xref: /netbsd/sys/dev/pci/eso.c (revision c4a72b64)
1 /*	$NetBSD: eso.c,v 1.27 2002/10/02 16:51:14 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1999, 2000 Klaus J. Klein
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.27 2002/10/02 16:51:14 thorpej Exp $");
37 
38 #include "mpu.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46 
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49 
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53 
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56 
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61 
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64 
65 #if defined(AUDIO_DEBUG) || defined(DEBUG)
66 #define DPRINTF(x) printf x
67 #else
68 #define DPRINTF(x)
69 #endif
70 
71 struct eso_dma {
72 	bus_dma_tag_t		ed_dmat;
73 	bus_dmamap_t		ed_map;
74 	caddr_t			ed_addr;
75 	bus_dma_segment_t	ed_segs[1];
76 	int			ed_nsegs;
77 	size_t			ed_size;
78 	struct eso_dma *	ed_next;
79 };
80 
81 #define KVADDR(dma)	((void *)(dma)->ed_addr)
82 #define DMAADDR(dma)	((dma)->ed_map->dm_segs[0].ds_addr)
83 
84 /* Autoconfiguration interface */
85 static int eso_match __P((struct device *, struct cfdata *, void *));
86 static void eso_attach __P((struct device *, struct device *, void *));
87 static void eso_defer __P((struct device *));
88 static int eso_print __P((void *, const char *));
89 
90 CFATTACH_DECL(eso, sizeof (struct eso_softc),
91     eso_match, eso_attach, NULL, NULL);
92 
93 /* PCI interface */
94 static int eso_intr __P((void *));
95 
96 /* MI audio layer interface */
97 static int	eso_open __P((void *, int));
98 static void	eso_close __P((void *));
99 static int	eso_query_encoding __P((void *, struct audio_encoding *));
100 static int	eso_set_params __P((void *, int, int, struct audio_params *,
101 		    struct audio_params *));
102 static int	eso_round_blocksize __P((void *, int));
103 static int	eso_halt_output __P((void *));
104 static int	eso_halt_input __P((void *));
105 static int	eso_getdev __P((void *, struct audio_device *));
106 static int	eso_set_port __P((void *, mixer_ctrl_t *));
107 static int	eso_get_port __P((void *, mixer_ctrl_t *));
108 static int	eso_query_devinfo __P((void *, mixer_devinfo_t *));
109 static void *	eso_allocm __P((void *, int, size_t, int, int));
110 static void	eso_freem __P((void *, void *, int));
111 static size_t	eso_round_buffersize __P((void *, int, size_t));
112 static paddr_t	eso_mappage __P((void *, void *, off_t, int));
113 static int	eso_get_props __P((void *));
114 static int	eso_trigger_output __P((void *, void *, void *, int,
115 		    void (*)(void *), void *, struct audio_params *));
116 static int	eso_trigger_input __P((void *, void *, void *, int,
117 		    void (*)(void *), void *, struct audio_params *));
118 
119 static struct audio_hw_if eso_hw_if = {
120 	eso_open,
121 	eso_close,
122 	NULL,			/* drain */
123 	eso_query_encoding,
124 	eso_set_params,
125 	eso_round_blocksize,
126 	NULL,			/* commit_settings */
127 	NULL,			/* init_output */
128 	NULL,			/* init_input */
129 	NULL,			/* start_output */
130 	NULL,			/* start_input */
131 	eso_halt_output,
132 	eso_halt_input,
133 	NULL,			/* speaker_ctl */
134 	eso_getdev,
135 	NULL,			/* setfd */
136 	eso_set_port,
137 	eso_get_port,
138 	eso_query_devinfo,
139 	eso_allocm,
140 	eso_freem,
141 	eso_round_buffersize,
142 	eso_mappage,
143 	eso_get_props,
144 	eso_trigger_output,
145 	eso_trigger_input,
146 	NULL,			/* dev_ioctl */
147 };
148 
149 static const char * const eso_rev2model[] = {
150 	"ES1938",
151 	"ES1946",
152 	"ES1946 Revision E"
153 };
154 
155 
156 /*
157  * Utility routines
158  */
159 /* Register access etc. */
160 static uint8_t	eso_read_ctlreg __P((struct eso_softc *, uint8_t));
161 static uint8_t	eso_read_mixreg __P((struct eso_softc *, uint8_t));
162 static uint8_t	eso_read_rdr __P((struct eso_softc *));
163 static void	eso_reload_master_vol __P((struct eso_softc *));
164 static int	eso_reset __P((struct eso_softc *));
165 static void	eso_set_gain __P((struct eso_softc *, unsigned int));
166 static int	eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
167 static int	eso_set_recsrc __P((struct eso_softc *, unsigned int));
168 static void	eso_write_cmd __P((struct eso_softc *, uint8_t));
169 static void	eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
170 static void	eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
171 /* DMA memory allocation */
172 static int	eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
173 		    int, int, struct eso_dma *));
174 static void	eso_freemem __P((struct eso_dma *));
175 
176 
177 static int
178 eso_match(parent, match, aux)
179 	struct device *parent;
180 	struct cfdata *match;
181 	void *aux;
182 {
183 	struct pci_attach_args *pa = aux;
184 
185 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
186 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
187 		return (1);
188 
189 	return (0);
190 }
191 
192 static void
193 eso_attach(parent, self, aux)
194 	struct device *parent, *self;
195 	void *aux;
196 {
197 	struct eso_softc *sc = (struct eso_softc *)self;
198 	struct pci_attach_args *pa = aux;
199 	struct audio_attach_args aa;
200 	pci_intr_handle_t ih;
201 	bus_addr_t vcbase;
202 	const char *intrstring;
203 	int idx;
204 	uint8_t a2mode, mvctl;
205 
206 	sc->sc_revision = PCI_REVISION(pa->pa_class);
207 
208 	printf(": ESS Solo-1 PCI AudioDrive ");
209 	if (sc->sc_revision <
210 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
211 		printf("%s\n", eso_rev2model[sc->sc_revision]);
212 	else
213 		printf("(unknown rev. 0x%02x)\n", sc->sc_revision);
214 
215 	/* Map I/O registers. */
216 	if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
217 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
218 		printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
219 		return;
220 	}
221 	if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
222 	    &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
223 		printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname);
224 		return;
225 	}
226 	if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
227 	    &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
228 		printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname);
229 		/* Don't bail out yet: we can map it later, see below. */
230 		vcbase = 0;
231 		sc->sc_vcsize = 0x10; /* From the data sheet. */
232 	}
233 	if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
234 	    &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
235 		printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname);
236 		return;
237 	}
238 	if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
239 	    &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
240 		printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname);
241 		return;
242 	}
243 
244 	sc->sc_dmat = pa->pa_dmat;
245 	sc->sc_dmas = NULL;
246 	sc->sc_dmac_configured = 0;
247 
248 	/* Enable bus mastering. */
249 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
250 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
251 	    PCI_COMMAND_MASTER_ENABLE);
252 
253 	/* Reset the device; bail out upon failure. */
254 	if (eso_reset(sc) != 0) {
255 		printf("%s: can't reset\n", sc->sc_dev.dv_xname);
256 		return;
257 	}
258 
259 	/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
260 	pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
261 	    pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
262 	    ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
263 
264 	/* Enable the relevant (DMA) interrupts. */
265 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
266 	    ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
267 	    ESO_IO_IRQCTL_MPUIRQ);
268 
269 	/* Set up A1's sample rate generator for new-style parameters. */
270 	a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
271 	a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
272 	eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
273 
274 	/* Slave Master Volume to Hardware Volume Control Counter, unask IRQ. */
275 	mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
276 	mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
277 	mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
278 	eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
279 
280 	/* Set mixer regs to something reasonable, needs work. */
281 	sc->sc_recsrc = ESO_MIXREG_ERS_LINE;
282 	sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE;
283 	sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
284 	for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
285 		int v;
286 
287 		switch (idx) {
288  		case ESO_MIC_PLAY_VOL:
289 		case ESO_LINE_PLAY_VOL:
290 		case ESO_CD_PLAY_VOL:
291 		case ESO_MONO_PLAY_VOL:
292 		case ESO_AUXB_PLAY_VOL:
293 		case ESO_DAC_REC_VOL:
294 		case ESO_LINE_REC_VOL:
295 		case ESO_SYNTH_REC_VOL:
296 		case ESO_CD_REC_VOL:
297 		case ESO_MONO_REC_VOL:
298 		case ESO_AUXB_REC_VOL:
299 		case ESO_SPATIALIZER:
300 			v = 0;
301 			break;
302 		case ESO_MASTER_VOL:
303 			v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
304 			break;
305 		default:
306 			v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
307 			break;
308 		}
309 		sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
310 		eso_set_gain(sc, idx);
311 	}
312 	eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
313 
314 	/* Map and establish the interrupt. */
315 	if (pci_intr_map(pa, &ih)) {
316 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
317 		return;
318 	}
319 	intrstring = pci_intr_string(pa->pa_pc, ih);
320 	sc->sc_ih  = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
321 	if (sc->sc_ih == NULL) {
322 		printf("%s: couldn't establish interrupt",
323 		    sc->sc_dev.dv_xname);
324 		if (intrstring != NULL)
325 			printf(" at %s", intrstring);
326 		printf("\n");
327 		return;
328 	}
329 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring);
330 
331 	/*
332 	 * Set up the DDMA Control register; a suitable I/O region has been
333 	 * supposedly mapped in the VC base address register.
334 	 *
335 	 * The Solo-1 has an ... interesting silicon bug that causes it to
336 	 * not respond to I/O space accesses to the Audio 1 DMA controller
337 	 * if the latter's mapping base address is aligned on a 1K boundary.
338 	 * As a consequence, it is quite possible for the mapping provided
339 	 * in the VC BAR to be useless.  To work around this, we defer this
340 	 * part until all autoconfiguration on our parent bus is completed
341 	 * and then try to map it ourselves in fulfillment of the constraint.
342 	 *
343 	 * According to the register map we may write to the low 16 bits
344 	 * only, but experimenting has shown we're safe.
345 	 * -kjk
346 	 */
347 	if (ESO_VALID_DDMAC_BASE(vcbase)) {
348 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
349 		    vcbase | ESO_PCI_DDMAC_DE);
350 		sc->sc_dmac_configured = 1;
351 
352 		printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
353 		    sc->sc_dev.dv_xname, (unsigned long)vcbase);
354 	} else {
355 		DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
356 		    sc->sc_dev.dv_xname, (unsigned long)vcbase));
357 		sc->sc_pa = *pa;
358 		config_defer(self, eso_defer);
359 	}
360 
361 	audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
362 
363 	aa.type = AUDIODEV_TYPE_OPL;
364 	aa.hwif = NULL;
365 	aa.hdl = NULL;
366 	(void)config_found(&sc->sc_dev, &aa, audioprint);
367 
368 	aa.type = AUDIODEV_TYPE_MPU;
369 	aa.hwif = NULL;
370 	aa.hdl = NULL;
371 	sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
372 	if (sc->sc_mpudev != NULL) {
373 		/* Unmask the MPU irq. */
374 		mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
375 		mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
376 		eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
377 	}
378 
379 	aa.type = AUDIODEV_TYPE_AUX;
380 	aa.hwif = NULL;
381 	aa.hdl = NULL;
382 	(void)config_found(&sc->sc_dev, &aa, eso_print);
383 }
384 
385 static void
386 eso_defer(self)
387 	struct device *self;
388 {
389 	struct eso_softc *sc = (struct eso_softc *)self;
390 	struct pci_attach_args *pa = &sc->sc_pa;
391 	bus_addr_t addr, start;
392 
393 	printf("%s: ", sc->sc_dev.dv_xname);
394 
395 	/*
396 	 * This is outright ugly, but since we must not make assumptions
397 	 * on the underlying allocator's behaviour it's the most straight-
398 	 * forward way to implement it.  Note that we skip over the first
399 	 * 1K region, which is typically occupied by an attached ISA bus.
400 	 */
401 	for (start = 0x0400; start < 0xffff; start += 0x0400) {
402 		if (bus_space_alloc(sc->sc_iot,
403 		    start + sc->sc_vcsize, start + 0x0400 - 1,
404 		    sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
405 		    &sc->sc_dmac_ioh) != 0)
406 			continue;
407 
408 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
409 		    addr | ESO_PCI_DDMAC_DE);
410 		sc->sc_dmac_iot = sc->sc_iot;
411 		sc->sc_dmac_configured = 1;
412 		printf("mapping Audio 1 DMA using I/O space at 0x%lx\n",
413 		    (unsigned long)addr);
414 
415 		return;
416 	}
417 
418 	printf("can't map Audio 1 DMA into I/O space\n");
419 }
420 
421 /* ARGSUSED */
422 static int
423 eso_print(aux, pnp)
424 	void *aux;
425 	const char *pnp;
426 {
427 
428 	/* Only joys can attach via this; easy. */
429 	if (pnp)
430 		printf("joy at %s:", pnp);
431 
432 	return (UNCONF);
433 }
434 
435 static void
436 eso_write_cmd(sc, cmd)
437 	struct eso_softc *sc;
438 	uint8_t cmd;
439 {
440 	int i;
441 
442 	/* Poll for busy indicator to become clear. */
443 	for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
444 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
445 		    & ESO_SB_RSR_BUSY) == 0) {
446 			bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
447 			    ESO_SB_WDR, cmd);
448 			return;
449 		} else {
450 			delay(10);
451 		}
452 	}
453 
454 	printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
455 	return;
456 }
457 
458 /* Write to a controller register */
459 static void
460 eso_write_ctlreg(sc, reg, val)
461 	struct eso_softc *sc;
462 	uint8_t reg, val;
463 {
464 
465 	/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
466 
467 	eso_write_cmd(sc, reg);
468 	eso_write_cmd(sc, val);
469 }
470 
471 /* Read out the Read Data Register */
472 static uint8_t
473 eso_read_rdr(sc)
474 	struct eso_softc *sc;
475 {
476 	int i;
477 
478 	for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
479 		if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
480 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
481 			return (bus_space_read_1(sc->sc_sb_iot,
482 			    sc->sc_sb_ioh, ESO_SB_RDR));
483 		} else {
484 			delay(10);
485 		}
486 	}
487 
488 	printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
489 	return (-1);
490 }
491 
492 
493 static uint8_t
494 eso_read_ctlreg(sc, reg)
495 	struct eso_softc *sc;
496 	uint8_t reg;
497 {
498 
499 	eso_write_cmd(sc, ESO_CMD_RCR);
500 	eso_write_cmd(sc, reg);
501 	return (eso_read_rdr(sc));
502 }
503 
504 static void
505 eso_write_mixreg(sc, reg, val)
506 	struct eso_softc *sc;
507 	uint8_t reg, val;
508 {
509 	int s;
510 
511 	/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
512 
513 	s = splaudio();
514 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
515 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
516 	splx(s);
517 }
518 
519 static uint8_t
520 eso_read_mixreg(sc, reg)
521 	struct eso_softc *sc;
522 	uint8_t reg;
523 {
524 	int s;
525 	uint8_t val;
526 
527 	s = splaudio();
528 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
529 	val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
530 	splx(s);
531 
532 	return (val);
533 }
534 
535 static int
536 eso_intr(hdl)
537 	void *hdl;
538 {
539 	struct eso_softc *sc = hdl;
540 	uint8_t irqctl;
541 
542 	irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
543 
544 	/* If it wasn't ours, that's all she wrote. */
545 	if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
546 	    ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
547 		return (0);
548 
549 	if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
550 		/* Clear interrupt. */
551 		(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
552 		    ESO_SB_RBSR);
553 
554 		if (sc->sc_rintr)
555 			sc->sc_rintr(sc->sc_rarg);
556 		else
557 			wakeup(&sc->sc_rintr);
558 	}
559 
560 	if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
561 		/*
562 		 * Clear the A2 IRQ latch: the cached value reflects the
563 		 * current DAC settings with the IRQ latch bit not set.
564 		 */
565 		eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
566 
567 		if (sc->sc_pintr)
568 			sc->sc_pintr(sc->sc_parg);
569 		else
570 			wakeup(&sc->sc_pintr);
571 	}
572 
573 	if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
574 		/* Clear interrupt. */
575 		eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
576 
577 		/*
578 		 * Raise a flag to cause a lazy update of the in-softc gain
579 		 * values the next time the software mixer is read to keep
580 		 * interrupt service cost low.  ~0 cannot occur otherwise
581 		 * as the master volume has a precision of 6 bits only.
582 		 */
583 		sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
584 	}
585 
586 #if NMPU > 0
587 	if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
588 		mpu_intr(sc->sc_mpudev);
589 #endif
590 
591 	return (1);
592 }
593 
594 /* Perform a software reset, including DMA FIFOs. */
595 static int
596 eso_reset(sc)
597 	struct eso_softc *sc;
598 {
599 	int i;
600 
601 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
602 	    ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
603 	/* `Delay' suggested in the data sheet. */
604 	(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
605 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
606 
607 	/* Wait for reset to take effect. */
608 	for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
609 		/* Poll for data to become available. */
610 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
611 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
612 		    bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
613 			ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
614 
615 			/* Activate Solo-1 extension commands. */
616 			eso_write_cmd(sc, ESO_CMD_EXTENB);
617 			/* Reset mixer registers. */
618 			eso_write_mixreg(sc, ESO_MIXREG_RESET,
619 			    ESO_MIXREG_RESET_RESET);
620 
621 			return (0);
622 		} else {
623 			delay(1000);
624 		}
625 	}
626 
627 	printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
628 	return (-1);
629 }
630 
631 
632 /* ARGSUSED */
633 static int
634 eso_open(hdl, flags)
635 	void *hdl;
636 	int flags;
637 {
638 	struct eso_softc *sc = hdl;
639 
640 	DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
641 
642 	sc->sc_pintr = NULL;
643 	sc->sc_rintr = NULL;
644 
645 	return (0);
646 }
647 
648 static void
649 eso_close(hdl)
650 	void *hdl;
651 {
652 
653 	DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
654 }
655 
656 static int
657 eso_query_encoding(hdl, fp)
658 	void *hdl;
659 	struct audio_encoding *fp;
660 {
661 
662 	switch (fp->index) {
663 	case 0:
664 		strcpy(fp->name, AudioEulinear);
665 		fp->encoding = AUDIO_ENCODING_ULINEAR;
666 		fp->precision = 8;
667 		fp->flags = 0;
668 		break;
669 	case 1:
670 		strcpy(fp->name, AudioEmulaw);
671 		fp->encoding = AUDIO_ENCODING_ULAW;
672 		fp->precision = 8;
673 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
674 		break;
675 	case 2:
676 		strcpy(fp->name, AudioEalaw);
677 		fp->encoding = AUDIO_ENCODING_ALAW;
678 		fp->precision = 8;
679 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
680 		break;
681 	case 3:
682 		strcpy(fp->name, AudioEslinear);
683 		fp->encoding = AUDIO_ENCODING_SLINEAR;
684 		fp->precision = 8;
685 		fp->flags = 0;
686 		break;
687 	case 4:
688 		strcpy(fp->name, AudioEslinear_le);
689 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
690 		fp->precision = 16;
691 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
692 		break;
693 	case 5:
694 		strcpy(fp->name, AudioEulinear_le);
695 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
696 		fp->precision = 16;
697 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
698 		break;
699 	case 6:
700 		strcpy(fp->name, AudioEslinear_be);
701 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
702 		fp->precision = 16;
703 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
704 		break;
705 	case 7:
706 		strcpy(fp->name, AudioEulinear_be);
707 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
708 		fp->precision = 16;
709 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
710 		break;
711 	default:
712 		return (EINVAL);
713 	}
714 
715 	return (0);
716 }
717 
718 static int
719 eso_set_params(hdl, setmode, usemode, play, rec)
720 	void *hdl;
721 	int setmode, usemode;
722 	struct audio_params *play, *rec;
723 {
724 	struct eso_softc *sc = hdl;
725 	struct audio_params *p;
726 	int mode, r[2], rd[2], clk;
727 	unsigned int srg, fltdiv;
728 
729 	for (mode = AUMODE_RECORD; mode != -1;
730 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
731 		if ((setmode & mode) == 0)
732 			continue;
733 
734 		p = (mode == AUMODE_PLAY) ? play : rec;
735 
736 		if (p->sample_rate < ESO_MINRATE ||
737 		    p->sample_rate > ESO_MAXRATE ||
738 		    (p->precision != 8 && p->precision != 16) ||
739 		    (p->channels != 1 && p->channels != 2))
740 			return (EINVAL);
741 
742 		p->factor = 1;
743 		p->sw_code = NULL;
744 		switch (p->encoding) {
745 		case AUDIO_ENCODING_SLINEAR_BE:
746 		case AUDIO_ENCODING_ULINEAR_BE:
747 			if (mode == AUMODE_PLAY && p->precision == 16)
748 				p->sw_code = swap_bytes;
749 			break;
750 		case AUDIO_ENCODING_SLINEAR_LE:
751 		case AUDIO_ENCODING_ULINEAR_LE:
752 			if (mode == AUMODE_RECORD && p->precision == 16)
753 				p->sw_code = swap_bytes;
754 			break;
755 		case AUDIO_ENCODING_ULAW:
756 			if (mode == AUMODE_PLAY) {
757 				p->factor = 2;
758 				p->sw_code = mulaw_to_ulinear16_le;
759 			} else {
760 				p->sw_code = ulinear8_to_mulaw;
761 			}
762 			break;
763 		case AUDIO_ENCODING_ALAW:
764 			if (mode == AUMODE_PLAY) {
765 				p->factor = 2;
766 				p->sw_code = alaw_to_ulinear16_le;
767 			} else {
768 				p->sw_code = ulinear8_to_alaw;
769 			}
770 			break;
771 		default:
772 			return (EINVAL);
773 		}
774 
775 		/*
776 		 * We'll compute both possible sample rate dividers and pick
777 		 * the one with the least error.
778 		 */
779 #define ABS(x) ((x) < 0 ? -(x) : (x))
780 		r[0] = ESO_CLK0 /
781 		    (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
782 		r[1] = ESO_CLK1 /
783 		    (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
784 
785 		clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
786 		srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
787 
788 		/* Roll-off frequency of 87%, as in the ES1888 driver. */
789 		fltdiv = 256 - 200279L / r[clk];
790 
791 		/* Update to reflect the possibly inexact rate. */
792 		p->sample_rate = r[clk];
793 
794 		if (mode == AUMODE_RECORD) {
795 			/* Audio 1 */
796 			DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
797 			eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
798 			eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
799 		} else {
800 			/* Audio 2 */
801 			DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
802 			eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
803 			eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
804 		}
805 #undef ABS
806 
807 	}
808 
809 	return (0);
810 }
811 
812 static int
813 eso_round_blocksize(hdl, blk)
814 	void *hdl;
815 	int blk;
816 {
817 
818 	return (blk & -32);	/* keep good alignment; at least 16 req'd */
819 }
820 
821 static int
822 eso_halt_output(hdl)
823 	void *hdl;
824 {
825 	struct eso_softc *sc = hdl;
826 	int error, s;
827 
828 	DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
829 
830 	/*
831 	 * Disable auto-initialize DMA, allowing the FIFO to drain and then
832 	 * stop.  The interrupt callback pointer is cleared at this
833 	 * point so that an outstanding FIFO interrupt for the remaining data
834 	 * will be acknowledged without further processing.
835 	 *
836 	 * This does not immediately `abort' an operation in progress (c.f.
837 	 * audio(9)) but is the method to leave the FIFO behind in a clean
838 	 * state with the least hair.  (Besides, that item needs to be
839 	 * rephrased for trigger_*()-based DMA environments.)
840 	 */
841 	s = splaudio();
842 	eso_write_mixreg(sc, ESO_MIXREG_A2C1,
843 	    ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
844 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
845 	    ESO_IO_A2DMAM_DMAENB);
846 
847 	sc->sc_pintr = NULL;
848 	error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
849 	splx(s);
850 
851 	/* Shut down DMA completely. */
852 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
853 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
854 
855 	return (error == EWOULDBLOCK ? 0 : error);
856 }
857 
858 static int
859 eso_halt_input(hdl)
860 	void *hdl;
861 {
862 	struct eso_softc *sc = hdl;
863 	int error, s;
864 
865 	DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
866 
867 	/* Just like eso_halt_output(), but for Audio 1. */
868 	s = splaudio();
869 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
870 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
871 	    ESO_CTLREG_A1C2_DMAENB);
872 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
873 	    DMA37MD_WRITE | DMA37MD_DEMAND);
874 
875 	sc->sc_rintr = NULL;
876 	error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
877 	splx(s);
878 
879 	/* Shut down DMA completely. */
880 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
881 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
882 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
883 	    ESO_DMAC_MASK_MASK);
884 
885 	return (error == EWOULDBLOCK ? 0 : error);
886 }
887 
888 static int
889 eso_getdev(hdl, retp)
890 	void *hdl;
891 	struct audio_device *retp;
892 {
893 	struct eso_softc *sc = hdl;
894 
895 	strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
896 	snprintf(retp->version, sizeof (retp->version), "0x%02x",
897 	    sc->sc_revision);
898 	if (sc->sc_revision <
899 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
900 		strncpy(retp->config, eso_rev2model[sc->sc_revision],
901 		    sizeof (retp->config));
902 	else
903 		strncpy(retp->config, "unknown", sizeof (retp->config));
904 
905 	return (0);
906 }
907 
908 static int
909 eso_set_port(hdl, cp)
910 	void *hdl;
911 	mixer_ctrl_t *cp;
912 {
913 	struct eso_softc *sc = hdl;
914 	unsigned int lgain, rgain;
915 	uint8_t tmp;
916 
917 	switch (cp->dev) {
918 	case ESO_DAC_PLAY_VOL:
919 	case ESO_MIC_PLAY_VOL:
920 	case ESO_LINE_PLAY_VOL:
921 	case ESO_SYNTH_PLAY_VOL:
922 	case ESO_CD_PLAY_VOL:
923 	case ESO_AUXB_PLAY_VOL:
924 	case ESO_RECORD_VOL:
925 	case ESO_DAC_REC_VOL:
926 	case ESO_MIC_REC_VOL:
927 	case ESO_LINE_REC_VOL:
928 	case ESO_SYNTH_REC_VOL:
929 	case ESO_CD_REC_VOL:
930 	case ESO_AUXB_REC_VOL:
931 		if (cp->type != AUDIO_MIXER_VALUE)
932 			return (EINVAL);
933 
934 		/*
935 		 * Stereo-capable mixer ports: if we get a single-channel
936 		 * gain value passed in, then we duplicate it to both left
937 		 * and right channels.
938 		 */
939 		switch (cp->un.value.num_channels) {
940 		case 1:
941 			lgain = rgain = ESO_GAIN_TO_4BIT(
942 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
943 			break;
944 		case 2:
945 			lgain = ESO_GAIN_TO_4BIT(
946 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
947 			rgain = ESO_GAIN_TO_4BIT(
948 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
949 			break;
950 		default:
951 			return (EINVAL);
952 		}
953 
954 		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
955 		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
956 		eso_set_gain(sc, cp->dev);
957 		break;
958 
959 	case ESO_MASTER_VOL:
960 		if (cp->type != AUDIO_MIXER_VALUE)
961 			return (EINVAL);
962 
963 		/* Like above, but a precision of 6 bits. */
964 		switch (cp->un.value.num_channels) {
965 		case 1:
966 			lgain = rgain = ESO_GAIN_TO_6BIT(
967 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
968 			break;
969 		case 2:
970 			lgain = ESO_GAIN_TO_6BIT(
971 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
972 			rgain = ESO_GAIN_TO_6BIT(
973 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
974 			break;
975 		default:
976 			return (EINVAL);
977 		}
978 
979 		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
980 		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
981 		eso_set_gain(sc, cp->dev);
982 		break;
983 
984 	case ESO_SPATIALIZER:
985 		if (cp->type != AUDIO_MIXER_VALUE ||
986 		    cp->un.value.num_channels != 1)
987 			return (EINVAL);
988 
989 		sc->sc_gain[cp->dev][ESO_LEFT] =
990 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
991 		    ESO_GAIN_TO_6BIT(
992 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
993 		eso_set_gain(sc, cp->dev);
994 		break;
995 
996 	case ESO_MONO_PLAY_VOL:
997 	case ESO_MONO_REC_VOL:
998 		if (cp->type != AUDIO_MIXER_VALUE ||
999 		    cp->un.value.num_channels != 1)
1000 			return (EINVAL);
1001 
1002 		sc->sc_gain[cp->dev][ESO_LEFT] =
1003 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1004 		    ESO_GAIN_TO_4BIT(
1005 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1006 		eso_set_gain(sc, cp->dev);
1007 		break;
1008 
1009 	case ESO_PCSPEAKER_VOL:
1010 		if (cp->type != AUDIO_MIXER_VALUE ||
1011 		    cp->un.value.num_channels != 1)
1012 			return (EINVAL);
1013 
1014 		sc->sc_gain[cp->dev][ESO_LEFT] =
1015 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1016 		    ESO_GAIN_TO_3BIT(
1017 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1018 		eso_set_gain(sc, cp->dev);
1019 		break;
1020 
1021 	case ESO_SPATIALIZER_ENABLE:
1022 		if (cp->type != AUDIO_MIXER_ENUM)
1023 			return (EINVAL);
1024 
1025 		sc->sc_spatializer = (cp->un.ord != 0);
1026 
1027 		tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1028 		if (sc->sc_spatializer)
1029 			tmp |= ESO_MIXREG_SPAT_ENB;
1030 		else
1031 			tmp &= ~ESO_MIXREG_SPAT_ENB;
1032 		eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1033 		    tmp | ESO_MIXREG_SPAT_RSTREL);
1034 		break;
1035 
1036 	case ESO_MASTER_MUTE:
1037 		if (cp->type != AUDIO_MIXER_ENUM)
1038 			return (EINVAL);
1039 
1040 		sc->sc_mvmute = (cp->un.ord != 0);
1041 
1042 		if (sc->sc_mvmute) {
1043 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1044 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1045 			    ESO_MIXREG_LMVM_MUTE);
1046 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1047 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1048 			    ESO_MIXREG_RMVM_MUTE);
1049 		} else {
1050 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1051 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1052 			    ~ESO_MIXREG_LMVM_MUTE);
1053 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1054 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1055 			    ~ESO_MIXREG_RMVM_MUTE);
1056 		}
1057 		break;
1058 
1059 	case ESO_MONOOUT_SOURCE:
1060 		if (cp->type != AUDIO_MIXER_ENUM)
1061 			return (EINVAL);
1062 
1063 		return (eso_set_monooutsrc(sc, cp->un.ord));
1064 
1065 	case ESO_RECORD_MONITOR:
1066 		if (cp->type != AUDIO_MIXER_ENUM)
1067 			return (EINVAL);
1068 
1069 		sc->sc_recmon = (cp->un.ord != 0);
1070 
1071 		tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1072 		if (sc->sc_recmon)
1073 			tmp |= ESO_CTLREG_ACTL_RECMON;
1074 		else
1075 			tmp &= ~ESO_CTLREG_ACTL_RECMON;
1076 		eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1077 		break;
1078 
1079 	case ESO_RECORD_SOURCE:
1080 		if (cp->type != AUDIO_MIXER_ENUM)
1081 			return (EINVAL);
1082 
1083 		return (eso_set_recsrc(sc, cp->un.ord));
1084 
1085 	case ESO_MIC_PREAMP:
1086 		if (cp->type != AUDIO_MIXER_ENUM)
1087 			return (EINVAL);
1088 
1089 		sc->sc_preamp = (cp->un.ord != 0);
1090 
1091 		tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1092 		tmp &= ~ESO_MIXREG_MPM_RESV0;
1093 		if (sc->sc_preamp)
1094 			tmp |= ESO_MIXREG_MPM_PREAMP;
1095 		else
1096 			tmp &= ~ESO_MIXREG_MPM_PREAMP;
1097 		eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
1098 		break;
1099 
1100 	default:
1101 		return (EINVAL);
1102 	}
1103 
1104 	return (0);
1105 }
1106 
1107 static int
1108 eso_get_port(hdl, cp)
1109 	void *hdl;
1110 	mixer_ctrl_t *cp;
1111 {
1112 	struct eso_softc *sc = hdl;
1113 
1114 	switch (cp->dev) {
1115 	case ESO_MASTER_VOL:
1116 		/* Reload from mixer after hardware volume control use. */
1117 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1118 			eso_reload_master_vol(sc);
1119 		/* FALLTHROUGH */
1120 	case ESO_DAC_PLAY_VOL:
1121 	case ESO_MIC_PLAY_VOL:
1122 	case ESO_LINE_PLAY_VOL:
1123 	case ESO_SYNTH_PLAY_VOL:
1124 	case ESO_CD_PLAY_VOL:
1125 	case ESO_AUXB_PLAY_VOL:
1126 	case ESO_RECORD_VOL:
1127 	case ESO_DAC_REC_VOL:
1128 	case ESO_MIC_REC_VOL:
1129 	case ESO_LINE_REC_VOL:
1130 	case ESO_SYNTH_REC_VOL:
1131 	case ESO_CD_REC_VOL:
1132 	case ESO_AUXB_REC_VOL:
1133 		/*
1134 		 * Stereo-capable ports: if a single-channel query is made,
1135 		 * just return the left channel's value (since single-channel
1136 		 * settings themselves are applied to both channels).
1137 		 */
1138 		switch (cp->un.value.num_channels) {
1139 		case 1:
1140 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1141 			    sc->sc_gain[cp->dev][ESO_LEFT];
1142 			break;
1143 		case 2:
1144 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1145 			    sc->sc_gain[cp->dev][ESO_LEFT];
1146 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1147 			    sc->sc_gain[cp->dev][ESO_RIGHT];
1148 			break;
1149 		default:
1150 			return (EINVAL);
1151 		}
1152 		break;
1153 
1154 	case ESO_MONO_PLAY_VOL:
1155 	case ESO_PCSPEAKER_VOL:
1156 	case ESO_MONO_REC_VOL:
1157 	case ESO_SPATIALIZER:
1158 		if (cp->un.value.num_channels != 1)
1159 			return (EINVAL);
1160 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1161 		    sc->sc_gain[cp->dev][ESO_LEFT];
1162 		break;
1163 
1164 	case ESO_RECORD_MONITOR:
1165 		cp->un.ord = sc->sc_recmon;
1166 		break;
1167 
1168 	case ESO_RECORD_SOURCE:
1169 		cp->un.ord = sc->sc_recsrc;
1170 		break;
1171 
1172 	case ESO_MONOOUT_SOURCE:
1173 		cp->un.ord = sc->sc_monooutsrc;
1174 		break;
1175 
1176 	case ESO_SPATIALIZER_ENABLE:
1177 		cp->un.ord = sc->sc_spatializer;
1178 		break;
1179 
1180 	case ESO_MIC_PREAMP:
1181 		cp->un.ord = sc->sc_preamp;
1182 		break;
1183 
1184 	case ESO_MASTER_MUTE:
1185 		/* Reload from mixer after hardware volume control use. */
1186 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1187 			eso_reload_master_vol(sc);
1188 		cp->un.ord = sc->sc_mvmute;
1189 		break;
1190 
1191 	default:
1192 		return (EINVAL);
1193 	}
1194 
1195 
1196 	return (0);
1197 
1198 }
1199 
1200 static int
1201 eso_query_devinfo(hdl, dip)
1202 	void *hdl;
1203 	mixer_devinfo_t *dip;
1204 {
1205 
1206 	switch (dip->index) {
1207 	case ESO_DAC_PLAY_VOL:
1208 		dip->mixer_class = ESO_INPUT_CLASS;
1209 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1210 		strcpy(dip->label.name, AudioNdac);
1211 		dip->type = AUDIO_MIXER_VALUE;
1212 		dip->un.v.num_channels = 2;
1213 		strcpy(dip->un.v.units.name, AudioNvolume);
1214 		break;
1215 	case ESO_MIC_PLAY_VOL:
1216 		dip->mixer_class = ESO_INPUT_CLASS;
1217 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1218 		strcpy(dip->label.name, AudioNmicrophone);
1219 		dip->type = AUDIO_MIXER_VALUE;
1220 		dip->un.v.num_channels = 2;
1221 		strcpy(dip->un.v.units.name, AudioNvolume);
1222 		break;
1223 	case ESO_LINE_PLAY_VOL:
1224 		dip->mixer_class = ESO_INPUT_CLASS;
1225 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1226 		strcpy(dip->label.name, AudioNline);
1227 		dip->type = AUDIO_MIXER_VALUE;
1228 		dip->un.v.num_channels = 2;
1229 		strcpy(dip->un.v.units.name, AudioNvolume);
1230 		break;
1231 	case ESO_SYNTH_PLAY_VOL:
1232 		dip->mixer_class = ESO_INPUT_CLASS;
1233 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1234 		strcpy(dip->label.name, AudioNfmsynth);
1235 		dip->type = AUDIO_MIXER_VALUE;
1236 		dip->un.v.num_channels = 2;
1237 		strcpy(dip->un.v.units.name, AudioNvolume);
1238 		break;
1239 	case ESO_MONO_PLAY_VOL:
1240 		dip->mixer_class = ESO_INPUT_CLASS;
1241 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1242 		strcpy(dip->label.name, "mono_in");
1243 		dip->type = AUDIO_MIXER_VALUE;
1244 		dip->un.v.num_channels = 1;
1245 		strcpy(dip->un.v.units.name, AudioNvolume);
1246 		break;
1247 	case ESO_CD_PLAY_VOL:
1248 		dip->mixer_class = ESO_INPUT_CLASS;
1249 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1250 		strcpy(dip->label.name, AudioNcd);
1251 		dip->type = AUDIO_MIXER_VALUE;
1252 		dip->un.v.num_channels = 2;
1253 		strcpy(dip->un.v.units.name, AudioNvolume);
1254 		break;
1255 	case ESO_AUXB_PLAY_VOL:
1256 		dip->mixer_class = ESO_INPUT_CLASS;
1257 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1258 		strcpy(dip->label.name, "auxb");
1259 		dip->type = AUDIO_MIXER_VALUE;
1260 		dip->un.v.num_channels = 2;
1261 		strcpy(dip->un.v.units.name, AudioNvolume);
1262 		break;
1263 
1264 	case ESO_MIC_PREAMP:
1265 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1266 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1267 		strcpy(dip->label.name, AudioNpreamp);
1268 		dip->type = AUDIO_MIXER_ENUM;
1269 		dip->un.e.num_mem = 2;
1270 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1271 		dip->un.e.member[0].ord = 0;
1272 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1273 		dip->un.e.member[1].ord = 1;
1274 		break;
1275 	case ESO_MICROPHONE_CLASS:
1276 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1277 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1278 		strcpy(dip->label.name, AudioNmicrophone);
1279 		dip->type = AUDIO_MIXER_CLASS;
1280 		break;
1281 
1282 	case ESO_INPUT_CLASS:
1283 		dip->mixer_class = ESO_INPUT_CLASS;
1284 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1285 		strcpy(dip->label.name, AudioCinputs);
1286 		dip->type = AUDIO_MIXER_CLASS;
1287 		break;
1288 
1289 	case ESO_MASTER_VOL:
1290 		dip->mixer_class = ESO_OUTPUT_CLASS;
1291 		dip->prev = AUDIO_MIXER_LAST;
1292 		dip->next = ESO_MASTER_MUTE;
1293 		strcpy(dip->label.name, AudioNmaster);
1294 		dip->type = AUDIO_MIXER_VALUE;
1295 		dip->un.v.num_channels = 2;
1296 		strcpy(dip->un.v.units.name, AudioNvolume);
1297 		break;
1298 	case ESO_MASTER_MUTE:
1299 		dip->mixer_class = ESO_OUTPUT_CLASS;
1300 		dip->prev = ESO_MASTER_VOL;
1301 		dip->next = AUDIO_MIXER_LAST;
1302 		strcpy(dip->label.name, AudioNmute);
1303 		dip->type = AUDIO_MIXER_ENUM;
1304 		dip->un.e.num_mem = 2;
1305 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1306 		dip->un.e.member[0].ord = 0;
1307 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1308 		dip->un.e.member[1].ord = 1;
1309 		break;
1310 
1311 	case ESO_PCSPEAKER_VOL:
1312 		dip->mixer_class = ESO_OUTPUT_CLASS;
1313 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1314 		strcpy(dip->label.name, "pc_speaker");
1315 		dip->type = AUDIO_MIXER_VALUE;
1316 		dip->un.v.num_channels = 1;
1317 		strcpy(dip->un.v.units.name, AudioNvolume);
1318 		break;
1319 	case ESO_MONOOUT_SOURCE:
1320 		dip->mixer_class = ESO_OUTPUT_CLASS;
1321 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1322 		strcpy(dip->label.name, "mono_out");
1323 		dip->type = AUDIO_MIXER_ENUM;
1324 		dip->un.e.num_mem = 3;
1325 		strcpy(dip->un.e.member[0].label.name, AudioNmute);
1326 		dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1327 		strcpy(dip->un.e.member[1].label.name, AudioNdac);
1328 		dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1329 		strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1330 		dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1331 		break;
1332 	case ESO_SPATIALIZER:
1333 		dip->mixer_class = ESO_OUTPUT_CLASS;
1334 		dip->prev = AUDIO_MIXER_LAST;
1335 		dip->next = ESO_SPATIALIZER_ENABLE;
1336 		strcpy(dip->label.name, AudioNspatial);
1337 		dip->type = AUDIO_MIXER_VALUE;
1338 		dip->un.v.num_channels = 1;
1339 		strcpy(dip->un.v.units.name, "level");
1340 		break;
1341 	case ESO_SPATIALIZER_ENABLE:
1342 		dip->mixer_class = ESO_OUTPUT_CLASS;
1343 		dip->prev = ESO_SPATIALIZER;
1344 		dip->next = AUDIO_MIXER_LAST;
1345 		strcpy(dip->label.name, "enable");
1346 		dip->type = AUDIO_MIXER_ENUM;
1347 		dip->un.e.num_mem = 2;
1348 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1349 		dip->un.e.member[0].ord = 0;
1350 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1351 		dip->un.e.member[1].ord = 1;
1352 		break;
1353 
1354 	case ESO_OUTPUT_CLASS:
1355 		dip->mixer_class = ESO_OUTPUT_CLASS;
1356 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1357 		strcpy(dip->label.name, AudioCoutputs);
1358 		dip->type = AUDIO_MIXER_CLASS;
1359 		break;
1360 
1361 	case ESO_RECORD_MONITOR:
1362 		dip->mixer_class = ESO_MONITOR_CLASS;
1363 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1364 		strcpy(dip->label.name, AudioNmute);
1365 		dip->type = AUDIO_MIXER_ENUM;
1366 		dip->un.e.num_mem = 2;
1367 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1368 		dip->un.e.member[0].ord = 0;
1369 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1370 		dip->un.e.member[1].ord = 1;
1371 		break;
1372 	case ESO_MONITOR_CLASS:
1373 		dip->mixer_class = ESO_MONITOR_CLASS;
1374 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1375 		strcpy(dip->label.name, AudioCmonitor);
1376 		dip->type = AUDIO_MIXER_CLASS;
1377 		break;
1378 
1379 	case ESO_RECORD_VOL:
1380 		dip->mixer_class = ESO_RECORD_CLASS;
1381 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1382 		strcpy(dip->label.name, AudioNrecord);
1383 		dip->type = AUDIO_MIXER_VALUE;
1384 		strcpy(dip->un.v.units.name, AudioNvolume);
1385 		break;
1386 	case ESO_RECORD_SOURCE:
1387 		dip->mixer_class = ESO_RECORD_CLASS;
1388 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1389 		strcpy(dip->label.name, AudioNsource);
1390 		dip->type = AUDIO_MIXER_ENUM;
1391 		dip->un.e.num_mem = 4;
1392 		strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1393 		dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1394 		strcpy(dip->un.e.member[1].label.name, AudioNline);
1395 		dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1396 		strcpy(dip->un.e.member[2].label.name, AudioNcd);
1397 		dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1398 		strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1399 		dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1400 		break;
1401 	case ESO_DAC_REC_VOL:
1402 		dip->mixer_class = ESO_RECORD_CLASS;
1403 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1404 		strcpy(dip->label.name, AudioNdac);
1405 		dip->type = AUDIO_MIXER_VALUE;
1406 		dip->un.v.num_channels = 2;
1407 		strcpy(dip->un.v.units.name, AudioNvolume);
1408 		break;
1409 	case ESO_MIC_REC_VOL:
1410 		dip->mixer_class = ESO_RECORD_CLASS;
1411 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1412 		strcpy(dip->label.name, AudioNmicrophone);
1413 		dip->type = AUDIO_MIXER_VALUE;
1414 		dip->un.v.num_channels = 2;
1415 		strcpy(dip->un.v.units.name, AudioNvolume);
1416 		break;
1417 	case ESO_LINE_REC_VOL:
1418 		dip->mixer_class = ESO_RECORD_CLASS;
1419 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1420 		strcpy(dip->label.name, AudioNline);
1421 		dip->type = AUDIO_MIXER_VALUE;
1422 		dip->un.v.num_channels = 2;
1423 		strcpy(dip->un.v.units.name, AudioNvolume);
1424 		break;
1425 	case ESO_SYNTH_REC_VOL:
1426 		dip->mixer_class = ESO_RECORD_CLASS;
1427 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1428 		strcpy(dip->label.name, AudioNfmsynth);
1429 		dip->type = AUDIO_MIXER_VALUE;
1430 		dip->un.v.num_channels = 2;
1431 		strcpy(dip->un.v.units.name, AudioNvolume);
1432 		break;
1433 	case ESO_MONO_REC_VOL:
1434 		dip->mixer_class = ESO_RECORD_CLASS;
1435 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1436 		strcpy(dip->label.name, "mono_in");
1437 		dip->type = AUDIO_MIXER_VALUE;
1438 		dip->un.v.num_channels = 1; /* No lies */
1439 		strcpy(dip->un.v.units.name, AudioNvolume);
1440 		break;
1441 	case ESO_CD_REC_VOL:
1442 		dip->mixer_class = ESO_RECORD_CLASS;
1443 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1444 		strcpy(dip->label.name, AudioNcd);
1445 		dip->type = AUDIO_MIXER_VALUE;
1446 		dip->un.v.num_channels = 2;
1447 		strcpy(dip->un.v.units.name, AudioNvolume);
1448 		break;
1449 	case ESO_AUXB_REC_VOL:
1450 		dip->mixer_class = ESO_RECORD_CLASS;
1451 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1452 		strcpy(dip->label.name, "auxb");
1453 		dip->type = AUDIO_MIXER_VALUE;
1454 		dip->un.v.num_channels = 2;
1455 		strcpy(dip->un.v.units.name, AudioNvolume);
1456 		break;
1457 	case ESO_RECORD_CLASS:
1458 		dip->mixer_class = ESO_RECORD_CLASS;
1459 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1460 		strcpy(dip->label.name, AudioCrecord);
1461 		dip->type = AUDIO_MIXER_CLASS;
1462 		break;
1463 
1464 	default:
1465 		return (ENXIO);
1466 	}
1467 
1468 	return (0);
1469 }
1470 
1471 static int
1472 eso_allocmem(sc, size, align, boundary, flags, direction, ed)
1473 	struct eso_softc *sc;
1474 	size_t size;
1475 	size_t align;
1476 	size_t boundary;
1477 	int flags;
1478 	int direction;
1479 	struct eso_dma *ed;
1480 {
1481 	int error, wait;
1482 
1483 	wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1484 	ed->ed_size = size;
1485 
1486 	error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1487 	    ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1488 	    &ed->ed_nsegs, wait);
1489 	if (error)
1490 		goto out;
1491 
1492 	error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1493 	    ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1494 	if (error)
1495 		goto free;
1496 
1497 	error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1498 	    wait, &ed->ed_map);
1499 	if (error)
1500 		goto unmap;
1501 
1502 	error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1503 	    ed->ed_size, NULL, wait |
1504 	    (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1505 	if (error)
1506 		goto destroy;
1507 
1508 	return (0);
1509 
1510  destroy:
1511 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1512  unmap:
1513 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1514  free:
1515 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1516  out:
1517 	return (error);
1518 }
1519 
1520 static void
1521 eso_freemem(ed)
1522 	struct eso_dma *ed;
1523 {
1524 
1525 	bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1526 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1527 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1528 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1529 }
1530 
1531 static void *
1532 eso_allocm(hdl, direction, size, type, flags)
1533 	void *hdl;
1534 	int direction;
1535 	size_t size;
1536 	int type, flags;
1537 {
1538 	struct eso_softc *sc = hdl;
1539 	struct eso_dma *ed;
1540 	size_t boundary;
1541 	int error;
1542 
1543 	if ((ed = malloc(size, type, flags)) == NULL)
1544 		return (NULL);
1545 
1546 	/*
1547 	 * Apparently the Audio 1 DMA controller's current address
1548 	 * register can't roll over a 64K address boundary, so we have to
1549 	 * take care of that ourselves.  The second channel DMA controller
1550 	 * doesn't have that restriction, however.
1551 	 */
1552 	if (direction == AUMODE_RECORD)
1553 		boundary = 0x10000;
1554 	else
1555 		boundary = 0;
1556 
1557 #ifdef alpha
1558 	/*
1559 	 * XXX For Audio 1, which implements the 24 low address bits only,
1560 	 * XXX force allocation through the (ISA) SGMAP.
1561 	 */
1562 	if (direction == AUMODE_RECORD)
1563 		ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1564 	else
1565 #endif
1566 		ed->ed_dmat = sc->sc_dmat;
1567 
1568 	error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1569 	if (error) {
1570 		free(ed, type);
1571 		return (NULL);
1572 	}
1573 	ed->ed_next = sc->sc_dmas;
1574 	sc->sc_dmas = ed;
1575 
1576 	return (KVADDR(ed));
1577 }
1578 
1579 static void
1580 eso_freem(hdl, addr, type)
1581 	void *hdl;
1582 	void *addr;
1583 	int type;
1584 {
1585 	struct eso_softc *sc = hdl;
1586 	struct eso_dma *p, **pp;
1587 
1588 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1589 		if (KVADDR(p) == addr) {
1590 			eso_freemem(p);
1591 			*pp = p->ed_next;
1592 			free(p, type);
1593 			return;
1594 		}
1595 	}
1596 }
1597 
1598 static size_t
1599 eso_round_buffersize(hdl, direction, bufsize)
1600 	void *hdl;
1601 	int direction;
1602 	size_t bufsize;
1603 {
1604 	size_t maxsize;
1605 
1606 	/*
1607 	 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1608 	 * bytes.  This is because IO_A2DMAC is a two byte value
1609 	 * indicating the literal byte count, and the 4 least significant
1610 	 * bits are read-only.  Zero is not used as a special case for
1611 	 * 0x10000.
1612 	 *
1613 	 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1614 	 * be represented.
1615 	 */
1616 	maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1617 
1618 	if (bufsize > maxsize)
1619 		bufsize = maxsize;
1620 
1621 	return (bufsize);
1622 }
1623 
1624 static paddr_t
1625 eso_mappage(hdl, addr, offs, prot)
1626 	void *hdl;
1627 	void *addr;
1628 	off_t offs;
1629 	int prot;
1630 {
1631 	struct eso_softc *sc = hdl;
1632 	struct eso_dma *ed;
1633 
1634 	if (offs < 0)
1635 		return (-1);
1636 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1637 	     ed = ed->ed_next)
1638 		;
1639 	if (ed == NULL)
1640 		return (-1);
1641 
1642 	return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1643 	    offs, prot, BUS_DMA_WAITOK));
1644 }
1645 
1646 /* ARGSUSED */
1647 static int
1648 eso_get_props(hdl)
1649 	void *hdl;
1650 {
1651 
1652 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1653 	    AUDIO_PROP_FULLDUPLEX);
1654 }
1655 
1656 static int
1657 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1658 	void *hdl;
1659 	void *start, *end;
1660 	int blksize;
1661 	void (*intr) __P((void *));
1662 	void *arg;
1663 	struct audio_params *param;
1664 {
1665 	struct eso_softc *sc = hdl;
1666 	struct eso_dma *ed;
1667 	uint8_t a2c1;
1668 
1669 	DPRINTF((
1670 	    "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1671 	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1672 	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1673 	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1674 	    param->precision, param->channels, param->sw_code, param->factor));
1675 
1676 	/* Find DMA buffer. */
1677 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1678 	     ed = ed->ed_next)
1679 		;
1680 	if (ed == NULL) {
1681 		printf("%s: trigger_output: bad addr %p\n",
1682 		    sc->sc_dev.dv_xname, start);
1683 		return (EINVAL);
1684 	}
1685 
1686 	sc->sc_pintr = intr;
1687 	sc->sc_parg = arg;
1688 
1689 	/* Compute drain timeout. */
1690 	sc->sc_pdrain = (blksize * NBBY * hz) /
1691 	    (param->sample_rate * param->channels *
1692 	     param->precision * param->factor) + 2;	/* slop */
1693 
1694 	/* DMA transfer count (in `words'!) reload using 2's complement. */
1695 	blksize = -(blksize >> 1);
1696 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1697 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1698 
1699 	/* Update DAC to reflect DMA count and audio parameters. */
1700 	/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1701 	if (param->precision * param->factor == 16)
1702 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1703 	else
1704 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1705 	if (param->channels == 2)
1706 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1707 	else
1708 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1709 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1710 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1711 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1712 	else
1713 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1714 	/* Unmask IRQ. */
1715 	sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1716 	eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1717 
1718 	/* Set up DMA controller. */
1719 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1720 	    DMAADDR(ed));
1721 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1722 	    (uint8_t *)end - (uint8_t *)start);
1723 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1724 	    ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1725 
1726 	/* Start DMA. */
1727 	a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1728 	a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1729 	a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1730 	    ESO_MIXREG_A2C1_AUTO;
1731 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1732 
1733 	return (0);
1734 }
1735 
1736 static int
1737 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1738 	void *hdl;
1739 	void *start, *end;
1740 	int blksize;
1741 	void (*intr) __P((void *));
1742 	void *arg;
1743 	struct audio_params *param;
1744 {
1745 	struct eso_softc *sc = hdl;
1746 	struct eso_dma *ed;
1747 	uint8_t actl, a1c1;
1748 
1749 	DPRINTF((
1750 	    "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1751 	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1752 	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1753 	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1754 	    param->precision, param->channels, param->sw_code, param->factor));
1755 
1756 	/*
1757 	 * If we failed to configure the Audio 1 DMA controller, bail here
1758 	 * while retaining availability of the DAC direction (in Audio 2).
1759 	 */
1760 	if (!sc->sc_dmac_configured)
1761 		return (EIO);
1762 
1763 	/* Find DMA buffer. */
1764 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1765 	     ed = ed->ed_next)
1766 		;
1767 	if (ed == NULL) {
1768 		printf("%s: trigger_output: bad addr %p\n",
1769 		    sc->sc_dev.dv_xname, start);
1770 		return (EINVAL);
1771 	}
1772 
1773 	sc->sc_rintr = intr;
1774 	sc->sc_rarg = arg;
1775 
1776 	/* Compute drain timeout. */
1777 	sc->sc_rdrain = (blksize * NBBY * hz) /
1778 	    (param->sample_rate * param->channels *
1779 	     param->precision * param->factor) + 2;	/* slop */
1780 
1781 	/* Set up ADC DMA converter parameters. */
1782 	actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1783 	if (param->channels == 2) {
1784 		actl &= ~ESO_CTLREG_ACTL_MONO;
1785 		actl |= ESO_CTLREG_ACTL_STEREO;
1786 	} else {
1787 		actl &= ~ESO_CTLREG_ACTL_STEREO;
1788 		actl |= ESO_CTLREG_ACTL_MONO;
1789 	}
1790 	eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1791 
1792 	/* Set up Transfer Type: maybe move to attach time? */
1793 	eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1794 
1795 	/* DMA transfer count reload using 2's complement. */
1796 	blksize = -blksize;
1797 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1798 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1799 
1800 	/* Set up and enable Audio 1 DMA FIFO. */
1801 	a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1802 	if (param->precision * param->factor == 16)
1803 		a1c1 |= ESO_CTLREG_A1C1_16BIT;
1804 	if (param->channels == 2)
1805 		a1c1 |= ESO_CTLREG_A1C1_STEREO;
1806 	else
1807 		a1c1 |= ESO_CTLREG_A1C1_MONO;
1808 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1809 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1810 		a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1811 	eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1812 
1813 	/* Set up ADC IRQ/DRQ parameters. */
1814 	eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1815 	    ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1816 	eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1817 	    ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1818 
1819 	/* Set up and enable DMA controller. */
1820 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1821 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1822 	    ESO_DMAC_MASK_MASK);
1823 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1824 	    DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1825 	bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1826 	    DMAADDR(ed));
1827 	bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1828 	    (uint8_t *)end - (uint8_t *)start - 1);
1829 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1830 
1831 	/* Start DMA. */
1832 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1833 	    ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1834 	    ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1835 
1836 	return (0);
1837 }
1838 
1839 static int
1840 eso_set_monooutsrc(sc, monooutsrc)
1841 	struct eso_softc *sc;
1842 	unsigned int monooutsrc;
1843 {
1844 	mixer_devinfo_t di;
1845 	int i;
1846 	uint8_t mpm;
1847 
1848 	di.index = ESO_MONOOUT_SOURCE;
1849 	if (eso_query_devinfo(sc, &di) != 0)
1850 		panic("eso_set_monooutsrc: eso_query_devinfo failed");
1851 
1852 	for (i = 0; i < di.un.e.num_mem; i++) {
1853 		if (monooutsrc == di.un.e.member[i].ord) {
1854 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1855 			mpm &= ~ESO_MIXREG_MPM_MOMASK;
1856 			mpm |= monooutsrc;
1857 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1858 			sc->sc_monooutsrc = monooutsrc;
1859 			return (0);
1860 		}
1861 	}
1862 
1863 	return (EINVAL);
1864 }
1865 
1866 static int
1867 eso_set_recsrc(sc, recsrc)
1868 	struct eso_softc *sc;
1869 	unsigned int recsrc;
1870 {
1871 	mixer_devinfo_t di;
1872 	int i;
1873 
1874 	di.index = ESO_RECORD_SOURCE;
1875 	if (eso_query_devinfo(sc, &di) != 0)
1876 		panic("eso_set_recsrc: eso_query_devinfo failed");
1877 
1878 	for (i = 0; i < di.un.e.num_mem; i++) {
1879 		if (recsrc == di.un.e.member[i].ord) {
1880 			eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1881 			sc->sc_recsrc = recsrc;
1882 			return (0);
1883 		}
1884 	}
1885 
1886 	return (EINVAL);
1887 }
1888 
1889 /*
1890  * Reload Master Volume and Mute values in softc from mixer; used when
1891  * those have previously been invalidated by use of hardware volume controls.
1892  */
1893 static void
1894 eso_reload_master_vol(sc)
1895 	struct eso_softc *sc;
1896 {
1897 	uint8_t mv;
1898 
1899 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1900 	sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1901 	    (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1902 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1903 	sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1904 	    (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1905 	/* Currently both channels are muted simultaneously; either is OK. */
1906 	sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1907 }
1908 
1909 static void
1910 eso_set_gain(sc, port)
1911 	struct eso_softc *sc;
1912 	unsigned int port;
1913 {
1914 	uint8_t mixreg, tmp;
1915 
1916 	switch (port) {
1917 	case ESO_DAC_PLAY_VOL:
1918 		mixreg = ESO_MIXREG_PVR_A2;
1919 		break;
1920 	case ESO_MIC_PLAY_VOL:
1921 		mixreg = ESO_MIXREG_PVR_MIC;
1922 		break;
1923 	case ESO_LINE_PLAY_VOL:
1924 		mixreg = ESO_MIXREG_PVR_LINE;
1925 		break;
1926 	case ESO_SYNTH_PLAY_VOL:
1927 		mixreg = ESO_MIXREG_PVR_SYNTH;
1928 		break;
1929 	case ESO_CD_PLAY_VOL:
1930 		mixreg = ESO_MIXREG_PVR_CD;
1931 		break;
1932 	case ESO_AUXB_PLAY_VOL:
1933 		mixreg = ESO_MIXREG_PVR_AUXB;
1934 		break;
1935 
1936 	case ESO_DAC_REC_VOL:
1937 		mixreg = ESO_MIXREG_RVR_A2;
1938 		break;
1939 	case ESO_MIC_REC_VOL:
1940 		mixreg = ESO_MIXREG_RVR_MIC;
1941 		break;
1942 	case ESO_LINE_REC_VOL:
1943 		mixreg = ESO_MIXREG_RVR_LINE;
1944 		break;
1945 	case ESO_SYNTH_REC_VOL:
1946 		mixreg = ESO_MIXREG_RVR_SYNTH;
1947 		break;
1948 	case ESO_CD_REC_VOL:
1949 		mixreg = ESO_MIXREG_RVR_CD;
1950 		break;
1951 	case ESO_AUXB_REC_VOL:
1952 		mixreg = ESO_MIXREG_RVR_AUXB;
1953 		break;
1954 	case ESO_MONO_PLAY_VOL:
1955 		mixreg = ESO_MIXREG_PVR_MONO;
1956 		break;
1957 	case ESO_MONO_REC_VOL:
1958 		mixreg = ESO_MIXREG_RVR_MONO;
1959 		break;
1960 
1961 	case ESO_PCSPEAKER_VOL:
1962 		/* Special case - only 3-bit, mono, and reserved bits. */
1963 		tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1964 		tmp &= ESO_MIXREG_PCSVR_RESV;
1965 		/* Map bits 7:5 -> 2:0. */
1966 		tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1967 		eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1968 		return;
1969 
1970 	case ESO_MASTER_VOL:
1971 		/* Special case - separate regs, and 6-bit precision. */
1972 		/* Map bits 7:2 -> 5:0, reflect mute settings. */
1973 		eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1974 		    (sc->sc_gain[port][ESO_LEFT] >> 2) |
1975 		    (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1976 		eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1977 		    (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1978 		    (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1979 		return;
1980 
1981 	case ESO_SPATIALIZER:
1982 		/* Special case - only `mono', and higher precision. */
1983 		eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1984 		    sc->sc_gain[port][ESO_LEFT]);
1985 		return;
1986 
1987 	case ESO_RECORD_VOL:
1988 		/* Very Special case, controller register. */
1989 		eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
1990 		   sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1991 		return;
1992 
1993 	default:
1994 #ifdef DIAGNOSTIC
1995 		panic("eso_set_gain: bad port %u", port);
1996 		/* NOTREACHED */
1997 #else
1998 		return;
1999 #endif
2000 		}
2001 
2002 	eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2003 	    sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2004 }
2005