xref: /netbsd/sys/dev/pci/eso.c (revision bf9ec67e)
1 /*	$NetBSD: eso.c,v 1.24 2002/04/25 00:52:21 kleink Exp $	*/
2 
3 /*
4  * Copyright (c) 1999, 2000 Klaus J. Klein
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.24 2002/04/25 00:52:21 kleink Exp $");
37 
38 #include "mpu.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46 
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49 
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53 
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56 
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61 
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64 
65 #if defined(AUDIO_DEBUG) || defined(DEBUG)
66 #define DPRINTF(x) printf x
67 #else
68 #define DPRINTF(x)
69 #endif
70 
71 struct eso_dma {
72 	bus_dma_tag_t		ed_dmat;
73 	bus_dmamap_t		ed_map;
74 	caddr_t			ed_addr;
75 	bus_dma_segment_t	ed_segs[1];
76 	int			ed_nsegs;
77 	size_t			ed_size;
78 	struct eso_dma *	ed_next;
79 };
80 
81 #define KVADDR(dma)	((void *)(dma)->ed_addr)
82 #define DMAADDR(dma)	((dma)->ed_map->dm_segs[0].ds_addr)
83 
84 /* Autoconfiguration interface */
85 static int eso_match __P((struct device *, struct cfdata *, void *));
86 static void eso_attach __P((struct device *, struct device *, void *));
87 static void eso_defer __P((struct device *));
88 static int eso_print __P((void *, const char *));
89 
90 struct cfattach eso_ca = {
91 	sizeof (struct eso_softc), eso_match, eso_attach
92 };
93 
94 /* PCI interface */
95 static int eso_intr __P((void *));
96 
97 /* MI audio layer interface */
98 static int	eso_open __P((void *, int));
99 static void	eso_close __P((void *));
100 static int	eso_query_encoding __P((void *, struct audio_encoding *));
101 static int	eso_set_params __P((void *, int, int, struct audio_params *,
102 		    struct audio_params *));
103 static int	eso_round_blocksize __P((void *, int));
104 static int	eso_halt_output __P((void *));
105 static int	eso_halt_input __P((void *));
106 static int	eso_getdev __P((void *, struct audio_device *));
107 static int	eso_set_port __P((void *, mixer_ctrl_t *));
108 static int	eso_get_port __P((void *, mixer_ctrl_t *));
109 static int	eso_query_devinfo __P((void *, mixer_devinfo_t *));
110 static void *	eso_allocm __P((void *, int, size_t, int, int));
111 static void	eso_freem __P((void *, void *, int));
112 static size_t	eso_round_buffersize __P((void *, int, size_t));
113 static paddr_t	eso_mappage __P((void *, void *, off_t, int));
114 static int	eso_get_props __P((void *));
115 static int	eso_trigger_output __P((void *, void *, void *, int,
116 		    void (*)(void *), void *, struct audio_params *));
117 static int	eso_trigger_input __P((void *, void *, void *, int,
118 		    void (*)(void *), void *, struct audio_params *));
119 
120 static struct audio_hw_if eso_hw_if = {
121 	eso_open,
122 	eso_close,
123 	NULL,			/* drain */
124 	eso_query_encoding,
125 	eso_set_params,
126 	eso_round_blocksize,
127 	NULL,			/* commit_settings */
128 	NULL,			/* init_output */
129 	NULL,			/* init_input */
130 	NULL,			/* start_output */
131 	NULL,			/* start_input */
132 	eso_halt_output,
133 	eso_halt_input,
134 	NULL,			/* speaker_ctl */
135 	eso_getdev,
136 	NULL,			/* setfd */
137 	eso_set_port,
138 	eso_get_port,
139 	eso_query_devinfo,
140 	eso_allocm,
141 	eso_freem,
142 	eso_round_buffersize,
143 	eso_mappage,
144 	eso_get_props,
145 	eso_trigger_output,
146 	eso_trigger_input,
147 	NULL,			/* dev_ioctl */
148 };
149 
150 static const char * const eso_rev2model[] = {
151 	"ES1938",
152 	"ES1946",
153 	"ES1946 Revision E"
154 };
155 
156 
157 /*
158  * Utility routines
159  */
160 /* Register access etc. */
161 static uint8_t	eso_read_ctlreg __P((struct eso_softc *, uint8_t));
162 static uint8_t	eso_read_mixreg __P((struct eso_softc *, uint8_t));
163 static uint8_t	eso_read_rdr __P((struct eso_softc *));
164 static void	eso_reload_master_vol __P((struct eso_softc *));
165 static int	eso_reset __P((struct eso_softc *));
166 static void	eso_set_gain __P((struct eso_softc *, unsigned int));
167 static int	eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
168 static int	eso_set_recsrc __P((struct eso_softc *, unsigned int));
169 static void	eso_write_cmd __P((struct eso_softc *, uint8_t));
170 static void	eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
171 static void	eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
172 /* DMA memory allocation */
173 static int	eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
174 		    int, int, struct eso_dma *));
175 static void	eso_freemem __P((struct eso_dma *));
176 
177 
178 static int
179 eso_match(parent, match, aux)
180 	struct device *parent;
181 	struct cfdata *match;
182 	void *aux;
183 {
184 	struct pci_attach_args *pa = aux;
185 
186 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
187 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
188 		return (1);
189 
190 	return (0);
191 }
192 
193 static void
194 eso_attach(parent, self, aux)
195 	struct device *parent, *self;
196 	void *aux;
197 {
198 	struct eso_softc *sc = (struct eso_softc *)self;
199 	struct pci_attach_args *pa = aux;
200 	struct audio_attach_args aa;
201 	pci_intr_handle_t ih;
202 	bus_addr_t vcbase;
203 	const char *intrstring;
204 	int idx;
205 	uint8_t a2mode, mvctl;
206 
207 	sc->sc_revision = PCI_REVISION(pa->pa_class);
208 
209 	printf(": ESS Solo-1 PCI AudioDrive ");
210 	if (sc->sc_revision <
211 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
212 		printf("%s\n", eso_rev2model[sc->sc_revision]);
213 	else
214 		printf("(unknown rev. 0x%02x)\n", sc->sc_revision);
215 
216 	/* Map I/O registers. */
217 	if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
218 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
219 		printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
220 		return;
221 	}
222 	if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
223 	    &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
224 		printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname);
225 		return;
226 	}
227 	if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
228 	    &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
229 		printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname);
230 		/* Don't bail out yet: we can map it later, see below. */
231 		vcbase = 0;
232 		sc->sc_vcsize = 0x10; /* From the data sheet. */
233 	}
234 	if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
235 	    &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
236 		printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname);
237 		return;
238 	}
239 	if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
240 	    &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
241 		printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname);
242 		return;
243 	}
244 
245 	sc->sc_dmat = pa->pa_dmat;
246 	sc->sc_dmas = NULL;
247 	sc->sc_dmac_configured = 0;
248 
249 	/* Enable bus mastering. */
250 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
251 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
252 	    PCI_COMMAND_MASTER_ENABLE);
253 
254 	/* Reset the device; bail out upon failure. */
255 	if (eso_reset(sc) != 0) {
256 		printf("%s: can't reset\n", sc->sc_dev.dv_xname);
257 		return;
258 	}
259 
260 	/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
261 	pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
262 	    pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
263 	    ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
264 
265 	/* Enable the relevant (DMA) interrupts. */
266 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
267 	    ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
268 	    ESO_IO_IRQCTL_MPUIRQ);
269 
270 	/* Set up A1's sample rate generator for new-style parameters. */
271 	a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
272 	a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
273 	eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
274 
275 	/* Slave Master Volume to Hardware Volume Control Counter, unask IRQ. */
276 	mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
277 	mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
278 	mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
279 	eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
280 
281 	/* Set mixer regs to something reasonable, needs work. */
282 	sc->sc_recsrc = ESO_MIXREG_ERS_LINE;
283 	sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE;
284 	sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
285 	for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
286 		int v;
287 
288 		switch (idx) {
289  		case ESO_MIC_PLAY_VOL:
290 		case ESO_LINE_PLAY_VOL:
291 		case ESO_CD_PLAY_VOL:
292 		case ESO_MONO_PLAY_VOL:
293 		case ESO_AUXB_PLAY_VOL:
294 		case ESO_DAC_REC_VOL:
295 		case ESO_LINE_REC_VOL:
296 		case ESO_SYNTH_REC_VOL:
297 		case ESO_CD_REC_VOL:
298 		case ESO_MONO_REC_VOL:
299 		case ESO_AUXB_REC_VOL:
300 		case ESO_SPATIALIZER:
301 			v = 0;
302 			break;
303 		case ESO_MASTER_VOL:
304 			v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
305 			break;
306 		default:
307 			v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
308 			break;
309 		}
310 		sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
311 		eso_set_gain(sc, idx);
312 	}
313 	eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
314 
315 	/* Map and establish the interrupt. */
316 	if (pci_intr_map(pa, &ih)) {
317 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
318 		return;
319 	}
320 	intrstring = pci_intr_string(pa->pa_pc, ih);
321 	sc->sc_ih  = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
322 	if (sc->sc_ih == NULL) {
323 		printf("%s: couldn't establish interrupt",
324 		    sc->sc_dev.dv_xname);
325 		if (intrstring != NULL)
326 			printf(" at %s", intrstring);
327 		printf("\n");
328 		return;
329 	}
330 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring);
331 
332 	/*
333 	 * Set up the DDMA Control register; a suitable I/O region has been
334 	 * supposedly mapped in the VC base address register.
335 	 *
336 	 * The Solo-1 has an ... interesting silicon bug that causes it to
337 	 * not respond to I/O space accesses to the Audio 1 DMA controller
338 	 * if the latter's mapping base address is aligned on a 1K boundary.
339 	 * As a consequence, it is quite possible for the mapping provided
340 	 * in the VC BAR to be useless.  To work around this, we defer this
341 	 * part until all autoconfiguration on our parent bus is completed
342 	 * and then try to map it ourselves in fulfillment of the constraint.
343 	 *
344 	 * According to the register map we may write to the low 16 bits
345 	 * only, but experimenting has shown we're safe.
346 	 * -kjk
347 	 */
348 	if (ESO_VALID_DDMAC_BASE(vcbase)) {
349 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
350 		    vcbase | ESO_PCI_DDMAC_DE);
351 		sc->sc_dmac_configured = 1;
352 
353 		printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
354 		    sc->sc_dev.dv_xname, (unsigned long)vcbase);
355 	} else {
356 		DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
357 		    sc->sc_dev.dv_xname, (unsigned long)vcbase));
358 		sc->sc_pa = *pa;
359 		config_defer(self, eso_defer);
360 	}
361 
362 	audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
363 
364 	aa.type = AUDIODEV_TYPE_OPL;
365 	aa.hwif = NULL;
366 	aa.hdl = NULL;
367 	(void)config_found(&sc->sc_dev, &aa, audioprint);
368 
369 	aa.type = AUDIODEV_TYPE_MPU;
370 	aa.hwif = NULL;
371 	aa.hdl = NULL;
372 	sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
373 	if (sc->sc_mpudev != NULL) {
374 		/* Unmask the MPU irq. */
375 		mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
376 		mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
377 		eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
378 	}
379 
380 	aa.type = AUDIODEV_TYPE_AUX;
381 	aa.hwif = NULL;
382 	aa.hdl = NULL;
383 	(void)config_found(&sc->sc_dev, &aa, eso_print);
384 }
385 
386 static void
387 eso_defer(self)
388 	struct device *self;
389 {
390 	struct eso_softc *sc = (struct eso_softc *)self;
391 	struct pci_attach_args *pa = &sc->sc_pa;
392 	bus_addr_t addr, start;
393 
394 	printf("%s: ", sc->sc_dev.dv_xname);
395 
396 	/*
397 	 * This is outright ugly, but since we must not make assumptions
398 	 * on the underlying allocator's behaviour it's the most straight-
399 	 * forward way to implement it.  Note that we skip over the first
400 	 * 1K region, which is typically occupied by an attached ISA bus.
401 	 */
402 	for (start = 0x0400; start < 0xffff; start += 0x0400) {
403 		if (bus_space_alloc(sc->sc_iot,
404 		    start + sc->sc_vcsize, start + 0x0400 - 1,
405 		    sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
406 		    &sc->sc_dmac_ioh) != 0)
407 			continue;
408 
409 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
410 		    addr | ESO_PCI_DDMAC_DE);
411 		sc->sc_dmac_iot = sc->sc_iot;
412 		sc->sc_dmac_configured = 1;
413 		printf("mapping Audio 1 DMA using I/O space at 0x%lx\n",
414 		    (unsigned long)addr);
415 
416 		return;
417 	}
418 
419 	printf("can't map Audio 1 DMA into I/O space\n");
420 }
421 
422 /* ARGSUSED */
423 static int
424 eso_print(aux, pnp)
425 	void *aux;
426 	const char *pnp;
427 {
428 
429 	/* Only joys can attach via this; easy. */
430 	if (pnp)
431 		printf("joy at %s:", pnp);
432 
433 	return (UNCONF);
434 }
435 
436 static void
437 eso_write_cmd(sc, cmd)
438 	struct eso_softc *sc;
439 	uint8_t cmd;
440 {
441 	int i;
442 
443 	/* Poll for busy indicator to become clear. */
444 	for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
445 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
446 		    & ESO_SB_RSR_BUSY) == 0) {
447 			bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
448 			    ESO_SB_WDR, cmd);
449 			return;
450 		} else {
451 			delay(10);
452 		}
453 	}
454 
455 	printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
456 	return;
457 }
458 
459 /* Write to a controller register */
460 static void
461 eso_write_ctlreg(sc, reg, val)
462 	struct eso_softc *sc;
463 	uint8_t reg, val;
464 {
465 
466 	/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
467 
468 	eso_write_cmd(sc, reg);
469 	eso_write_cmd(sc, val);
470 }
471 
472 /* Read out the Read Data Register */
473 static uint8_t
474 eso_read_rdr(sc)
475 	struct eso_softc *sc;
476 {
477 	int i;
478 
479 	for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
480 		if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
481 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
482 			return (bus_space_read_1(sc->sc_sb_iot,
483 			    sc->sc_sb_ioh, ESO_SB_RDR));
484 		} else {
485 			delay(10);
486 		}
487 	}
488 
489 	printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
490 	return (-1);
491 }
492 
493 
494 static uint8_t
495 eso_read_ctlreg(sc, reg)
496 	struct eso_softc *sc;
497 	uint8_t reg;
498 {
499 
500 	eso_write_cmd(sc, ESO_CMD_RCR);
501 	eso_write_cmd(sc, reg);
502 	return (eso_read_rdr(sc));
503 }
504 
505 static void
506 eso_write_mixreg(sc, reg, val)
507 	struct eso_softc *sc;
508 	uint8_t reg, val;
509 {
510 	int s;
511 
512 	/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
513 
514 	s = splaudio();
515 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
516 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
517 	splx(s);
518 }
519 
520 static uint8_t
521 eso_read_mixreg(sc, reg)
522 	struct eso_softc *sc;
523 	uint8_t reg;
524 {
525 	int s;
526 	uint8_t val;
527 
528 	s = splaudio();
529 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
530 	val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
531 	splx(s);
532 
533 	return (val);
534 }
535 
536 static int
537 eso_intr(hdl)
538 	void *hdl;
539 {
540 	struct eso_softc *sc = hdl;
541 	uint8_t irqctl;
542 
543 	irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
544 
545 	/* If it wasn't ours, that's all she wrote. */
546 	if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
547 	    ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
548 		return (0);
549 
550 	if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
551 		/* Clear interrupt. */
552 		(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
553 		    ESO_SB_RBSR);
554 
555 		if (sc->sc_rintr)
556 			sc->sc_rintr(sc->sc_rarg);
557 		else
558 			wakeup(&sc->sc_rintr);
559 	}
560 
561 	if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
562 		/*
563 		 * Clear the A2 IRQ latch: the cached value reflects the
564 		 * current DAC settings with the IRQ latch bit not set.
565 		 */
566 		eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
567 
568 		if (sc->sc_pintr)
569 			sc->sc_pintr(sc->sc_parg);
570 		else
571 			wakeup(&sc->sc_pintr);
572 	}
573 
574 	if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
575 		/* Clear interrupt. */
576 		eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
577 
578 		/*
579 		 * Raise a flag to cause a lazy update of the in-softc gain
580 		 * values the next time the software mixer is read to keep
581 		 * interrupt service cost low.  ~0 cannot occur otherwise
582 		 * as the master volume has a precision of 6 bits only.
583 		 */
584 		sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
585 	}
586 
587 #if NMPU > 0
588 	if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
589 		mpu_intr(sc->sc_mpudev);
590 #endif
591 
592 	return (1);
593 }
594 
595 /* Perform a software reset, including DMA FIFOs. */
596 static int
597 eso_reset(sc)
598 	struct eso_softc *sc;
599 {
600 	int i;
601 
602 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
603 	    ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
604 	/* `Delay' suggested in the data sheet. */
605 	(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
606 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
607 
608 	/* Wait for reset to take effect. */
609 	for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
610 		/* Poll for data to become available. */
611 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
612 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
613 		    bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
614 			ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
615 
616 			/* Activate Solo-1 extension commands. */
617 			eso_write_cmd(sc, ESO_CMD_EXTENB);
618 			/* Reset mixer registers. */
619 			eso_write_mixreg(sc, ESO_MIXREG_RESET,
620 			    ESO_MIXREG_RESET_RESET);
621 
622 			return (0);
623 		} else {
624 			delay(1000);
625 		}
626 	}
627 
628 	printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
629 	return (-1);
630 }
631 
632 
633 /* ARGSUSED */
634 static int
635 eso_open(hdl, flags)
636 	void *hdl;
637 	int flags;
638 {
639 	struct eso_softc *sc = hdl;
640 
641 	DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
642 
643 	sc->sc_pintr = NULL;
644 	sc->sc_rintr = NULL;
645 
646 	return (0);
647 }
648 
649 static void
650 eso_close(hdl)
651 	void *hdl;
652 {
653 
654 	DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
655 }
656 
657 static int
658 eso_query_encoding(hdl, fp)
659 	void *hdl;
660 	struct audio_encoding *fp;
661 {
662 
663 	switch (fp->index) {
664 	case 0:
665 		strcpy(fp->name, AudioEulinear);
666 		fp->encoding = AUDIO_ENCODING_ULINEAR;
667 		fp->precision = 8;
668 		fp->flags = 0;
669 		break;
670 	case 1:
671 		strcpy(fp->name, AudioEmulaw);
672 		fp->encoding = AUDIO_ENCODING_ULAW;
673 		fp->precision = 8;
674 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
675 		break;
676 	case 2:
677 		strcpy(fp->name, AudioEalaw);
678 		fp->encoding = AUDIO_ENCODING_ALAW;
679 		fp->precision = 8;
680 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
681 		break;
682 	case 3:
683 		strcpy(fp->name, AudioEslinear);
684 		fp->encoding = AUDIO_ENCODING_SLINEAR;
685 		fp->precision = 8;
686 		fp->flags = 0;
687 		break;
688 	case 4:
689 		strcpy(fp->name, AudioEslinear_le);
690 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
691 		fp->precision = 16;
692 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
693 		break;
694 	case 5:
695 		strcpy(fp->name, AudioEulinear_le);
696 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
697 		fp->precision = 16;
698 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
699 		break;
700 	case 6:
701 		strcpy(fp->name, AudioEslinear_be);
702 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
703 		fp->precision = 16;
704 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
705 		break;
706 	case 7:
707 		strcpy(fp->name, AudioEulinear_be);
708 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
709 		fp->precision = 16;
710 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
711 		break;
712 	default:
713 		return (EINVAL);
714 	}
715 
716 	return (0);
717 }
718 
719 static int
720 eso_set_params(hdl, setmode, usemode, play, rec)
721 	void *hdl;
722 	int setmode, usemode;
723 	struct audio_params *play, *rec;
724 {
725 	struct eso_softc *sc = hdl;
726 	struct audio_params *p;
727 	int mode, r[2], rd[2], clk;
728 	unsigned int srg, fltdiv;
729 
730 	for (mode = AUMODE_RECORD; mode != -1;
731 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
732 		if ((setmode & mode) == 0)
733 			continue;
734 
735 		p = (mode == AUMODE_PLAY) ? play : rec;
736 
737 		if (p->sample_rate < ESO_MINRATE ||
738 		    p->sample_rate > ESO_MAXRATE ||
739 		    (p->precision != 8 && p->precision != 16) ||
740 		    (p->channels != 1 && p->channels != 2))
741 			return (EINVAL);
742 
743 		p->factor = 1;
744 		p->sw_code = NULL;
745 		switch (p->encoding) {
746 		case AUDIO_ENCODING_SLINEAR_BE:
747 		case AUDIO_ENCODING_ULINEAR_BE:
748 			if (mode == AUMODE_PLAY && p->precision == 16)
749 				p->sw_code = swap_bytes;
750 			break;
751 		case AUDIO_ENCODING_SLINEAR_LE:
752 		case AUDIO_ENCODING_ULINEAR_LE:
753 			if (mode == AUMODE_RECORD && p->precision == 16)
754 				p->sw_code = swap_bytes;
755 			break;
756 		case AUDIO_ENCODING_ULAW:
757 			if (mode == AUMODE_PLAY) {
758 				p->factor = 2;
759 				p->sw_code = mulaw_to_ulinear16_le;
760 			} else {
761 				p->sw_code = ulinear8_to_mulaw;
762 			}
763 			break;
764 		case AUDIO_ENCODING_ALAW:
765 			if (mode == AUMODE_PLAY) {
766 				p->factor = 2;
767 				p->sw_code = alaw_to_ulinear16_le;
768 			} else {
769 				p->sw_code = ulinear8_to_alaw;
770 			}
771 			break;
772 		default:
773 			return (EINVAL);
774 		}
775 
776 		/*
777 		 * We'll compute both possible sample rate dividers and pick
778 		 * the one with the least error.
779 		 */
780 #define ABS(x) ((x) < 0 ? -(x) : (x))
781 		r[0] = ESO_CLK0 /
782 		    (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
783 		r[1] = ESO_CLK1 /
784 		    (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
785 
786 		clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
787 		srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
788 
789 		/* Roll-off frequency of 87%, as in the ES1888 driver. */
790 		fltdiv = 256 - 200279L / r[clk];
791 
792 		/* Update to reflect the possibly inexact rate. */
793 		p->sample_rate = r[clk];
794 
795 		if (mode == AUMODE_RECORD) {
796 			/* Audio 1 */
797 			DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
798 			eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
799 			eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
800 		} else {
801 			/* Audio 2 */
802 			DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
803 			eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
804 			eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
805 		}
806 #undef ABS
807 
808 	}
809 
810 	return (0);
811 }
812 
813 static int
814 eso_round_blocksize(hdl, blk)
815 	void *hdl;
816 	int blk;
817 {
818 
819 	return (blk & -32);	/* keep good alignment; at least 16 req'd */
820 }
821 
822 static int
823 eso_halt_output(hdl)
824 	void *hdl;
825 {
826 	struct eso_softc *sc = hdl;
827 	int error, s;
828 
829 	DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
830 
831 	/*
832 	 * Disable auto-initialize DMA, allowing the FIFO to drain and then
833 	 * stop.  The interrupt callback pointer is cleared at this
834 	 * point so that an outstanding FIFO interrupt for the remaining data
835 	 * will be acknowledged without further processing.
836 	 *
837 	 * This does not immediately `abort' an operation in progress (c.f.
838 	 * audio(9)) but is the method to leave the FIFO behind in a clean
839 	 * state with the least hair.  (Besides, that item needs to be
840 	 * rephrased for trigger_*()-based DMA environments.)
841 	 */
842 	s = splaudio();
843 	eso_write_mixreg(sc, ESO_MIXREG_A2C1,
844 	    ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
845 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
846 	    ESO_IO_A2DMAM_DMAENB);
847 
848 	sc->sc_pintr = NULL;
849 	error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
850 	splx(s);
851 
852 	/* Shut down DMA completely. */
853 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
854 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
855 
856 	return (error == EWOULDBLOCK ? 0 : error);
857 }
858 
859 static int
860 eso_halt_input(hdl)
861 	void *hdl;
862 {
863 	struct eso_softc *sc = hdl;
864 	int error, s;
865 
866 	DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
867 
868 	/* Just like eso_halt_output(), but for Audio 1. */
869 	s = splaudio();
870 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
871 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
872 	    ESO_CTLREG_A1C2_DMAENB);
873 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
874 	    DMA37MD_WRITE | DMA37MD_DEMAND);
875 
876 	sc->sc_rintr = NULL;
877 	error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
878 	splx(s);
879 
880 	/* Shut down DMA completely. */
881 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
882 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
883 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
884 	    ESO_DMAC_MASK_MASK);
885 
886 	return (error == EWOULDBLOCK ? 0 : error);
887 }
888 
889 static int
890 eso_getdev(hdl, retp)
891 	void *hdl;
892 	struct audio_device *retp;
893 {
894 	struct eso_softc *sc = hdl;
895 
896 	strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
897 	snprintf(retp->version, sizeof (retp->version), "0x%02x",
898 	    sc->sc_revision);
899 	if (sc->sc_revision <
900 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
901 		strncpy(retp->config, eso_rev2model[sc->sc_revision],
902 		    sizeof (retp->config));
903 	else
904 		strncpy(retp->config, "unknown", sizeof (retp->config));
905 
906 	return (0);
907 }
908 
909 static int
910 eso_set_port(hdl, cp)
911 	void *hdl;
912 	mixer_ctrl_t *cp;
913 {
914 	struct eso_softc *sc = hdl;
915 	unsigned int lgain, rgain;
916 	uint8_t tmp;
917 
918 	switch (cp->dev) {
919 	case ESO_DAC_PLAY_VOL:
920 	case ESO_MIC_PLAY_VOL:
921 	case ESO_LINE_PLAY_VOL:
922 	case ESO_SYNTH_PLAY_VOL:
923 	case ESO_CD_PLAY_VOL:
924 	case ESO_AUXB_PLAY_VOL:
925 	case ESO_RECORD_VOL:
926 	case ESO_DAC_REC_VOL:
927 	case ESO_MIC_REC_VOL:
928 	case ESO_LINE_REC_VOL:
929 	case ESO_SYNTH_REC_VOL:
930 	case ESO_CD_REC_VOL:
931 	case ESO_AUXB_REC_VOL:
932 		if (cp->type != AUDIO_MIXER_VALUE)
933 			return (EINVAL);
934 
935 		/*
936 		 * Stereo-capable mixer ports: if we get a single-channel
937 		 * gain value passed in, then we duplicate it to both left
938 		 * and right channels.
939 		 */
940 		switch (cp->un.value.num_channels) {
941 		case 1:
942 			lgain = rgain = ESO_GAIN_TO_4BIT(
943 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
944 			break;
945 		case 2:
946 			lgain = ESO_GAIN_TO_4BIT(
947 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
948 			rgain = ESO_GAIN_TO_4BIT(
949 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
950 			break;
951 		default:
952 			return (EINVAL);
953 		}
954 
955 		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
956 		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
957 		eso_set_gain(sc, cp->dev);
958 		break;
959 
960 	case ESO_MASTER_VOL:
961 		if (cp->type != AUDIO_MIXER_VALUE)
962 			return (EINVAL);
963 
964 		/* Like above, but a precision of 6 bits. */
965 		switch (cp->un.value.num_channels) {
966 		case 1:
967 			lgain = rgain = ESO_GAIN_TO_6BIT(
968 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
969 			break;
970 		case 2:
971 			lgain = ESO_GAIN_TO_6BIT(
972 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
973 			rgain = ESO_GAIN_TO_6BIT(
974 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
975 			break;
976 		default:
977 			return (EINVAL);
978 		}
979 
980 		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
981 		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
982 		eso_set_gain(sc, cp->dev);
983 		break;
984 
985 	case ESO_SPATIALIZER:
986 		if (cp->type != AUDIO_MIXER_VALUE ||
987 		    cp->un.value.num_channels != 1)
988 			return (EINVAL);
989 
990 		sc->sc_gain[cp->dev][ESO_LEFT] =
991 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
992 		    ESO_GAIN_TO_6BIT(
993 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
994 		eso_set_gain(sc, cp->dev);
995 		break;
996 
997 	case ESO_MONO_PLAY_VOL:
998 	case ESO_MONO_REC_VOL:
999 		if (cp->type != AUDIO_MIXER_VALUE ||
1000 		    cp->un.value.num_channels != 1)
1001 			return (EINVAL);
1002 
1003 		sc->sc_gain[cp->dev][ESO_LEFT] =
1004 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1005 		    ESO_GAIN_TO_4BIT(
1006 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1007 		eso_set_gain(sc, cp->dev);
1008 		break;
1009 
1010 	case ESO_PCSPEAKER_VOL:
1011 		if (cp->type != AUDIO_MIXER_VALUE ||
1012 		    cp->un.value.num_channels != 1)
1013 			return (EINVAL);
1014 
1015 		sc->sc_gain[cp->dev][ESO_LEFT] =
1016 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1017 		    ESO_GAIN_TO_3BIT(
1018 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1019 		eso_set_gain(sc, cp->dev);
1020 		break;
1021 
1022 	case ESO_SPATIALIZER_ENABLE:
1023 		if (cp->type != AUDIO_MIXER_ENUM)
1024 			return (EINVAL);
1025 
1026 		sc->sc_spatializer = (cp->un.ord != 0);
1027 
1028 		tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1029 		if (sc->sc_spatializer)
1030 			tmp |= ESO_MIXREG_SPAT_ENB;
1031 		else
1032 			tmp &= ~ESO_MIXREG_SPAT_ENB;
1033 		eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1034 		    tmp | ESO_MIXREG_SPAT_RSTREL);
1035 		break;
1036 
1037 	case ESO_MASTER_MUTE:
1038 		if (cp->type != AUDIO_MIXER_ENUM)
1039 			return (EINVAL);
1040 
1041 		sc->sc_mvmute = (cp->un.ord != 0);
1042 
1043 		if (sc->sc_mvmute) {
1044 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1045 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1046 			    ESO_MIXREG_LMVM_MUTE);
1047 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1048 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1049 			    ESO_MIXREG_RMVM_MUTE);
1050 		} else {
1051 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1052 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1053 			    ~ESO_MIXREG_LMVM_MUTE);
1054 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1055 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1056 			    ~ESO_MIXREG_RMVM_MUTE);
1057 		}
1058 		break;
1059 
1060 	case ESO_MONOOUT_SOURCE:
1061 		if (cp->type != AUDIO_MIXER_ENUM)
1062 			return (EINVAL);
1063 
1064 		return (eso_set_monooutsrc(sc, cp->un.ord));
1065 
1066 	case ESO_RECORD_MONITOR:
1067 		if (cp->type != AUDIO_MIXER_ENUM)
1068 			return (EINVAL);
1069 
1070 		sc->sc_recmon = (cp->un.ord != 0);
1071 
1072 		tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1073 		if (sc->sc_recmon)
1074 			tmp |= ESO_CTLREG_ACTL_RECMON;
1075 		else
1076 			tmp &= ~ESO_CTLREG_ACTL_RECMON;
1077 		eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1078 		break;
1079 
1080 	case ESO_RECORD_SOURCE:
1081 		if (cp->type != AUDIO_MIXER_ENUM)
1082 			return (EINVAL);
1083 
1084 		return (eso_set_recsrc(sc, cp->un.ord));
1085 
1086 	case ESO_MIC_PREAMP:
1087 		if (cp->type != AUDIO_MIXER_ENUM)
1088 			return (EINVAL);
1089 
1090 		sc->sc_preamp = (cp->un.ord != 0);
1091 
1092 		tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1093 		tmp &= ~ESO_MIXREG_MPM_RESV0;
1094 		if (sc->sc_preamp)
1095 			tmp |= ESO_MIXREG_MPM_PREAMP;
1096 		else
1097 			tmp &= ~ESO_MIXREG_MPM_PREAMP;
1098 		eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
1099 		break;
1100 
1101 	default:
1102 		return (EINVAL);
1103 	}
1104 
1105 	return (0);
1106 }
1107 
1108 static int
1109 eso_get_port(hdl, cp)
1110 	void *hdl;
1111 	mixer_ctrl_t *cp;
1112 {
1113 	struct eso_softc *sc = hdl;
1114 
1115 	switch (cp->dev) {
1116 	case ESO_MASTER_VOL:
1117 		/* Reload from mixer after hardware volume control use. */
1118 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1119 			eso_reload_master_vol(sc);
1120 		/* FALLTHROUGH */
1121 	case ESO_DAC_PLAY_VOL:
1122 	case ESO_MIC_PLAY_VOL:
1123 	case ESO_LINE_PLAY_VOL:
1124 	case ESO_SYNTH_PLAY_VOL:
1125 	case ESO_CD_PLAY_VOL:
1126 	case ESO_AUXB_PLAY_VOL:
1127 	case ESO_RECORD_VOL:
1128 	case ESO_DAC_REC_VOL:
1129 	case ESO_MIC_REC_VOL:
1130 	case ESO_LINE_REC_VOL:
1131 	case ESO_SYNTH_REC_VOL:
1132 	case ESO_CD_REC_VOL:
1133 	case ESO_AUXB_REC_VOL:
1134 		/*
1135 		 * Stereo-capable ports: if a single-channel query is made,
1136 		 * just return the left channel's value (since single-channel
1137 		 * settings themselves are applied to both channels).
1138 		 */
1139 		switch (cp->un.value.num_channels) {
1140 		case 1:
1141 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1142 			    sc->sc_gain[cp->dev][ESO_LEFT];
1143 			break;
1144 		case 2:
1145 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1146 			    sc->sc_gain[cp->dev][ESO_LEFT];
1147 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1148 			    sc->sc_gain[cp->dev][ESO_RIGHT];
1149 			break;
1150 		default:
1151 			return (EINVAL);
1152 		}
1153 		break;
1154 
1155 	case ESO_MONO_PLAY_VOL:
1156 	case ESO_PCSPEAKER_VOL:
1157 	case ESO_MONO_REC_VOL:
1158 	case ESO_SPATIALIZER:
1159 		if (cp->un.value.num_channels != 1)
1160 			return (EINVAL);
1161 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1162 		    sc->sc_gain[cp->dev][ESO_LEFT];
1163 		break;
1164 
1165 	case ESO_RECORD_MONITOR:
1166 		cp->un.ord = sc->sc_recmon;
1167 		break;
1168 
1169 	case ESO_RECORD_SOURCE:
1170 		cp->un.ord = sc->sc_recsrc;
1171 		break;
1172 
1173 	case ESO_MONOOUT_SOURCE:
1174 		cp->un.ord = sc->sc_monooutsrc;
1175 		break;
1176 
1177 	case ESO_SPATIALIZER_ENABLE:
1178 		cp->un.ord = sc->sc_spatializer;
1179 		break;
1180 
1181 	case ESO_MIC_PREAMP:
1182 		cp->un.ord = sc->sc_preamp;
1183 		break;
1184 
1185 	case ESO_MASTER_MUTE:
1186 		/* Reload from mixer after hardware volume control use. */
1187 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1188 			eso_reload_master_vol(sc);
1189 		cp->un.ord = sc->sc_mvmute;
1190 		break;
1191 
1192 	default:
1193 		return (EINVAL);
1194 	}
1195 
1196 
1197 	return (0);
1198 
1199 }
1200 
1201 static int
1202 eso_query_devinfo(hdl, dip)
1203 	void *hdl;
1204 	mixer_devinfo_t *dip;
1205 {
1206 
1207 	switch (dip->index) {
1208 	case ESO_DAC_PLAY_VOL:
1209 		dip->mixer_class = ESO_INPUT_CLASS;
1210 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1211 		strcpy(dip->label.name, AudioNdac);
1212 		dip->type = AUDIO_MIXER_VALUE;
1213 		dip->un.v.num_channels = 2;
1214 		strcpy(dip->un.v.units.name, AudioNvolume);
1215 		break;
1216 	case ESO_MIC_PLAY_VOL:
1217 		dip->mixer_class = ESO_INPUT_CLASS;
1218 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1219 		strcpy(dip->label.name, AudioNmicrophone);
1220 		dip->type = AUDIO_MIXER_VALUE;
1221 		dip->un.v.num_channels = 2;
1222 		strcpy(dip->un.v.units.name, AudioNvolume);
1223 		break;
1224 	case ESO_LINE_PLAY_VOL:
1225 		dip->mixer_class = ESO_INPUT_CLASS;
1226 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1227 		strcpy(dip->label.name, AudioNline);
1228 		dip->type = AUDIO_MIXER_VALUE;
1229 		dip->un.v.num_channels = 2;
1230 		strcpy(dip->un.v.units.name, AudioNvolume);
1231 		break;
1232 	case ESO_SYNTH_PLAY_VOL:
1233 		dip->mixer_class = ESO_INPUT_CLASS;
1234 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1235 		strcpy(dip->label.name, AudioNfmsynth);
1236 		dip->type = AUDIO_MIXER_VALUE;
1237 		dip->un.v.num_channels = 2;
1238 		strcpy(dip->un.v.units.name, AudioNvolume);
1239 		break;
1240 	case ESO_MONO_PLAY_VOL:
1241 		dip->mixer_class = ESO_INPUT_CLASS;
1242 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1243 		strcpy(dip->label.name, "mono_in");
1244 		dip->type = AUDIO_MIXER_VALUE;
1245 		dip->un.v.num_channels = 1;
1246 		strcpy(dip->un.v.units.name, AudioNvolume);
1247 		break;
1248 	case ESO_CD_PLAY_VOL:
1249 		dip->mixer_class = ESO_INPUT_CLASS;
1250 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1251 		strcpy(dip->label.name, AudioNcd);
1252 		dip->type = AUDIO_MIXER_VALUE;
1253 		dip->un.v.num_channels = 2;
1254 		strcpy(dip->un.v.units.name, AudioNvolume);
1255 		break;
1256 	case ESO_AUXB_PLAY_VOL:
1257 		dip->mixer_class = ESO_INPUT_CLASS;
1258 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1259 		strcpy(dip->label.name, "auxb");
1260 		dip->type = AUDIO_MIXER_VALUE;
1261 		dip->un.v.num_channels = 2;
1262 		strcpy(dip->un.v.units.name, AudioNvolume);
1263 		break;
1264 
1265 	case ESO_MIC_PREAMP:
1266 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1267 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1268 		strcpy(dip->label.name, AudioNpreamp);
1269 		dip->type = AUDIO_MIXER_ENUM;
1270 		dip->un.e.num_mem = 2;
1271 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1272 		dip->un.e.member[0].ord = 0;
1273 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1274 		dip->un.e.member[1].ord = 1;
1275 		break;
1276 	case ESO_MICROPHONE_CLASS:
1277 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1278 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1279 		strcpy(dip->label.name, AudioNmicrophone);
1280 		dip->type = AUDIO_MIXER_CLASS;
1281 		break;
1282 
1283 	case ESO_INPUT_CLASS:
1284 		dip->mixer_class = ESO_INPUT_CLASS;
1285 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1286 		strcpy(dip->label.name, AudioCinputs);
1287 		dip->type = AUDIO_MIXER_CLASS;
1288 		break;
1289 
1290 	case ESO_MASTER_VOL:
1291 		dip->mixer_class = ESO_OUTPUT_CLASS;
1292 		dip->prev = AUDIO_MIXER_LAST;
1293 		dip->next = ESO_MASTER_MUTE;
1294 		strcpy(dip->label.name, AudioNmaster);
1295 		dip->type = AUDIO_MIXER_VALUE;
1296 		dip->un.v.num_channels = 2;
1297 		strcpy(dip->un.v.units.name, AudioNvolume);
1298 		break;
1299 	case ESO_MASTER_MUTE:
1300 		dip->mixer_class = ESO_OUTPUT_CLASS;
1301 		dip->prev = ESO_MASTER_VOL;
1302 		dip->next = AUDIO_MIXER_LAST;
1303 		strcpy(dip->label.name, AudioNmute);
1304 		dip->type = AUDIO_MIXER_ENUM;
1305 		dip->un.e.num_mem = 2;
1306 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1307 		dip->un.e.member[0].ord = 0;
1308 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1309 		dip->un.e.member[1].ord = 1;
1310 		break;
1311 
1312 	case ESO_PCSPEAKER_VOL:
1313 		dip->mixer_class = ESO_OUTPUT_CLASS;
1314 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1315 		strcpy(dip->label.name, "pc_speaker");
1316 		dip->type = AUDIO_MIXER_VALUE;
1317 		dip->un.v.num_channels = 1;
1318 		strcpy(dip->un.v.units.name, AudioNvolume);
1319 		break;
1320 	case ESO_MONOOUT_SOURCE:
1321 		dip->mixer_class = ESO_OUTPUT_CLASS;
1322 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1323 		strcpy(dip->label.name, "mono_out");
1324 		dip->type = AUDIO_MIXER_ENUM;
1325 		dip->un.e.num_mem = 3;
1326 		strcpy(dip->un.e.member[0].label.name, AudioNmute);
1327 		dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1328 		strcpy(dip->un.e.member[1].label.name, AudioNdac);
1329 		dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1330 		strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1331 		dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1332 		break;
1333 	case ESO_SPATIALIZER:
1334 		dip->mixer_class = ESO_OUTPUT_CLASS;
1335 		dip->prev = AUDIO_MIXER_LAST;
1336 		dip->next = ESO_SPATIALIZER_ENABLE;
1337 		strcpy(dip->label.name, AudioNspatial);
1338 		dip->type = AUDIO_MIXER_VALUE;
1339 		dip->un.v.num_channels = 1;
1340 		strcpy(dip->un.v.units.name, "level");
1341 		break;
1342 	case ESO_SPATIALIZER_ENABLE:
1343 		dip->mixer_class = ESO_OUTPUT_CLASS;
1344 		dip->prev = ESO_SPATIALIZER;
1345 		dip->next = AUDIO_MIXER_LAST;
1346 		strcpy(dip->label.name, "enable");
1347 		dip->type = AUDIO_MIXER_ENUM;
1348 		dip->un.e.num_mem = 2;
1349 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1350 		dip->un.e.member[0].ord = 0;
1351 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1352 		dip->un.e.member[1].ord = 1;
1353 		break;
1354 
1355 	case ESO_OUTPUT_CLASS:
1356 		dip->mixer_class = ESO_OUTPUT_CLASS;
1357 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1358 		strcpy(dip->label.name, AudioCoutputs);
1359 		dip->type = AUDIO_MIXER_CLASS;
1360 		break;
1361 
1362 	case ESO_RECORD_MONITOR:
1363 		dip->mixer_class = ESO_MONITOR_CLASS;
1364 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1365 		strcpy(dip->label.name, AudioNmute);
1366 		dip->type = AUDIO_MIXER_ENUM;
1367 		dip->un.e.num_mem = 2;
1368 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1369 		dip->un.e.member[0].ord = 0;
1370 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1371 		dip->un.e.member[1].ord = 1;
1372 		break;
1373 	case ESO_MONITOR_CLASS:
1374 		dip->mixer_class = ESO_MONITOR_CLASS;
1375 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1376 		strcpy(dip->label.name, AudioCmonitor);
1377 		dip->type = AUDIO_MIXER_CLASS;
1378 		break;
1379 
1380 	case ESO_RECORD_VOL:
1381 		dip->mixer_class = ESO_RECORD_CLASS;
1382 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1383 		strcpy(dip->label.name, AudioNrecord);
1384 		dip->type = AUDIO_MIXER_VALUE;
1385 		strcpy(dip->un.v.units.name, AudioNvolume);
1386 		break;
1387 	case ESO_RECORD_SOURCE:
1388 		dip->mixer_class = ESO_RECORD_CLASS;
1389 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1390 		strcpy(dip->label.name, AudioNsource);
1391 		dip->type = AUDIO_MIXER_ENUM;
1392 		dip->un.e.num_mem = 4;
1393 		strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1394 		dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1395 		strcpy(dip->un.e.member[1].label.name, AudioNline);
1396 		dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1397 		strcpy(dip->un.e.member[2].label.name, AudioNcd);
1398 		dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1399 		strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1400 		dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1401 		break;
1402 	case ESO_DAC_REC_VOL:
1403 		dip->mixer_class = ESO_RECORD_CLASS;
1404 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1405 		strcpy(dip->label.name, AudioNdac);
1406 		dip->type = AUDIO_MIXER_VALUE;
1407 		dip->un.v.num_channels = 2;
1408 		strcpy(dip->un.v.units.name, AudioNvolume);
1409 		break;
1410 	case ESO_MIC_REC_VOL:
1411 		dip->mixer_class = ESO_RECORD_CLASS;
1412 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1413 		strcpy(dip->label.name, AudioNmicrophone);
1414 		dip->type = AUDIO_MIXER_VALUE;
1415 		dip->un.v.num_channels = 2;
1416 		strcpy(dip->un.v.units.name, AudioNvolume);
1417 		break;
1418 	case ESO_LINE_REC_VOL:
1419 		dip->mixer_class = ESO_RECORD_CLASS;
1420 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1421 		strcpy(dip->label.name, AudioNline);
1422 		dip->type = AUDIO_MIXER_VALUE;
1423 		dip->un.v.num_channels = 2;
1424 		strcpy(dip->un.v.units.name, AudioNvolume);
1425 		break;
1426 	case ESO_SYNTH_REC_VOL:
1427 		dip->mixer_class = ESO_RECORD_CLASS;
1428 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1429 		strcpy(dip->label.name, AudioNfmsynth);
1430 		dip->type = AUDIO_MIXER_VALUE;
1431 		dip->un.v.num_channels = 2;
1432 		strcpy(dip->un.v.units.name, AudioNvolume);
1433 		break;
1434 	case ESO_MONO_REC_VOL:
1435 		dip->mixer_class = ESO_RECORD_CLASS;
1436 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1437 		strcpy(dip->label.name, "mono_in");
1438 		dip->type = AUDIO_MIXER_VALUE;
1439 		dip->un.v.num_channels = 1; /* No lies */
1440 		strcpy(dip->un.v.units.name, AudioNvolume);
1441 		break;
1442 	case ESO_CD_REC_VOL:
1443 		dip->mixer_class = ESO_RECORD_CLASS;
1444 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1445 		strcpy(dip->label.name, AudioNcd);
1446 		dip->type = AUDIO_MIXER_VALUE;
1447 		dip->un.v.num_channels = 2;
1448 		strcpy(dip->un.v.units.name, AudioNvolume);
1449 		break;
1450 	case ESO_AUXB_REC_VOL:
1451 		dip->mixer_class = ESO_RECORD_CLASS;
1452 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1453 		strcpy(dip->label.name, "auxb");
1454 		dip->type = AUDIO_MIXER_VALUE;
1455 		dip->un.v.num_channels = 2;
1456 		strcpy(dip->un.v.units.name, AudioNvolume);
1457 		break;
1458 	case ESO_RECORD_CLASS:
1459 		dip->mixer_class = ESO_RECORD_CLASS;
1460 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1461 		strcpy(dip->label.name, AudioCrecord);
1462 		dip->type = AUDIO_MIXER_CLASS;
1463 		break;
1464 
1465 	default:
1466 		return (ENXIO);
1467 	}
1468 
1469 	return (0);
1470 }
1471 
1472 static int
1473 eso_allocmem(sc, size, align, boundary, flags, direction, ed)
1474 	struct eso_softc *sc;
1475 	size_t size;
1476 	size_t align;
1477 	size_t boundary;
1478 	int flags;
1479 	int direction;
1480 	struct eso_dma *ed;
1481 {
1482 	int error, wait;
1483 
1484 	wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1485 	ed->ed_size = size;
1486 
1487 	error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1488 	    ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1489 	    &ed->ed_nsegs, wait);
1490 	if (error)
1491 		goto out;
1492 
1493 	error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1494 	    ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1495 	if (error)
1496 		goto free;
1497 
1498 	error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1499 	    wait, &ed->ed_map);
1500 	if (error)
1501 		goto unmap;
1502 
1503 	error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1504 	    ed->ed_size, NULL, wait |
1505 	    (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1506 	if (error)
1507 		goto destroy;
1508 
1509 	return (0);
1510 
1511  destroy:
1512 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1513  unmap:
1514 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1515  free:
1516 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1517  out:
1518 	return (error);
1519 }
1520 
1521 static void
1522 eso_freemem(ed)
1523 	struct eso_dma *ed;
1524 {
1525 
1526 	bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1527 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1528 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1529 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1530 }
1531 
1532 static void *
1533 eso_allocm(hdl, direction, size, type, flags)
1534 	void *hdl;
1535 	int direction;
1536 	size_t size;
1537 	int type, flags;
1538 {
1539 	struct eso_softc *sc = hdl;
1540 	struct eso_dma *ed;
1541 	size_t boundary;
1542 	int error;
1543 
1544 	if ((ed = malloc(size, type, flags)) == NULL)
1545 		return (NULL);
1546 
1547 	/*
1548 	 * Apparently the Audio 1 DMA controller's current address
1549 	 * register can't roll over a 64K address boundary, so we have to
1550 	 * take care of that ourselves.  The second channel DMA controller
1551 	 * doesn't have that restriction, however.
1552 	 */
1553 	if (direction == AUMODE_RECORD)
1554 		boundary = 0x10000;
1555 	else
1556 		boundary = 0;
1557 
1558 #ifdef alpha
1559 	/*
1560 	 * XXX For Audio 1, which implements the 24 low address bits only,
1561 	 * XXX force allocation through the (ISA) SGMAP.
1562 	 */
1563 	if (direction == AUMODE_RECORD)
1564 		ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1565 	else
1566 #endif
1567 		ed->ed_dmat = sc->sc_dmat;
1568 
1569 	error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1570 	if (error) {
1571 		free(ed, type);
1572 		return (NULL);
1573 	}
1574 	ed->ed_next = sc->sc_dmas;
1575 	sc->sc_dmas = ed;
1576 
1577 	return (KVADDR(ed));
1578 }
1579 
1580 static void
1581 eso_freem(hdl, addr, type)
1582 	void *hdl;
1583 	void *addr;
1584 	int type;
1585 {
1586 	struct eso_softc *sc = hdl;
1587 	struct eso_dma *p, **pp;
1588 
1589 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1590 		if (KVADDR(p) == addr) {
1591 			eso_freemem(p);
1592 			*pp = p->ed_next;
1593 			free(p, type);
1594 			return;
1595 		}
1596 	}
1597 }
1598 
1599 static size_t
1600 eso_round_buffersize(hdl, direction, bufsize)
1601 	void *hdl;
1602 	int direction;
1603 	size_t bufsize;
1604 {
1605 	size_t maxsize;
1606 
1607 	/*
1608 	 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1609 	 * bytes.  This is because IO_A2DMAC is a two byte value
1610 	 * indicating the literal byte count, and the 4 least significant
1611 	 * bits are read-only.  Zero is not used as a special case for
1612 	 * 0x10000.
1613 	 *
1614 	 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1615 	 * be represented.
1616 	 */
1617 	maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1618 
1619 	if (bufsize > maxsize)
1620 		bufsize = maxsize;
1621 
1622 	return (bufsize);
1623 }
1624 
1625 static paddr_t
1626 eso_mappage(hdl, addr, offs, prot)
1627 	void *hdl;
1628 	void *addr;
1629 	off_t offs;
1630 	int prot;
1631 {
1632 	struct eso_softc *sc = hdl;
1633 	struct eso_dma *ed;
1634 
1635 	if (offs < 0)
1636 		return (-1);
1637 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1638 	     ed = ed->ed_next)
1639 		;
1640 	if (ed == NULL)
1641 		return (-1);
1642 
1643 	return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1644 	    offs, prot, BUS_DMA_WAITOK));
1645 }
1646 
1647 /* ARGSUSED */
1648 static int
1649 eso_get_props(hdl)
1650 	void *hdl;
1651 {
1652 
1653 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1654 	    AUDIO_PROP_FULLDUPLEX);
1655 }
1656 
1657 static int
1658 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1659 	void *hdl;
1660 	void *start, *end;
1661 	int blksize;
1662 	void (*intr) __P((void *));
1663 	void *arg;
1664 	struct audio_params *param;
1665 {
1666 	struct eso_softc *sc = hdl;
1667 	struct eso_dma *ed;
1668 	uint8_t a2c1;
1669 
1670 	DPRINTF((
1671 	    "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1672 	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1673 	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1674 	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1675 	    param->precision, param->channels, param->sw_code, param->factor));
1676 
1677 	/* Find DMA buffer. */
1678 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1679 	     ed = ed->ed_next)
1680 		;
1681 	if (ed == NULL) {
1682 		printf("%s: trigger_output: bad addr %p\n",
1683 		    sc->sc_dev.dv_xname, start);
1684 		return (EINVAL);
1685 	}
1686 
1687 	sc->sc_pintr = intr;
1688 	sc->sc_parg = arg;
1689 
1690 	/* Compute drain timeout. */
1691 	sc->sc_pdrain = (blksize * NBBY * hz) /
1692 	    (param->sample_rate * param->channels *
1693 	     param->precision * param->factor) + 2;	/* slop */
1694 
1695 	/* DMA transfer count (in `words'!) reload using 2's complement. */
1696 	blksize = -(blksize >> 1);
1697 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1698 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1699 
1700 	/* Update DAC to reflect DMA count and audio parameters. */
1701 	/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1702 	if (param->precision * param->factor == 16)
1703 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1704 	else
1705 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1706 	if (param->channels == 2)
1707 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1708 	else
1709 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1710 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1711 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1712 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1713 	else
1714 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1715 	/* Unmask IRQ. */
1716 	sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1717 	eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1718 
1719 	/* Set up DMA controller. */
1720 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1721 	    DMAADDR(ed));
1722 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1723 	    (uint8_t *)end - (uint8_t *)start);
1724 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1725 	    ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1726 
1727 	/* Start DMA. */
1728 	a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1729 	a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1730 	a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1731 	    ESO_MIXREG_A2C1_AUTO;
1732 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1733 
1734 	return (0);
1735 }
1736 
1737 static int
1738 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1739 	void *hdl;
1740 	void *start, *end;
1741 	int blksize;
1742 	void (*intr) __P((void *));
1743 	void *arg;
1744 	struct audio_params *param;
1745 {
1746 	struct eso_softc *sc = hdl;
1747 	struct eso_dma *ed;
1748 	uint8_t actl, a1c1;
1749 
1750 	DPRINTF((
1751 	    "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1752 	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1753 	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1754 	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1755 	    param->precision, param->channels, param->sw_code, param->factor));
1756 
1757 	/*
1758 	 * If we failed to configure the Audio 1 DMA controller, bail here
1759 	 * while retaining availability of the DAC direction (in Audio 2).
1760 	 */
1761 	if (!sc->sc_dmac_configured)
1762 		return (EIO);
1763 
1764 	/* Find DMA buffer. */
1765 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1766 	     ed = ed->ed_next)
1767 		;
1768 	if (ed == NULL) {
1769 		printf("%s: trigger_output: bad addr %p\n",
1770 		    sc->sc_dev.dv_xname, start);
1771 		return (EINVAL);
1772 	}
1773 
1774 	sc->sc_rintr = intr;
1775 	sc->sc_rarg = arg;
1776 
1777 	/* Compute drain timeout. */
1778 	sc->sc_rdrain = (blksize * NBBY * hz) /
1779 	    (param->sample_rate * param->channels *
1780 	     param->precision * param->factor) + 2;	/* slop */
1781 
1782 	/* Set up ADC DMA converter parameters. */
1783 	actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1784 	if (param->channels == 2) {
1785 		actl &= ~ESO_CTLREG_ACTL_MONO;
1786 		actl |= ESO_CTLREG_ACTL_STEREO;
1787 	} else {
1788 		actl &= ~ESO_CTLREG_ACTL_STEREO;
1789 		actl |= ESO_CTLREG_ACTL_MONO;
1790 	}
1791 	eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1792 
1793 	/* Set up Transfer Type: maybe move to attach time? */
1794 	eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1795 
1796 	/* DMA transfer count reload using 2's complement. */
1797 	blksize = -blksize;
1798 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1799 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1800 
1801 	/* Set up and enable Audio 1 DMA FIFO. */
1802 	a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1803 	if (param->precision * param->factor == 16)
1804 		a1c1 |= ESO_CTLREG_A1C1_16BIT;
1805 	if (param->channels == 2)
1806 		a1c1 |= ESO_CTLREG_A1C1_STEREO;
1807 	else
1808 		a1c1 |= ESO_CTLREG_A1C1_MONO;
1809 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1810 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1811 		a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1812 	eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1813 
1814 	/* Set up ADC IRQ/DRQ parameters. */
1815 	eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1816 	    ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1817 	eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1818 	    ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1819 
1820 	/* Set up and enable DMA controller. */
1821 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1822 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1823 	    ESO_DMAC_MASK_MASK);
1824 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1825 	    DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1826 	bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1827 	    DMAADDR(ed));
1828 	bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1829 	    (uint8_t *)end - (uint8_t *)start - 1);
1830 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1831 
1832 	/* Start DMA. */
1833 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1834 	    ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1835 	    ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1836 
1837 	return (0);
1838 }
1839 
1840 static int
1841 eso_set_monooutsrc(sc, monooutsrc)
1842 	struct eso_softc *sc;
1843 	unsigned int monooutsrc;
1844 {
1845 	mixer_devinfo_t di;
1846 	int i;
1847 	uint8_t mpm;
1848 
1849 	di.index = ESO_MONOOUT_SOURCE;
1850 	if (eso_query_devinfo(sc, &di) != 0)
1851 		panic("eso_set_monooutsrc: eso_query_devinfo failed");
1852 
1853 	for (i = 0; i < di.un.e.num_mem; i++) {
1854 		if (monooutsrc == di.un.e.member[i].ord) {
1855 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1856 			mpm &= ~ESO_MIXREG_MPM_MOMASK;
1857 			mpm |= monooutsrc;
1858 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1859 			sc->sc_monooutsrc = monooutsrc;
1860 			return (0);
1861 		}
1862 	}
1863 
1864 	return (EINVAL);
1865 }
1866 
1867 static int
1868 eso_set_recsrc(sc, recsrc)
1869 	struct eso_softc *sc;
1870 	unsigned int recsrc;
1871 {
1872 	mixer_devinfo_t di;
1873 	int i;
1874 
1875 	di.index = ESO_RECORD_SOURCE;
1876 	if (eso_query_devinfo(sc, &di) != 0)
1877 		panic("eso_set_recsrc: eso_query_devinfo failed");
1878 
1879 	for (i = 0; i < di.un.e.num_mem; i++) {
1880 		if (recsrc == di.un.e.member[i].ord) {
1881 			eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1882 			sc->sc_recsrc = recsrc;
1883 			return (0);
1884 		}
1885 	}
1886 
1887 	return (EINVAL);
1888 }
1889 
1890 /*
1891  * Reload Master Volume and Mute values in softc from mixer; used when
1892  * those have previously been invalidated by use of hardware volume controls.
1893  */
1894 static void
1895 eso_reload_master_vol(sc)
1896 	struct eso_softc *sc;
1897 {
1898 	uint8_t mv;
1899 
1900 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1901 	sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1902 	    (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1903 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1904 	sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1905 	    (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1906 	/* Currently both channels are muted simultaneously; either is OK. */
1907 	sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1908 }
1909 
1910 static void
1911 eso_set_gain(sc, port)
1912 	struct eso_softc *sc;
1913 	unsigned int port;
1914 {
1915 	uint8_t mixreg, tmp;
1916 
1917 	switch (port) {
1918 	case ESO_DAC_PLAY_VOL:
1919 		mixreg = ESO_MIXREG_PVR_A2;
1920 		break;
1921 	case ESO_MIC_PLAY_VOL:
1922 		mixreg = ESO_MIXREG_PVR_MIC;
1923 		break;
1924 	case ESO_LINE_PLAY_VOL:
1925 		mixreg = ESO_MIXREG_PVR_LINE;
1926 		break;
1927 	case ESO_SYNTH_PLAY_VOL:
1928 		mixreg = ESO_MIXREG_PVR_SYNTH;
1929 		break;
1930 	case ESO_CD_PLAY_VOL:
1931 		mixreg = ESO_MIXREG_PVR_CD;
1932 		break;
1933 	case ESO_AUXB_PLAY_VOL:
1934 		mixreg = ESO_MIXREG_PVR_AUXB;
1935 		break;
1936 
1937 	case ESO_DAC_REC_VOL:
1938 		mixreg = ESO_MIXREG_RVR_A2;
1939 		break;
1940 	case ESO_MIC_REC_VOL:
1941 		mixreg = ESO_MIXREG_RVR_MIC;
1942 		break;
1943 	case ESO_LINE_REC_VOL:
1944 		mixreg = ESO_MIXREG_RVR_LINE;
1945 		break;
1946 	case ESO_SYNTH_REC_VOL:
1947 		mixreg = ESO_MIXREG_RVR_SYNTH;
1948 		break;
1949 	case ESO_CD_REC_VOL:
1950 		mixreg = ESO_MIXREG_RVR_CD;
1951 		break;
1952 	case ESO_AUXB_REC_VOL:
1953 		mixreg = ESO_MIXREG_RVR_AUXB;
1954 		break;
1955 	case ESO_MONO_PLAY_VOL:
1956 		mixreg = ESO_MIXREG_PVR_MONO;
1957 		break;
1958 	case ESO_MONO_REC_VOL:
1959 		mixreg = ESO_MIXREG_RVR_MONO;
1960 		break;
1961 
1962 	case ESO_PCSPEAKER_VOL:
1963 		/* Special case - only 3-bit, mono, and reserved bits. */
1964 		tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1965 		tmp &= ESO_MIXREG_PCSVR_RESV;
1966 		/* Map bits 7:5 -> 2:0. */
1967 		tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1968 		eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1969 		return;
1970 
1971 	case ESO_MASTER_VOL:
1972 		/* Special case - separate regs, and 6-bit precision. */
1973 		/* Map bits 7:2 -> 5:0, reflect mute settings. */
1974 		eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1975 		    (sc->sc_gain[port][ESO_LEFT] >> 2) |
1976 		    (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1977 		eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1978 		    (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1979 		    (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1980 		return;
1981 
1982 	case ESO_SPATIALIZER:
1983 		/* Special case - only `mono', and higher precision. */
1984 		eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1985 		    sc->sc_gain[port][ESO_LEFT]);
1986 		return;
1987 
1988 	case ESO_RECORD_VOL:
1989 		/* Very Special case, controller register. */
1990 		eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
1991 		   sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1992 		return;
1993 
1994 	default:
1995 #ifdef DIAGNOSTIC
1996 		panic("eso_set_gain: bad port %u", port);
1997 		/* NOTREACHED */
1998 #else
1999 		return;
2000 #endif
2001 		}
2002 
2003 	eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2004 	    sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2005 }
2006