission on the interface.
1061  */
1062 void
1063 epic_stop(ifp, disable)
1064 	struct ifnet *ifp;
1065 	int disable;
1066 {
1067 	struct epic_softc *sc = ifp->if_softc;
1068 	bus_space_tag_t st = sc->sc_st;
1069 	bus_space_handle_t sh = sc->sc_sh;
1070 	struct epic_descsoft *ds;
1071 	u_int32_t reg;
1072 	int i;
1073 
1074 	/*
1075 	 * Stop the one second clock.
1076 	 */
1077 	callout_stop(&sc->sc_mii_callout);
1078 
1079 	/* Down the MII. */
1080 	mii_down(&sc->sc_mii);
1081 
1082 	/* Paranoia... */
1083 	epic_fixup_clock_source(sc);
1084 
1085 	/*
1086 	 * Disable interrupts.
1087 	 */
1088 	reg = bus_space_read_4(st, sh, EPIC_GENCTL);
1089 	bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
1090 	bus_space_write_4(st, sh, EPIC_INTMASK, 0);
1091 
1092 	/*
1093 	 * Stop the DMA engine and take the receiver off-line.
1094 	 */
1095 	bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
1096 	    COMMAND_STOP_TDMA | COMMAND_STOP_RX);
1097 
1098 	/*
1099 	 * Release any queued transmit buffers.
1100 	 */
1101 	for (i = 0; i < EPIC_NTXDESC; i++) {
1102 		ds = EPIC_DSTX(sc, i);
1103 		if (ds->ds_mbuf != NULL) {
1104 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1105 			m_freem(ds->ds_mbuf);
1106 			ds->ds_mbuf = NULL;
1107 		}
1108 	}
1109 
1110 	if (disable)
1111 		epic_rxdrain(sc);
1112 
1113 	/*
1114 	 * Mark the interface down and cancel the watchdog timer.
1115 	 */
1116 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1117 	ifp->if_timer = 0;
1118 }
1119 
1120 /*
1121  * Read the EPIC Serial EEPROM.
1122  */
1123 void
1124 epic_read_eeprom(sc, word, wordcnt, data)
1125 	struct epic_softc *sc;
1126 	int word, wordcnt;
1127 	u_int16_t *data;
1128 {
1129 	bus_space_tag_t st = sc->sc_st;
1130 	bus_space_handle_t sh = sc->sc_sh;
1131 	u_int16_t reg;
1132 	int i, x;
1133 
1134 #define	EEPROM_WAIT_READY(st, sh) \
1135 	while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
1136 		/* nothing */
1137 
1138 	/*
1139 	 * Enable the EEPROM.
1140 	 */
1141 	bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1142 	EEPROM_WAIT_READY(st, sh);
1143 
1144 	for (i = 0; i < wordcnt; i++) {
1145 		/* Send CHIP SELECT for one clock tick. */
1146 		bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS);
1147 		EEPROM_WAIT_READY(st, sh);
1148 
1149 		/* Shift in the READ opcode. */
1150 		for (x = 3; x > 0; x--) {
1151 			reg = EECTL_ENABLE|EECTL_EECS;
1152 			if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
1153 				reg |= EECTL_EEDI;
1154 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1155 			EEPROM_WAIT_READY(st, sh);
1156 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1157 			EEPROM_WAIT_READY(st, sh);
1158 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1159 			EEPROM_WAIT_READY(st, sh);
1160 		}
1161 
1162 		/* Shift in address. */
1163 		for (x = 6; x > 0; x--) {
1164 			reg = EECTL_ENABLE|EECTL_EECS;
1165 			if ((word + i) & (1 << (x - 1)))
1166 				reg |= EECTL_EEDI;
1167 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1168 			EEPROM_WAIT_READY(st, sh);
1169 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1170 			EEPROM_WAIT_READY(st, sh);
1171 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1172 			EEPROM_WAIT_READY(st, sh);
1173 		}
1174 
1175 		/* Shift out data. */
1176 		reg = EECTL_ENABLE|EECTL_EECS;
1177 		data[i] = 0;
1178 		for (x = 16; x > 0; x--) {
1179 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1180 			EEPROM_WAIT_READY(st, sh);
1181 			if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
1182 				data[i] |= (1 << (x - 1));
1183 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1184 			EEPROM_WAIT_READY(st, sh);
1185 		}
1186 
1187 		/* Clear CHIP SELECT. */
1188 		bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1189 		EEPROM_WAIT_READY(st, sh);
1190 	}
1191 
1192 	/*
1193 	 * Disable the EEPROM.
1194 	 */
1195 	bus_space_write_4(st, sh, EPIC_EECTL, 0);
1196 
1197 #undef EEPROM_WAIT_READY
1198 }
1199 
1200 /*
1201  * Add a receive buffer to the indicated descriptor.
1202  */
1203 int
1204 epic_add_rxbuf(sc, idx)
1205 	struct epic_softc *sc;
1206 	int idx;
1207 {
1208 	struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
1209 	struct mbuf *m;
1210 	int error;
1211 
1212 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1213 	if (m == NULL)
1214 		return (ENOBUFS);
1215 
1216 	MCLGET(m, M_DONTWAIT);
1217 	if ((m->m_flags & M_EXT) == 0) {
1218 		m_freem(m);
1219 		return (ENOBUFS);
1220 	}
1221 
1222 	if (ds->ds_mbuf != NULL)
1223 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1224 
1225 	ds->ds_mbuf = m;
1226 
1227 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1228 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1229 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1230 	if (error) {
1231 		printf("%s: can't load rx DMA map %d, error = %d\n",
1232 		    sc->sc_dev.dv_xname, idx, error);
1233 		panic("epic_add_rxbuf");	/* XXX */
1234 	}
1235 
1236 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1237 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1238 
1239 	EPIC_INIT_RXDESC(sc, idx);
1240 
1241 	return (0);
1242 }
1243 
1244 /*
1245  * Set the EPIC multicast hash table.
1246  *
1247  * NOTE: We rely on a recently-updated mii_media_active here!
1248  */
1249 void
1250 epic_set_mchash(sc)
1251 	struct epic_softc *sc;
1252 {
1253 	struct ethercom *ec = &sc->sc_ethercom;
1254 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1255 	struct ether_multi *enm;
1256 	struct ether_multistep step;
1257 	u_int32_t hash, mchash[4];
1258 
1259 	/*
1260 	 * Set up the multicast address filter by passing all multicast
1261 	 * addresses through a CRC generator, and then using the low-order
1262 	 * 6 bits as an index into the 64 bit multicast hash table (only
1263 	 * the lower 16 bits of each 32 bit multicast hash register are
1264 	 * valid).  The high order bits select the register, while the
1265 	 * rest of the bits select the bit within the register.
1266 	 */
1267 
1268 	if (ifp->if_flags & IFF_PROMISC)
1269 		goto allmulti;
1270 
1271 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
1272 		/* XXX hardware bug in 10Mbps mode. */
1273 		goto allmulti;
1274 	}
1275 
1276 	mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
1277 
1278 	ETHER_FIRST_MULTI(step, ec, enm);
1279 	while (enm != NULL) {
1280 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1281 			/*
1282 			 * We must listen to a range of multicast addresses.
1283 			 * For now, just accept all multicasts, rather than
1284 			 * trying to set only those filter bits needed to match
1285 			 * the range.  (At this time, the only use of address
1286 			 * ranges is for IP multicast routing, for which the
1287 			 * range is big enough to require all bits set.)
1288 			 */
1289 			goto allmulti;
1290 		}
1291 
1292 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1293 		hash >>= 26;
1294 
1295 		/* Set the corresponding bit in the hash table. */
1296 		mchash[hash >> 4] |= 1 << (hash & 0xf);
1297 
1298 		ETHER_NEXT_MULTI(step, enm);
1299 	}
1300 
1301 	ifp->if_flags &= ~IFF_ALLMULTI;
1302 	goto sethash;
1303 
1304  allmulti:
1305 	ifp->if_flags |= IFF_ALLMULTI;
1306 	mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
1307 
1308  sethash:
1309 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
1310 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
1311 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
1312 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
1313 }
1314 
1315 /*
1316  * Wait for the MII to become ready.
1317  */
1318 int
1319 epic_mii_wait(sc, rw)
1320 	struct epic_softc *sc;
1321 	u_int32_t rw;
1322 {
1323 	int i;
1324 
1325 	for (i = 0; i < 50; i++) {
1326 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
1327 		    == 0)
1328 			break;
1329 		delay(2);
1330 	}
1331 	if (i == 50) {
1332 		printf("%s: MII timed out\n", sc->sc_dev.dv_xname);
1333 		return (1);
1334 	}
1335 
1336 	return (0);
1337 }
1338 
1339 /*
1340  * Read from the MII.
1341  */
1342 int
1343 epic_mii_read(self, phy, reg)
1344 	struct device *self;
1345 	int phy, reg;
1346 {
1347 	struct epic_softc *sc = (struct epic_softc *)self;
1348 
1349 	if (epic_mii_wait(sc, MMCTL_WRITE))
1350 		return (0);
1351 
1352 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1353 	    MMCTL_ARG(phy, reg, MMCTL_READ));
1354 
1355 	if (epic_mii_wait(sc, MMCTL_READ))
1356 		return (0);
1357 
1358 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) &
1359 	    MMDATA_MASK);
1360 }
1361 
1362 /*
1363  * Write to the MII.
1364  */
1365 void
1366 epic_mii_write(self, phy, reg, val)
1367 	struct device *self;
1368 	int phy, reg, val;
1369 {
1370 	struct epic_softc *sc = (struct epic_softc *)self;
1371 
1372 	if (epic_mii_wait(sc, MMCTL_WRITE))
1373 		return;
1374 
1375 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
1376 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1377 	    MMCTL_ARG(phy, reg, MMCTL_WRITE));
1378 }
1379 
1380 /*
1381  * Callback from PHY when media changes.
1382  */
1383 void
1384 epic_statchg(self)
1385 	struct device *self;
1386 {
1387 	struct epic_softc *sc = (struct epic_softc *)self;
1388 	u_int32_t txcon, miicfg;
1389 
1390 	/*
1391 	 * Update loopback bits in TXCON to reflect duplex mode.
1392 	 */
1393 	txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
1394 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1395 		txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1396 	else
1397 		txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1398 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
1399 
1400 	/* On some cards we need manualy set fullduplex led */
1401 	if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
1402 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1403 		if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
1404 			miicfg |= MIICFG_ENABLE;
1405 		else
1406 			miicfg &= ~MIICFG_ENABLE;
1407 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1408 	}
1409 
1410 	/*
1411 	 * There is a multicast filter bug in 10Mbps mode.  Kick the
1412 	 * multicast filter in case the speed changed.
1413 	 */
1414 	epic_set_mchash(sc);
1415 }
1416 
1417 /*
1418  * Callback from ifmedia to request current media status.
1419  */
1420 void
1421 epic_mediastatus(ifp, ifmr)
1422 	struct ifnet *ifp;
1423 	struct ifmediareq *ifmr;
1424 {
1425 	struct epic_softc *sc = ifp->if_softc;
1426 
1427 	mii_pollstat(&sc->sc_mii);
1428 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1429 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1430 }
1431 
1432 /*
1433  * Callback from ifmedia to request new media setting.
1434  */
1435 int
1436 epic_mediachange(ifp)
1437 	struct ifnet *ifp;
1438 {
1439 	struct epic_softc *sc = ifp->if_softc;
1440 	struct mii_data *mii = &sc->sc_mii;
1441 	struct ifmedia *ifm = &mii->mii_media;
1442 	int media = ifm->ifm_cur->ifm_media;
1443 	u_int32_t miicfg;
1444 	struct mii_softc *miisc;
1445 	int cfg;
1446 
1447 	if (!(ifp->if_flags & IFF_UP))
1448 		return (0);
1449 
1450 	if (IFM_INST(media) != sc->sc_serinst) {
1451 		/* If we're not selecting serial interface, select MII mode */
1452 #ifdef EPICMEDIADEBUG
1453 		printf("%s: parallel mode\n", ifp->if_xname);
1454 #endif
1455 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1456 		miicfg &= ~MIICFG_SERMODEENA;
1457 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1458 	}
1459 
1460 	mii_mediachg(mii);
1461 
1462 	if (IFM_INST(media) == sc->sc_serinst) {
1463 		/* select serial interface */
1464 #ifdef EPICMEDIADEBUG
1465 		printf("%s: serial mode\n", ifp->if_xname);
1466 #endif
1467 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1468 		miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
1469 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1470 
1471 		/* There is no driver to fill this */
1472 		mii->mii_media_active = media;
1473 		mii->mii_media_status = 0;
1474 
1475 		epic_statchg(&sc->sc_dev);
1476 		return (0);
1477 	}
1478 
1479 	/* Lookup selected PHY */
1480 	for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1481 	     miisc = LIST_NEXT(miisc, mii_list)) {
1482 		if (IFM_INST(media) == miisc->mii_inst)
1483 			break;
1484 	}
1485 	if (!miisc) {
1486 		printf("epic_mediachange: can't happen\n"); /* ??? panic */
1487 		return (0);
1488 	}
1489 #ifdef EPICMEDIADEBUG
1490 	printf("%s: using phy %s\n", ifp->if_xname,
1491 	       miisc->mii_dev.dv_xname);
1492 #endif
1493 
1494 	if (miisc->mii_flags & MIIF_HAVEFIBER) {
1495 		/* XXX XXX assume it's a Level1 - should check */
1496 
1497 		/* We have to powerup fiber tranceivers */
1498 		cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG);
1499 		if (IFM_SUBTYPE(media) == IFM_100_FX) {
1500 #ifdef EPICMEDIADEBUG
1501 			printf("%s: power up fiber\n", ifp->if_xname);
1502 #endif
1503 			cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
1504 		} else {
1505 #ifdef EPICMEDIADEBUG
1506 			printf("%s: power down fiber\n", ifp->if_xname);
1507 #endif
1508 			cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
1509 		}
1510 		PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
1511 	}
1512 
1513 	return (0);
1514 }
1515