xref: /netbsd/sys/dev/marvell/if_gfe.c (revision 6550d01e)
1 /*	$NetBSD: if_gfe.c,v 1.39 2010/11/13 13:52:04 uebayasi Exp $	*/
2 
3 /*
4  * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed for the NetBSD Project by
18  *      Allegro Networks, Inc., and Wasabi Systems, Inc.
19  * 4. The name of Allegro Networks, Inc. may not be used to endorse
20  *    or promote products derived from this software without specific prior
21  *    written permission.
22  * 5. The name of Wasabi Systems, Inc. may not be used to endorse
23  *    or promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
27  * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
28  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30  * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * if_gfe.c -- GT ethernet MAC driver
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_gfe.c,v 1.39 2010/11/13 13:52:04 uebayasi Exp $");
46 
47 #include "opt_inet.h"
48 #include "rnd.h"
49 
50 #include <sys/param.h>
51 #include <sys/bus.h>
52 #include <sys/callout.h>
53 #include <sys/device.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/mbuf.h>
57 #include <sys/mutex.h>
58 #include <sys/socket.h>
59 
60 #include <uvm/uvm.h>
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_ether.h>
64 #include <net/if_media.h>
65 
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70 #include <net/bpf.h>
71 #if NRND > 0
72 #include <sys/rnd.h>
73 #endif
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/marvell/gtreg.h>
79 #include <dev/marvell/gtvar.h>
80 #include <dev/marvell/gtethreg.h>
81 #include <dev/marvell/if_gfevar.h>
82 #include <dev/marvell/marvellreg.h>
83 #include <dev/marvell/marvellvar.h>
84 
85 #include <prop/proplib.h>
86 
87 #include "locators.h"
88 
89 
90 #define	GE_READ(sc, reg) \
91 	bus_space_read_4((sc)->sc_memt, (sc)->sc_memh, (reg))
92 #define	GE_WRITE(sc, reg, v) \
93 	bus_space_write_4((sc)->sc_memt, (sc)->sc_memh, (reg), (v))
94 
95 #define	GE_DEBUG
96 #if 0
97 #define	GE_NOHASH
98 #define	GE_NORX
99 #endif
100 
101 #ifdef GE_DEBUG
102 #define	GE_DPRINTF(sc, a)					\
103 	do {							\
104 		if ((sc)->sc_ec.ec_if.if_flags & IFF_DEBUG)	\
105 			printf a;				\
106 	} while (0 /* CONSTCOND */)
107 #define	GE_FUNC_ENTER(sc, func)	GE_DPRINTF(sc, ("[" func))
108 #define	GE_FUNC_EXIT(sc, str)	GE_DPRINTF(sc, (str "]"))
109 #else
110 #define	GE_DPRINTF(sc, a)	do { } while (0)
111 #define	GE_FUNC_ENTER(sc, func)	do { } while (0)
112 #define	GE_FUNC_EXIT(sc, str)	do { } while (0)
113 #endif
114 enum gfe_whack_op {
115 	GE_WHACK_START,		GE_WHACK_RESTART,
116 	GE_WHACK_CHANGE,	GE_WHACK_STOP
117 };
118 
119 enum gfe_hash_op {
120 	GE_HASH_ADD,		GE_HASH_REMOVE,
121 };
122 
123 #if 1
124 #define	htogt32(a)		htobe32(a)
125 #define	gt32toh(a)		be32toh(a)
126 #else
127 #define	htogt32(a)		htole32(a)
128 #define	gt32toh(a)		le32toh(a)
129 #endif
130 
131 #define GE_RXDSYNC(sc, rxq, n, ops) \
132 	bus_dmamap_sync((sc)->sc_dmat, (rxq)->rxq_desc_mem.gdm_map, \
133 	    (n) * sizeof((rxq)->rxq_descs[0]), sizeof((rxq)->rxq_descs[0]), \
134 	    (ops))
135 #define	GE_RXDPRESYNC(sc, rxq, n) \
136 	GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
137 #define	GE_RXDPOSTSYNC(sc, rxq, n) \
138 	GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
139 
140 #define GE_TXDSYNC(sc, txq, n, ops) \
141 	bus_dmamap_sync((sc)->sc_dmat, (txq)->txq_desc_mem.gdm_map, \
142 	    (n) * sizeof((txq)->txq_descs[0]), sizeof((txq)->txq_descs[0]), \
143 	    (ops))
144 #define	GE_TXDPRESYNC(sc, txq, n) \
145 	GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
146 #define	GE_TXDPOSTSYNC(sc, txq, n) \
147 	GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
148 
149 #define	STATIC
150 
151 
152 STATIC int gfec_match(device_t, cfdata_t, void *);
153 STATIC void gfec_attach(device_t, device_t, void *);
154 
155 STATIC int gfec_print(void *, const char *);
156 STATIC int gfec_search(device_t, cfdata_t, const int *, void *);
157 
158 STATIC int gfec_enet_phy(device_t, int);
159 STATIC int gfec_mii_read(device_t, int, int);
160 STATIC void gfec_mii_write(device_t, int, int, int);
161 STATIC void gfec_mii_statchg(device_t);
162 
163 STATIC int gfe_match(device_t, cfdata_t, void *);
164 STATIC void gfe_attach(device_t, device_t, void *);
165 
166 STATIC int gfe_dmamem_alloc(struct gfe_softc *, struct gfe_dmamem *, int,
167 	size_t, int);
168 STATIC void gfe_dmamem_free(struct gfe_softc *, struct gfe_dmamem *);
169 
170 STATIC int gfe_ifioctl(struct ifnet *, u_long, void *);
171 STATIC void gfe_ifstart(struct ifnet *);
172 STATIC void gfe_ifwatchdog(struct ifnet *);
173 
174 STATIC void gfe_tick(void *arg);
175 
176 STATIC void gfe_tx_restart(void *);
177 STATIC int gfe_tx_enqueue(struct gfe_softc *, enum gfe_txprio);
178 STATIC uint32_t gfe_tx_done(struct gfe_softc *, enum gfe_txprio, uint32_t);
179 STATIC void gfe_tx_cleanup(struct gfe_softc *, enum gfe_txprio, int);
180 STATIC int gfe_tx_txqalloc(struct gfe_softc *, enum gfe_txprio);
181 STATIC int gfe_tx_start(struct gfe_softc *, enum gfe_txprio);
182 STATIC void gfe_tx_stop(struct gfe_softc *, enum gfe_whack_op);
183 
184 STATIC void gfe_rx_cleanup(struct gfe_softc *, enum gfe_rxprio);
185 STATIC void gfe_rx_get(struct gfe_softc *, enum gfe_rxprio);
186 STATIC int gfe_rx_prime(struct gfe_softc *);
187 STATIC uint32_t gfe_rx_process(struct gfe_softc *, uint32_t, uint32_t);
188 STATIC int gfe_rx_rxqalloc(struct gfe_softc *, enum gfe_rxprio);
189 STATIC int gfe_rx_rxqinit(struct gfe_softc *, enum gfe_rxprio);
190 STATIC void gfe_rx_stop(struct gfe_softc *, enum gfe_whack_op);
191 
192 STATIC int gfe_intr(void *);
193 
194 STATIC int gfe_whack(struct gfe_softc *, enum gfe_whack_op);
195 
196 STATIC int gfe_hash_compute(struct gfe_softc *, const uint8_t [ETHER_ADDR_LEN]);
197 STATIC int gfe_hash_entry_op(struct gfe_softc *, enum gfe_hash_op,
198 	enum gfe_rxprio, const uint8_t [ETHER_ADDR_LEN]);
199 STATIC int gfe_hash_multichg(struct ethercom *, const struct ether_multi *,
200 	u_long);
201 STATIC int gfe_hash_fill(struct gfe_softc *);
202 STATIC int gfe_hash_alloc(struct gfe_softc *);
203 
204 
205 CFATTACH_DECL_NEW(gfec, sizeof(struct gfec_softc),
206     gfec_match, gfec_attach, NULL, NULL);
207 CFATTACH_DECL_NEW(gfe, sizeof(struct gfe_softc),
208     gfe_match, gfe_attach, NULL, NULL);
209 
210 
211 /* ARGSUSED */
212 int
213 gfec_match(device_t parent, cfdata_t cf, void *aux)
214 {
215 	struct marvell_attach_args *mva = aux;
216 
217 	if (strcmp(mva->mva_name, cf->cf_name) != 0)
218 		return 0;
219 	if (mva->mva_offset == MVA_OFFSET_DEFAULT)
220 		return 0;
221 
222 	mva->mva_size = ETHC_SIZE;
223 	return 1;
224 }
225 
226 /* ARGSUSED */
227 void
228 gfec_attach(device_t parent, device_t self, void *aux)
229 {
230 	struct gfec_softc *sc = device_private(self);
231 	struct marvell_attach_args *mva = aux, gfea;
232 	static int gfe_irqs[] = { 32, 33, 34 };
233 	int i;
234 
235 	aprint_naive("\n");
236 	aprint_normal(": Ethernet Controller\n");
237 
238 	sc->sc_dev = self;
239 	sc->sc_iot = mva->mva_iot;
240 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, mva->mva_offset,
241 	    mva->mva_size, &sc->sc_ioh)) {
242 		aprint_error_dev(self, "Cannot map registers\n");
243 		return;
244 	}
245 
246 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
247 
248 	for (i = 0; i < ETH_NUM; i++) {
249 		gfea.mva_name = "gfe";
250 		gfea.mva_model = mva->mva_model;
251 		gfea.mva_iot = sc->sc_iot;
252 		gfea.mva_ioh = sc->sc_ioh;
253 		gfea.mva_unit = i;
254 		gfea.mva_dmat = mva->mva_dmat;
255 		gfea.mva_irq = gfe_irqs[i];
256 		config_found_sm_loc(sc->sc_dev, "gfec", NULL, &gfea,
257 		    gfec_print, gfec_search);
258 	}
259 }
260 
261 int
262 gfec_print(void *aux, const char *pnp)
263 {
264 	struct marvell_attach_args *gfea = aux;
265 
266 	if (pnp)
267 		aprint_normal("%s at %s port %d",
268 		    gfea->mva_name, pnp, gfea->mva_unit);
269 	else {
270 		if (gfea->mva_unit != GFECCF_PORT_DEFAULT)
271 			aprint_normal(" port %d", gfea->mva_unit);
272 		if (gfea->mva_irq != GFECCF_IRQ_DEFAULT)
273 			aprint_normal(" irq %d", gfea->mva_irq);
274 	}
275 	return UNCONF;
276 }
277 
278 /* ARGSUSED */
279 int
280 gfec_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
281 {
282 	struct marvell_attach_args *gfea = aux;
283 
284 	if (cf->cf_loc[GFECCF_PORT] == gfea->mva_unit &&
285 	    cf->cf_loc[GFECCF_IRQ] != GFECCF_IRQ_DEFAULT)
286 		gfea->mva_irq = cf->cf_loc[GFECCF_IRQ];
287 
288 	return config_match(parent, cf, aux);
289 }
290 
291 int
292 gfec_enet_phy(device_t dev, int unit)
293 {
294 	struct gfec_softc *sc = device_private(dev);
295 	uint32_t epar;
296 
297 	epar = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ETH_EPAR);
298 	return ETH_EPAR_PhyAD_GET(epar, unit);
299 }
300 
301 int
302 gfec_mii_read(device_t dev, int phy, int reg)
303 {
304 	struct gfec_softc *csc = device_private(device_parent(dev));
305 	uint32_t data;
306 	int count = 10000;
307 
308 	mutex_enter(&csc->sc_mtx);
309 
310 	do {
311 		DELAY(10);
312 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
313 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
314 
315 	if (count == 0) {
316 		aprint_error_dev(dev,
317 		    "mii read for phy %d reg %d busied out\n", phy, reg);
318 		mutex_exit(&csc->sc_mtx);
319 		return ETH_ESMIR_Value_GET(data);
320 	}
321 
322 	bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
323 	    ETH_ESMIR_READ(phy, reg));
324 
325 	count = 10000;
326 	do {
327 		DELAY(10);
328 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
329 	} while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
330 
331 	mutex_exit(&csc->sc_mtx);
332 
333 	if (count == 0)
334 		aprint_error_dev(dev,
335 		    "mii read for phy %d reg %d timed out\n", phy, reg);
336 #if defined(GTMIIDEBUG)
337 	aprint_normal_dev(dev, "mii_read(%d, %d): %#x data %#x\n",
338 	    phy, reg, data, ETH_ESMIR_Value_GET(data));
339 #endif
340 	return ETH_ESMIR_Value_GET(data);
341 }
342 
343 void
344 gfec_mii_write (device_t dev, int phy, int reg, int value)
345 {
346 	struct gfec_softc *csc = device_private(device_parent(dev));
347 	uint32_t data;
348 	int count = 10000;
349 
350 	mutex_enter(&csc->sc_mtx);
351 
352 	do {
353 		DELAY(10);
354 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
355 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
356 
357 	if (count == 0) {
358 		aprint_error_dev(dev,
359 		    "mii write for phy %d reg %d busied out (busy)\n",
360 		    phy, reg);
361 		mutex_exit(&csc->sc_mtx);
362 		return;
363 	}
364 
365 	bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
366 	    ETH_ESMIR_WRITE(phy, reg, value));
367 
368 	count = 10000;
369 	do {
370 		DELAY(10);
371 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
372 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
373 
374 	mutex_exit(&csc->sc_mtx);
375 
376 	if (count == 0)
377 		aprint_error_dev(dev,
378 		    "mii write for phy %d reg %d timed out\n", phy, reg);
379 #if defined(GTMIIDEBUG)
380 	aprint_normal_dev(dev, "mii_write(%d, %d, %#x)\n", phy, reg, value);
381 #endif
382 }
383 
384 void
385 gfec_mii_statchg(device_t dev)
386 {
387 	/* struct gfe_softc *sc = device_private(self); */
388 	/* do nothing? */
389 }
390 
391 /* ARGSUSED */
392 int
393 gfe_match(device_t parent, cfdata_t cf, void *aux)
394 {
395 
396 	return 1;
397 }
398 
399 /* ARGSUSED */
400 void
401 gfe_attach(device_t parent, device_t self, void *aux)
402 {
403 	struct marvell_attach_args *mva = aux;
404 	struct gfe_softc * const sc = device_private(self);
405 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
406 	uint32_t sdcr;
407 	int phyaddr, error;
408 	prop_data_t ea;
409 	uint8_t enaddr[6];
410 
411 	aprint_naive("\n");
412 	aprint_normal(": Ethernet Controller\n");
413 
414 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
415 	    mva->mva_offset, mva->mva_size, &sc->sc_memh)) {
416 		aprint_error_dev(self, "failed to map registers\n");
417 		return;
418 	}
419 	sc->sc_dev = self;
420 	sc->sc_memt = mva->mva_iot;
421 	sc->sc_dmat = mva->mva_dmat;
422 	sc->sc_macno = (mva->mva_offset == ETH_BASE(0)) ? 0 :
423 	    ((mva->mva_offset == ETH_BASE(1)) ? 1 : 2);
424 
425 	callout_init(&sc->sc_co, 0);
426 
427 	phyaddr = gfec_enet_phy(parent, sc->sc_macno);
428 
429 	ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-addr");
430 	if (ea != NULL) {
431 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
432 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
433 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
434 	}
435 
436 	sc->sc_pcr = GE_READ(sc, ETH_EPCR);
437 	sc->sc_pcxr = GE_READ(sc, ETH_EPCXR);
438 	sc->sc_intrmask = GE_READ(sc, ETH_EIMR) | ETH_IR_MIIPhySTC;
439 
440 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
441 
442 #if defined(DEBUG)
443 	printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
444 #endif
445 
446 	sc->sc_pcxr &= ~ETH_EPCXR_PRIOrx_Override;
447 	if (device_cfdata(self)->cf_flags & 1) {
448 		aprint_normal_dev(self, "phy %d (rmii)\n", phyaddr);
449 		sc->sc_pcxr |= ETH_EPCXR_RMIIEn;
450 	} else {
451 		aprint_normal_dev(self, "phy %d (mii)\n", phyaddr);
452 		sc->sc_pcxr &= ~ETH_EPCXR_RMIIEn;
453 	}
454 	if (device_cfdata(self)->cf_flags & 2)
455 		sc->sc_flags |= GE_NOFREE;
456 	/* Set Max Frame Length is 1536 */
457 	sc->sc_pcxr &= ~ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_MASK);
458 	sc->sc_pcxr |= ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_1536);
459 	sc->sc_max_frame_length = 1536;
460 
461 	if (sc->sc_pcr & ETH_EPCR_EN) {
462 		int tries = 1000;
463 		/*
464 		 * Abort transmitter and receiver and wait for them to quiese
465 		 */
466 		GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR | ETH_ESDCMR_AT);
467 		do {
468 			delay(100);
469 			if (tries-- <= 0) {
470 				aprint_error_dev(self, "Abort TX/RX failed\n");
471 				break;
472 			}
473 		} while (GE_READ(sc, ETH_ESDCMR) &
474 		    (ETH_ESDCMR_AR | ETH_ESDCMR_AT));
475 	}
476 
477 	sc->sc_pcr &=
478 	    ~(ETH_EPCR_EN | ETH_EPCR_RBM | ETH_EPCR_PM | ETH_EPCR_PBF);
479 
480 #if defined(DEBUG)
481 	printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
482 #endif
483 
484 	/*
485 	 * Now turn off the GT.  If it didn't quiese, too ***ing bad.
486 	 */
487 	GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
488 	GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
489 	sdcr = GE_READ(sc, ETH_ESDCR);
490 	ETH_ESDCR_BSZ_SET(sdcr, ETH_ESDCR_BSZ_4);
491 	sdcr |= ETH_ESDCR_RIFB;
492 	GE_WRITE(sc, ETH_ESDCR, sdcr);
493 
494 	sc->sc_mii.mii_ifp = ifp;
495 	sc->sc_mii.mii_readreg = gfec_mii_read;
496 	sc->sc_mii.mii_writereg = gfec_mii_write;
497 	sc->sc_mii.mii_statchg = gfec_mii_statchg;
498 
499 	sc->sc_ec.ec_mii = &sc->sc_mii;
500 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
501 		ether_mediastatus);
502 
503 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, phyaddr,
504 		MII_OFFSET_ANY, MIIF_NOISOLATE);
505 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
506 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
507 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
508 	} else {
509 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
510 	}
511 
512 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
513 	ifp->if_softc = sc;
514 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
515 #if 0
516 	ifp->if_flags |= IFF_DEBUG;
517 #endif
518 	ifp->if_ioctl = gfe_ifioctl;
519 	ifp->if_start = gfe_ifstart;
520 	ifp->if_watchdog = gfe_ifwatchdog;
521 
522 	if (sc->sc_flags & GE_NOFREE) {
523 		error = gfe_rx_rxqalloc(sc, GE_RXPRIO_HI);
524 		if (!error)
525 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDHI);
526 		if (!error)
527 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDLO);
528 		if (!error)
529 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_LO);
530 		if (!error)
531 			error = gfe_tx_txqalloc(sc, GE_TXPRIO_HI);
532 		if (!error)
533 			error = gfe_hash_alloc(sc);
534 		if (error)
535 			aprint_error_dev(self,
536 			    "failed to allocate resources: %d\n", error);
537 	}
538 
539 	if_attach(ifp);
540 	ether_ifattach(ifp, enaddr);
541 	bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
542 #if NRND > 0
543 	rnd_attach_source(&sc->sc_rnd_source, device_xname(self), RND_TYPE_NET,
544 	    0);
545 #endif
546 	marvell_intr_establish(mva->mva_irq, IPL_NET, gfe_intr, sc);
547 }
548 
549 int
550 gfe_dmamem_alloc(struct gfe_softc *sc, struct gfe_dmamem *gdm, int maxsegs,
551 	size_t size, int flags)
552 {
553 	int error = 0;
554 	GE_FUNC_ENTER(sc, "gfe_dmamem_alloc");
555 
556 	KASSERT(gdm->gdm_kva == NULL);
557 	gdm->gdm_size = size;
558 	gdm->gdm_maxsegs = maxsegs;
559 
560 	error = bus_dmamem_alloc(sc->sc_dmat, gdm->gdm_size, PAGE_SIZE,
561 	    gdm->gdm_size, gdm->gdm_segs, gdm->gdm_maxsegs, &gdm->gdm_nsegs,
562 	    BUS_DMA_NOWAIT);
563 	if (error)
564 		goto fail;
565 
566 	error = bus_dmamem_map(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs,
567 	    gdm->gdm_size, &gdm->gdm_kva, flags | BUS_DMA_NOWAIT);
568 	if (error)
569 		goto fail;
570 
571 	error = bus_dmamap_create(sc->sc_dmat, gdm->gdm_size, gdm->gdm_nsegs,
572 	    gdm->gdm_size, 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT, &gdm->gdm_map);
573 	if (error)
574 		goto fail;
575 
576 	error = bus_dmamap_load(sc->sc_dmat, gdm->gdm_map, gdm->gdm_kva,
577 	    gdm->gdm_size, NULL, BUS_DMA_NOWAIT);
578 	if (error)
579 		goto fail;
580 
581 	/* invalidate from cache */
582 	bus_dmamap_sync(sc->sc_dmat, gdm->gdm_map, 0, gdm->gdm_size,
583 	    BUS_DMASYNC_PREREAD);
584 fail:
585 	if (error) {
586 		gfe_dmamem_free(sc, gdm);
587 		GE_DPRINTF(sc, (":err=%d", error));
588 	}
589 	GE_DPRINTF(sc, (":kva=%p/%#x,map=%p,nsegs=%d,pa=%x/%x",
590 	    gdm->gdm_kva, gdm->gdm_size, gdm->gdm_map, gdm->gdm_map->dm_nsegs,
591 	    gdm->gdm_map->dm_segs->ds_addr, gdm->gdm_map->dm_segs->ds_len));
592 	GE_FUNC_EXIT(sc, "");
593 	return error;
594 }
595 
596 void
597 gfe_dmamem_free(struct gfe_softc *sc, struct gfe_dmamem *gdm)
598 {
599 	GE_FUNC_ENTER(sc, "gfe_dmamem_free");
600 	if (gdm->gdm_map)
601 		bus_dmamap_destroy(sc->sc_dmat, gdm->gdm_map);
602 	if (gdm->gdm_kva)
603 		bus_dmamem_unmap(sc->sc_dmat, gdm->gdm_kva, gdm->gdm_size);
604 	if (gdm->gdm_nsegs > 0)
605 		bus_dmamem_free(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs);
606 	gdm->gdm_map = NULL;
607 	gdm->gdm_kva = NULL;
608 	gdm->gdm_nsegs = 0;
609 	GE_FUNC_EXIT(sc, "");
610 }
611 
612 int
613 gfe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
614 {
615 	struct gfe_softc * const sc = ifp->if_softc;
616 	struct ifreq *ifr = (struct ifreq *) data;
617 	struct ifaddr *ifa = (struct ifaddr *) data;
618 	int s, error = 0;
619 
620 	GE_FUNC_ENTER(sc, "gfe_ifioctl");
621 	s = splnet();
622 
623 	switch (cmd) {
624 	case SIOCINITIFADDR:
625 		ifp->if_flags |= IFF_UP;
626 		error = gfe_whack(sc, GE_WHACK_START);
627 		switch (ifa->ifa_addr->sa_family) {
628 #ifdef INET
629 		case AF_INET:
630 			if (error == 0)
631 				arp_ifinit(ifp, ifa);
632 			break;
633 #endif
634 		default:
635 			break;
636 		}
637 		break;
638 
639 	case SIOCSIFFLAGS:
640 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
641 			break;
642 		/* XXX re-use ether_ioctl() */
643 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
644 		case IFF_UP|IFF_RUNNING:/* active->active, update */
645 			error = gfe_whack(sc, GE_WHACK_CHANGE);
646 			break;
647 		case IFF_RUNNING:	/* not up, so we stop */
648 			error = gfe_whack(sc, GE_WHACK_STOP);
649 			break;
650 		case IFF_UP:		/* not running, so we start */
651 			error = gfe_whack(sc, GE_WHACK_START);
652 			break;
653 		case 0:			/* idle->idle: do nothing */
654 			break;
655 		}
656 		break;
657 
658 	case SIOCSIFMEDIA:
659 	case SIOCGIFMEDIA:
660 	case SIOCADDMULTI:
661 	case SIOCDELMULTI:
662 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
663 			if (ifp->if_flags & IFF_RUNNING)
664 				error = gfe_whack(sc, GE_WHACK_CHANGE);
665 			else
666 				error = 0;
667 		}
668 		break;
669 
670 	case SIOCSIFMTU:
671 		if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) {
672 			error = EINVAL;
673 			break;
674 		}
675 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
676 			error = 0;
677 		break;
678 
679 	default:
680 		error = ether_ioctl(ifp, cmd, data);
681 		break;
682 	}
683 	splx(s);
684 	GE_FUNC_EXIT(sc, "");
685 	return error;
686 }
687 
688 void
689 gfe_ifstart(struct ifnet *ifp)
690 {
691 	struct gfe_softc * const sc = ifp->if_softc;
692 	struct mbuf *m;
693 
694 	GE_FUNC_ENTER(sc, "gfe_ifstart");
695 
696 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
697 		GE_FUNC_EXIT(sc, "$");
698 		return;
699 	}
700 
701 	for (;;) {
702 		IF_DEQUEUE(&ifp->if_snd, m);
703 		if (m == NULL) {
704 			ifp->if_flags &= ~IFF_OACTIVE;
705 			GE_FUNC_EXIT(sc, "");
706 			return;
707 		}
708 
709 		/*
710 		 * No space in the pending queue?  try later.
711 		 */
712 		if (IF_QFULL(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq))
713 			break;
714 
715 		/*
716 		 * Try to enqueue a mbuf to the device. If that fails, we
717 		 * can always try to map the next mbuf.
718 		 */
719 		IF_ENQUEUE(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq, m);
720 		GE_DPRINTF(sc, (">"));
721 #ifndef GE_NOTX
722 		(void) gfe_tx_enqueue(sc, GE_TXPRIO_HI);
723 #endif
724 	}
725 
726 	/*
727 	 * Attempt to queue the mbuf for send failed.
728 	 */
729 	IF_PREPEND(&ifp->if_snd, m);
730 	ifp->if_flags |= IFF_OACTIVE;
731 	GE_FUNC_EXIT(sc, "%%");
732 }
733 
734 void
735 gfe_ifwatchdog(struct ifnet *ifp)
736 {
737 	struct gfe_softc * const sc = ifp->if_softc;
738 	struct gfe_txqueue * const txq = &sc->sc_txq[GE_TXPRIO_HI];
739 
740 	GE_FUNC_ENTER(sc, "gfe_ifwatchdog");
741 	aprint_error_dev(sc->sc_dev, "device timeout");
742 	if (ifp->if_flags & IFF_RUNNING) {
743 		uint32_t curtxdnum;
744 
745 		curtxdnum = (GE_READ(sc, txq->txq_ectdp) -
746 		    txq->txq_desc_busaddr) / sizeof(txq->txq_descs[0]);
747 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
748 		GE_TXDPOSTSYNC(sc, txq, curtxdnum);
749 		aprint_error(" (fi=%d(%#x),lo=%d,cur=%d(%#x),icm=%#x) ",
750 		    txq->txq_fi, txq->txq_descs[txq->txq_fi].ed_cmdsts,
751 		    txq->txq_lo, curtxdnum, txq->txq_descs[curtxdnum].ed_cmdsts,
752 		    GE_READ(sc, ETH_EICR));
753 		GE_TXDPRESYNC(sc, txq, txq->txq_fi);
754 		GE_TXDPRESYNC(sc, txq, curtxdnum);
755 	}
756 	aprint_error("\n");
757 	ifp->if_oerrors++;
758 	(void) gfe_whack(sc, GE_WHACK_RESTART);
759 	GE_FUNC_EXIT(sc, "");
760 }
761 
762 int
763 gfe_rx_rxqalloc(struct gfe_softc *sc, enum gfe_rxprio rxprio)
764 {
765 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
766 	int error;
767 
768 	GE_FUNC_ENTER(sc, "gfe_rx_rxqalloc");
769 	GE_DPRINTF(sc, ("(%d)", rxprio));
770 
771 	error = gfe_dmamem_alloc(sc, &rxq->rxq_desc_mem, 1,
772 	    GE_RXDESC_MEMSIZE, BUS_DMA_NOCACHE);
773 	if (error) {
774 		GE_FUNC_EXIT(sc, "!!");
775 		return error;
776 	}
777 
778 	error = gfe_dmamem_alloc(sc, &rxq->rxq_buf_mem, GE_RXBUF_NSEGS,
779 	    GE_RXBUF_MEMSIZE, 0);
780 	if (error) {
781 		GE_FUNC_EXIT(sc, "!!!");
782 		return error;
783 	}
784 	GE_FUNC_EXIT(sc, "");
785 	return error;
786 }
787 
788 int
789 gfe_rx_rxqinit(struct gfe_softc *sc, enum gfe_rxprio rxprio)
790 {
791 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
792 	volatile struct gt_eth_desc *rxd;
793 	const bus_dma_segment_t *ds;
794 	int idx;
795 	bus_addr_t nxtaddr;
796 	bus_size_t boff;
797 
798 	GE_FUNC_ENTER(sc, "gfe_rx_rxqinit");
799 	GE_DPRINTF(sc, ("(%d)", rxprio));
800 
801 	if ((sc->sc_flags & GE_NOFREE) == 0) {
802 		int error = gfe_rx_rxqalloc(sc, rxprio);
803 		if (error) {
804 			GE_FUNC_EXIT(sc, "!");
805 			return error;
806 		}
807 	} else {
808 		KASSERT(rxq->rxq_desc_mem.gdm_kva != NULL);
809 		KASSERT(rxq->rxq_buf_mem.gdm_kva != NULL);
810 	}
811 
812 	memset(rxq->rxq_desc_mem.gdm_kva, 0, GE_RXDESC_MEMSIZE);
813 
814 	rxq->rxq_descs =
815 	    (volatile struct gt_eth_desc *) rxq->rxq_desc_mem.gdm_kva;
816 	rxq->rxq_desc_busaddr = rxq->rxq_desc_mem.gdm_map->dm_segs[0].ds_addr;
817 	rxq->rxq_bufs = (struct gfe_rxbuf *) rxq->rxq_buf_mem.gdm_kva;
818 	rxq->rxq_fi = 0;
819 	rxq->rxq_active = GE_RXDESC_MAX;
820 	boff = 0;
821 	ds = rxq->rxq_buf_mem.gdm_map->dm_segs;
822 	nxtaddr = rxq->rxq_desc_busaddr + sizeof(*rxd);
823 	for (idx = 0, rxd = rxq->rxq_descs; idx < GE_RXDESC_MAX;
824 	    idx++, nxtaddr += sizeof(*(++rxd))) {
825 		rxd->ed_lencnt = htogt32(GE_RXBUF_SIZE << 16);
826 		rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
827 		rxd->ed_bufptr = htogt32(ds->ds_addr + boff);
828 		/*
829 		 * update the nxtptr to point to the next txd.
830 		 */
831 		if (idx == GE_RXDESC_MAX - 1)
832 			nxtaddr = rxq->rxq_desc_busaddr;
833 		rxd->ed_nxtptr = htogt32(nxtaddr);
834 		boff += GE_RXBUF_SIZE;
835 		if (boff == ds->ds_len) {
836 			ds++;
837 			boff = 0;
838 		}
839 	}
840 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 0,
841 			rxq->rxq_desc_mem.gdm_map->dm_mapsize,
842 			BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
843 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 0,
844 			rxq->rxq_buf_mem.gdm_map->dm_mapsize,
845 			BUS_DMASYNC_PREREAD);
846 
847 	rxq->rxq_intrbits = ETH_IR_RxBuffer|ETH_IR_RxError;
848 	switch (rxprio) {
849 	case GE_RXPRIO_HI:
850 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_3|ETH_IR_RxError_3;
851 		rxq->rxq_efrdp = ETH_EFRDP3;
852 		rxq->rxq_ecrdp = ETH_ECRDP3;
853 		break;
854 	case GE_RXPRIO_MEDHI:
855 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_2|ETH_IR_RxError_2;
856 		rxq->rxq_efrdp = ETH_EFRDP2;
857 		rxq->rxq_ecrdp = ETH_ECRDP2;
858 		break;
859 	case GE_RXPRIO_MEDLO:
860 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_1|ETH_IR_RxError_1;
861 		rxq->rxq_efrdp = ETH_EFRDP1;
862 		rxq->rxq_ecrdp = ETH_ECRDP1;
863 		break;
864 	case GE_RXPRIO_LO:
865 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_0|ETH_IR_RxError_0;
866 		rxq->rxq_efrdp = ETH_EFRDP0;
867 		rxq->rxq_ecrdp = ETH_ECRDP0;
868 		break;
869 	}
870 	GE_FUNC_EXIT(sc, "");
871 	return 0;
872 }
873 
874 void
875 gfe_rx_get(struct gfe_softc *sc, enum gfe_rxprio rxprio)
876 {
877 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
878 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
879 	struct mbuf *m = rxq->rxq_curpkt;
880 
881 	GE_FUNC_ENTER(sc, "gfe_rx_get");
882 	GE_DPRINTF(sc, ("(%d)", rxprio));
883 
884 	while (rxq->rxq_active > 0) {
885 		volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[rxq->rxq_fi];
886 		struct gfe_rxbuf *rxb = &rxq->rxq_bufs[rxq->rxq_fi];
887 		const struct ether_header *eh;
888 		unsigned int cmdsts;
889 		size_t buflen;
890 
891 		GE_RXDPOSTSYNC(sc, rxq, rxq->rxq_fi);
892 		cmdsts = gt32toh(rxd->ed_cmdsts);
893 		GE_DPRINTF(sc, (":%d=%#x", rxq->rxq_fi, cmdsts));
894 		rxq->rxq_cmdsts = cmdsts;
895 		/*
896 		 * Sometimes the GE "forgets" to reset the ownership bit.
897 		 * But if the length has been rewritten, the packet is ours
898 		 * so pretend the O bit is set.
899 		 */
900 		buflen = gt32toh(rxd->ed_lencnt) & 0xffff;
901 		if ((cmdsts & RX_CMD_O) && buflen == 0) {
902 			GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
903 			break;
904 		}
905 
906 		/*
907 		 * If this is not a single buffer packet with no errors
908 		 * or for some reason it's bigger than our frame size,
909 		 * ignore it and go to the next packet.
910 		 */
911 		if ((cmdsts & (RX_CMD_F|RX_CMD_L|RX_STS_ES)) !=
912 							(RX_CMD_F|RX_CMD_L) ||
913 		    buflen > sc->sc_max_frame_length) {
914 			GE_DPRINTF(sc, ("!"));
915 			--rxq->rxq_active;
916 			ifp->if_ipackets++;
917 			ifp->if_ierrors++;
918 			goto give_it_back;
919 		}
920 
921 		/* CRC is included with the packet; trim it off. */
922 		buflen -= ETHER_CRC_LEN;
923 
924 		if (m == NULL) {
925 			MGETHDR(m, M_DONTWAIT, MT_DATA);
926 			if (m == NULL) {
927 				GE_DPRINTF(sc, ("?"));
928 				break;
929 			}
930 		}
931 		if ((m->m_flags & M_EXT) == 0 && buflen > MHLEN - 2) {
932 			MCLGET(m, M_DONTWAIT);
933 			if ((m->m_flags & M_EXT) == 0) {
934 				GE_DPRINTF(sc, ("?"));
935 				break;
936 			}
937 		}
938 		m->m_data += 2;
939 		m->m_len = 0;
940 		m->m_pkthdr.len = 0;
941 		m->m_pkthdr.rcvif = ifp;
942 		rxq->rxq_cmdsts = cmdsts;
943 		--rxq->rxq_active;
944 
945 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map,
946 		    rxq->rxq_fi * sizeof(*rxb), buflen, BUS_DMASYNC_POSTREAD);
947 
948 		KASSERT(m->m_len == 0 && m->m_pkthdr.len == 0);
949 		memcpy(m->m_data + m->m_len, rxb->rxb_data, buflen);
950 		m->m_len = buflen;
951 		m->m_pkthdr.len = buflen;
952 
953 		ifp->if_ipackets++;
954 		bpf_mtap(ifp, m);
955 
956 		eh = (const struct ether_header *) m->m_data;
957 		if ((ifp->if_flags & IFF_PROMISC) ||
958 		    (rxq->rxq_cmdsts & RX_STS_M) == 0 ||
959 		    (rxq->rxq_cmdsts & RX_STS_HE) ||
960 		    (eh->ether_dhost[0] & 1) != 0 ||
961 		    memcmp(eh->ether_dhost, CLLADDR(ifp->if_sadl),
962 							ETHER_ADDR_LEN) == 0) {
963 			(*ifp->if_input)(ifp, m);
964 			m = NULL;
965 			GE_DPRINTF(sc, (">"));
966 		} else {
967 			m->m_len = 0;
968 			m->m_pkthdr.len = 0;
969 			GE_DPRINTF(sc, ("+"));
970 		}
971 		rxq->rxq_cmdsts = 0;
972 
973 	   give_it_back:
974 		rxd->ed_lencnt &= ~0xffff;	/* zero out length */
975 		rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
976 #if 0
977 		GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)",
978 		    rxq->rxq_fi,
979 		    ((unsigned long *)rxd)[0], ((unsigned long *)rxd)[1],
980 		    ((unsigned long *)rxd)[2], ((unsigned long *)rxd)[3]));
981 #endif
982 		GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
983 		if (++rxq->rxq_fi == GE_RXDESC_MAX)
984 			rxq->rxq_fi = 0;
985 		rxq->rxq_active++;
986 	}
987 	rxq->rxq_curpkt = m;
988 	GE_FUNC_EXIT(sc, "");
989 }
990 
991 uint32_t
992 gfe_rx_process(struct gfe_softc *sc, uint32_t cause, uint32_t intrmask)
993 {
994 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
995 	struct gfe_rxqueue *rxq;
996 	uint32_t rxbits;
997 #define	RXPRIO_DECODER	0xffffaa50
998 	GE_FUNC_ENTER(sc, "gfe_rx_process");
999 
1000 	rxbits = ETH_IR_RxBuffer_GET(cause);
1001 	while (rxbits) {
1002 		enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
1003 		GE_DPRINTF(sc, ("%1x", rxbits));
1004 		rxbits &= ~(1 << rxprio);
1005 		gfe_rx_get(sc, rxprio);
1006 	}
1007 
1008 	rxbits = ETH_IR_RxError_GET(cause);
1009 	while (rxbits) {
1010 		enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
1011 		uint32_t masks[(GE_RXDESC_MAX + 31) / 32];
1012 		int idx;
1013 		rxbits &= ~(1 << rxprio);
1014 		rxq = &sc->sc_rxq[rxprio];
1015 		sc->sc_idlemask |= (rxq->rxq_intrbits & ETH_IR_RxBits);
1016 		intrmask &= ~(rxq->rxq_intrbits & ETH_IR_RxBits);
1017 		if ((sc->sc_tickflags & GE_TICK_RX_RESTART) == 0) {
1018 			sc->sc_tickflags |= GE_TICK_RX_RESTART;
1019 			callout_reset(&sc->sc_co, 1, gfe_tick, sc);
1020 		}
1021 		ifp->if_ierrors++;
1022 		GE_DPRINTF(sc, ("%s: rx queue %d filled at %u\n",
1023 		    device_xname(sc->sc_dev), rxprio, rxq->rxq_fi));
1024 		memset(masks, 0, sizeof(masks));
1025 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1026 		    0, rxq->rxq_desc_mem.gdm_size,
1027 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1028 		for (idx = 0; idx < GE_RXDESC_MAX; idx++) {
1029 			volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[idx];
1030 
1031 			if (RX_CMD_O & gt32toh(rxd->ed_cmdsts))
1032 				masks[idx/32] |= 1 << (idx & 31);
1033 		}
1034 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1035 		    0, rxq->rxq_desc_mem.gdm_size,
1036 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1037 #if defined(DEBUG)
1038 		printf("%s: rx queue %d filled at %u=%#x(%#x/%#x)\n",
1039 		    device_xname(sc->sc_dev), rxprio, rxq->rxq_fi,
1040 		    rxq->rxq_cmdsts, masks[0], masks[1]);
1041 #endif
1042 	}
1043 	if ((intrmask & ETH_IR_RxBits) == 0)
1044 		intrmask &= ~(ETH_IR_RxBuffer|ETH_IR_RxError);
1045 
1046 	GE_FUNC_EXIT(sc, "");
1047 	return intrmask;
1048 }
1049 
1050 int
1051 gfe_rx_prime(struct gfe_softc *sc)
1052 {
1053 	struct gfe_rxqueue *rxq;
1054 	int error;
1055 
1056 	GE_FUNC_ENTER(sc, "gfe_rx_prime");
1057 
1058 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_HI);
1059 	if (error)
1060 		goto bail;
1061 	rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1062 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1063 		GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1064 		GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1065 	}
1066 	sc->sc_intrmask |= rxq->rxq_intrbits;
1067 
1068 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDHI);
1069 	if (error)
1070 		goto bail;
1071 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1072 		rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1073 		GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1074 		GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1075 		sc->sc_intrmask |= rxq->rxq_intrbits;
1076 	}
1077 
1078 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDLO);
1079 	if (error)
1080 		goto bail;
1081 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1082 		rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1083 		GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1084 		GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1085 		sc->sc_intrmask |= rxq->rxq_intrbits;
1086 	}
1087 
1088 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_LO);
1089 	if (error)
1090 		goto bail;
1091 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1092 		rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1093 		GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1094 		GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1095 		sc->sc_intrmask |= rxq->rxq_intrbits;
1096 	}
1097 
1098   bail:
1099 	GE_FUNC_EXIT(sc, "");
1100 	return error;
1101 }
1102 
1103 void
1104 gfe_rx_cleanup(struct gfe_softc *sc, enum gfe_rxprio rxprio)
1105 {
1106 	struct gfe_rxqueue *rxq = &sc->sc_rxq[rxprio];
1107 	GE_FUNC_ENTER(sc, "gfe_rx_cleanup");
1108 	if (rxq == NULL) {
1109 		GE_FUNC_EXIT(sc, "");
1110 		return;
1111 	}
1112 
1113 	if (rxq->rxq_curpkt)
1114 		m_freem(rxq->rxq_curpkt);
1115 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1116 		gfe_dmamem_free(sc, &rxq->rxq_desc_mem);
1117 		gfe_dmamem_free(sc, &rxq->rxq_buf_mem);
1118 	}
1119 	GE_FUNC_EXIT(sc, "");
1120 }
1121 
1122 void
1123 gfe_rx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1124 {
1125 	GE_FUNC_ENTER(sc, "gfe_rx_stop");
1126 	sc->sc_flags &= ~GE_RXACTIVE;
1127 	sc->sc_idlemask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1128 	sc->sc_intrmask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1129 	GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1130 	GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR);
1131 	do {
1132 		delay(10);
1133 	} while (GE_READ(sc, ETH_ESDCMR) & ETH_ESDCMR_AR);
1134 	gfe_rx_cleanup(sc, GE_RXPRIO_HI);
1135 	gfe_rx_cleanup(sc, GE_RXPRIO_MEDHI);
1136 	gfe_rx_cleanup(sc, GE_RXPRIO_MEDLO);
1137 	gfe_rx_cleanup(sc, GE_RXPRIO_LO);
1138 	GE_FUNC_EXIT(sc, "");
1139 }
1140 
1141 void
1142 gfe_tick(void *arg)
1143 {
1144 	struct gfe_softc * const sc = arg;
1145 	uint32_t intrmask;
1146 	unsigned int tickflags;
1147 	int s;
1148 
1149 	GE_FUNC_ENTER(sc, "gfe_tick");
1150 
1151 	s = splnet();
1152 
1153 	tickflags = sc->sc_tickflags;
1154 	sc->sc_tickflags = 0;
1155 	intrmask = sc->sc_intrmask;
1156 	if (tickflags & GE_TICK_TX_IFSTART)
1157 		gfe_ifstart(&sc->sc_ec.ec_if);
1158 	if (tickflags & GE_TICK_RX_RESTART) {
1159 		intrmask |= sc->sc_idlemask;
1160 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_3|ETH_IR_RxError_3)) {
1161 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1162 			rxq->rxq_fi = 0;
1163 			GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1164 			GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1165 		}
1166 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_2|ETH_IR_RxError_2)) {
1167 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1168 			rxq->rxq_fi = 0;
1169 			GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1170 			GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1171 		}
1172 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_1|ETH_IR_RxError_1)) {
1173 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1174 			rxq->rxq_fi = 0;
1175 			GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1176 			GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1177 		}
1178 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_0|ETH_IR_RxError_0)) {
1179 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1180 			rxq->rxq_fi = 0;
1181 			GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1182 			GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1183 		}
1184 		sc->sc_idlemask = 0;
1185 	}
1186 	if (intrmask != sc->sc_intrmask) {
1187 		sc->sc_intrmask = intrmask;
1188 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1189 	}
1190 	gfe_intr(sc);
1191 	splx(s);
1192 
1193 	GE_FUNC_EXIT(sc, "");
1194 }
1195 
1196 int
1197 gfe_tx_enqueue(struct gfe_softc *sc, enum gfe_txprio txprio)
1198 {
1199 	const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1200 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
1201 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1202 	volatile struct gt_eth_desc * const txd = &txq->txq_descs[txq->txq_lo];
1203 	uint32_t intrmask = sc->sc_intrmask;
1204 	size_t buflen;
1205 	struct mbuf *m;
1206 
1207 	GE_FUNC_ENTER(sc, "gfe_tx_enqueue");
1208 
1209 	/*
1210 	 * Anything in the pending queue to enqueue?  if not, punt. Likewise
1211 	 * if the txq is not yet created.
1212 	 * otherwise grab its dmamap.
1213 	 */
1214 	if (txq == NULL || (m = txq->txq_pendq.ifq_head) == NULL) {
1215 		GE_FUNC_EXIT(sc, "-");
1216 		return 0;
1217 	}
1218 
1219 	/*
1220 	 * Have we [over]consumed our limit of descriptors?
1221 	 * Do we have enough free descriptors?
1222 	 */
1223 	if (GE_TXDESC_MAX == txq->txq_nactive + 2) {
1224 		volatile struct gt_eth_desc * const txd2 = &txq->txq_descs[txq->txq_fi];
1225 		uint32_t cmdsts;
1226 		size_t pktlen;
1227 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1228 		cmdsts = gt32toh(txd2->ed_cmdsts);
1229 		if (cmdsts & TX_CMD_O) {
1230 			int nextin;
1231 			/*
1232 			 * Sometime the Discovery forgets to update the
1233 			 * last descriptor.  See if we own the descriptor
1234 			 * after it (since we know we've turned that to
1235 			 * the discovery and if we owned it, the Discovery
1236 			 * gave it back).  If we do, we know the Discovery
1237 			 * gave back this one but forgot to mark it as ours.
1238 			 */
1239 			nextin = txq->txq_fi + 1;
1240 			if (nextin == GE_TXDESC_MAX)
1241 				nextin = 0;
1242 			GE_TXDPOSTSYNC(sc, txq, nextin);
1243 			if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1244 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1245 				GE_TXDPRESYNC(sc, txq, nextin);
1246 				GE_FUNC_EXIT(sc, "@");
1247 				return 0;
1248 			}
1249 #ifdef DEBUG
1250 			printf("%s: txenqueue: transmitter resynced at %d\n",
1251 			    device_xname(sc->sc_dev), txq->txq_fi);
1252 #endif
1253 		}
1254 		if (++txq->txq_fi == GE_TXDESC_MAX)
1255 			txq->txq_fi = 0;
1256 		txq->txq_inptr = gt32toh(txd2->ed_bufptr) - txq->txq_buf_busaddr;
1257 		pktlen = (gt32toh(txd2->ed_lencnt) >> 16) & 0xffff;
1258 		txq->txq_inptr += roundup(pktlen, dcache_line_size);
1259 		txq->txq_nactive--;
1260 
1261 		/* statistics */
1262 		ifp->if_opackets++;
1263 		if (cmdsts & TX_STS_ES)
1264 			ifp->if_oerrors++;
1265 		GE_DPRINTF(sc, ("%%"));
1266 	}
1267 
1268 	buflen = roundup(m->m_pkthdr.len, dcache_line_size);
1269 
1270 	/*
1271 	 * If this packet would wrap around the end of the buffer, reset back
1272 	 * to the beginning.
1273 	 */
1274 	if (txq->txq_outptr + buflen > GE_TXBUF_SIZE) {
1275 		txq->txq_ei_gapcount += GE_TXBUF_SIZE - txq->txq_outptr;
1276 		txq->txq_outptr = 0;
1277 	}
1278 
1279 	/*
1280 	 * Make sure the output packet doesn't run over the beginning of
1281 	 * what we've already given the GT.
1282 	 */
1283 	if (txq->txq_nactive > 0 && txq->txq_outptr <= txq->txq_inptr &&
1284 	    txq->txq_outptr + buflen > txq->txq_inptr) {
1285 		intrmask |= txq->txq_intrbits &
1286 		    (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow);
1287 		if (sc->sc_intrmask != intrmask) {
1288 			sc->sc_intrmask = intrmask;
1289 			GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1290 		}
1291 		GE_FUNC_EXIT(sc, "#");
1292 		return 0;
1293 	}
1294 
1295 	/*
1296 	 * The end-of-list descriptor we put on last time is the starting point
1297 	 * for this packet.  The GT is supposed to terminate list processing on
1298 	 * a NULL nxtptr but that currently is broken so a CPU-owned descriptor
1299 	 * must terminate the list.
1300 	 */
1301 	intrmask = sc->sc_intrmask;
1302 
1303 	m_copydata(m, 0, m->m_pkthdr.len,
1304 	    (char *)txq->txq_buf_mem.gdm_kva + (int)txq->txq_outptr);
1305 	bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1306 	    txq->txq_outptr, buflen, BUS_DMASYNC_PREWRITE);
1307 	txd->ed_bufptr = htogt32(txq->txq_buf_busaddr + txq->txq_outptr);
1308 	txd->ed_lencnt = htogt32(m->m_pkthdr.len << 16);
1309 	GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1310 
1311 	/*
1312 	 * Request a buffer interrupt every 2/3 of the way thru the transmit
1313 	 * buffer.
1314 	 */
1315 	txq->txq_ei_gapcount += buflen;
1316 	if (txq->txq_ei_gapcount > 2 * GE_TXBUF_SIZE / 3) {
1317 		txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST|TX_CMD_EI);
1318 		txq->txq_ei_gapcount = 0;
1319 	} else {
1320 		txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST);
1321 	}
1322 #if 0
1323 	GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", txq->txq_lo,
1324 	    ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1325 	    ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1326 #endif
1327 	GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1328 
1329 	txq->txq_outptr += buflen;
1330 	/*
1331 	 * Tell the SDMA engine to "Fetch!"
1332 	 */
1333 	GE_WRITE(sc, ETH_ESDCMR,
1334 		 txq->txq_esdcmrbits & (ETH_ESDCMR_TXDH|ETH_ESDCMR_TXDL));
1335 
1336 	GE_DPRINTF(sc, ("(%d)", txq->txq_lo));
1337 
1338 	/*
1339 	 * Update the last out appropriately.
1340 	 */
1341 	txq->txq_nactive++;
1342 	if (++txq->txq_lo == GE_TXDESC_MAX)
1343 		txq->txq_lo = 0;
1344 
1345 	/*
1346 	 * Move mbuf from the pending queue to the snd queue.
1347 	 */
1348 	IF_DEQUEUE(&txq->txq_pendq, m);
1349 	bpf_mtap(ifp, m);
1350 	m_freem(m);
1351 	ifp->if_flags &= ~IFF_OACTIVE;
1352 
1353 	/*
1354 	 * Since we have put an item into the packet queue, we now want
1355 	 * an interrupt when the transmit queue finishes processing the
1356 	 * list.  But only update the mask if needs changing.
1357 	 */
1358 	intrmask |= txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow);
1359 	if (sc->sc_intrmask != intrmask) {
1360 		sc->sc_intrmask = intrmask;
1361 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1362 	}
1363 	if (ifp->if_timer == 0)
1364 		ifp->if_timer = 5;
1365 	GE_FUNC_EXIT(sc, "*");
1366 	return 1;
1367 }
1368 
1369 uint32_t
1370 gfe_tx_done(struct gfe_softc *sc, enum gfe_txprio txprio, uint32_t intrmask)
1371 {
1372 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1373 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
1374 
1375 	GE_FUNC_ENTER(sc, "gfe_tx_done");
1376 
1377 	if (txq == NULL) {
1378 		GE_FUNC_EXIT(sc, "");
1379 		return intrmask;
1380 	}
1381 
1382 	while (txq->txq_nactive > 0) {
1383 		const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1384 		volatile struct gt_eth_desc *txd = &txq->txq_descs[txq->txq_fi];
1385 		uint32_t cmdsts;
1386 		size_t pktlen;
1387 
1388 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1389 		if ((cmdsts = gt32toh(txd->ed_cmdsts)) & TX_CMD_O) {
1390 			int nextin;
1391 
1392 			if (txq->txq_nactive == 1) {
1393 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1394 				GE_FUNC_EXIT(sc, "");
1395 				return intrmask;
1396 			}
1397 			/*
1398 			 * Sometimes the Discovery forgets to update the
1399 			 * ownership bit in the descriptor.  See if we own the
1400 			 * descriptor after it (since we know we've turned
1401 			 * that to the Discovery and if we own it now then the
1402 			 * Discovery gave it back).  If we do, we know the
1403 			 * Discovery gave back this one but forgot to mark it
1404 			 * as ours.
1405 			 */
1406 			nextin = txq->txq_fi + 1;
1407 			if (nextin == GE_TXDESC_MAX)
1408 				nextin = 0;
1409 			GE_TXDPOSTSYNC(sc, txq, nextin);
1410 			if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1411 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1412 				GE_TXDPRESYNC(sc, txq, nextin);
1413 				GE_FUNC_EXIT(sc, "");
1414 				return intrmask;
1415 			}
1416 #ifdef DEBUG
1417 			printf("%s: txdone: transmitter resynced at %d\n",
1418 			    device_xname(sc->sc_dev), txq->txq_fi);
1419 #endif
1420 		}
1421 #if 0
1422 		GE_DPRINTF(sc, ("([%d]<-%08lx.%08lx.%08lx.%08lx)",
1423 		    txq->txq_lo,
1424 		    ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1425 		    ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1426 #endif
1427 		GE_DPRINTF(sc, ("(%d)", txq->txq_fi));
1428 		if (++txq->txq_fi == GE_TXDESC_MAX)
1429 			txq->txq_fi = 0;
1430 		txq->txq_inptr = gt32toh(txd->ed_bufptr) - txq->txq_buf_busaddr;
1431 		pktlen = (gt32toh(txd->ed_lencnt) >> 16) & 0xffff;
1432 		bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1433 		    txq->txq_inptr, pktlen, BUS_DMASYNC_POSTWRITE);
1434 		txq->txq_inptr += roundup(pktlen, dcache_line_size);
1435 
1436 		/* statistics */
1437 		ifp->if_opackets++;
1438 		if (cmdsts & TX_STS_ES)
1439 			ifp->if_oerrors++;
1440 
1441 		/* txd->ed_bufptr = 0; */
1442 
1443 		ifp->if_timer = 5;
1444 		--txq->txq_nactive;
1445 	}
1446 	if (txq->txq_nactive != 0)
1447 		panic("%s: transmit fifo%d empty but active count (%d) > 0!",
1448 		    device_xname(sc->sc_dev), txprio, txq->txq_nactive);
1449 	ifp->if_timer = 0;
1450 	intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow));
1451 	intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow));
1452 	GE_FUNC_EXIT(sc, "");
1453 	return intrmask;
1454 }
1455 
1456 int
1457 gfe_tx_txqalloc(struct gfe_softc *sc, enum gfe_txprio txprio)
1458 {
1459 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1460 	int error;
1461 
1462 	GE_FUNC_ENTER(sc, "gfe_tx_txqalloc");
1463 
1464 	error = gfe_dmamem_alloc(sc, &txq->txq_desc_mem, 1,
1465 	    GE_TXDESC_MEMSIZE, BUS_DMA_NOCACHE);
1466 	if (error) {
1467 		GE_FUNC_EXIT(sc, "");
1468 		return error;
1469 	}
1470 	error = gfe_dmamem_alloc(sc, &txq->txq_buf_mem, 1, GE_TXBUF_SIZE, 0);
1471 	if (error) {
1472 		gfe_dmamem_free(sc, &txq->txq_desc_mem);
1473 		GE_FUNC_EXIT(sc, "");
1474 		return error;
1475 	}
1476 	GE_FUNC_EXIT(sc, "");
1477 	return 0;
1478 }
1479 
1480 int
1481 gfe_tx_start(struct gfe_softc *sc, enum gfe_txprio txprio)
1482 {
1483 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1484 	volatile struct gt_eth_desc *txd;
1485 	unsigned int i;
1486 	bus_addr_t addr;
1487 
1488 	GE_FUNC_ENTER(sc, "gfe_tx_start");
1489 
1490 	sc->sc_intrmask &=
1491 	    ~(ETH_IR_TxEndHigh		|
1492 	      ETH_IR_TxBufferHigh	|
1493 	      ETH_IR_TxEndLow		|
1494 	      ETH_IR_TxBufferLow);
1495 
1496 	if (sc->sc_flags & GE_NOFREE) {
1497 		KASSERT(txq->txq_desc_mem.gdm_kva != NULL);
1498 		KASSERT(txq->txq_buf_mem.gdm_kva != NULL);
1499 	} else {
1500 		int error = gfe_tx_txqalloc(sc, txprio);
1501 		if (error) {
1502 			GE_FUNC_EXIT(sc, "!");
1503 			return error;
1504 		}
1505 	}
1506 
1507 	txq->txq_descs =
1508 	    (volatile struct gt_eth_desc *) txq->txq_desc_mem.gdm_kva;
1509 	txq->txq_desc_busaddr = txq->txq_desc_mem.gdm_map->dm_segs[0].ds_addr;
1510 	txq->txq_buf_busaddr = txq->txq_buf_mem.gdm_map->dm_segs[0].ds_addr;
1511 
1512 	txq->txq_pendq.ifq_maxlen = 10;
1513 	txq->txq_ei_gapcount = 0;
1514 	txq->txq_nactive = 0;
1515 	txq->txq_fi = 0;
1516 	txq->txq_lo = 0;
1517 	txq->txq_inptr = GE_TXBUF_SIZE;
1518 	txq->txq_outptr = 0;
1519 	for (i = 0, txd = txq->txq_descs,
1520 	    addr = txq->txq_desc_busaddr + sizeof(*txd);
1521 	    i < GE_TXDESC_MAX - 1; i++, txd++, addr += sizeof(*txd)) {
1522 		/*
1523 		 * update the nxtptr to point to the next txd.
1524 		 */
1525 		txd->ed_cmdsts = 0;
1526 		txd->ed_nxtptr = htogt32(addr);
1527 	}
1528 	txq->txq_descs[GE_TXDESC_MAX-1].ed_nxtptr =
1529 	    htogt32(txq->txq_desc_busaddr);
1530 	bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_mem.gdm_map, 0,
1531 	    GE_TXDESC_MEMSIZE, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1532 
1533 	switch (txprio) {
1534 	case GE_TXPRIO_HI:
1535 		txq->txq_intrbits = ETH_IR_TxEndHigh|ETH_IR_TxBufferHigh;
1536 		txq->txq_esdcmrbits = ETH_ESDCMR_TXDH;
1537 		txq->txq_epsrbits = ETH_EPSR_TxHigh;
1538 		txq->txq_ectdp = ETH_ECTDP1;
1539 		GE_WRITE(sc, ETH_ECTDP1, txq->txq_desc_busaddr);
1540 		break;
1541 
1542 	case GE_TXPRIO_LO:
1543 		txq->txq_intrbits = ETH_IR_TxEndLow|ETH_IR_TxBufferLow;
1544 		txq->txq_esdcmrbits = ETH_ESDCMR_TXDL;
1545 		txq->txq_epsrbits = ETH_EPSR_TxLow;
1546 		txq->txq_ectdp = ETH_ECTDP0;
1547 		GE_WRITE(sc, ETH_ECTDP0, txq->txq_desc_busaddr);
1548 		break;
1549 
1550 	case GE_TXPRIO_NONE:
1551 		break;
1552 	}
1553 #if 0
1554 	GE_DPRINTF(sc, ("(ectdp=%#x", txq->txq_ectdp));
1555 	GE_WRITE(sc->sc_dev, txq->txq_ectdp, txq->txq_desc_busaddr);
1556 	GE_DPRINTF(sc, (")"));
1557 #endif
1558 
1559 	/*
1560 	 * If we are restarting, there may be packets in the pending queue
1561 	 * waiting to be enqueued.  Try enqueuing packets from both priority
1562 	 * queues until the pending queue is empty or there no room for them
1563 	 * on the device.
1564 	 */
1565 	while (gfe_tx_enqueue(sc, txprio))
1566 		continue;
1567 
1568 	GE_FUNC_EXIT(sc, "");
1569 	return 0;
1570 }
1571 
1572 void
1573 gfe_tx_cleanup(struct gfe_softc *sc, enum gfe_txprio txprio, int flush)
1574 {
1575 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1576 
1577 	GE_FUNC_ENTER(sc, "gfe_tx_cleanup");
1578 	if (txq == NULL) {
1579 		GE_FUNC_EXIT(sc, "");
1580 		return;
1581 	}
1582 
1583 	if (!flush) {
1584 		GE_FUNC_EXIT(sc, "");
1585 		return;
1586 	}
1587 
1588 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1589 		gfe_dmamem_free(sc, &txq->txq_desc_mem);
1590 		gfe_dmamem_free(sc, &txq->txq_buf_mem);
1591 	}
1592 	GE_FUNC_EXIT(sc, "-F");
1593 }
1594 
1595 void
1596 gfe_tx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1597 {
1598 	GE_FUNC_ENTER(sc, "gfe_tx_stop");
1599 
1600 	GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_STDH|ETH_ESDCMR_STDL);
1601 
1602 	sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, sc->sc_intrmask);
1603 	sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, sc->sc_intrmask);
1604 	sc->sc_intrmask &=
1605 	    ~(ETH_IR_TxEndHigh		|
1606 	      ETH_IR_TxBufferHigh	|
1607 	      ETH_IR_TxEndLow		|
1608 	      ETH_IR_TxBufferLow);
1609 
1610 	gfe_tx_cleanup(sc, GE_TXPRIO_HI, op == GE_WHACK_STOP);
1611 	gfe_tx_cleanup(sc, GE_TXPRIO_LO, op == GE_WHACK_STOP);
1612 
1613 	sc->sc_ec.ec_if.if_timer = 0;
1614 	GE_FUNC_EXIT(sc, "");
1615 }
1616 
1617 int
1618 gfe_intr(void *arg)
1619 {
1620 	struct gfe_softc * const sc = arg;
1621 	uint32_t cause;
1622 	uint32_t intrmask = sc->sc_intrmask;
1623 	int claim = 0;
1624 	int cnt;
1625 
1626 	GE_FUNC_ENTER(sc, "gfe_intr");
1627 
1628 	for (cnt = 0; cnt < 4; cnt++) {
1629 		if (sc->sc_intrmask != intrmask) {
1630 			sc->sc_intrmask = intrmask;
1631 			GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1632 		}
1633 		cause = GE_READ(sc, ETH_EICR);
1634 		cause &= sc->sc_intrmask;
1635 		GE_DPRINTF(sc, (".%#x", cause));
1636 		if (cause == 0)
1637 			break;
1638 
1639 		claim = 1;
1640 
1641 		GE_WRITE(sc, ETH_EICR, ~cause);
1642 #ifndef GE_NORX
1643 		if (cause & (ETH_IR_RxBuffer|ETH_IR_RxError))
1644 			intrmask = gfe_rx_process(sc, cause, intrmask);
1645 #endif
1646 
1647 #ifndef GE_NOTX
1648 		if (cause & (ETH_IR_TxBufferHigh|ETH_IR_TxEndHigh))
1649 			intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, intrmask);
1650 		if (cause & (ETH_IR_TxBufferLow|ETH_IR_TxEndLow))
1651 			intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, intrmask);
1652 #endif
1653 		if (cause & ETH_IR_MIIPhySTC) {
1654 			sc->sc_flags |= GE_PHYSTSCHG;
1655 			/* intrmask &= ~ETH_IR_MIIPhySTC; */
1656 		}
1657 	}
1658 
1659 	while (gfe_tx_enqueue(sc, GE_TXPRIO_HI))
1660 		continue;
1661 	while (gfe_tx_enqueue(sc, GE_TXPRIO_LO))
1662 		continue;
1663 
1664 	GE_FUNC_EXIT(sc, "");
1665 	return claim;
1666 }
1667 
1668 int
1669 gfe_whack(struct gfe_softc *sc, enum gfe_whack_op op)
1670 {
1671 	int error = 0;
1672 	GE_FUNC_ENTER(sc, "gfe_whack");
1673 
1674 	switch (op) {
1675 	case GE_WHACK_RESTART:
1676 #ifndef GE_NOTX
1677 		gfe_tx_stop(sc, op);
1678 #endif
1679 		/* sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; */
1680 		/* FALLTHROUGH */
1681 	case GE_WHACK_START:
1682 #ifndef GE_NOHASH
1683 		if (error == 0 && sc->sc_hashtable == NULL) {
1684 			error = gfe_hash_alloc(sc);
1685 			if (error)
1686 				break;
1687 		}
1688 		if (op != GE_WHACK_RESTART)
1689 			gfe_hash_fill(sc);
1690 #endif
1691 #ifndef GE_NORX
1692 		if (op != GE_WHACK_RESTART) {
1693 			error = gfe_rx_prime(sc);
1694 			if (error)
1695 				break;
1696 		}
1697 #endif
1698 #ifndef GE_NOTX
1699 		error = gfe_tx_start(sc, GE_TXPRIO_HI);
1700 		if (error)
1701 			break;
1702 #endif
1703 		sc->sc_ec.ec_if.if_flags |= IFF_RUNNING;
1704 		GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1705 		GE_WRITE(sc, ETH_EPCXR, sc->sc_pcxr);
1706 		GE_WRITE(sc, ETH_EICR, 0);
1707 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1708 #ifndef GE_NOHASH
1709 		GE_WRITE(sc, ETH_EHTPR,
1710 		    sc->sc_hash_mem.gdm_map->dm_segs->ds_addr);
1711 #endif
1712 #ifndef GE_NORX
1713 		GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_ERD);
1714 		sc->sc_flags |= GE_RXACTIVE;
1715 #endif
1716 		/* FALLTHROUGH */
1717 	case GE_WHACK_CHANGE:
1718 		GE_DPRINTF(sc, ("(pcr=%#x,imr=%#x)",
1719 		    GE_READ(sc, ETH_EPCR), GE_READ(sc, ETH_EIMR)));
1720 		GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1721 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1722 		gfe_ifstart(&sc->sc_ec.ec_if);
1723 		GE_DPRINTF(sc, ("(ectdp0=%#x, ectdp1=%#x)",
1724 		    GE_READ(sc, ETH_ECTDP0), GE_READ(sc, ETH_ECTDP1)));
1725 		GE_FUNC_EXIT(sc, "");
1726 		return error;
1727 	case GE_WHACK_STOP:
1728 		break;
1729 	}
1730 
1731 #ifdef GE_DEBUG
1732 	if (error)
1733 		GE_DPRINTF(sc, (" failed: %d\n", error));
1734 #endif
1735 	GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1736 	GE_WRITE(sc, ETH_EIMR, 0);
1737 	sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING;
1738 #ifndef GE_NOTX
1739 	gfe_tx_stop(sc, GE_WHACK_STOP);
1740 #endif
1741 #ifndef GE_NORX
1742 	gfe_rx_stop(sc, GE_WHACK_STOP);
1743 #endif
1744 #ifndef GE_NOHASH
1745 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1746 		gfe_dmamem_free(sc, &sc->sc_hash_mem);
1747 		sc->sc_hashtable = NULL;
1748 	}
1749 #endif
1750 
1751 	GE_FUNC_EXIT(sc, "");
1752 	return error;
1753 }
1754 
1755 int
1756 gfe_hash_compute(struct gfe_softc *sc, const uint8_t eaddr[ETHER_ADDR_LEN])
1757 {
1758 	uint32_t w0, add0, add1;
1759 	uint32_t result;
1760 
1761 	GE_FUNC_ENTER(sc, "gfe_hash_compute");
1762 	add0 = ((uint32_t) eaddr[5] <<  0) |
1763 	       ((uint32_t) eaddr[4] <<  8) |
1764 	       ((uint32_t) eaddr[3] << 16);
1765 
1766 	add0 = ((add0 & 0x00f0f0f0) >> 4) | ((add0 & 0x000f0f0f) << 4);
1767 	add0 = ((add0 & 0x00cccccc) >> 2) | ((add0 & 0x00333333) << 2);
1768 	add0 = ((add0 & 0x00aaaaaa) >> 1) | ((add0 & 0x00555555) << 1);
1769 
1770 	add1 = ((uint32_t) eaddr[2] <<  0) |
1771 	       ((uint32_t) eaddr[1] <<  8) |
1772 	       ((uint32_t) eaddr[0] << 16);
1773 
1774 	add1 = ((add1 & 0x00f0f0f0) >> 4) | ((add1 & 0x000f0f0f) << 4);
1775 	add1 = ((add1 & 0x00cccccc) >> 2) | ((add1 & 0x00333333) << 2);
1776 	add1 = ((add1 & 0x00aaaaaa) >> 1) | ((add1 & 0x00555555) << 1);
1777 
1778 	GE_DPRINTF(sc, ("%s=", ether_sprintf(eaddr)));
1779 	/*
1780 	 * hashResult is the 15 bits Hash entry address.
1781 	 * ethernetADD is a 48 bit number, which is derived from the Ethernet
1782 	 *	MAC address, by nibble swapping in every byte (i.e MAC address
1783 	 *	of 0x123456789abc translates to ethernetADD of 0x21436587a9cb).
1784 	 */
1785 
1786 	if ((sc->sc_pcr & ETH_EPCR_HM) == 0) {
1787 		/*
1788 		 * hashResult[14:0] = hashFunc0(ethernetADD[47:0])
1789 		 *
1790 		 * hashFunc0 calculates the hashResult in the following manner:
1791 		 *   hashResult[ 8:0] = ethernetADD[14:8,1,0]
1792 		 *		XOR ethernetADD[23:15] XOR ethernetADD[32:24]
1793 		 */
1794 		result = (add0 & 3) | ((add0 >> 6) & ~3);
1795 		result ^= (add0 >> 15) ^ (add1 >>  0);
1796 		result &= 0x1ff;
1797 		/*
1798 		 *   hashResult[14:9] = ethernetADD[7:2]
1799 		 */
1800 		result |= (add0 & ~3) << 7;	/* excess bits will be masked */
1801 		GE_DPRINTF(sc, ("0(%#x)", result & 0x7fff));
1802 	} else {
1803 #define	TRIBITFLIP	073516240	/* yes its in octal */
1804 		/*
1805 		 * hashResult[14:0] = hashFunc1(ethernetADD[47:0])
1806 		 *
1807 		 * hashFunc1 calculates the hashResult in the following manner:
1808 		 *   hashResult[08:00] = ethernetADD[06:14]
1809 		 *		XOR ethernetADD[15:23] XOR ethernetADD[24:32]
1810 		 */
1811 		w0 = ((add0 >> 6) ^ (add0 >> 15) ^ (add1)) & 0x1ff;
1812 		/*
1813 		 * Now bitswap those 9 bits
1814 		 */
1815 		result = 0;
1816 		result |= ((TRIBITFLIP >> (((w0 >> 0) & 7) * 3)) & 7) << 6;
1817 		result |= ((TRIBITFLIP >> (((w0 >> 3) & 7) * 3)) & 7) << 3;
1818 		result |= ((TRIBITFLIP >> (((w0 >> 6) & 7) * 3)) & 7) << 0;
1819 
1820 		/*
1821 		 *   hashResult[14:09] = ethernetADD[00:05]
1822 		 */
1823 		result |= ((TRIBITFLIP >> (((add0 >> 0) & 7) * 3)) & 7) << 12;
1824 		result |= ((TRIBITFLIP >> (((add0 >> 3) & 7) * 3)) & 7) << 9;
1825 		GE_DPRINTF(sc, ("1(%#x)", result));
1826 	}
1827 	GE_FUNC_EXIT(sc, "");
1828 	return result & ((sc->sc_pcr & ETH_EPCR_HS_512) ? 0x7ff : 0x7fff);
1829 }
1830 
1831 int
1832 gfe_hash_entry_op(struct gfe_softc *sc, enum gfe_hash_op op,
1833 	enum gfe_rxprio prio, const uint8_t eaddr[ETHER_ADDR_LEN])
1834 {
1835 	uint64_t he;
1836 	uint64_t *maybe_he_p = NULL;
1837 	int limit;
1838 	int hash;
1839 	int maybe_hash = 0;
1840 
1841 	GE_FUNC_ENTER(sc, "gfe_hash_entry_op");
1842 
1843 	hash = gfe_hash_compute(sc, eaddr);
1844 
1845 	if (sc->sc_hashtable == NULL) {
1846 		panic("%s:%d: hashtable == NULL!", device_xname(sc->sc_dev),
1847 			__LINE__);
1848 	}
1849 
1850 	/*
1851 	 * Assume we are going to insert so create the hash entry we
1852 	 * are going to insert.  We also use it to match entries we
1853 	 * will be removing.
1854 	 */
1855 	he = ((uint64_t) eaddr[5] << 43) |
1856 	     ((uint64_t) eaddr[4] << 35) |
1857 	     ((uint64_t) eaddr[3] << 27) |
1858 	     ((uint64_t) eaddr[2] << 19) |
1859 	     ((uint64_t) eaddr[1] << 11) |
1860 	     ((uint64_t) eaddr[0] <<  3) |
1861 	     HSH_PRIO_INS(prio) | HSH_V | HSH_R;
1862 
1863 	/*
1864 	 * The GT will search upto 12 entries for a hit, so we must mimic that.
1865 	 */
1866 	hash &= sc->sc_hashmask / sizeof(he);
1867 	for (limit = HSH_LIMIT; limit > 0 ; --limit) {
1868 		/*
1869 		 * Does the GT wrap at the end, stop at the, or overrun the
1870 		 * end?  Assume it wraps for now.  Stash a copy of the
1871 		 * current hash entry.
1872 		 */
1873 		uint64_t *he_p = &sc->sc_hashtable[hash];
1874 		uint64_t thishe = *he_p;
1875 
1876 		/*
1877 		 * If the hash entry isn't valid, that break the chain.  And
1878 		 * this entry a good candidate for reuse.
1879 		 */
1880 		if ((thishe & HSH_V) == 0) {
1881 			maybe_he_p = he_p;
1882 			break;
1883 		}
1884 
1885 		/*
1886 		 * If the hash entry has the same address we are looking for
1887 		 * then ...  if we are removing and the skip bit is set, its
1888 		 * already been removed.  if are adding and the skip bit is
1889 		 * clear, then its already added.  In either return EBUSY
1890 		 * indicating the op has already been done.  Otherwise flip
1891 		 * the skip bit and return 0.
1892 		 */
1893 		if (((he ^ thishe) & HSH_ADDR_MASK) == 0) {
1894 			if (((op == GE_HASH_REMOVE) && (thishe & HSH_S)) ||
1895 			    ((op == GE_HASH_ADD) && (thishe & HSH_S) == 0))
1896 				return EBUSY;
1897 			*he_p = thishe ^ HSH_S;
1898 			bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1899 			    hash * sizeof(he), sizeof(he),
1900 			    BUS_DMASYNC_PREWRITE);
1901 			GE_FUNC_EXIT(sc, "^");
1902 			return 0;
1903 		}
1904 
1905 		/*
1906 		 * If we haven't found a slot for the entry and this entry
1907 		 * is currently being skipped, return this entry.
1908 		 */
1909 		if (maybe_he_p == NULL && (thishe & HSH_S)) {
1910 			maybe_he_p = he_p;
1911 			maybe_hash = hash;
1912 		}
1913 
1914 		hash = (hash + 1) & (sc->sc_hashmask / sizeof(he));
1915 	}
1916 
1917 	/*
1918 	 * If we got here, then there was no entry to remove.
1919 	 */
1920 	if (op == GE_HASH_REMOVE) {
1921 		GE_FUNC_EXIT(sc, "?");
1922 		return ENOENT;
1923 	}
1924 
1925 	/*
1926 	 * If we couldn't find a slot, return an error.
1927 	 */
1928 	if (maybe_he_p == NULL) {
1929 		GE_FUNC_EXIT(sc, "!");
1930 		return ENOSPC;
1931 	}
1932 
1933 	/* Update the entry.
1934 	 */
1935 	*maybe_he_p = he;
1936 	bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1937 	    maybe_hash * sizeof(he), sizeof(he), BUS_DMASYNC_PREWRITE);
1938 	GE_FUNC_EXIT(sc, "+");
1939 	return 0;
1940 }
1941 
1942 int
1943 gfe_hash_multichg(struct ethercom *ec, const struct ether_multi *enm,
1944 		  u_long cmd)
1945 {
1946 	struct gfe_softc *sc = ec->ec_if.if_softc;
1947 	int error;
1948 	enum gfe_hash_op op;
1949 	enum gfe_rxprio prio;
1950 
1951 	GE_FUNC_ENTER(sc, "hash_multichg");
1952 	/*
1953 	 * Is this a wildcard entry?  If so and its being removed, recompute.
1954 	 */
1955 	if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1956 		if (cmd == SIOCDELMULTI) {
1957 			GE_FUNC_EXIT(sc, "");
1958 			return ENETRESET;
1959 		}
1960 
1961 		/*
1962 		 * Switch in
1963 		 */
1964 		sc->sc_flags |= GE_ALLMULTI;
1965 		if ((sc->sc_pcr & ETH_EPCR_PM) == 0) {
1966 			sc->sc_pcr |= ETH_EPCR_PM;
1967 			GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1968 			GE_FUNC_EXIT(sc, "");
1969 			return 0;
1970 		}
1971 		GE_FUNC_EXIT(sc, "");
1972 		return ENETRESET;
1973 	}
1974 
1975 	prio = GE_RXPRIO_MEDLO;
1976 	op = (cmd == SIOCDELMULTI ? GE_HASH_REMOVE : GE_HASH_ADD);
1977 
1978 	if (sc->sc_hashtable == NULL) {
1979 		GE_FUNC_EXIT(sc, "");
1980 		return 0;
1981 	}
1982 
1983 	error = gfe_hash_entry_op(sc, op, prio, enm->enm_addrlo);
1984 	if (error == EBUSY) {
1985 		aprint_error_dev(sc->sc_dev, "multichg: tried to %s %s again\n",
1986 		   cmd == SIOCDELMULTI ? "remove" : "add",
1987 		   ether_sprintf(enm->enm_addrlo));
1988 		GE_FUNC_EXIT(sc, "");
1989 		return 0;
1990 	}
1991 
1992 	if (error == ENOENT) {
1993 		aprint_error_dev(sc->sc_dev,
1994 		    "multichg: failed to remove %s: not in table\n",
1995 		    ether_sprintf(enm->enm_addrlo));
1996 		GE_FUNC_EXIT(sc, "");
1997 		return 0;
1998 	}
1999 
2000 	if (error == ENOSPC) {
2001 		aprint_error_dev(sc->sc_dev, "multichg:"
2002 		    " failed to add %s: no space; regenerating table\n",
2003 		    ether_sprintf(enm->enm_addrlo));
2004 		GE_FUNC_EXIT(sc, "");
2005 		return ENETRESET;
2006 	}
2007 	GE_DPRINTF(sc, ("%s: multichg: %s: %s succeeded\n",
2008 	    device_xname(sc->sc_dev),
2009 	    cmd == SIOCDELMULTI ? "remove" : "add",
2010 	    ether_sprintf(enm->enm_addrlo)));
2011 	GE_FUNC_EXIT(sc, "");
2012 	return 0;
2013 }
2014 
2015 int
2016 gfe_hash_fill(struct gfe_softc *sc)
2017 {
2018 	struct ether_multistep step;
2019 	struct ether_multi *enm;
2020 	int error;
2021 
2022 	GE_FUNC_ENTER(sc, "gfe_hash_fill");
2023 
2024 	error = gfe_hash_entry_op(sc, GE_HASH_ADD, GE_RXPRIO_HI,
2025 	    CLLADDR(sc->sc_ec.ec_if.if_sadl));
2026 	if (error)
2027 		GE_FUNC_EXIT(sc, "!");
2028 		return error;
2029 
2030 	sc->sc_flags &= ~GE_ALLMULTI;
2031 	if ((sc->sc_ec.ec_if.if_flags & IFF_PROMISC) == 0)
2032 		sc->sc_pcr &= ~ETH_EPCR_PM;
2033 	ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
2034 	while (enm != NULL) {
2035 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2036 			sc->sc_flags |= GE_ALLMULTI;
2037 			sc->sc_pcr |= ETH_EPCR_PM;
2038 		} else {
2039 			error = gfe_hash_entry_op(sc, GE_HASH_ADD,
2040 			    GE_RXPRIO_MEDLO, enm->enm_addrlo);
2041 			if (error == ENOSPC)
2042 				break;
2043 		}
2044 		ETHER_NEXT_MULTI(step, enm);
2045 	}
2046 
2047 	GE_FUNC_EXIT(sc, "");
2048 	return error;
2049 }
2050 
2051 int
2052 gfe_hash_alloc(struct gfe_softc *sc)
2053 {
2054 	int error;
2055 	GE_FUNC_ENTER(sc, "gfe_hash_alloc");
2056 	sc->sc_hashmask = (sc->sc_pcr & ETH_EPCR_HS_512 ? 16 : 256)*1024 - 1;
2057 	error = gfe_dmamem_alloc(sc, &sc->sc_hash_mem, 1, sc->sc_hashmask + 1,
2058 	    BUS_DMA_NOCACHE);
2059 	if (error) {
2060 		aprint_error_dev(sc->sc_dev,
2061 		    "failed to allocate %d bytes for hash table: %d\n",
2062 		    sc->sc_hashmask + 1, error);
2063 		GE_FUNC_EXIT(sc, "");
2064 		return error;
2065 	}
2066 	sc->sc_hashtable = (uint64_t *) sc->sc_hash_mem.gdm_kva;
2067 	memset(sc->sc_hashtable, 0, sc->sc_hashmask + 1);
2068 	bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
2069 	    0, sc->sc_hashmask + 1, BUS_DMASYNC_PREWRITE);
2070 	GE_FUNC_EXIT(sc, "");
2071 	return 0;
2072 }
2073