xref: /netbsd/sys/dev/pci/if_bge.c (revision 84199404)
1 /*	$NetBSD: if_bge.c,v 1.371 2022/08/07 08:24:23 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.371 2022/08/07 08:24:23 skrll Exp $");
83 
84 #include <sys/param.h>
85 #include <sys/types.h>
86 
87 #include <sys/callout.h>
88 #include <sys/device.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mbuf.h>
92 #include <sys/rndsource.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/sysctl.h>
96 #include <sys/systm.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 #include <net/bpf.h>
103 
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110 
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h>			/* for struct ip */
115 #include <netinet/tcp.h>		/* for struct tcphdr */
116 
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 #include <dev/pci/pcidevs.h>
120 
121 #include <dev/mii/mii.h>
122 #include <dev/mii/miivar.h>
123 #include <dev/mii/miidevs.h>
124 #include <dev/mii/brgphyreg.h>
125 
126 #include <dev/pci/if_bgereg.h>
127 #include <dev/pci/if_bgevar.h>
128 
129 #include <prop/proplib.h>
130 
131 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
132 
133 
134 /*
135  * Tunable thresholds for rx-side bge interrupt mitigation.
136  */
137 
138 /*
139  * The pairs of values below were obtained from empirical measurement
140  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
141  * interrupt for every N packets received, where N is, approximately,
142  * the second value (rx_max_bds) in each pair.  The values are chosen
143  * such that moving from one pair to the succeeding pair was observed
144  * to roughly halve interrupt rate under sustained input packet load.
145  * The values were empirically chosen to avoid overflowing internal
146  * limits on the  bcm5700: increasing rx_ticks much beyond 600
147  * results in internal wrapping and higher interrupt rates.
148  * The limit of 46 frames was chosen to match NFS workloads.
149  *
150  * These values also work well on bcm5701, bcm5704C, and (less
151  * tested) bcm5703.  On other chipsets, (including the Altima chip
152  * family), the larger values may overflow internal chip limits,
153  * leading to increasing interrupt rates rather than lower interrupt
154  * rates.
155  *
156  * Applications using heavy interrupt mitigation (interrupting every
157  * 32 or 46 frames) in both directions may need to increase the TCP
158  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
159  * full link bandwidth, due to ACKs and window updates lingering
160  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
161  */
162 static const struct bge_load_rx_thresh {
163 	int rx_ticks;
164 	int rx_max_bds; }
165 bge_rx_threshes[] = {
166 	{ 16,	1 },	/* rx_max_bds = 1 disables interrupt mitigation */
167 	{ 32,	2 },
168 	{ 50,	4 },
169 	{ 100,	8 },
170 	{ 192, 16 },
171 	{ 416, 32 },
172 	{ 598, 46 }
173 };
174 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
175 
176 /* XXX patchable; should be sysctl'able */
177 static int bge_auto_thresh = 1;
178 static int bge_rx_thresh_lvl;
179 
180 static int bge_rxthresh_nodenum;
181 
182 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
183 
184 static uint32_t bge_chipid(const struct pci_attach_args *);
185 static int bge_can_use_msi(struct bge_softc *);
186 static int bge_probe(device_t, cfdata_t, void *);
187 static void bge_attach(device_t, device_t, void *);
188 static int bge_detach(device_t, int);
189 static void bge_release_resources(struct bge_softc *);
190 
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196 
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
199 static void bge_rxeof(struct bge_softc *);
200 
201 static void bge_asf_driver_up (struct bge_softc *);
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static void bge_stats_update_regs(struct bge_softc *);
205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206 
207 static int bge_intr(void *);
208 static void bge_start(struct ifnet *);
209 static int bge_ifflags_cb(struct ethercom *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216 
217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219 
220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 static void bge_setmulti(struct bge_softc *);
223 
224 static void bge_handle_events(struct bge_softc *);
225 static int bge_alloc_jumbo_mem(struct bge_softc *);
226 #if 0 /* XXX */
227 static void bge_free_jumbo_mem(struct bge_softc *);
228 #endif
229 static void *bge_jalloc(struct bge_softc *);
230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
232 			       bus_dmamap_t);
233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
234 static int bge_init_rx_ring_std(struct bge_softc *);
235 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_tx_ring(struct bge_softc *m, bool);
239 static int bge_init_tx_ring(struct bge_softc *);
240 
241 static int bge_chipinit(struct bge_softc *);
242 static int bge_blockinit(struct bge_softc *);
243 static int bge_phy_addr(struct bge_softc *);
244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
245 static void bge_writemem_ind(struct bge_softc *, int, int);
246 static void bge_writembx(struct bge_softc *, int, int);
247 static void bge_writembx_flush(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251 
252 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
253 static int bge_miibus_writereg(device_t, int, int, uint16_t);
254 static void bge_miibus_statchg(struct ifnet *);
255 
256 #define BGE_RESET_SHUTDOWN	0
257 #define	BGE_RESET_START		1
258 #define	BGE_RESET_SUSPEND	2
259 static void bge_sig_post_reset(struct bge_softc *, int);
260 static void bge_sig_legacy(struct bge_softc *, int);
261 static void bge_sig_pre_reset(struct bge_softc *, int);
262 static void bge_wait_for_event_ack(struct bge_softc *);
263 static void bge_stop_fw(struct bge_softc *);
264 static int bge_reset(struct bge_softc *);
265 static void bge_link_upd(struct bge_softc *);
266 static void bge_sysctl_init(struct bge_softc *);
267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
268 
269 static void bge_ape_lock_init(struct bge_softc *);
270 static void bge_ape_read_fw_ver(struct bge_softc *);
271 static int bge_ape_lock(struct bge_softc *, int);
272 static void bge_ape_unlock(struct bge_softc *, int);
273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
274 static void bge_ape_driver_state_change(struct bge_softc *, int);
275 
276 #ifdef BGE_DEBUG
277 #define DPRINTF(x)	if (bgedebug) printf x
278 #define DPRINTFN(n, x)	if (bgedebug >= (n)) printf x
279 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
280 int	bgedebug = 0;
281 int	bge_tso_debug = 0;
282 void	bge_debug_info(struct bge_softc *);
283 #else
284 #define DPRINTF(x)
285 #define DPRINTFN(n, x)
286 #define BGE_TSO_PRINTF(x)
287 #endif
288 
289 #ifdef BGE_EVENT_COUNTERS
290 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
291 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
292 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
293 #else
294 #define	BGE_EVCNT_INCR(ev)	/* nothing */
295 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
296 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
297 #endif
298 
299 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
300 /*
301  * The BCM5700 documentation seems to indicate that the hardware still has the
302  * Alteon vendor ID burned into it, though it should always be overridden by
303  * the value in the EEPROM.  We'll check for it anyway.
304  */
305 static const struct bge_product {
306 	pci_vendor_id_t		bp_vendor;
307 	pci_product_id_t	bp_product;
308 	const char		*bp_name;
309 } bge_products[] = {
310 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
311 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
312 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
313 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
314 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
315 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
316 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
317 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
318 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
319 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
320 	{ VIDDID(BROADCOM, BCM5702FE),	"Broadcom BCM5702FE Fast" },
321 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
322 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
323 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
324 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
325 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
326 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
327 	{ VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
328 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
329 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
330 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
331 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
332 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
333 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
334 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
335 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
336 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
337 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
338 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
339 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
340 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
341 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
342 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
343 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
344 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
345 	{ VIDDID(BROADCOM, BCM5725),	"Broadcom BCM5725 Gigabit" },
346 	{ VIDDID(BROADCOM, BCM5727),	"Broadcom BCM5727 Gigabit" },
347 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
348 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
349 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
350 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
351 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
352 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
353 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
354 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
355 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
356 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
357 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
358 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
359 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
360 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
361 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
362 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
363 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
364 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
365 	{ VIDDID(BROADCOM, BCM5762),	"Broadcom BCM5762 Gigabit" },
366 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
367 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
368 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
369 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
370 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
371 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
372 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
373 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
374 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
375 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
376 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
377 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
378 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
379 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
380 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
381 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
382 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
383 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
384 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
385 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
386 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
387 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
388 	{ VIDDID(BROADCOM, BCM57764),	"Broadcom BCM57764 Gigabit" },
389 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
390 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
391 	{ VIDDID(BROADCOM, BCM57767),	"Broadcom BCM57767 Gigabit" },
392 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
393 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
394 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
395 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
396 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
397 	{ VIDDID(BROADCOM, BCM57787),	"Broadcom BCM57787 Gigabit" },
398 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
399 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
400 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
401 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
402 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
403 	{ VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
404 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
405 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
406 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
407 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
408 	{ 0, 0, NULL },
409 };
410 
411 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
412 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
413 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
414 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
415 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
416 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
417 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
418 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
419 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
420 
421 static const struct bge_revision {
422 	uint32_t		br_chipid;
423 	const char		*br_name;
424 } bge_revisions[] = {
425 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
426 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
427 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
428 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
429 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
430 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
431 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
432 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
433 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
434 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
435 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
436 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
437 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
438 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
439 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
440 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
441 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
442 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
443 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
444 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
445 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
446 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
447 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
448 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
449 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
450 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
451 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
452 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
453 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
454 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
455 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
456 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
457 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
458 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
459 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
460 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
461 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
462 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
463 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
464 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
465 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
466 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
467 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
468 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
469 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
470 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
471 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
472 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
473 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
474 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
475 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
476 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
477 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
478 	{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
479 	{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
480 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
481 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
482 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
483 	/* 5754 and 5787 share the same ASIC ID */
484 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
485 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
486 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
487 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
488 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
489 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
490 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
491 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
492 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
493 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
494 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
495 
496 	{ 0, NULL }
497 };
498 
499 /*
500  * Some defaults for major revisions, so that newer steppings
501  * that we don't know about have a shot at working.
502  */
503 static const struct bge_revision bge_majorrevs[] = {
504 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
505 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
506 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
507 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
508 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
509 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
510 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
511 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
512 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
513 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
514 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
515 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
516 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
517 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
518 	/* 5754 and 5787 share the same ASIC ID */
519 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
520 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
521 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
522 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
523 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
524 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
525 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
526 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
527 	{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
528 
529 	{ 0, NULL }
530 };
531 
532 static int bge_allow_asf = 1;
533 
534 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
535     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
536 
537 static uint32_t
538 bge_readmem_ind(struct bge_softc *sc, int off)
539 {
540 	pcireg_t val;
541 
542 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
543 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
544 		return 0;
545 
546 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
547 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
548 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
549 	return val;
550 }
551 
552 static void
553 bge_writemem_ind(struct bge_softc *sc, int off, int val)
554 {
555 
556 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
557 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
558 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
559 }
560 
561 /*
562  * PCI Express only
563  */
564 static void
565 bge_set_max_readrq(struct bge_softc *sc)
566 {
567 	pcireg_t val;
568 
569 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
570 	    + PCIE_DCSR);
571 	val &= ~PCIE_DCSR_MAX_READ_REQ;
572 	switch (sc->bge_expmrq) {
573 	case 2048:
574 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
575 		break;
576 	case 4096:
577 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
578 		break;
579 	default:
580 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
581 		break;
582 	}
583 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
584 	    + PCIE_DCSR, val);
585 }
586 
587 #ifdef notdef
588 static uint32_t
589 bge_readreg_ind(struct bge_softc *sc, int off)
590 {
591 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
592 	return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
593 }
594 #endif
595 
596 static void
597 bge_writereg_ind(struct bge_softc *sc, int off, int val)
598 {
599 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
600 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
601 }
602 
603 static void
604 bge_writemem_direct(struct bge_softc *sc, int off, int val)
605 {
606 	CSR_WRITE_4(sc, off, val);
607 }
608 
609 static void
610 bge_writembx(struct bge_softc *sc, int off, int val)
611 {
612 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
613 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
614 
615 	CSR_WRITE_4(sc, off, val);
616 }
617 
618 static void
619 bge_writembx_flush(struct bge_softc *sc, int off, int val)
620 {
621 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
622 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
623 
624 	CSR_WRITE_4_FLUSH(sc, off, val);
625 }
626 
627 /*
628  * Clear all stale locks and select the lock for this driver instance.
629  */
630 void
631 bge_ape_lock_init(struct bge_softc *sc)
632 {
633 	struct pci_attach_args *pa = &(sc->bge_pa);
634 	uint32_t bit, regbase;
635 	int i;
636 
637 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
638 		regbase = BGE_APE_LOCK_GRANT;
639 	else
640 		regbase = BGE_APE_PER_LOCK_GRANT;
641 
642 	/* Clear any stale locks. */
643 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
644 		switch (i) {
645 		case BGE_APE_LOCK_PHY0:
646 		case BGE_APE_LOCK_PHY1:
647 		case BGE_APE_LOCK_PHY2:
648 		case BGE_APE_LOCK_PHY3:
649 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
650 			break;
651 		default:
652 			if (pa->pa_function == 0)
653 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
654 			else
655 				bit = (1 << pa->pa_function);
656 		}
657 		APE_WRITE_4(sc, regbase + 4 * i, bit);
658 	}
659 
660 	/* Select the PHY lock based on the device's function number. */
661 	switch (pa->pa_function) {
662 	case 0:
663 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
664 		break;
665 	case 1:
666 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
667 		break;
668 	case 2:
669 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
670 		break;
671 	case 3:
672 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
673 		break;
674 	default:
675 		printf("%s: PHY lock not supported on function\n",
676 		    device_xname(sc->bge_dev));
677 		break;
678 	}
679 }
680 
681 /*
682  * Check for APE firmware, set flags, and print version info.
683  */
684 void
685 bge_ape_read_fw_ver(struct bge_softc *sc)
686 {
687 	const char *fwtype;
688 	uint32_t apedata, features;
689 
690 	/* Check for a valid APE signature in shared memory. */
691 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
692 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
693 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
694 		return;
695 	}
696 
697 	/* Check if APE firmware is running. */
698 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
699 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
700 		printf("%s: APE signature found but FW status not ready! "
701 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
702 		return;
703 	}
704 
705 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
706 
707 	/* Fetch the APE firwmare type and version. */
708 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
709 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
710 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
711 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
712 		fwtype = "NCSI";
713 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
714 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
715 		fwtype = "DASH";
716 	} else
717 		fwtype = "UNKN";
718 
719 	/* Print the APE firmware version. */
720 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
721 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
722 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
723 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
724 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
725 }
726 
727 int
728 bge_ape_lock(struct bge_softc *sc, int locknum)
729 {
730 	struct pci_attach_args *pa = &(sc->bge_pa);
731 	uint32_t bit, gnt, req, status;
732 	int i, off;
733 
734 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
735 		return 0;
736 
737 	/* Lock request/grant registers have different bases. */
738 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
739 		req = BGE_APE_LOCK_REQ;
740 		gnt = BGE_APE_LOCK_GRANT;
741 	} else {
742 		req = BGE_APE_PER_LOCK_REQ;
743 		gnt = BGE_APE_PER_LOCK_GRANT;
744 	}
745 
746 	off = 4 * locknum;
747 
748 	switch (locknum) {
749 	case BGE_APE_LOCK_GPIO:
750 		/* Lock required when using GPIO. */
751 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
752 			return 0;
753 		if (pa->pa_function == 0)
754 			bit = BGE_APE_LOCK_REQ_DRIVER0;
755 		else
756 			bit = (1 << pa->pa_function);
757 		break;
758 	case BGE_APE_LOCK_GRC:
759 		/* Lock required to reset the device. */
760 		if (pa->pa_function == 0)
761 			bit = BGE_APE_LOCK_REQ_DRIVER0;
762 		else
763 			bit = (1 << pa->pa_function);
764 		break;
765 	case BGE_APE_LOCK_MEM:
766 		/* Lock required when accessing certain APE memory. */
767 		if (pa->pa_function == 0)
768 			bit = BGE_APE_LOCK_REQ_DRIVER0;
769 		else
770 			bit = (1 << pa->pa_function);
771 		break;
772 	case BGE_APE_LOCK_PHY0:
773 	case BGE_APE_LOCK_PHY1:
774 	case BGE_APE_LOCK_PHY2:
775 	case BGE_APE_LOCK_PHY3:
776 		/* Lock required when accessing PHYs. */
777 		bit = BGE_APE_LOCK_REQ_DRIVER0;
778 		break;
779 	default:
780 		return EINVAL;
781 	}
782 
783 	/* Request a lock. */
784 	APE_WRITE_4_FLUSH(sc, req + off, bit);
785 
786 	/* Wait up to 1 second to acquire lock. */
787 	for (i = 0; i < 20000; i++) {
788 		status = APE_READ_4(sc, gnt + off);
789 		if (status == bit)
790 			break;
791 		DELAY(50);
792 	}
793 
794 	/* Handle any errors. */
795 	if (status != bit) {
796 		printf("%s: APE lock %d request failed! "
797 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
798 		    device_xname(sc->bge_dev),
799 		    locknum, req + off, bit & 0xFFFF, gnt + off,
800 		    status & 0xFFFF);
801 		/* Revoke the lock request. */
802 		APE_WRITE_4(sc, gnt + off, bit);
803 		return EBUSY;
804 	}
805 
806 	return 0;
807 }
808 
809 void
810 bge_ape_unlock(struct bge_softc *sc, int locknum)
811 {
812 	struct pci_attach_args *pa = &(sc->bge_pa);
813 	uint32_t bit, gnt;
814 	int off;
815 
816 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
817 		return;
818 
819 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
820 		gnt = BGE_APE_LOCK_GRANT;
821 	else
822 		gnt = BGE_APE_PER_LOCK_GRANT;
823 
824 	off = 4 * locknum;
825 
826 	switch (locknum) {
827 	case BGE_APE_LOCK_GPIO:
828 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
829 			return;
830 		if (pa->pa_function == 0)
831 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
832 		else
833 			bit = (1 << pa->pa_function);
834 		break;
835 	case BGE_APE_LOCK_GRC:
836 		if (pa->pa_function == 0)
837 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
838 		else
839 			bit = (1 << pa->pa_function);
840 		break;
841 	case BGE_APE_LOCK_MEM:
842 		if (pa->pa_function == 0)
843 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
844 		else
845 			bit = (1 << pa->pa_function);
846 		break;
847 	case BGE_APE_LOCK_PHY0:
848 	case BGE_APE_LOCK_PHY1:
849 	case BGE_APE_LOCK_PHY2:
850 	case BGE_APE_LOCK_PHY3:
851 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
852 		break;
853 	default:
854 		return;
855 	}
856 
857 	/* Write and flush for consecutive bge_ape_lock() */
858 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
859 }
860 
861 /*
862  * Send an event to the APE firmware.
863  */
864 void
865 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
866 {
867 	uint32_t apedata;
868 	int i;
869 
870 	/* NCSI does not support APE events. */
871 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
872 		return;
873 
874 	/* Wait up to 1ms for APE to service previous event. */
875 	for (i = 10; i > 0; i--) {
876 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
877 			break;
878 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
879 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
880 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
881 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
882 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
883 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
884 			break;
885 		}
886 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
887 		DELAY(100);
888 	}
889 	if (i == 0) {
890 		printf("%s: APE event 0x%08x send timed out\n",
891 		    device_xname(sc->bge_dev), event);
892 	}
893 }
894 
895 void
896 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
897 {
898 	uint32_t apedata, event;
899 
900 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
901 		return;
902 
903 	switch (kind) {
904 	case BGE_RESET_START:
905 		/* If this is the first load, clear the load counter. */
906 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
907 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
908 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
909 		else {
910 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
911 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
912 		}
913 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
914 		    BGE_APE_HOST_SEG_SIG_MAGIC);
915 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
916 		    BGE_APE_HOST_SEG_LEN_MAGIC);
917 
918 		/* Add some version info if bge(4) supports it. */
919 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
920 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
921 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
922 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
923 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
924 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
925 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
926 		    BGE_APE_HOST_DRVR_STATE_START);
927 		event = BGE_APE_EVENT_STATUS_STATE_START;
928 		break;
929 	case BGE_RESET_SHUTDOWN:
930 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
931 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
932 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
933 		break;
934 	case BGE_RESET_SUSPEND:
935 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
936 		break;
937 	default:
938 		return;
939 	}
940 
941 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
942 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
943 }
944 
945 static uint8_t
946 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
947 {
948 	uint32_t access, byte = 0;
949 	int i;
950 
951 	/* Lock. */
952 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
953 	for (i = 0; i < 8000; i++) {
954 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
955 			break;
956 		DELAY(20);
957 	}
958 	if (i == 8000)
959 		return 1;
960 
961 	/* Enable access. */
962 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
963 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
964 
965 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
966 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
967 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
968 		DELAY(10);
969 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
970 			DELAY(10);
971 			break;
972 		}
973 	}
974 
975 	if (i == BGE_TIMEOUT * 10) {
976 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
977 		return 1;
978 	}
979 
980 	/* Get result. */
981 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
982 
983 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
984 
985 	/* Disable access. */
986 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
987 
988 	/* Unlock. */
989 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
990 
991 	return 0;
992 }
993 
994 /*
995  * Read a sequence of bytes from NVRAM.
996  */
997 static int
998 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
999 {
1000 	int error = 0, i;
1001 	uint8_t byte = 0;
1002 
1003 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1004 		return 1;
1005 
1006 	for (i = 0; i < cnt; i++) {
1007 		error = bge_nvram_getbyte(sc, off + i, &byte);
1008 		if (error)
1009 			break;
1010 		*(dest + i) = byte;
1011 	}
1012 
1013 	return error ? 1 : 0;
1014 }
1015 
1016 /*
1017  * Read a byte of data stored in the EEPROM at address 'addr.' The
1018  * BCM570x supports both the traditional bitbang interface and an
1019  * auto access interface for reading the EEPROM. We use the auto
1020  * access method.
1021  */
1022 static uint8_t
1023 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1024 {
1025 	int i;
1026 	uint32_t byte = 0;
1027 
1028 	/*
1029 	 * Enable use of auto EEPROM access so we can avoid
1030 	 * having to use the bitbang method.
1031 	 */
1032 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1033 
1034 	/* Reset the EEPROM, load the clock period. */
1035 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1036 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1037 	DELAY(20);
1038 
1039 	/* Issue the read EEPROM command. */
1040 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1041 
1042 	/* Wait for completion */
1043 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1044 		DELAY(10);
1045 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1046 			break;
1047 	}
1048 
1049 	if (i == BGE_TIMEOUT * 10) {
1050 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1051 		return 1;
1052 	}
1053 
1054 	/* Get result. */
1055 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1056 
1057 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1058 
1059 	return 0;
1060 }
1061 
1062 /*
1063  * Read a sequence of bytes from the EEPROM.
1064  */
1065 static int
1066 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1067 {
1068 	int error = 0, i;
1069 	uint8_t byte = 0;
1070 	char *dest = destv;
1071 
1072 	for (i = 0; i < cnt; i++) {
1073 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1074 		if (error)
1075 			break;
1076 		*(dest + i) = byte;
1077 	}
1078 
1079 	return error ? 1 : 0;
1080 }
1081 
1082 static int
1083 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1084 {
1085 	struct bge_softc * const sc = device_private(dev);
1086 	uint32_t data;
1087 	uint32_t autopoll;
1088 	int rv = 0;
1089 	int i;
1090 
1091 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1092 		return -1;
1093 
1094 	/* Reading with autopolling on may trigger PCI errors */
1095 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1096 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1097 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1098 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1099 		DELAY(80);
1100 	}
1101 
1102 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1103 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1104 
1105 	for (i = 0; i < BGE_TIMEOUT; i++) {
1106 		delay(10);
1107 		data = CSR_READ_4(sc, BGE_MI_COMM);
1108 		if (!(data & BGE_MICOMM_BUSY)) {
1109 			DELAY(5);
1110 			data = CSR_READ_4(sc, BGE_MI_COMM);
1111 			break;
1112 		}
1113 	}
1114 
1115 	if (i == BGE_TIMEOUT) {
1116 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1117 		rv = ETIMEDOUT;
1118 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
1119 		/* XXX This error occurs on some devices while attaching. */
1120 		aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1121 		rv = EIO;
1122 	} else
1123 		*val = data & BGE_MICOMM_DATA;
1124 
1125 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1126 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1127 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1128 		DELAY(80);
1129 	}
1130 
1131 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1132 
1133 	return rv;
1134 }
1135 
1136 static int
1137 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1138 {
1139 	struct bge_softc * const sc = device_private(dev);
1140 	uint32_t data, autopoll;
1141 	int rv = 0;
1142 	int i;
1143 
1144 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1145 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1146 		return 0;
1147 
1148 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1149 		return -1;
1150 
1151 	/* Reading with autopolling on may trigger PCI errors */
1152 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1153 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1154 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1155 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1156 		DELAY(80);
1157 	}
1158 
1159 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1160 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1161 
1162 	for (i = 0; i < BGE_TIMEOUT; i++) {
1163 		delay(10);
1164 		data = CSR_READ_4(sc, BGE_MI_COMM);
1165 		if (!(data & BGE_MICOMM_BUSY)) {
1166 			delay(5);
1167 			data = CSR_READ_4(sc, BGE_MI_COMM);
1168 			break;
1169 		}
1170 	}
1171 
1172 	if (i == BGE_TIMEOUT) {
1173 		aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1174 		rv = ETIMEDOUT;
1175 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
1176 		aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1177 		rv = EIO;
1178 	}
1179 
1180 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1181 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1182 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1183 		delay(80);
1184 	}
1185 
1186 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1187 
1188 	return rv;
1189 }
1190 
1191 static void
1192 bge_miibus_statchg(struct ifnet *ifp)
1193 {
1194 	struct bge_softc * const sc = ifp->if_softc;
1195 	struct mii_data *mii = &sc->bge_mii;
1196 	uint32_t mac_mode, rx_mode, tx_mode;
1197 
1198 	/*
1199 	 * Get flow control negotiation result.
1200 	 */
1201 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1202 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1203 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1204 
1205 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1206 	    mii->mii_media_status & IFM_ACTIVE &&
1207 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1208 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
1209 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1210 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
1211 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1212 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1213 
1214 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1215 		return;
1216 
1217 	/* Set the port mode (MII/GMII) to match the link speed. */
1218 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1219 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1220 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1221 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1222 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1223 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1224 		mac_mode |= BGE_PORTMODE_GMII;
1225 	else
1226 		mac_mode |= BGE_PORTMODE_MII;
1227 
1228 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1229 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1230 	if ((mii->mii_media_active & IFM_FDX) != 0) {
1231 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1232 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1233 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1234 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1235 	} else
1236 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1237 
1238 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1239 	DELAY(40);
1240 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1241 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1242 }
1243 
1244 /*
1245  * Update rx threshold levels to values in a particular slot
1246  * of the interrupt-mitigation table bge_rx_threshes.
1247  */
1248 static void
1249 bge_set_thresh(struct ifnet *ifp, int lvl)
1250 {
1251 	struct bge_softc * const sc = ifp->if_softc;
1252 	int s;
1253 
1254 	/*
1255 	 * For now, just save the new Rx-intr thresholds and record
1256 	 * that a threshold update is pending.  Updating the hardware
1257 	 * registers here (even at splhigh()) is observed to
1258 	 * occasionally cause glitches where Rx-interrupts are not
1259 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1260 	 */
1261 	s = splnet();
1262 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1263 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1264 	sc->bge_pending_rxintr_change = 1;
1265 	splx(s);
1266 }
1267 
1268 
1269 /*
1270  * Update Rx thresholds of all bge devices
1271  */
1272 static void
1273 bge_update_all_threshes(int lvl)
1274 {
1275 	const char * const namebuf = "bge";
1276 	const size_t namelen = strlen(namebuf);
1277 	struct ifnet *ifp;
1278 
1279 	if (lvl < 0)
1280 		lvl = 0;
1281 	else if (lvl >= NBGE_RX_THRESH)
1282 		lvl = NBGE_RX_THRESH - 1;
1283 
1284 	/*
1285 	 * Now search all the interfaces for this name/number
1286 	 */
1287 	int s = pserialize_read_enter();
1288 	IFNET_READER_FOREACH(ifp) {
1289 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1290 			continue;
1291 		/* We got a match: update if doing auto-threshold-tuning */
1292 		if (bge_auto_thresh)
1293 			bge_set_thresh(ifp, lvl);
1294 	}
1295 	pserialize_read_exit(s);
1296 }
1297 
1298 /*
1299  * Handle events that have triggered interrupts.
1300  */
1301 static void
1302 bge_handle_events(struct bge_softc *sc)
1303 {
1304 
1305 	return;
1306 }
1307 
1308 /*
1309  * Memory management for jumbo frames.
1310  */
1311 
1312 static int
1313 bge_alloc_jumbo_mem(struct bge_softc *sc)
1314 {
1315 	char *ptr, *kva;
1316 	bus_dma_segment_t	seg;
1317 	int		i, rseg, state, error;
1318 	struct bge_jpool_entry	 *entry;
1319 
1320 	state = error = 0;
1321 
1322 	/* Grab a big chunk o' storage. */
1323 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1324 	    &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1325 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1326 		return ENOBUFS;
1327 	}
1328 
1329 	state = 1;
1330 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1331 	    BUS_DMA_NOWAIT)) {
1332 		aprint_error_dev(sc->bge_dev,
1333 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1334 		error = ENOBUFS;
1335 		goto out;
1336 	}
1337 
1338 	state = 2;
1339 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1340 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1341 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1342 		error = ENOBUFS;
1343 		goto out;
1344 	}
1345 
1346 	state = 3;
1347 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1348 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1349 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1350 		error = ENOBUFS;
1351 		goto out;
1352 	}
1353 
1354 	state = 4;
1355 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1356 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1357 
1358 	SLIST_INIT(&sc->bge_jfree_listhead);
1359 	SLIST_INIT(&sc->bge_jinuse_listhead);
1360 
1361 	/*
1362 	 * Now divide it up into 9K pieces and save the addresses
1363 	 * in an array.
1364 	 */
1365 	ptr = sc->bge_cdata.bge_jumbo_buf;
1366 	for (i = 0; i < BGE_JSLOTS; i++) {
1367 		sc->bge_cdata.bge_jslots[i] = ptr;
1368 		ptr += BGE_JLEN;
1369 		entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
1370 		entry->slot = i;
1371 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1372 				 entry, jpool_entries);
1373 	}
1374 out:
1375 	if (error != 0) {
1376 		switch (state) {
1377 		case 4:
1378 			bus_dmamap_unload(sc->bge_dmatag,
1379 			    sc->bge_cdata.bge_rx_jumbo_map);
1380 			/* FALLTHROUGH */
1381 		case 3:
1382 			bus_dmamap_destroy(sc->bge_dmatag,
1383 			    sc->bge_cdata.bge_rx_jumbo_map);
1384 			/* FALLTHROUGH */
1385 		case 2:
1386 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1387 			/* FALLTHROUGH */
1388 		case 1:
1389 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1390 			break;
1391 		default:
1392 			break;
1393 		}
1394 	}
1395 
1396 	return error;
1397 }
1398 
1399 /*
1400  * Allocate a jumbo buffer.
1401  */
1402 static void *
1403 bge_jalloc(struct bge_softc *sc)
1404 {
1405 	struct bge_jpool_entry	 *entry;
1406 
1407 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1408 
1409 	if (entry == NULL) {
1410 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1411 		return NULL;
1412 	}
1413 
1414 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1415 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1416 	return sc->bge_cdata.bge_jslots[entry->slot];
1417 }
1418 
1419 /*
1420  * Release a jumbo buffer.
1421  */
1422 static void
1423 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1424 {
1425 	struct bge_jpool_entry *entry;
1426 	struct bge_softc * const sc = arg;
1427 	int s;
1428 
1429 	if (sc == NULL)
1430 		panic("bge_jfree: can't find softc pointer!");
1431 
1432 	/* calculate the slot this buffer belongs to */
1433 	int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1434 
1435 	if (i < 0 || i >= BGE_JSLOTS)
1436 		panic("bge_jfree: asked to free buffer that we don't manage!");
1437 
1438 	s = splvm();
1439 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1440 	if (entry == NULL)
1441 		panic("bge_jfree: buffer not in use!");
1442 	entry->slot = i;
1443 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1444 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1445 
1446 	if (__predict_true(m != NULL))
1447 		pool_cache_put(mb_cache, m);
1448 	splx(s);
1449 }
1450 
1451 
1452 /*
1453  * Initialize a standard receive ring descriptor.
1454  */
1455 static int
1456 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1457     bus_dmamap_t dmamap)
1458 {
1459 	struct mbuf		*m_new = NULL;
1460 	struct bge_rx_bd	*r;
1461 	int			error;
1462 
1463 	if (dmamap == NULL)
1464 		dmamap = sc->bge_cdata.bge_rx_std_map[i];
1465 
1466 	if (dmamap == NULL) {
1467 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1468 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1469 		if (error != 0)
1470 			return error;
1471 	}
1472 
1473 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1474 
1475 	if (m == NULL) {
1476 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1477 		if (m_new == NULL)
1478 			return ENOBUFS;
1479 
1480 		MCLGET(m_new, M_DONTWAIT);
1481 		if (!(m_new->m_flags & M_EXT)) {
1482 			m_freem(m_new);
1483 			return ENOBUFS;
1484 		}
1485 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1486 
1487 	} else {
1488 		m_new = m;
1489 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1490 		m_new->m_data = m_new->m_ext.ext_buf;
1491 	}
1492 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1493 	    m_adj(m_new, ETHER_ALIGN);
1494 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1495 	    BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1496 		m_freem(m_new);
1497 		return ENOBUFS;
1498 	}
1499 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1500 	    BUS_DMASYNC_PREREAD);
1501 
1502 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1503 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1504 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1505 	r->bge_flags = BGE_RXBDFLAG_END;
1506 	r->bge_len = m_new->m_len;
1507 	r->bge_idx = i;
1508 
1509 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1510 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1511 		i * sizeof(struct bge_rx_bd),
1512 	    sizeof(struct bge_rx_bd),
1513 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1514 
1515 	return 0;
1516 }
1517 
1518 /*
1519  * Initialize a jumbo receive ring descriptor. This allocates
1520  * a jumbo buffer from the pool managed internally by the driver.
1521  */
1522 static int
1523 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1524 {
1525 	struct mbuf *m_new = NULL;
1526 	struct bge_rx_bd *r;
1527 	void *buf = NULL;
1528 
1529 	if (m == NULL) {
1530 
1531 		/* Allocate the mbuf. */
1532 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1533 		if (m_new == NULL)
1534 			return ENOBUFS;
1535 
1536 		/* Allocate the jumbo buffer */
1537 		buf = bge_jalloc(sc);
1538 		if (buf == NULL) {
1539 			m_freem(m_new);
1540 			aprint_error_dev(sc->bge_dev,
1541 			    "jumbo allocation failed -- packet dropped!\n");
1542 			return ENOBUFS;
1543 		}
1544 
1545 		/* Attach the buffer to the mbuf. */
1546 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1547 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1548 		    bge_jfree, sc);
1549 		m_new->m_flags |= M_EXT_RW;
1550 	} else {
1551 		m_new = m;
1552 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1553 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1554 	}
1555 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1556 	    m_adj(m_new, ETHER_ALIGN);
1557 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1558 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1559 	    BGE_JLEN, BUS_DMASYNC_PREREAD);
1560 	/* Set up the descriptor. */
1561 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1562 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1563 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1564 	r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1565 	r->bge_len = m_new->m_len;
1566 	r->bge_idx = i;
1567 
1568 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1569 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1570 		i * sizeof(struct bge_rx_bd),
1571 	    sizeof(struct bge_rx_bd),
1572 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1573 
1574 	return 0;
1575 }
1576 
1577 /*
1578  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1579  * that's 1MB or memory, which is a lot. For now, we fill only the first
1580  * 256 ring entries and hope that our CPU is fast enough to keep up with
1581  * the NIC.
1582  */
1583 static int
1584 bge_init_rx_ring_std(struct bge_softc *sc)
1585 {
1586 	int i;
1587 
1588 	if (sc->bge_flags & BGEF_RXRING_VALID)
1589 		return 0;
1590 
1591 	for (i = 0; i < BGE_SSLOTS; i++) {
1592 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1593 			return ENOBUFS;
1594 	}
1595 
1596 	sc->bge_std = i - 1;
1597 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1598 
1599 	sc->bge_flags |= BGEF_RXRING_VALID;
1600 
1601 	return 0;
1602 }
1603 
1604 static void
1605 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1606 {
1607 	int i;
1608 
1609 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
1610 		return;
1611 
1612 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1613 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1614 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1615 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1616 			if (disable) {
1617 				bus_dmamap_destroy(sc->bge_dmatag,
1618 				    sc->bge_cdata.bge_rx_std_map[i]);
1619 				sc->bge_cdata.bge_rx_std_map[i] = NULL;
1620 			}
1621 		}
1622 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1623 		    sizeof(struct bge_rx_bd));
1624 	}
1625 
1626 	sc->bge_flags &= ~BGEF_RXRING_VALID;
1627 }
1628 
1629 static int
1630 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1631 {
1632 	int i;
1633 	volatile struct bge_rcb *rcb;
1634 
1635 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1636 		return 0;
1637 
1638 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1639 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1640 			return ENOBUFS;
1641 	}
1642 
1643 	sc->bge_jumbo = i - 1;
1644 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1645 
1646 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1647 	rcb->bge_maxlen_flags = 0;
1648 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1649 
1650 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1651 
1652 	return 0;
1653 }
1654 
1655 static void
1656 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1657 {
1658 	int i;
1659 
1660 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1661 		return;
1662 
1663 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1664 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1665 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1666 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1667 		}
1668 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1669 		    sizeof(struct bge_rx_bd));
1670 	}
1671 
1672 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1673 }
1674 
1675 static void
1676 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1677 {
1678 	int i;
1679 	struct txdmamap_pool_entry *dma;
1680 
1681 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
1682 		return;
1683 
1684 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1685 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1686 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1687 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1688 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1689 					    link);
1690 			sc->txdma[i] = 0;
1691 		}
1692 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1693 		    sizeof(struct bge_tx_bd));
1694 	}
1695 
1696 	if (disable) {
1697 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1698 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1699 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1700 			if (sc->bge_dma64) {
1701 				bus_dmamap_destroy(sc->bge_dmatag32,
1702 				    dma->dmamap32);
1703 			}
1704 			kmem_free(dma, sizeof(*dma));
1705 		}
1706 		SLIST_INIT(&sc->txdma_list);
1707 	}
1708 
1709 	sc->bge_flags &= ~BGEF_TXRING_VALID;
1710 }
1711 
1712 static int
1713 bge_init_tx_ring(struct bge_softc *sc)
1714 {
1715 	struct ifnet * const ifp = &sc->ethercom.ec_if;
1716 	int i;
1717 	bus_dmamap_t dmamap, dmamap32;
1718 	bus_size_t maxsegsz;
1719 	struct txdmamap_pool_entry *dma;
1720 
1721 	if (sc->bge_flags & BGEF_TXRING_VALID)
1722 		return 0;
1723 
1724 	sc->bge_txcnt = 0;
1725 	sc->bge_tx_saved_considx = 0;
1726 
1727 	/* Initialize transmit producer index for host-memory send ring. */
1728 	sc->bge_tx_prodidx = 0;
1729 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1730 	/* 5700 b2 errata */
1731 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1732 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1733 
1734 	/* NIC-memory send ring not used; initialize to zero. */
1735 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1736 	/* 5700 b2 errata */
1737 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1738 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1739 
1740 	/* Limit DMA segment size for some chips */
1741 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1742 	    (ifp->if_mtu <= ETHERMTU))
1743 		maxsegsz = 2048;
1744 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1745 		maxsegsz = 4096;
1746 	else
1747 		maxsegsz = ETHER_MAX_LEN_JUMBO;
1748 
1749 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
1750 		goto alloc_done;
1751 
1752 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1753 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1754 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1755 		    &dmamap))
1756 			return ENOBUFS;
1757 		if (dmamap == NULL)
1758 			panic("dmamap NULL in bge_init_tx_ring");
1759 		if (sc->bge_dma64) {
1760 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1761 			    BGE_NTXSEG, maxsegsz, 0,
1762 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1763 			    &dmamap32)) {
1764 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1765 				return ENOBUFS;
1766 			}
1767 			if (dmamap32 == NULL)
1768 				panic("dmamap32 NULL in bge_init_tx_ring");
1769 		} else
1770 			dmamap32 = dmamap;
1771 		dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
1772 		if (dma == NULL) {
1773 			aprint_error_dev(sc->bge_dev,
1774 			    "can't alloc txdmamap_pool_entry\n");
1775 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1776 			if (sc->bge_dma64)
1777 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1778 			return ENOMEM;
1779 		}
1780 		dma->dmamap = dmamap;
1781 		dma->dmamap32 = dmamap32;
1782 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1783 	}
1784 alloc_done:
1785 	sc->bge_flags |= BGEF_TXRING_VALID;
1786 
1787 	return 0;
1788 }
1789 
1790 static void
1791 bge_setmulti(struct bge_softc *sc)
1792 {
1793 	struct ethercom * const ec = &sc->ethercom;
1794 	struct ifnet * const ifp = &ec->ec_if;
1795 	struct ether_multi	*enm;
1796 	struct ether_multistep	step;
1797 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
1798 	uint32_t		h;
1799 	int			i;
1800 
1801 	if (ifp->if_flags & IFF_PROMISC)
1802 		goto allmulti;
1803 
1804 	/* Now program new ones. */
1805 	ETHER_LOCK(ec);
1806 	ETHER_FIRST_MULTI(step, ec, enm);
1807 	while (enm != NULL) {
1808 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1809 			/*
1810 			 * We must listen to a range of multicast addresses.
1811 			 * For now, just accept all multicasts, rather than
1812 			 * trying to set only those filter bits needed to match
1813 			 * the range.  (At this time, the only use of address
1814 			 * ranges is for IP multicast routing, for which the
1815 			 * range is big enough to require all bits set.)
1816 			 */
1817 			ETHER_UNLOCK(ec);
1818 			goto allmulti;
1819 		}
1820 
1821 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1822 
1823 		/* Just want the 7 least-significant bits. */
1824 		h &= 0x7f;
1825 
1826 		hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1827 		ETHER_NEXT_MULTI(step, enm);
1828 	}
1829 	ETHER_UNLOCK(ec);
1830 
1831 	ifp->if_flags &= ~IFF_ALLMULTI;
1832 	goto setit;
1833 
1834  allmulti:
1835 	ifp->if_flags |= IFF_ALLMULTI;
1836 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1837 
1838  setit:
1839 	for (i = 0; i < 4; i++)
1840 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1841 }
1842 
1843 static void
1844 bge_sig_pre_reset(struct bge_softc *sc, int type)
1845 {
1846 
1847 	/*
1848 	 * Some chips don't like this so only do this if ASF is enabled
1849 	 */
1850 	if (sc->bge_asf_mode)
1851 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1852 
1853 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1854 		switch (type) {
1855 		case BGE_RESET_START:
1856 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1857 			    BGE_FW_DRV_STATE_START);
1858 			break;
1859 		case BGE_RESET_SHUTDOWN:
1860 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1861 			    BGE_FW_DRV_STATE_UNLOAD);
1862 			break;
1863 		case BGE_RESET_SUSPEND:
1864 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1865 			    BGE_FW_DRV_STATE_SUSPEND);
1866 			break;
1867 		}
1868 	}
1869 
1870 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1871 		bge_ape_driver_state_change(sc, type);
1872 }
1873 
1874 static void
1875 bge_sig_post_reset(struct bge_softc *sc, int type)
1876 {
1877 
1878 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1879 		switch (type) {
1880 		case BGE_RESET_START:
1881 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1882 			    BGE_FW_DRV_STATE_START_DONE);
1883 			/* START DONE */
1884 			break;
1885 		case BGE_RESET_SHUTDOWN:
1886 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1887 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1888 			break;
1889 		}
1890 	}
1891 
1892 	if (type == BGE_RESET_SHUTDOWN)
1893 		bge_ape_driver_state_change(sc, type);
1894 }
1895 
1896 static void
1897 bge_sig_legacy(struct bge_softc *sc, int type)
1898 {
1899 
1900 	if (sc->bge_asf_mode) {
1901 		switch (type) {
1902 		case BGE_RESET_START:
1903 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1904 			    BGE_FW_DRV_STATE_START);
1905 			break;
1906 		case BGE_RESET_SHUTDOWN:
1907 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1908 			    BGE_FW_DRV_STATE_UNLOAD);
1909 			break;
1910 		}
1911 	}
1912 }
1913 
1914 static void
1915 bge_wait_for_event_ack(struct bge_softc *sc)
1916 {
1917 	int i;
1918 
1919 	/* wait up to 2500usec */
1920 	for (i = 0; i < 250; i++) {
1921 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1922 			BGE_RX_CPU_DRV_EVENT))
1923 			break;
1924 		DELAY(10);
1925 	}
1926 }
1927 
1928 static void
1929 bge_stop_fw(struct bge_softc *sc)
1930 {
1931 
1932 	if (sc->bge_asf_mode) {
1933 		bge_wait_for_event_ack(sc);
1934 
1935 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1936 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1937 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1938 
1939 		bge_wait_for_event_ack(sc);
1940 	}
1941 }
1942 
1943 static int
1944 bge_poll_fw(struct bge_softc *sc)
1945 {
1946 	uint32_t val;
1947 	int i;
1948 
1949 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1950 		for (i = 0; i < BGE_TIMEOUT; i++) {
1951 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1952 			if (val & BGE_VCPU_STATUS_INIT_DONE)
1953 				break;
1954 			DELAY(100);
1955 		}
1956 		if (i >= BGE_TIMEOUT) {
1957 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
1958 			return -1;
1959 		}
1960 	} else {
1961 		/*
1962 		 * Poll the value location we just wrote until
1963 		 * we see the 1's complement of the magic number.
1964 		 * This indicates that the firmware initialization
1965 		 * is complete.
1966 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1967 		 */
1968 		for (i = 0; i < BGE_TIMEOUT; i++) {
1969 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1970 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
1971 				break;
1972 			DELAY(10);
1973 		}
1974 
1975 		if ((i >= BGE_TIMEOUT)
1976 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1977 			aprint_error_dev(sc->bge_dev,
1978 			    "firmware handshake timed out, val = %x\n", val);
1979 			return -1;
1980 		}
1981 	}
1982 
1983 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1984 		/* tg3 says we have to wait extra time */
1985 		delay(10 * 1000);
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 int
1992 bge_phy_addr(struct bge_softc *sc)
1993 {
1994 	struct pci_attach_args *pa = &(sc->bge_pa);
1995 	int phy_addr = 1;
1996 
1997 	/*
1998 	 * PHY address mapping for various devices.
1999 	 *
2000 	 *	    | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2001 	 * ---------+-------+-------+-------+-------+
2002 	 * BCM57XX  |	1   |	X   |	X   |	X   |
2003 	 * BCM5704  |	1   |	X   |	1   |	X   |
2004 	 * BCM5717  |	1   |	8   |	2   |	9   |
2005 	 * BCM5719  |	1   |	8   |	2   |	9   |
2006 	 * BCM5720  |	1   |	8   |	2   |	9   |
2007 	 *
2008 	 *	    | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2009 	 * ---------+-------+-------+-------+-------+
2010 	 * BCM57XX  |	X   |	X   |	X   |	X   |
2011 	 * BCM5704  |	X   |	X   |	X   |	X   |
2012 	 * BCM5717  |	X   |	X   |	X   |	X   |
2013 	 * BCM5719  |	3   |	10  |	4   |	11  |
2014 	 * BCM5720  |	X   |	X   |	X   |	X   |
2015 	 *
2016 	 * Other addresses may respond but they are not
2017 	 * IEEE compliant PHYs and should be ignored.
2018 	 */
2019 	switch (BGE_ASICREV(sc->bge_chipid)) {
2020 	case BGE_ASICREV_BCM5717:
2021 	case BGE_ASICREV_BCM5719:
2022 	case BGE_ASICREV_BCM5720:
2023 		phy_addr = pa->pa_function;
2024 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2025 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2026 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2027 		} else {
2028 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2029 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2030 		}
2031 	}
2032 
2033 	return phy_addr;
2034 }
2035 
2036 /*
2037  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2038  * self-test results.
2039  */
2040 static int
2041 bge_chipinit(struct bge_softc *sc)
2042 {
2043 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2044 	int i;
2045 
2046 	/* Set endianness before we access any non-PCI registers. */
2047 	misc_ctl = BGE_INIT;
2048 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
2049 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2050 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2051 	    misc_ctl);
2052 
2053 	/*
2054 	 * Clear the MAC statistics block in the NIC's
2055 	 * internal memory.
2056 	 */
2057 	for (i = BGE_STATS_BLOCK;
2058 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2059 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2060 
2061 	for (i = BGE_STATUS_BLOCK;
2062 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2063 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2064 
2065 	/* 5717 workaround from tg3 */
2066 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2067 		/* Save */
2068 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2069 
2070 		/* Temporary modify MODE_CTL to control TLP */
2071 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2072 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2073 
2074 		/* Control TLP */
2075 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2076 		    BGE_TLP_PHYCTL1);
2077 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2078 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2079 
2080 		/* Restore */
2081 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2082 	}
2083 
2084 	if (BGE_IS_57765_FAMILY(sc)) {
2085 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2086 			/* Save */
2087 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2088 
2089 			/* Temporary modify MODE_CTL to control TLP */
2090 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2091 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2092 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
2093 
2094 			/* Control TLP */
2095 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2096 			    BGE_TLP_PHYCTL5);
2097 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2098 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2099 
2100 			/* Restore */
2101 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2102 		}
2103 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2104 			/*
2105 			 * For the 57766 and non Ax versions of 57765, bootcode
2106 			 * needs to setup the PCIE Fast Training Sequence (FTS)
2107 			 * value to prevent transmit hangs.
2108 			 */
2109 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2110 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2111 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2112 
2113 			/* Save */
2114 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2115 
2116 			/* Temporary modify MODE_CTL to control TLP */
2117 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2118 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2119 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
2120 
2121 			/* Control TLP */
2122 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2123 			    BGE_TLP_FTSMAX);
2124 			reg &= ~BGE_TLP_FTSMAX_MSK;
2125 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2126 			    reg | BGE_TLP_FTSMAX_VAL);
2127 
2128 			/* Restore */
2129 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2130 		}
2131 
2132 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2133 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2134 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2135 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2136 	}
2137 
2138 	/* Set up the PCI DMA control register. */
2139 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2140 	if (sc->bge_flags & BGEF_PCIE) {
2141 		/* Read watermark not used, 128 bytes for write. */
2142 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2143 		    device_xname(sc->bge_dev)));
2144 		if (sc->bge_mps >= 256)
2145 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2146 		else
2147 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2148 	} else if (sc->bge_flags & BGEF_PCIX) {
2149 		DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2150 		    device_xname(sc->bge_dev)));
2151 		/* PCI-X bus */
2152 		if (BGE_IS_5714_FAMILY(sc)) {
2153 			/* 256 bytes for read and write. */
2154 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2155 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2156 
2157 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2158 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2159 			else
2160 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2161 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2162 			/*
2163 			 * In the BCM5703, the DMA read watermark should
2164 			 * be set to less than or equal to the maximum
2165 			 * memory read byte count of the PCI-X command
2166 			 * register.
2167 			 */
2168 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2169 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2170 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2171 			/* 1536 bytes for read, 384 bytes for write. */
2172 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2173 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2174 		} else {
2175 			/* 384 bytes for read and write. */
2176 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2177 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2178 			    (0x0F);
2179 		}
2180 
2181 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2182 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2183 			uint32_t tmp;
2184 
2185 			/* Set ONEDMA_ATONCE for hardware workaround. */
2186 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2187 			if (tmp == 6 || tmp == 7)
2188 				dma_rw_ctl |=
2189 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2190 
2191 			/* Set PCI-X DMA write workaround. */
2192 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2193 		}
2194 	} else {
2195 		/* Conventional PCI bus: 256 bytes for read and write. */
2196 		DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2197 		    device_xname(sc->bge_dev)));
2198 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2199 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2200 
2201 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2202 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2203 			dma_rw_ctl |= 0x0F;
2204 	}
2205 
2206 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2207 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2208 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2209 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
2210 
2211 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2212 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2213 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2214 
2215 	if (BGE_IS_57765_PLUS(sc)) {
2216 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2217 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2218 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2219 
2220 		/*
2221 		 * Enable HW workaround for controllers that misinterpret
2222 		 * a status tag update and leave interrupts permanently
2223 		 * disabled.
2224 		 */
2225 		if (!BGE_IS_57765_FAMILY(sc) &&
2226 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2227 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2228 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2229 	}
2230 
2231 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2232 	    dma_rw_ctl);
2233 
2234 	/*
2235 	 * Set up general mode register.
2236 	 */
2237 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
2238 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2239 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2240 		/* Retain Host-2-BMC settings written by APE firmware. */
2241 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2242 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2243 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2244 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2245 	}
2246 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2247 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
2248 
2249 	/*
2250 	 * BCM5701 B5 have a bug causing data corruption when using
2251 	 * 64-bit DMA reads, which can be terminated early and then
2252 	 * completed later as 32-bit accesses, in combination with
2253 	 * certain bridges.
2254 	 */
2255 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2256 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2257 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2258 
2259 	/*
2260 	 * Tell the firmware the driver is running
2261 	 */
2262 	if (sc->bge_asf_mode & ASF_STACKUP)
2263 		mode_ctl |= BGE_MODECTL_STACKUP;
2264 
2265 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2266 
2267 	/*
2268 	 * Disable memory write invalidate.  Apparently it is not supported
2269 	 * properly by these devices.
2270 	 */
2271 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2272 		   PCI_COMMAND_INVALIDATE_ENABLE);
2273 
2274 #ifdef __brokenalpha__
2275 	/*
2276 	 * Must insure that we do not cross an 8K (bytes) boundary
2277 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2278 	 * restriction on some ALPHA platforms with early revision
2279 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2280 	 */
2281 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2282 #endif
2283 
2284 	/* Set the timer prescaler (always 66MHz) */
2285 	CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2286 
2287 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2288 		DELAY(40);	/* XXX */
2289 
2290 		/* Put PHY into ready state */
2291 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2292 		DELAY(40);
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 static int
2299 bge_blockinit(struct bge_softc *sc)
2300 {
2301 	volatile struct bge_rcb	 *rcb;
2302 	bus_size_t rcb_addr;
2303 	struct ifnet * const ifp = &sc->ethercom.ec_if;
2304 	bge_hostaddr taddr;
2305 	uint32_t	dmactl, rdmareg, mimode, val;
2306 	int		i, limit;
2307 
2308 	/*
2309 	 * Initialize the memory window pointer register so that
2310 	 * we can access the first 32K of internal NIC RAM. This will
2311 	 * allow us to set up the TX send ring RCBs and the RX return
2312 	 * ring RCBs, plus other things which live in NIC memory.
2313 	 */
2314 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2315 
2316 	if (!BGE_IS_5705_PLUS(sc)) {
2317 		/* 57XX step 33 */
2318 		/* Configure mbuf memory pool */
2319 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2320 
2321 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2322 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2323 		else
2324 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2325 
2326 		/* 57XX step 34 */
2327 		/* Configure DMA resource pool */
2328 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2329 		    BGE_DMA_DESCRIPTORS);
2330 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2331 	}
2332 
2333 	/* 5718 step 11, 57XX step 35 */
2334 	/*
2335 	 * Configure mbuf pool watermarks. New broadcom docs strongly
2336 	 * recommend these.
2337 	 */
2338 	if (BGE_IS_5717_PLUS(sc)) {
2339 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2340 		if (ifp->if_mtu > ETHERMTU) {
2341 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2342 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2343 		} else {
2344 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2345 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2346 		}
2347 	} else if (BGE_IS_5705_PLUS(sc)) {
2348 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2349 
2350 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2351 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2352 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2353 		} else {
2354 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2355 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2356 		}
2357 	} else {
2358 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2359 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2360 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2361 	}
2362 
2363 	/* 57XX step 36 */
2364 	/* Configure DMA resource watermarks */
2365 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2366 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2367 
2368 	/* 5718 step 13, 57XX step 38 */
2369 	/* Enable buffer manager */
2370 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2371 	/*
2372 	 * Change the arbitration algorithm of TXMBUF read request to
2373 	 * round-robin instead of priority based for BCM5719.  When
2374 	 * TXFIFO is almost empty, RDMA will hold its request until
2375 	 * TXFIFO is not almost empty.
2376 	 */
2377 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2378 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2379 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2380 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2381 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2382 		val |= BGE_BMANMODE_LOMBUF_ATTN;
2383 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2384 
2385 	/* 57XX step 39 */
2386 	/* Poll for buffer manager start indication */
2387 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2388 		DELAY(10);
2389 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2390 			break;
2391 	}
2392 
2393 	if (i == BGE_TIMEOUT * 2) {
2394 		aprint_error_dev(sc->bge_dev,
2395 		    "buffer manager failed to start\n");
2396 		return ENXIO;
2397 	}
2398 
2399 	/* 57XX step 40 */
2400 	/* Enable flow-through queues */
2401 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2402 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2403 
2404 	/* Wait until queue initialization is complete */
2405 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2406 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2407 			break;
2408 		DELAY(10);
2409 	}
2410 
2411 	if (i == BGE_TIMEOUT * 2) {
2412 		aprint_error_dev(sc->bge_dev,
2413 		    "flow-through queue init failed\n");
2414 		return ENXIO;
2415 	}
2416 
2417 	/*
2418 	 * Summary of rings supported by the controller:
2419 	 *
2420 	 * Standard Receive Producer Ring
2421 	 * - This ring is used to feed receive buffers for "standard"
2422 	 *   sized frames (typically 1536 bytes) to the controller.
2423 	 *
2424 	 * Jumbo Receive Producer Ring
2425 	 * - This ring is used to feed receive buffers for jumbo sized
2426 	 *   frames (i.e. anything bigger than the "standard" frames)
2427 	 *   to the controller.
2428 	 *
2429 	 * Mini Receive Producer Ring
2430 	 * - This ring is used to feed receive buffers for "mini"
2431 	 *   sized frames to the controller.
2432 	 * - This feature required external memory for the controller
2433 	 *   but was never used in a production system.  Should always
2434 	 *   be disabled.
2435 	 *
2436 	 * Receive Return Ring
2437 	 * - After the controller has placed an incoming frame into a
2438 	 *   receive buffer that buffer is moved into a receive return
2439 	 *   ring.  The driver is then responsible to passing the
2440 	 *   buffer up to the stack.  Many versions of the controller
2441 	 *   support multiple RR rings.
2442 	 *
2443 	 * Send Ring
2444 	 * - This ring is used for outgoing frames.  Many versions of
2445 	 *   the controller support multiple send rings.
2446 	 */
2447 
2448 	/* 5718 step 15, 57XX step 41 */
2449 	/* Initialize the standard RX ring control block */
2450 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2451 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2452 	/* 5718 step 16 */
2453 	if (BGE_IS_57765_PLUS(sc)) {
2454 		/*
2455 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2456 		 * Bits 15-2 : Maximum RX frame size
2457 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2458 		 * Bit 0     : Reserved
2459 		 */
2460 		rcb->bge_maxlen_flags =
2461 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2462 	} else if (BGE_IS_5705_PLUS(sc)) {
2463 		/*
2464 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2465 		 * Bits 15-2 : Reserved (should be 0)
2466 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2467 		 * Bit 0     : Reserved
2468 		 */
2469 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2470 	} else {
2471 		/*
2472 		 * Ring size is always XXX entries
2473 		 * Bits 31-16: Maximum RX frame size
2474 		 * Bits 15-2 : Reserved (should be 0)
2475 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2476 		 * Bit 0     : Reserved
2477 		 */
2478 		rcb->bge_maxlen_flags =
2479 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2480 	}
2481 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2482 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2483 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2484 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2485 	else
2486 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2487 	/* Write the standard receive producer ring control block. */
2488 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2489 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2490 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2491 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2492 
2493 	/* Reset the standard receive producer ring producer index. */
2494 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2495 
2496 	/* 57XX step 42 */
2497 	/*
2498 	 * Initialize the jumbo RX ring control block
2499 	 * We set the 'ring disabled' bit in the flags
2500 	 * field until we're actually ready to start
2501 	 * using this ring (i.e. once we set the MTU
2502 	 * high enough to require it).
2503 	 */
2504 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2505 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2506 		BGE_HOSTADDR(rcb->bge_hostaddr,
2507 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2508 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2509 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2510 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2511 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2512 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2513 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2514 		else
2515 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2516 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2517 		    rcb->bge_hostaddr.bge_addr_hi);
2518 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2519 		    rcb->bge_hostaddr.bge_addr_lo);
2520 		/* Program the jumbo receive producer ring RCB parameters. */
2521 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2522 		    rcb->bge_maxlen_flags);
2523 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2524 		/* Reset the jumbo receive producer ring producer index. */
2525 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2526 	}
2527 
2528 	/* 57XX step 43 */
2529 	/* Disable the mini receive producer ring RCB. */
2530 	if (BGE_IS_5700_FAMILY(sc)) {
2531 		/* Set up dummy disabled mini ring RCB */
2532 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2533 		rcb->bge_maxlen_flags =
2534 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2535 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2536 		    rcb->bge_maxlen_flags);
2537 		/* Reset the mini receive producer ring producer index. */
2538 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2539 
2540 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2541 		    offsetof(struct bge_ring_data, bge_info),
2542 		    sizeof(struct bge_gib),
2543 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2544 	}
2545 
2546 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2547 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2548 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2549 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2550 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2551 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2552 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2553 	}
2554 	/* 5718 step 14, 57XX step 44 */
2555 	/*
2556 	 * The BD ring replenish thresholds control how often the
2557 	 * hardware fetches new BD's from the producer rings in host
2558 	 * memory.  Setting the value too low on a busy system can
2559 	 * starve the hardware and recue the throughpout.
2560 	 *
2561 	 * Set the BD ring replenish thresholds. The recommended
2562 	 * values are 1/8th the number of descriptors allocated to
2563 	 * each ring, but since we try to avoid filling the entire
2564 	 * ring we set these to the minimal value of 8.  This needs to
2565 	 * be done on several of the supported chip revisions anyway,
2566 	 * to work around HW bugs.
2567 	 */
2568 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2569 	if (BGE_IS_JUMBO_CAPABLE(sc))
2570 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2571 
2572 	/* 5718 step 18 */
2573 	if (BGE_IS_5717_PLUS(sc)) {
2574 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2575 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2576 	}
2577 
2578 	/* 57XX step 45 */
2579 	/*
2580 	 * Disable all send rings by setting the 'ring disabled' bit
2581 	 * in the flags field of all the TX send ring control blocks,
2582 	 * located in NIC memory.
2583 	 */
2584 	if (BGE_IS_5700_FAMILY(sc)) {
2585 		/* 5700 to 5704 had 16 send rings. */
2586 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2587 	} else if (BGE_IS_5717_PLUS(sc)) {
2588 		limit = BGE_TX_RINGS_5717_MAX;
2589 	} else if (BGE_IS_57765_FAMILY(sc) ||
2590 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2591 		limit = BGE_TX_RINGS_57765_MAX;
2592 	} else
2593 		limit = 1;
2594 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2595 	for (i = 0; i < limit; i++) {
2596 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2597 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2598 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2599 		rcb_addr += sizeof(struct bge_rcb);
2600 	}
2601 
2602 	/* 57XX step 46 and 47 */
2603 	/* Configure send ring RCB 0 (we use only the first ring) */
2604 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2605 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2606 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2607 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2608 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2609 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2610 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2611 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2612 	else
2613 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2614 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2615 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2616 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2617 
2618 	/* 57XX step 48 */
2619 	/*
2620 	 * Disable all receive return rings by setting the
2621 	 * 'ring diabled' bit in the flags field of all the receive
2622 	 * return ring control blocks, located in NIC memory.
2623 	 */
2624 	if (BGE_IS_5717_PLUS(sc)) {
2625 		/* Should be 17, use 16 until we get an SRAM map. */
2626 		limit = 16;
2627 	} else if (BGE_IS_5700_FAMILY(sc))
2628 		limit = BGE_RX_RINGS_MAX;
2629 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2630 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2631 	    BGE_IS_57765_FAMILY(sc))
2632 		limit = 4;
2633 	else
2634 		limit = 1;
2635 	/* Disable all receive return rings */
2636 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2637 	for (i = 0; i < limit; i++) {
2638 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2639 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2640 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2641 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2642 			BGE_RCB_FLAG_RING_DISABLED));
2643 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2644 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2645 		    (i * (sizeof(uint64_t))), 0);
2646 		rcb_addr += sizeof(struct bge_rcb);
2647 	}
2648 
2649 	/* 57XX step 49 */
2650 	/*
2651 	 * Set up receive return ring 0.  Note that the NIC address
2652 	 * for RX return rings is 0x0.  The return rings live entirely
2653 	 * within the host, so the nicaddr field in the RCB isn't used.
2654 	 */
2655 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2656 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2657 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2658 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2659 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2660 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2661 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2662 
2663 	/* 5718 step 24, 57XX step 53 */
2664 	/* Set random backoff seed for TX */
2665 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2666 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2667 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2668 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2669 	    BGE_TX_BACKOFF_SEED_MASK);
2670 
2671 	/* 5718 step 26, 57XX step 55 */
2672 	/* Set inter-packet gap */
2673 	val = 0x2620;
2674 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2675 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2676 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2677 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2678 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2679 
2680 	/* 5718 step 27, 57XX step 56 */
2681 	/*
2682 	 * Specify which ring to use for packets that don't match
2683 	 * any RX rules.
2684 	 */
2685 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2686 
2687 	/* 5718 step 28, 57XX step 57 */
2688 	/*
2689 	 * Configure number of RX lists. One interrupt distribution
2690 	 * list, sixteen active lists, one bad frames class.
2691 	 */
2692 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2693 
2694 	/* 5718 step 29, 57XX step 58 */
2695 	/* Inialize RX list placement stats mask. */
2696 	if (BGE_IS_575X_PLUS(sc)) {
2697 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2698 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2699 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2700 	} else
2701 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2702 
2703 	/* 5718 step 30, 57XX step 59 */
2704 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2705 
2706 	/* 5718 step 33, 57XX step 62 */
2707 	/* Disable host coalescing until we get it set up */
2708 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2709 
2710 	/* 5718 step 34, 57XX step 63 */
2711 	/* Poll to make sure it's shut down. */
2712 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2713 		DELAY(10);
2714 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2715 			break;
2716 	}
2717 
2718 	if (i == BGE_TIMEOUT * 2) {
2719 		aprint_error_dev(sc->bge_dev,
2720 		    "host coalescing engine failed to idle\n");
2721 		return ENXIO;
2722 	}
2723 
2724 	/* 5718 step 35, 36, 37 */
2725 	/* Set up host coalescing defaults */
2726 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2727 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2728 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2729 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2730 	if (!(BGE_IS_5705_PLUS(sc))) {
2731 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2732 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2733 	}
2734 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2735 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2736 
2737 	/* Set up address of statistics block */
2738 	if (BGE_IS_5700_FAMILY(sc)) {
2739 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2740 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2741 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2742 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2743 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2744 	}
2745 
2746 	/* 5718 step 38 */
2747 	/* Set up address of status block */
2748 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2749 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2750 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2751 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2752 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2753 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2754 
2755 	/* Set up status block size. */
2756 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2757 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2758 		val = BGE_STATBLKSZ_FULL;
2759 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2760 	} else {
2761 		val = BGE_STATBLKSZ_32BYTE;
2762 		bzero(&sc->bge_rdata->bge_status_block, 32);
2763 	}
2764 
2765 	/* 5718 step 39, 57XX step 73 */
2766 	/* Turn on host coalescing state machine */
2767 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2768 
2769 	/* 5718 step 40, 57XX step 74 */
2770 	/* Turn on RX BD completion state machine and enable attentions */
2771 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2772 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2773 
2774 	/* 5718 step 41, 57XX step 75 */
2775 	/* Turn on RX list placement state machine */
2776 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2777 
2778 	/* 57XX step 76 */
2779 	/* Turn on RX list selector state machine. */
2780 	if (!(BGE_IS_5705_PLUS(sc)))
2781 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2782 
2783 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2784 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2785 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2786 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2787 
2788 	if (sc->bge_flags & BGEF_FIBER_TBI)
2789 		val |= BGE_PORTMODE_TBI;
2790 	else if (sc->bge_flags & BGEF_FIBER_MII)
2791 		val |= BGE_PORTMODE_GMII;
2792 	else
2793 		val |= BGE_PORTMODE_MII;
2794 
2795 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
2796 	/* Allow APE to send/receive frames. */
2797 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2798 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2799 
2800 	/* Turn on DMA, clear stats */
2801 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2802 	/* 5718 step 44 */
2803 	DELAY(40);
2804 
2805 	/* 5718 step 45, 57XX step 79 */
2806 	/* Set misc. local control, enable interrupts on attentions */
2807 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2808 	if (BGE_IS_5717_PLUS(sc)) {
2809 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2810 		/* 5718 step 46 */
2811 		DELAY(100);
2812 	}
2813 
2814 	/* 57XX step 81 */
2815 	/* Turn on DMA completion state machine */
2816 	if (!(BGE_IS_5705_PLUS(sc)))
2817 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2818 
2819 	/* 5718 step 47, 57XX step 82 */
2820 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2821 
2822 	/* 5718 step 48 */
2823 	/* Enable host coalescing bug fix. */
2824 	if (BGE_IS_5755_PLUS(sc))
2825 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2826 
2827 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2828 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2829 
2830 	/* Turn on write DMA state machine */
2831 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2832 	/* 5718 step 49 */
2833 	DELAY(40);
2834 
2835 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2836 
2837 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2838 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2839 
2840 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2841 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2842 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2843 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2844 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2845 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2846 
2847 	if (sc->bge_flags & BGEF_PCIE)
2848 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2849 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2850 		if (ifp->if_mtu <= ETHERMTU)
2851 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
2852 	}
2853 	if (sc->bge_flags & BGEF_TSO) {
2854 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2855 		if (BGE_IS_5717_PLUS(sc))
2856 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2857 	}
2858 
2859 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2860 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2861 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2862 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
2863 		/*
2864 		 * Allow multiple outstanding read requests from
2865 		 * non-LSO read DMA engine.
2866 		 */
2867 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2868 	}
2869 
2870 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2871 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2872 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2873 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2874 	    BGE_IS_57765_PLUS(sc)) {
2875 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2876 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2877 		else
2878 			rdmareg = BGE_RDMA_RSRVCTRL;
2879 		dmactl = CSR_READ_4(sc, rdmareg);
2880 		/*
2881 		 * Adjust tx margin to prevent TX data corruption and
2882 		 * fix internal FIFO overflow.
2883 		 */
2884 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2885 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2886 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2887 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2888 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2889 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2890 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2891 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2892 		}
2893 		/*
2894 		 * Enable fix for read DMA FIFO overruns.
2895 		 * The fix is to limit the number of RX BDs
2896 		 * the hardware would fetch at a time.
2897 		 */
2898 		CSR_WRITE_4(sc, rdmareg, dmactl |
2899 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2900 	}
2901 
2902 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2903 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2904 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2905 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2906 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2907 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2908 		/*
2909 		 * Allow 4KB burst length reads for non-LSO frames.
2910 		 * Enable 512B burst length reads for buffer descriptors.
2911 		 */
2912 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2913 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2914 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2915 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2916 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2917 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2918 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2919 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2920 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2921 	}
2922 	/* Turn on read DMA state machine */
2923 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2924 	/* 5718 step 52 */
2925 	delay(40);
2926 
2927 	if (sc->bge_flags & BGEF_RDMA_BUG) {
2928 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2929 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2930 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2931 				break;
2932 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2933 				break;
2934 		}
2935 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2936 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2937 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2938 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2939 			else
2940 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2941 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2942 		}
2943 	}
2944 
2945 	/* 5718 step 56, 57XX step 84 */
2946 	/* Turn on RX data completion state machine */
2947 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2948 
2949 	/* Turn on RX data and RX BD initiator state machine */
2950 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2951 
2952 	/* 57XX step 85 */
2953 	/* Turn on Mbuf cluster free state machine */
2954 	if (!BGE_IS_5705_PLUS(sc))
2955 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2956 
2957 	/* 5718 step 57, 57XX step 86 */
2958 	/* Turn on send data completion state machine */
2959 	val = BGE_SDCMODE_ENABLE;
2960 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2961 		val |= BGE_SDCMODE_CDELAY;
2962 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2963 
2964 	/* 5718 step 58 */
2965 	/* Turn on send BD completion state machine */
2966 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2967 
2968 	/* 57XX step 88 */
2969 	/* Turn on RX BD initiator state machine */
2970 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2971 
2972 	/* 5718 step 60, 57XX step 90 */
2973 	/* Turn on send data initiator state machine */
2974 	if (sc->bge_flags & BGEF_TSO) {
2975 		/* XXX: magic value from Linux driver */
2976 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2977 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2978 	} else
2979 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2980 
2981 	/* 5718 step 61, 57XX step 91 */
2982 	/* Turn on send BD initiator state machine */
2983 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2984 
2985 	/* 5718 step 62, 57XX step 92 */
2986 	/* Turn on send BD selector state machine */
2987 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2988 
2989 	/* 5718 step 31, 57XX step 60 */
2990 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2991 	/* 5718 step 32, 57XX step 61 */
2992 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2993 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2994 
2995 	/* ack/clear link change events */
2996 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2997 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2998 	    BGE_MACSTAT_LINK_CHANGED);
2999 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
3000 
3001 	/*
3002 	 * Enable attention when the link has changed state for
3003 	 * devices that use auto polling.
3004 	 */
3005 	if (sc->bge_flags & BGEF_FIBER_TBI) {
3006 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3007 	} else {
3008 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3009 			mimode = BGE_MIMODE_500KHZ_CONST;
3010 		else
3011 			mimode = BGE_MIMODE_BASE;
3012 		/* 5718 step 68. 5718 step 69 (optionally). */
3013 		if (BGE_IS_5700_FAMILY(sc) ||
3014 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3015 			mimode |= BGE_MIMODE_AUTOPOLL;
3016 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3017 		}
3018 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3019 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3020 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3021 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3022 			    BGE_EVTENB_MI_INTERRUPT);
3023 	}
3024 
3025 	/*
3026 	 * Clear any pending link state attention.
3027 	 * Otherwise some link state change events may be lost until attention
3028 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
3029 	 * It's not necessary on newer BCM chips - perhaps enabling link
3030 	 * state change attentions implies clearing pending attention.
3031 	 */
3032 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3033 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3034 	    BGE_MACSTAT_LINK_CHANGED);
3035 
3036 	/* Enable link state change attentions. */
3037 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3038 
3039 	return 0;
3040 }
3041 
3042 static const struct bge_revision *
3043 bge_lookup_rev(uint32_t chipid)
3044 {
3045 	const struct bge_revision *br;
3046 
3047 	for (br = bge_revisions; br->br_name != NULL; br++) {
3048 		if (br->br_chipid == chipid)
3049 			return br;
3050 	}
3051 
3052 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
3053 		if (br->br_chipid == BGE_ASICREV(chipid))
3054 			return br;
3055 	}
3056 
3057 	return NULL;
3058 }
3059 
3060 static const struct bge_product *
3061 bge_lookup(const struct pci_attach_args *pa)
3062 {
3063 	const struct bge_product *bp;
3064 
3065 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
3066 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3067 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3068 			return bp;
3069 	}
3070 
3071 	return NULL;
3072 }
3073 
3074 static uint32_t
3075 bge_chipid(const struct pci_attach_args *pa)
3076 {
3077 	uint32_t id;
3078 
3079 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3080 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
3081 
3082 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3083 		switch (PCI_PRODUCT(pa->pa_id)) {
3084 		case PCI_PRODUCT_BROADCOM_BCM5717:
3085 		case PCI_PRODUCT_BROADCOM_BCM5718:
3086 		case PCI_PRODUCT_BROADCOM_BCM5719:
3087 		case PCI_PRODUCT_BROADCOM_BCM5720:
3088 		case PCI_PRODUCT_BROADCOM_BCM5725:
3089 		case PCI_PRODUCT_BROADCOM_BCM5727:
3090 		case PCI_PRODUCT_BROADCOM_BCM5762:
3091 		case PCI_PRODUCT_BROADCOM_BCM57764:
3092 		case PCI_PRODUCT_BROADCOM_BCM57767:
3093 		case PCI_PRODUCT_BROADCOM_BCM57787:
3094 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3095 			    BGE_PCI_GEN2_PRODID_ASICREV);
3096 			break;
3097 		case PCI_PRODUCT_BROADCOM_BCM57761:
3098 		case PCI_PRODUCT_BROADCOM_BCM57762:
3099 		case PCI_PRODUCT_BROADCOM_BCM57765:
3100 		case PCI_PRODUCT_BROADCOM_BCM57766:
3101 		case PCI_PRODUCT_BROADCOM_BCM57781:
3102 		case PCI_PRODUCT_BROADCOM_BCM57782:
3103 		case PCI_PRODUCT_BROADCOM_BCM57785:
3104 		case PCI_PRODUCT_BROADCOM_BCM57786:
3105 		case PCI_PRODUCT_BROADCOM_BCM57791:
3106 		case PCI_PRODUCT_BROADCOM_BCM57795:
3107 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3108 			    BGE_PCI_GEN15_PRODID_ASICREV);
3109 			break;
3110 		default:
3111 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3112 			    BGE_PCI_PRODID_ASICREV);
3113 			break;
3114 		}
3115 	}
3116 
3117 	return id;
3118 }
3119 
3120 /*
3121  * Return true if MSI can be used with this device.
3122  */
3123 static int
3124 bge_can_use_msi(struct bge_softc *sc)
3125 {
3126 	int can_use_msi = 0;
3127 
3128 	switch (BGE_ASICREV(sc->bge_chipid)) {
3129 	case BGE_ASICREV_BCM5714_A0:
3130 	case BGE_ASICREV_BCM5714:
3131 		/*
3132 		 * Apparently, MSI doesn't work when these chips are
3133 		 * configured in single-port mode.
3134 		 */
3135 		break;
3136 	case BGE_ASICREV_BCM5750:
3137 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3138 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3139 			can_use_msi = 1;
3140 		break;
3141 	default:
3142 		if (BGE_IS_575X_PLUS(sc))
3143 			can_use_msi = 1;
3144 	}
3145 	return can_use_msi;
3146 }
3147 
3148 /*
3149  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3150  * against our list and return its name if we find a match. Note
3151  * that since the Broadcom controller contains VPD support, we
3152  * can get the device name string from the controller itself instead
3153  * of the compiled-in string. This is a little slow, but it guarantees
3154  * we'll always announce the right product name.
3155  */
3156 static int
3157 bge_probe(device_t parent, cfdata_t match, void *aux)
3158 {
3159 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3160 
3161 	if (bge_lookup(pa) != NULL)
3162 		return 1;
3163 
3164 	return 0;
3165 }
3166 
3167 static void
3168 bge_attach(device_t parent, device_t self, void *aux)
3169 {
3170 	struct bge_softc * const sc = device_private(self);
3171 	struct pci_attach_args * const pa = aux;
3172 	prop_dictionary_t dict;
3173 	const struct bge_product *bp;
3174 	const struct bge_revision *br;
3175 	pci_chipset_tag_t	pc;
3176 	const char		*intrstr = NULL;
3177 	uint32_t		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3178 	uint32_t		command;
3179 	struct ifnet		*ifp;
3180 	struct mii_data * const mii = &sc->bge_mii;
3181 	uint32_t		misccfg, mimode, macmode;
3182 	void *			kva;
3183 	u_char			eaddr[ETHER_ADDR_LEN];
3184 	pcireg_t		memtype, subid, reg;
3185 	bus_addr_t		memaddr;
3186 	uint32_t		pm_ctl;
3187 	bool			no_seeprom;
3188 	int			capmask, trys;
3189 	int			mii_flags;
3190 	int			map_flags;
3191 	char intrbuf[PCI_INTRSTR_LEN];
3192 
3193 	bp = bge_lookup(pa);
3194 	KASSERT(bp != NULL);
3195 
3196 	sc->sc_pc = pa->pa_pc;
3197 	sc->sc_pcitag = pa->pa_tag;
3198 	sc->bge_dev = self;
3199 
3200 	sc->bge_pa = *pa;
3201 	pc = sc->sc_pc;
3202 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3203 
3204 	aprint_naive(": Ethernet controller\n");
3205 	aprint_normal(": %s Ethernet\n", bp->bp_name);
3206 
3207 	/*
3208 	 * Map control/status registers.
3209 	 */
3210 	DPRINTFN(5, ("Map control/status regs\n"));
3211 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3212 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3213 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3214 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3215 
3216 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3217 		aprint_error_dev(sc->bge_dev,
3218 		    "failed to enable memory mapping!\n");
3219 		return;
3220 	}
3221 
3222 	DPRINTFN(5, ("pci_mem_find\n"));
3223 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3224 	switch (memtype) {
3225 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3226 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3227 #if 0
3228 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3229 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3230 		    &memaddr, &sc->bge_bsize) == 0)
3231 			break;
3232 #else
3233 		/*
3234 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3235 		 * system get NMI on boot (PR#48451). This problem might not be
3236 		 * the driver's bug but our PCI common part's bug. Until we
3237 		 * find a real reason, we ignore the prefetchable bit.
3238 		 */
3239 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3240 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3241 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3242 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3243 			    map_flags, &sc->bge_bhandle) == 0) {
3244 				sc->bge_btag = pa->pa_memt;
3245 				break;
3246 			}
3247 		}
3248 #endif
3249 		/* FALLTHROUGH */
3250 	default:
3251 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3252 		return;
3253 	}
3254 
3255 	/* Save various chip information. */
3256 	sc->bge_chipid = bge_chipid(pa);
3257 	sc->bge_phy_addr = bge_phy_addr(sc);
3258 
3259 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3260 	    &sc->bge_pciecap, NULL) != 0) {
3261 		/* PCIe */
3262 		sc->bge_flags |= BGEF_PCIE;
3263 		/* Extract supported maximum payload size. */
3264 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3265 		    sc->bge_pciecap + PCIE_DCAP);
3266 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3267 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3268 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3269 			sc->bge_expmrq = 2048;
3270 		else
3271 			sc->bge_expmrq = 4096;
3272 		bge_set_max_readrq(sc);
3273 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3274 		/* PCIe without PCIe cap */
3275 		sc->bge_flags |= BGEF_PCIE;
3276 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3277 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
3278 		/* PCI-X */
3279 		sc->bge_flags |= BGEF_PCIX;
3280 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3281 			&sc->bge_pcixcap, NULL) == 0)
3282 			aprint_error_dev(sc->bge_dev,
3283 			    "unable to find PCIX capability\n");
3284 	}
3285 
3286 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3287 		/*
3288 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3289 		 * can clobber the chip's PCI config-space power control
3290 		 * registers, leaving the card in D3 powersave state. We do
3291 		 * not have memory-mapped registers in this state, so force
3292 		 * device into D0 state before starting initialization.
3293 		 */
3294 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3295 		pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3296 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3297 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3298 		DELAY(1000);	/* 27 usec is allegedly sufficient */
3299 	}
3300 
3301 	/* Save chipset family. */
3302 	switch (BGE_ASICREV(sc->bge_chipid)) {
3303 	case BGE_ASICREV_BCM5717:
3304 	case BGE_ASICREV_BCM5719:
3305 	case BGE_ASICREV_BCM5720:
3306 		sc->bge_flags |= BGEF_5717_PLUS;
3307 		/* FALLTHROUGH */
3308 	case BGE_ASICREV_BCM5762:
3309 	case BGE_ASICREV_BCM57765:
3310 	case BGE_ASICREV_BCM57766:
3311 		if (!BGE_IS_5717_PLUS(sc))
3312 			sc->bge_flags |= BGEF_57765_FAMILY;
3313 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3314 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3315 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3316 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3317 			/*
3318 			 * Enable work around for DMA engine miscalculation
3319 			 * of TXMBUF available space.
3320 			 */
3321 			sc->bge_flags |= BGEF_RDMA_BUG;
3322 
3323 			if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3324 			    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3325 				/* Jumbo frame on BCM5719 A0 does not work. */
3326 				sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3327 			}
3328 		}
3329 		break;
3330 	case BGE_ASICREV_BCM5755:
3331 	case BGE_ASICREV_BCM5761:
3332 	case BGE_ASICREV_BCM5784:
3333 	case BGE_ASICREV_BCM5785:
3334 	case BGE_ASICREV_BCM5787:
3335 	case BGE_ASICREV_BCM57780:
3336 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3337 		break;
3338 	case BGE_ASICREV_BCM5700:
3339 	case BGE_ASICREV_BCM5701:
3340 	case BGE_ASICREV_BCM5703:
3341 	case BGE_ASICREV_BCM5704:
3342 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3343 		break;
3344 	case BGE_ASICREV_BCM5714_A0:
3345 	case BGE_ASICREV_BCM5780:
3346 	case BGE_ASICREV_BCM5714:
3347 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3348 		/* FALLTHROUGH */
3349 	case BGE_ASICREV_BCM5750:
3350 	case BGE_ASICREV_BCM5752:
3351 	case BGE_ASICREV_BCM5906:
3352 		sc->bge_flags |= BGEF_575X_PLUS;
3353 		/* FALLTHROUGH */
3354 	case BGE_ASICREV_BCM5705:
3355 		sc->bge_flags |= BGEF_5705_PLUS;
3356 		break;
3357 	}
3358 
3359 	/* Identify chips with APE processor. */
3360 	switch (BGE_ASICREV(sc->bge_chipid)) {
3361 	case BGE_ASICREV_BCM5717:
3362 	case BGE_ASICREV_BCM5719:
3363 	case BGE_ASICREV_BCM5720:
3364 	case BGE_ASICREV_BCM5761:
3365 	case BGE_ASICREV_BCM5762:
3366 		sc->bge_flags |= BGEF_APE;
3367 		break;
3368 	}
3369 
3370 	/*
3371 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3372 	 * not actually a MAC controller bug but an issue with the embedded
3373 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3374 	 */
3375 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3376 		sc->bge_flags |= BGEF_40BIT_BUG;
3377 
3378 	/* Chips with APE need BAR2 access for APE registers/memory. */
3379 	if ((sc->bge_flags & BGEF_APE) != 0) {
3380 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3381 #if 0
3382 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3383 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
3384 			&sc->bge_apesize)) {
3385 			aprint_error_dev(sc->bge_dev,
3386 			    "couldn't map BAR2 memory\n");
3387 			return;
3388 		}
3389 #else
3390 		/*
3391 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3392 		 * system get NMI on boot (PR#48451). This problem might not be
3393 		 * the driver's bug but our PCI common part's bug. Until we
3394 		 * find a real reason, we ignore the prefetchable bit.
3395 		 */
3396 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3397 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3398 			aprint_error_dev(sc->bge_dev,
3399 			    "couldn't map BAR2 memory\n");
3400 			return;
3401 		}
3402 
3403 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3404 		if (bus_space_map(pa->pa_memt, memaddr,
3405 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3406 			aprint_error_dev(sc->bge_dev,
3407 			    "couldn't map BAR2 memory\n");
3408 			return;
3409 		}
3410 		sc->bge_apetag = pa->pa_memt;
3411 #endif
3412 
3413 		/* Enable APE register/memory access by host driver. */
3414 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3415 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3416 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3417 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3418 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3419 
3420 		bge_ape_lock_init(sc);
3421 		bge_ape_read_fw_ver(sc);
3422 	}
3423 
3424 	/* Identify the chips that use an CPMU. */
3425 	if (BGE_IS_5717_PLUS(sc) ||
3426 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3427 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3428 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3429 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3430 		sc->bge_flags |= BGEF_CPMU_PRESENT;
3431 
3432 	/*
3433 	 * When using the BCM5701 in PCI-X mode, data corruption has
3434 	 * been observed in the first few bytes of some received packets.
3435 	 * Aligning the packet buffer in memory eliminates the corruption.
3436 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3437 	 * which do not support unaligned accesses, we will realign the
3438 	 * payloads by copying the received packets.
3439 	 */
3440 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3441 	    sc->bge_flags & BGEF_PCIX)
3442 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
3443 
3444 	if (BGE_IS_5700_FAMILY(sc))
3445 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3446 
3447 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3448 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3449 
3450 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3451 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3452 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3453 		sc->bge_flags |= BGEF_IS_5788;
3454 
3455 	/*
3456 	 * Some controllers seem to require a special firmware to use
3457 	 * TSO. But the firmware is not available to FreeBSD and Linux
3458 	 * claims that the TSO performed by the firmware is slower than
3459 	 * hardware based TSO. Moreover the firmware based TSO has one
3460 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3461 	 * header is greater than 80 bytes. The workaround for the TSO
3462 	 * bug exist but it seems it's too expensive than not using
3463 	 * TSO at all. Some hardwares also have the TSO bug so limit
3464 	 * the TSO to the controllers that are not affected TSO issues
3465 	 * (e.g. 5755 or higher).
3466 	 */
3467 	if (BGE_IS_5755_PLUS(sc)) {
3468 		/*
3469 		 * BCM5754 and BCM5787 shares the same ASIC id so
3470 		 * explicit device id check is required.
3471 		 */
3472 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3473 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3474 			sc->bge_flags |= BGEF_TSO;
3475 		/* TSO on BCM5719 A0 does not work. */
3476 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3477 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3478 			sc->bge_flags &= ~BGEF_TSO;
3479 	}
3480 
3481 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3482 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3483 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
3484 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3485 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3486 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3487 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3488 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3489 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3490 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3491 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3492 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3493 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3494 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3495 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3496 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3497 		/* These chips are 10/100 only. */
3498 		capmask &= ~BMSR_EXTSTAT;
3499 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3500 	}
3501 
3502 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3503 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3504 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3505 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3506 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3507 
3508 	/* Set various PHY bug flags. */
3509 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3510 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3511 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3512 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3513 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3514 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3515 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3516 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3517 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3518 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3519 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3520 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3521 	if (BGE_IS_5705_PLUS(sc) &&
3522 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3523 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3524 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3525 	    !BGE_IS_57765_PLUS(sc)) {
3526 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3527 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3528 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3529 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3530 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3531 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3532 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3533 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3534 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3535 		} else
3536 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3537 	}
3538 
3539 	/*
3540 	 * SEEPROM check.
3541 	 * First check if firmware knows we do not have SEEPROM.
3542 	 */
3543 	if (prop_dictionary_get_bool(device_properties(self),
3544 	    "without-seeprom", &no_seeprom) && no_seeprom)
3545 		sc->bge_flags |= BGEF_NO_EEPROM;
3546 
3547 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3548 		sc->bge_flags |= BGEF_NO_EEPROM;
3549 
3550 	/* Now check the 'ROM failed' bit on the RX CPU */
3551 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3552 		sc->bge_flags |= BGEF_NO_EEPROM;
3553 
3554 	sc->bge_asf_mode = 0;
3555 	/* No ASF if APE present. */
3556 	if ((sc->bge_flags & BGEF_APE) == 0) {
3557 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3558 			BGE_SRAM_DATA_SIG_MAGIC)) {
3559 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3560 			    BGE_HWCFG_ASF) {
3561 				sc->bge_asf_mode |= ASF_ENABLE;
3562 				sc->bge_asf_mode |= ASF_STACKUP;
3563 				if (BGE_IS_575X_PLUS(sc))
3564 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3565 			}
3566 		}
3567 	}
3568 
3569 	int counts[PCI_INTR_TYPE_SIZE] = {
3570 		[PCI_INTR_TYPE_INTX] = 1,
3571 		[PCI_INTR_TYPE_MSI] = 1,
3572 		[PCI_INTR_TYPE_MSIX] = 1,
3573 	};
3574 	int max_type = PCI_INTR_TYPE_MSIX;
3575 
3576 	if (!bge_can_use_msi(sc)) {
3577 		/* MSI broken, allow only INTx */
3578 		max_type = PCI_INTR_TYPE_INTX;
3579 	}
3580 
3581 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3582 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3583 		return;
3584 	}
3585 
3586 	DPRINTFN(5, ("pci_intr_string\n"));
3587 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3588 	    sizeof(intrbuf));
3589 	DPRINTFN(5, ("pci_intr_establish\n"));
3590 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3591 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3592 	if (sc->bge_intrhand == NULL) {
3593 		pci_intr_release(pc, sc->bge_pihp, 1);
3594 		sc->bge_pihp = NULL;
3595 
3596 		aprint_error_dev(self, "couldn't establish interrupt");
3597 		if (intrstr != NULL)
3598 			aprint_error(" at %s", intrstr);
3599 		aprint_error("\n");
3600 		return;
3601 	}
3602 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3603 
3604 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3605 	case PCI_INTR_TYPE_MSIX:
3606 	case PCI_INTR_TYPE_MSI:
3607 		KASSERT(bge_can_use_msi(sc));
3608 		sc->bge_flags |= BGEF_MSI;
3609 		break;
3610 	default:
3611 		/* nothing to do */
3612 		break;
3613 	}
3614 
3615 	/*
3616 	 * All controllers except BCM5700 supports tagged status but
3617 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3618 	 * MSI on BCM5717 does not work.
3619 	 */
3620 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3621 		sc->bge_flags |= BGEF_TAGGED_STATUS;
3622 
3623 	/*
3624 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3625 	 * lock in bge_reset().
3626 	 */
3627 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3628 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3629 	delay(1000);
3630 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3631 
3632 	bge_stop_fw(sc);
3633 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3634 	if (bge_reset(sc))
3635 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3636 
3637 	/*
3638 	 * Read the hardware config word in the first 32k of NIC internal
3639 	 * memory, or fall back to the config word in the EEPROM.
3640 	 * Note: on some BCM5700 cards, this value appears to be unset.
3641 	 */
3642 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3643 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3644 	    BGE_SRAM_DATA_SIG_MAGIC) {
3645 		uint32_t tmp;
3646 
3647 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3648 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3649 		    BGE_SRAM_DATA_VER_SHIFT;
3650 		if ((0 < tmp) && (tmp < 0x100))
3651 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3652 		if (sc->bge_flags & BGEF_PCIE)
3653 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3654 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3655 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3656 		if (BGE_IS_5717_PLUS(sc))
3657 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3658 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3659 		bge_read_eeprom(sc, (void *)&hwcfg,
3660 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3661 		hwcfg = be32toh(hwcfg);
3662 	}
3663 	aprint_normal_dev(sc->bge_dev,
3664 	    "HW config %08x, %08x, %08x, %08x %08x\n",
3665 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3666 
3667 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3668 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3669 
3670 	if (bge_chipinit(sc)) {
3671 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3672 		bge_release_resources(sc);
3673 		return;
3674 	}
3675 
3676 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3677 		BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3678 		    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3679 		DELAY(100);
3680 	}
3681 
3682 	/* Set MI_MODE */
3683 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3684 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3685 		mimode |= BGE_MIMODE_500KHZ_CONST;
3686 	else
3687 		mimode |= BGE_MIMODE_BASE;
3688 	CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3689 	DELAY(80);
3690 
3691 	/*
3692 	 * Get station address from the EEPROM.
3693 	 */
3694 	if (bge_get_eaddr(sc, eaddr)) {
3695 		aprint_error_dev(sc->bge_dev,
3696 		    "failed to read station address\n");
3697 		bge_release_resources(sc);
3698 		return;
3699 	}
3700 
3701 	br = bge_lookup_rev(sc->bge_chipid);
3702 
3703 	if (br == NULL) {
3704 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3705 		    sc->bge_chipid);
3706 	} else {
3707 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3708 		    br->br_name, sc->bge_chipid);
3709 	}
3710 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3711 
3712 	/* Allocate the general information block and ring buffers. */
3713 	if (pci_dma64_available(pa)) {
3714 		sc->bge_dmatag = pa->pa_dmat64;
3715 		sc->bge_dmatag32 = pa->pa_dmat;
3716 		sc->bge_dma64 = true;
3717 	} else {
3718 		sc->bge_dmatag = pa->pa_dmat;
3719 		sc->bge_dmatag32 = pa->pa_dmat;
3720 		sc->bge_dma64 = false;
3721 	}
3722 
3723 	/* 40bit DMA workaround */
3724 	if (sizeof(bus_addr_t) > 4) {
3725 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3726 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3727 
3728 			if (bus_dmatag_subregion(olddmatag, 0,
3729 			    (bus_addr_t)__MASK(40),
3730 			    &(sc->bge_dmatag), BUS_DMA_NOWAIT) != 0) {
3731 				aprint_error_dev(self,
3732 				    "WARNING: failed to restrict dma range,"
3733 				    " falling back to parent bus dma range\n");
3734 				sc->bge_dmatag = olddmatag;
3735 			}
3736 		}
3737 	}
3738 	SLIST_INIT(&sc->txdma_list);
3739 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
3740 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3741 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3742 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3743 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3744 		return;
3745 	}
3746 	DPRINTFN(5, ("bus_dmamem_map\n"));
3747 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3748 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3749 			   BUS_DMA_NOWAIT)) {
3750 		aprint_error_dev(sc->bge_dev,
3751 		    "can't map DMA buffers (%zu bytes)\n",
3752 		    sizeof(struct bge_ring_data));
3753 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3754 		    sc->bge_ring_rseg);
3755 		return;
3756 	}
3757 	DPRINTFN(5, ("bus_dmamem_create\n"));
3758 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3759 	    sizeof(struct bge_ring_data), 0,
3760 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3761 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3762 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3763 				 sizeof(struct bge_ring_data));
3764 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3765 		    sc->bge_ring_rseg);
3766 		return;
3767 	}
3768 	DPRINTFN(5, ("bus_dmamem_load\n"));
3769 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3770 			    sizeof(struct bge_ring_data), NULL,
3771 			    BUS_DMA_NOWAIT)) {
3772 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3773 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3774 				 sizeof(struct bge_ring_data));
3775 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3776 		    sc->bge_ring_rseg);
3777 		return;
3778 	}
3779 
3780 	DPRINTFN(5, ("bzero\n"));
3781 	sc->bge_rdata = (struct bge_ring_data *)kva;
3782 
3783 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3784 
3785 	/* Try to allocate memory for jumbo buffers. */
3786 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3787 		if (bge_alloc_jumbo_mem(sc)) {
3788 			aprint_error_dev(sc->bge_dev,
3789 			    "jumbo buffer allocation failed\n");
3790 		} else
3791 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3792 	}
3793 
3794 	/* Set default tuneable values. */
3795 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3796 	sc->bge_rx_coal_ticks = 150;
3797 	sc->bge_rx_max_coal_bds = 64;
3798 	sc->bge_tx_coal_ticks = 300;
3799 	sc->bge_tx_max_coal_bds = 400;
3800 	if (BGE_IS_5705_PLUS(sc)) {
3801 		sc->bge_tx_coal_ticks = (12 * 5);
3802 		sc->bge_tx_max_coal_bds = (12 * 5);
3803 			aprint_verbose_dev(sc->bge_dev,
3804 			    "setting short Tx thresholds\n");
3805 	}
3806 
3807 	if (BGE_IS_5717_PLUS(sc))
3808 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3809 	else if (BGE_IS_5705_PLUS(sc))
3810 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3811 	else
3812 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3813 
3814 	/* Set up ifnet structure */
3815 	ifp = &sc->ethercom.ec_if;
3816 	ifp->if_softc = sc;
3817 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3818 	ifp->if_ioctl = bge_ioctl;
3819 	ifp->if_stop = bge_stop;
3820 	ifp->if_start = bge_start;
3821 	ifp->if_init = bge_init;
3822 	ifp->if_watchdog = bge_watchdog;
3823 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3824 	IFQ_SET_READY(&ifp->if_snd);
3825 	DPRINTFN(5, ("strcpy if_xname\n"));
3826 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3827 
3828 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3829 		sc->ethercom.ec_if.if_capabilities |=
3830 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3831 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
3832 		sc->ethercom.ec_if.if_capabilities |=
3833 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3834 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3835 #endif
3836 	sc->ethercom.ec_capabilities |=
3837 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3838 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3839 
3840 	if (sc->bge_flags & BGEF_TSO)
3841 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3842 
3843 	/*
3844 	 * Do MII setup.
3845 	 */
3846 	DPRINTFN(5, ("mii setup\n"));
3847 	mii->mii_ifp = ifp;
3848 	mii->mii_readreg = bge_miibus_readreg;
3849 	mii->mii_writereg = bge_miibus_writereg;
3850 	mii->mii_statchg = bge_miibus_statchg;
3851 
3852 	/*
3853 	 * Figure out what sort of media we have by checking the hardware
3854 	 * config word.  Note: on some BCM5700 cards, this value appears to be
3855 	 * unset. If that's the case, we have to rely on identifying the NIC
3856 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3857 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
3858 	 */
3859 	if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3860 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3861 		if (BGE_IS_5705_PLUS(sc)) {
3862 			sc->bge_flags |= BGEF_FIBER_MII;
3863 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3864 		} else
3865 			sc->bge_flags |= BGEF_FIBER_TBI;
3866 	}
3867 
3868 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
3869 	if (BGE_IS_JUMBO_CAPABLE(sc))
3870 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3871 
3872 	/* set phyflags and chipid before mii_attach() */
3873 	dict = device_properties(self);
3874 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3875 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3876 
3877 	macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3878 	macmode &= ~BGE_MACMODE_PORTMODE;
3879 	/* Initialize ifmedia structures. */
3880 	if (sc->bge_flags & BGEF_FIBER_TBI) {
3881 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3882 		    macmode | BGE_PORTMODE_TBI);
3883 		DELAY(40);
3884 
3885 		sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3886 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3887 		    bge_ifmedia_sts);
3888 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3889 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3890 			    0, NULL);
3891 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3892 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3893 		/* Pretend the user requested this setting */
3894 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3895 	} else {
3896 		uint16_t phyreg;
3897 		int rv;
3898 		/*
3899 		 * Do transceiver setup and tell the firmware the
3900 		 * driver is down so we can try to get access the
3901 		 * probe if ASF is running.  Retry a couple of times
3902 		 * if we get a conflict with the ASF firmware accessing
3903 		 * the PHY.
3904 		 */
3905 		if (sc->bge_flags & BGEF_FIBER_MII)
3906 			macmode |= BGE_PORTMODE_GMII;
3907 		else
3908 			macmode |= BGE_PORTMODE_MII;
3909 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3910 		DELAY(40);
3911 
3912 		/*
3913 		 * Do transceiver setup and tell the firmware the
3914 		 * driver is down so we can try to get access the
3915 		 * probe if ASF is running.  Retry a couple of times
3916 		 * if we get a conflict with the ASF firmware accessing
3917 		 * the PHY.
3918 		 */
3919 		trys = 0;
3920 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3921 		sc->ethercom.ec_mii = mii;
3922 		ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3923 			     bge_ifmedia_sts);
3924 		mii_flags = MIIF_DOPAUSE;
3925 		if (sc->bge_flags & BGEF_FIBER_MII)
3926 			mii_flags |= MIIF_HAVEFIBER;
3927 again:
3928 		bge_asf_driver_up(sc);
3929 		rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3930 		    MII_BMCR, &phyreg);
3931 		if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3932 			int i;
3933 
3934 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3935 			    MII_BMCR, BMCR_RESET);
3936 			/* Wait up to 500ms for it to complete. */
3937 			for (i = 0; i < 500; i++) {
3938 				bge_miibus_readreg(sc->bge_dev,
3939 				    sc->bge_phy_addr, MII_BMCR, &phyreg);
3940 				if ((phyreg & BMCR_RESET) == 0)
3941 					break;
3942 				DELAY(1000);
3943 			}
3944 		}
3945 
3946 		mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3947 		    MII_OFFSET_ANY, mii_flags);
3948 
3949 		if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
3950 			goto again;
3951 
3952 		if (LIST_EMPTY(&mii->mii_phys)) {
3953 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3954 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3955 			    0, NULL);
3956 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3957 		} else
3958 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3959 
3960 		/*
3961 		 * Now tell the firmware we are going up after probing the PHY
3962 		 */
3963 		if (sc->bge_asf_mode & ASF_STACKUP)
3964 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3965 	}
3966 
3967 	/*
3968 	 * Call MI attach routine.
3969 	 */
3970 	DPRINTFN(5, ("if_attach\n"));
3971 	if_attach(ifp);
3972 	if_deferred_start_init(ifp, NULL);
3973 	DPRINTFN(5, ("ether_ifattach\n"));
3974 	ether_ifattach(ifp, eaddr);
3975 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3976 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3977 		RND_TYPE_NET, RND_FLAG_DEFAULT);
3978 #ifdef BGE_EVENT_COUNTERS
3979 	/*
3980 	 * Attach event counters.
3981 	 */
3982 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3983 	    NULL, device_xname(sc->bge_dev), "intr");
3984 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3985 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
3986 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3987 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
3988 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3989 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
3990 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3991 	    NULL, device_xname(sc->bge_dev), "tx_xon");
3992 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3993 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
3994 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3995 	    NULL, device_xname(sc->bge_dev), "rx_xon");
3996 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3997 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
3998 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3999 	    NULL, device_xname(sc->bge_dev), "xoffentered");
4000 #endif /* BGE_EVENT_COUNTERS */
4001 	DPRINTFN(5, ("callout_init\n"));
4002 	callout_init(&sc->bge_timeout, 0);
4003 	callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4004 
4005 	if (pmf_device_register(self, NULL, NULL))
4006 		pmf_class_network_register(self, ifp);
4007 	else
4008 		aprint_error_dev(self, "couldn't establish power handler\n");
4009 
4010 	bge_sysctl_init(sc);
4011 
4012 #ifdef BGE_DEBUG
4013 	bge_debug_info(sc);
4014 #endif
4015 }
4016 
4017 /*
4018  * Stop all chip I/O so that the kernel's probe routines don't
4019  * get confused by errant DMAs when rebooting.
4020  */
4021 static int
4022 bge_detach(device_t self, int flags __unused)
4023 {
4024 	struct bge_softc * const sc = device_private(self);
4025 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4026 	int s;
4027 
4028 	s = splnet();
4029 	/* Stop the interface. Callouts are stopped in it. */
4030 	bge_stop(ifp, 1);
4031 	splx(s);
4032 
4033 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4034 
4035 	ether_ifdetach(ifp);
4036 	if_detach(ifp);
4037 
4038 	/* Delete all remaining media. */
4039 	ifmedia_fini(&sc->bge_mii.mii_media);
4040 
4041 	bge_release_resources(sc);
4042 
4043 	return 0;
4044 }
4045 
4046 static void
4047 bge_release_resources(struct bge_softc *sc)
4048 {
4049 
4050 	/* Detach sysctl */
4051 	if (sc->bge_log != NULL)
4052 		sysctl_teardown(&sc->bge_log);
4053 
4054 #ifdef BGE_EVENT_COUNTERS
4055 	/* Detach event counters. */
4056 	evcnt_detach(&sc->bge_ev_intr);
4057 	evcnt_detach(&sc->bge_ev_intr_spurious);
4058 	evcnt_detach(&sc->bge_ev_intr_spurious2);
4059 	evcnt_detach(&sc->bge_ev_tx_xoff);
4060 	evcnt_detach(&sc->bge_ev_tx_xon);
4061 	evcnt_detach(&sc->bge_ev_rx_xoff);
4062 	evcnt_detach(&sc->bge_ev_rx_xon);
4063 	evcnt_detach(&sc->bge_ev_rx_macctl);
4064 	evcnt_detach(&sc->bge_ev_xoffentered);
4065 #endif /* BGE_EVENT_COUNTERS */
4066 
4067 	/* Disestablish the interrupt handler */
4068 	if (sc->bge_intrhand != NULL) {
4069 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4070 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4071 		sc->bge_intrhand = NULL;
4072 	}
4073 
4074 	if (sc->bge_dmatag != NULL) {
4075 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4076 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4077 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4078 		    sizeof(struct bge_ring_data));
4079 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4080 		    sc->bge_ring_rseg);
4081 	}
4082 
4083 	/* Unmap the device registers */
4084 	if (sc->bge_bsize != 0) {
4085 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4086 		sc->bge_bsize = 0;
4087 	}
4088 
4089 	/* Unmap the APE registers */
4090 	if (sc->bge_apesize != 0) {
4091 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4092 		    sc->bge_apesize);
4093 		sc->bge_apesize = 0;
4094 	}
4095 }
4096 
4097 static int
4098 bge_reset(struct bge_softc *sc)
4099 {
4100 	uint32_t cachesize, command;
4101 	uint32_t reset, mac_mode, mac_mode_mask;
4102 	pcireg_t devctl, reg;
4103 	int i, val;
4104 	void (*write_op)(struct bge_softc *, int, int);
4105 
4106 	/* Make mask for BGE_MAC_MODE register. */
4107 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4108 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4109 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4110 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4111 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4112 
4113 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4114 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4115 		if (sc->bge_flags & BGEF_PCIE)
4116 			write_op = bge_writemem_direct;
4117 		else
4118 			write_op = bge_writemem_ind;
4119 	} else
4120 		write_op = bge_writereg_ind;
4121 
4122 	/* 57XX step 4 */
4123 	/* Acquire the NVM lock */
4124 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4125 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4126 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4127 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4128 		for (i = 0; i < 8000; i++) {
4129 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4130 			    BGE_NVRAMSWARB_GNT1)
4131 				break;
4132 			DELAY(20);
4133 		}
4134 		if (i == 8000) {
4135 			printf("%s: NVRAM lock timedout!\n",
4136 			    device_xname(sc->bge_dev));
4137 		}
4138 	}
4139 
4140 	/* Take APE lock when performing reset. */
4141 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4142 
4143 	/* 57XX step 3 */
4144 	/* Save some important PCI state. */
4145 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4146 	/* 5718 reset step 3 */
4147 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4148 
4149 	/* 5718 reset step 5, 57XX step 5b-5d */
4150 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4151 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4152 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4153 
4154 	/* XXX ???: Disable fastboot on controllers that support it. */
4155 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4156 	    BGE_IS_5755_PLUS(sc))
4157 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4158 
4159 	/* 5718 reset step 2, 57XX step 6 */
4160 	/*
4161 	 * Write the magic number to SRAM at offset 0xB50.
4162 	 * When firmware finishes its initialization it will
4163 	 * write ~BGE_MAGIC_NUMBER to the same location.
4164 	 */
4165 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4166 
4167 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4168 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4169 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4170 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4171 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4172 	}
4173 
4174 	/* 5718 reset step 6, 57XX step 7 */
4175 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4176 	/*
4177 	 * XXX: from FreeBSD/Linux; no documentation
4178 	 */
4179 	if (sc->bge_flags & BGEF_PCIE) {
4180 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4181 		    !BGE_IS_57765_PLUS(sc) &&
4182 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4183 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4184 			/* PCI Express 1.0 system */
4185 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4186 			    BGE_PHY_PCIE_SCRAM_MODE);
4187 		}
4188 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4189 			/*
4190 			 * Prevent PCI Express link training
4191 			 * during global reset.
4192 			 */
4193 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4194 			reset |= (1 << 29);
4195 		}
4196 	}
4197 
4198 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4199 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4200 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4201 		    i | BGE_VCPU_STATUS_DRV_RESET);
4202 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4203 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4204 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4205 	}
4206 
4207 	/*
4208 	 * Set GPHY Power Down Override to leave GPHY
4209 	 * powered up in D0 uninitialized.
4210 	 */
4211 	if (BGE_IS_5705_PLUS(sc) &&
4212 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4213 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4214 
4215 	/* Issue global reset */
4216 	write_op(sc, BGE_MISC_CFG, reset);
4217 
4218 	/* 5718 reset step 7, 57XX step 8 */
4219 	if (sc->bge_flags & BGEF_PCIE)
4220 		delay(100*1000); /* too big */
4221 	else
4222 		delay(1000);
4223 
4224 	if (sc->bge_flags & BGEF_PCIE) {
4225 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4226 			DELAY(500000);
4227 			/* XXX: Magic Numbers */
4228 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4229 			    BGE_PCI_UNKNOWN0);
4230 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4231 			    BGE_PCI_UNKNOWN0,
4232 			    reg | (1 << 15));
4233 		}
4234 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4235 		    sc->bge_pciecap + PCIE_DCSR);
4236 		/* Clear enable no snoop and disable relaxed ordering. */
4237 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4238 		    PCIE_DCSR_ENA_NO_SNOOP);
4239 
4240 		/* Set PCIE max payload size to 128 for older PCIe devices */
4241 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4242 			devctl &= ~(0x00e0);
4243 		/* Clear device status register. Write 1b to clear */
4244 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4245 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4246 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4247 		    sc->bge_pciecap + PCIE_DCSR, devctl);
4248 		bge_set_max_readrq(sc);
4249 	}
4250 
4251 	/* From Linux: dummy read to flush PCI posted writes */
4252 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4253 
4254 	/*
4255 	 * Reset some of the PCI state that got zapped by reset
4256 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4257 	 * set, too.
4258 	 */
4259 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4260 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4261 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4262 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4263 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4264 	    (sc->bge_flags & BGEF_PCIX) != 0)
4265 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4266 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4267 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4268 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4269 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4270 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4271 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4272 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4273 
4274 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
4275 	if (sc->bge_flags & BGEF_PCIX) {
4276 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4277 		    + PCIX_CMD);
4278 		/* Set max memory read byte count to 2K */
4279 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4280 			reg &= ~PCIX_CMD_BYTECNT_MASK;
4281 			reg |= PCIX_CMD_BCNT_2048;
4282 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4283 			/*
4284 			 * For 5704, set max outstanding split transaction
4285 			 * field to 0 (0 means it supports 1 request)
4286 			 */
4287 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
4288 			    | PCIX_CMD_BYTECNT_MASK);
4289 			reg |= PCIX_CMD_BCNT_2048;
4290 		}
4291 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4292 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4293 	}
4294 
4295 	/* 5718 reset step 10, 57XX step 12 */
4296 	/* Enable memory arbiter. */
4297 	if (BGE_IS_5714_FAMILY(sc)) {
4298 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4299 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4300 	} else
4301 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4302 
4303 	/* XXX 5721, 5751 and 5752 */
4304 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4305 		/* Step 19: */
4306 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4307 		/* Step 20: */
4308 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4309 	}
4310 
4311 	/* 5718 reset step 12, 57XX step 15 and 16 */
4312 	/* Fix up byte swapping */
4313 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4314 
4315 	/* 5718 reset step 13, 57XX step 17 */
4316 	/* Poll until the firmware initialization is complete */
4317 	bge_poll_fw(sc);
4318 
4319 	/* 57XX step 21 */
4320 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4321 		pcireg_t msidata;
4322 
4323 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4324 		    BGE_PCI_MSI_DATA);
4325 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4326 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4327 		    msidata);
4328 	}
4329 
4330 	/* 57XX step 18 */
4331 	/* Write mac mode. */
4332 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4333 	/* Restore mac_mode_mask's bits using mac_mode */
4334 	val = (val & ~mac_mode_mask) | mac_mode;
4335 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4336 	DELAY(40);
4337 
4338 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4339 
4340 	/*
4341 	 * The 5704 in TBI mode apparently needs some special
4342 	 * adjustment to insure the SERDES drive level is set
4343 	 * to 1.2V.
4344 	 */
4345 	if (sc->bge_flags & BGEF_FIBER_TBI &&
4346 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4347 		uint32_t serdescfg;
4348 
4349 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4350 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
4351 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4352 	}
4353 
4354 	if (sc->bge_flags & BGEF_PCIE &&
4355 	    !BGE_IS_57765_PLUS(sc) &&
4356 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4357 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4358 		uint32_t v;
4359 
4360 		/* Enable PCI Express bug fix */
4361 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4362 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4363 		    v | BGE_TLP_DATA_FIFO_PROTECT);
4364 	}
4365 
4366 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4367 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4368 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4369 
4370 	return 0;
4371 }
4372 
4373 /*
4374  * Frame reception handling. This is called if there's a frame
4375  * on the receive return list.
4376  *
4377  * Note: we have to be able to handle two possibilities here:
4378  * 1) the frame is from the jumbo receive ring
4379  * 2) the frame is from the standard receive ring
4380  */
4381 
4382 static void
4383 bge_rxeof(struct bge_softc *sc)
4384 {
4385 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4386 	uint16_t rx_prod, rx_cons;
4387 	int stdcnt = 0, jumbocnt = 0;
4388 	bus_dmamap_t dmamap;
4389 	bus_addr_t offset, toff;
4390 	bus_size_t tlen;
4391 	int tosync;
4392 
4393 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4394 	    offsetof(struct bge_ring_data, bge_status_block),
4395 	    sizeof(struct bge_status_block),
4396 	    BUS_DMASYNC_POSTREAD);
4397 
4398 	rx_cons = sc->bge_rx_saved_considx;
4399 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4400 
4401 	/* Nothing to do */
4402 	if (rx_cons == rx_prod)
4403 		return;
4404 
4405 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4406 	tosync = rx_prod - rx_cons;
4407 
4408 	if (tosync != 0)
4409 		rnd_add_uint32(&sc->rnd_source, tosync);
4410 
4411 	toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
4412 
4413 	if (tosync < 0) {
4414 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
4415 		    sizeof(struct bge_rx_bd);
4416 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4417 		    toff, tlen, BUS_DMASYNC_POSTREAD);
4418 		tosync = -tosync;
4419 	}
4420 
4421 	if (tosync != 0) {
4422 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4423 		    offset, tosync * sizeof(struct bge_rx_bd),
4424 		    BUS_DMASYNC_POSTREAD);
4425 	}
4426 
4427 	while (rx_cons != rx_prod) {
4428 		struct bge_rx_bd	*cur_rx;
4429 		uint32_t		rxidx;
4430 		struct mbuf		*m = NULL;
4431 
4432 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4433 
4434 		rxidx = cur_rx->bge_idx;
4435 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4436 
4437 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4438 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4439 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4440 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4441 			jumbocnt++;
4442 			bus_dmamap_sync(sc->bge_dmatag,
4443 			    sc->bge_cdata.bge_rx_jumbo_map,
4444 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4445 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
4446 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4447 				if_statinc(ifp, if_ierrors);
4448 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4449 				continue;
4450 			}
4451 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4452 					     NULL) == ENOBUFS) {
4453 				if_statinc(ifp, if_ierrors);
4454 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4455 				continue;
4456 			}
4457 		} else {
4458 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4459 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4460 
4461 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4462 			stdcnt++;
4463 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4464 			sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4465 			if (dmamap == NULL) {
4466 				if_statinc(ifp, if_ierrors);
4467 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4468 				continue;
4469 			}
4470 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4471 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4472 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
4473 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4474 				if_statinc(ifp, if_ierrors);
4475 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4476 				continue;
4477 			}
4478 			if (bge_newbuf_std(sc, sc->bge_std,
4479 			    NULL, dmamap) == ENOBUFS) {
4480 				if_statinc(ifp, if_ierrors);
4481 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4482 				continue;
4483 			}
4484 		}
4485 
4486 #ifndef __NO_STRICT_ALIGNMENT
4487 		/*
4488 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4489 		 * the Rx buffer has the layer-2 header unaligned.
4490 		 * If our CPU requires alignment, re-align by copying.
4491 		 */
4492 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4493 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4494 				cur_rx->bge_len);
4495 			m->m_data += ETHER_ALIGN;
4496 		}
4497 #endif
4498 
4499 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4500 		m_set_rcvif(m, ifp);
4501 
4502 		bge_rxcsum(sc, cur_rx, m);
4503 
4504 		/*
4505 		 * If we received a packet with a vlan tag, pass it
4506 		 * to vlan_input() instead of ether_input().
4507 		 */
4508 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4509 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
4510 
4511 		if_percpuq_enqueue(ifp->if_percpuq, m);
4512 	}
4513 
4514 	sc->bge_rx_saved_considx = rx_cons;
4515 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4516 	if (stdcnt)
4517 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4518 	if (jumbocnt)
4519 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4520 }
4521 
4522 static void
4523 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4524 {
4525 
4526 	if (BGE_IS_57765_PLUS(sc)) {
4527 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4528 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4529 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4530 			if ((cur_rx->bge_error_flag &
4531 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4532 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4533 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4534 				m->m_pkthdr.csum_data =
4535 				    cur_rx->bge_tcp_udp_csum;
4536 				m->m_pkthdr.csum_flags |=
4537 				    (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4538 			}
4539 		}
4540 	} else {
4541 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4542 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4543 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4544 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4545 		/*
4546 		 * Rx transport checksum-offload may also
4547 		 * have bugs with packets which, when transmitted,
4548 		 * were `runts' requiring padding.
4549 		 */
4550 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4551 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4552 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4553 			m->m_pkthdr.csum_data =
4554 			    cur_rx->bge_tcp_udp_csum;
4555 			m->m_pkthdr.csum_flags |=
4556 			    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4557 		}
4558 	}
4559 }
4560 
4561 static void
4562 bge_txeof(struct bge_softc *sc)
4563 {
4564 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4565 	struct bge_tx_bd *cur_tx = NULL;
4566 	struct txdmamap_pool_entry *dma;
4567 	bus_addr_t offset, toff;
4568 	bus_size_t tlen;
4569 	int tosync;
4570 	struct mbuf *m;
4571 
4572 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4573 	    offsetof(struct bge_ring_data, bge_status_block),
4574 	    sizeof(struct bge_status_block),
4575 	    BUS_DMASYNC_POSTREAD);
4576 
4577 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
4578 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4579 	    sc->bge_tx_saved_considx;
4580 
4581 	if (tosync != 0)
4582 		rnd_add_uint32(&sc->rnd_source, tosync);
4583 
4584 	toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
4585 
4586 	if (tosync < 0) {
4587 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4588 		    sizeof(struct bge_tx_bd);
4589 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4590 		    toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4591 		tosync = -tosync;
4592 	}
4593 
4594 	if (tosync != 0) {
4595 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4596 		    offset, tosync * sizeof(struct bge_tx_bd),
4597 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4598 	}
4599 
4600 	/*
4601 	 * Go through our tx ring and free mbufs for those
4602 	 * frames that have been sent.
4603 	 */
4604 	while (sc->bge_tx_saved_considx !=
4605 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4606 		uint32_t idx = sc->bge_tx_saved_considx;
4607 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4608 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4609 			if_statinc(ifp, if_opackets);
4610 		m = sc->bge_cdata.bge_tx_chain[idx];
4611 		if (m != NULL) {
4612 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4613 			dma = sc->txdma[idx];
4614 			if (dma->is_dma32) {
4615 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4616 				    0, dma->dmamap32->dm_mapsize,
4617 				    BUS_DMASYNC_POSTWRITE);
4618 				bus_dmamap_unload(
4619 				    sc->bge_dmatag32, dma->dmamap32);
4620 			} else {
4621 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4622 				    0, dma->dmamap->dm_mapsize,
4623 				    BUS_DMASYNC_POSTWRITE);
4624 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4625 			}
4626 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4627 			sc->txdma[idx] = NULL;
4628 
4629 			m_freem(m);
4630 		}
4631 		sc->bge_txcnt--;
4632 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4633 		ifp->if_timer = 0;
4634 	}
4635 
4636 	if (cur_tx != NULL)
4637 		ifp->if_flags &= ~IFF_OACTIVE;
4638 }
4639 
4640 static int
4641 bge_intr(void *xsc)
4642 {
4643 	struct bge_softc * const sc = xsc;
4644 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4645 	uint32_t pcistate, statusword, statustag;
4646 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4647 
4648 
4649 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4650 	if (BGE_IS_5717_PLUS(sc))
4651 		intrmask = 0;
4652 
4653 	/*
4654 	 * It is possible for the interrupt to arrive before
4655 	 * the status block is updated prior to the interrupt.
4656 	 * Reading the PCI State register will confirm whether the
4657 	 * interrupt is ours and will flush the status block.
4658 	 */
4659 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4660 
4661 	/* read status word from status block */
4662 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4663 	    offsetof(struct bge_ring_data, bge_status_block),
4664 	    sizeof(struct bge_status_block),
4665 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4666 	statusword = sc->bge_rdata->bge_status_block.bge_status;
4667 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4668 
4669 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4670 		if (sc->bge_lasttag == statustag &&
4671 		    (~pcistate & intrmask)) {
4672 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4673 			return 0;
4674 		}
4675 		sc->bge_lasttag = statustag;
4676 	} else {
4677 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
4678 		    !(~pcistate & intrmask)) {
4679 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4680 			return 0;
4681 		}
4682 		statustag = 0;
4683 	}
4684 	/* Ack interrupt and stop others from occurring. */
4685 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4686 	BGE_EVCNT_INCR(sc->bge_ev_intr);
4687 
4688 	/* clear status word */
4689 	sc->bge_rdata->bge_status_block.bge_status = 0;
4690 
4691 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4692 	    offsetof(struct bge_ring_data, bge_status_block),
4693 	    sizeof(struct bge_status_block),
4694 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4695 
4696 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4697 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4698 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4699 		bge_link_upd(sc);
4700 
4701 	if (ifp->if_flags & IFF_RUNNING) {
4702 		/* Check RX return ring producer/consumer */
4703 		bge_rxeof(sc);
4704 
4705 		/* Check TX ring producer/consumer */
4706 		bge_txeof(sc);
4707 	}
4708 
4709 	if (sc->bge_pending_rxintr_change) {
4710 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4711 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4712 
4713 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4714 		DELAY(10);
4715 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4716 
4717 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4718 		DELAY(10);
4719 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4720 
4721 		sc->bge_pending_rxintr_change = 0;
4722 	}
4723 	bge_handle_events(sc);
4724 
4725 	/* Re-enable interrupts. */
4726 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4727 
4728 	if (ifp->if_flags & IFF_RUNNING)
4729 		if_schedule_deferred_start(ifp);
4730 
4731 	return 1;
4732 }
4733 
4734 static void
4735 bge_asf_driver_up(struct bge_softc *sc)
4736 {
4737 	if (sc->bge_asf_mode & ASF_STACKUP) {
4738 		/* Send ASF heartbeat aprox. every 2s */
4739 		if (sc->bge_asf_count)
4740 			sc->bge_asf_count --;
4741 		else {
4742 			sc->bge_asf_count = 2;
4743 
4744 			bge_wait_for_event_ack(sc);
4745 
4746 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4747 			    BGE_FW_CMD_DRV_ALIVE3);
4748 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4749 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4750 			    BGE_FW_HB_TIMEOUT_SEC);
4751 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4752 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4753 			    BGE_RX_CPU_DRV_EVENT);
4754 		}
4755 	}
4756 }
4757 
4758 static void
4759 bge_tick(void *xsc)
4760 {
4761 	struct bge_softc * const sc = xsc;
4762 	struct mii_data * const mii = &sc->bge_mii;
4763 	int s;
4764 
4765 	s = splnet();
4766 
4767 	if (BGE_IS_5705_PLUS(sc))
4768 		bge_stats_update_regs(sc);
4769 	else
4770 		bge_stats_update(sc);
4771 
4772 	if (sc->bge_flags & BGEF_FIBER_TBI) {
4773 		/*
4774 		 * Since in TBI mode auto-polling can't be used we should poll
4775 		 * link status manually. Here we register pending link event
4776 		 * and trigger interrupt.
4777 		 */
4778 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4779 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4780 	} else {
4781 		/*
4782 		 * Do not touch PHY if we have link up. This could break
4783 		 * IPMI/ASF mode or produce extra input errors.
4784 		 * (extra input errors was reported for bcm5701 & bcm5704).
4785 		 */
4786 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4787 			mii_tick(mii);
4788 	}
4789 
4790 	bge_asf_driver_up(sc);
4791 
4792 	if (!sc->bge_detaching)
4793 		callout_schedule(&sc->bge_timeout, hz);
4794 
4795 	splx(s);
4796 }
4797 
4798 static void
4799 bge_stats_update_regs(struct bge_softc *sc)
4800 {
4801 	struct ifnet *const ifp = &sc->ethercom.ec_if;
4802 
4803 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4804 
4805 	if_statadd_ref(nsr, if_collisions,
4806 	    CSR_READ_4(sc, BGE_MAC_STATS +
4807 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4808 
4809 	/*
4810 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4811 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4812 	 * (silicon bug). There's no reliable workaround so just
4813 	 * ignore the counter
4814 	 */
4815 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4816 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4817 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4818 		if_statadd_ref(nsr, if_ierrors,
4819 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4820 	}
4821 	if_statadd_ref(nsr, if_ierrors,
4822 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4823 	if_statadd_ref(nsr, if_ierrors,
4824 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4825 
4826 	IF_STAT_PUTREF(ifp);
4827 
4828 	if (sc->bge_flags & BGEF_RDMA_BUG) {
4829 		uint32_t val, ucast, mcast, bcast;
4830 
4831 		ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4832 		    offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4833 		mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4834 		    offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4835 		bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4836 		    offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4837 
4838 		/*
4839 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4840 		 * frames, it's safe to disable workaround for DMA engine's
4841 		 * miscalculation of TXMBUF space.
4842 		 */
4843 		if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4844 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4845 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4846 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4847 			else
4848 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4849 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4850 			sc->bge_flags &= ~BGEF_RDMA_BUG;
4851 		}
4852 	}
4853 }
4854 
4855 static void
4856 bge_stats_update(struct bge_softc *sc)
4857 {
4858 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4859 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4860 
4861 #define READ_STAT(sc, stats, stat) \
4862 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4863 
4864 	uint64_t collisions =
4865 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4866 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4867 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4868 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4869 
4870 	if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4871 	sc->bge_if_collisions = collisions;
4872 
4873 
4874 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4875 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4876 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4877 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4878 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4879 		      READ_STAT(sc, stats,
4880 				xoffPauseFramesReceived.bge_addr_lo));
4881 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4882 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4883 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4884 		      READ_STAT(sc, stats,
4885 				macControlFramesReceived.bge_addr_lo));
4886 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4887 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4888 
4889 #undef READ_STAT
4890 
4891 #ifdef notdef
4892 	ifp->if_collisions +=
4893 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4894 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4895 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4896 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4897 	   ifp->if_collisions;
4898 #endif
4899 }
4900 
4901 /*
4902  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4903  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4904  * but when such padded frames employ the  bge IP/TCP checksum offload,
4905  * the hardware checksum assist gives incorrect results (possibly
4906  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4907  * If we pad such runts with zeros, the onboard checksum comes out correct.
4908  */
4909 static inline int
4910 bge_cksum_pad(struct mbuf *pkt)
4911 {
4912 	struct mbuf *last = NULL;
4913 	int padlen;
4914 
4915 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4916 
4917 	/* if there's only the packet-header and we can pad there, use it. */
4918 	if (pkt->m_pkthdr.len == pkt->m_len &&
4919 	    M_TRAILINGSPACE(pkt) >= padlen) {
4920 		last = pkt;
4921 	} else {
4922 		/*
4923 		 * Walk packet chain to find last mbuf. We will either
4924 		 * pad there, or append a new mbuf and pad it
4925 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
4926 		 */
4927 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
4928 			continue; /* do nothing */
4929 		}
4930 
4931 		/* `last' now points to last in chain. */
4932 		if (M_TRAILINGSPACE(last) < padlen) {
4933 			/* Allocate new empty mbuf, pad it. Compact later. */
4934 			struct mbuf *n;
4935 			MGET(n, M_DONTWAIT, MT_DATA);
4936 			if (n == NULL)
4937 				return ENOBUFS;
4938 			n->m_len = 0;
4939 			last->m_next = n;
4940 			last = n;
4941 		}
4942 	}
4943 
4944 	KDASSERT(!M_READONLY(last));
4945 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4946 
4947 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
4948 	memset(mtod(last, char *) + last->m_len, 0, padlen);
4949 	last->m_len += padlen;
4950 	pkt->m_pkthdr.len += padlen;
4951 	return 0;
4952 }
4953 
4954 /*
4955  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4956  */
4957 static inline int
4958 bge_compact_dma_runt(struct mbuf *pkt)
4959 {
4960 	struct mbuf	*m, *prev;
4961 	int		totlen;
4962 
4963 	prev = NULL;
4964 	totlen = 0;
4965 
4966 	for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4967 		int mlen = m->m_len;
4968 		int shortfall = 8 - mlen ;
4969 
4970 		totlen += mlen;
4971 		if (mlen == 0)
4972 			continue;
4973 		if (mlen >= 8)
4974 			continue;
4975 
4976 		/*
4977 		 * If we get here, mbuf data is too small for DMA engine.
4978 		 * Try to fix by shuffling data to prev or next in chain.
4979 		 * If that fails, do a compacting deep-copy of the whole chain.
4980 		 */
4981 
4982 		/* Internal frag. If fits in prev, copy it there. */
4983 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4984 			memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4985 			prev->m_len += mlen;
4986 			m->m_len = 0;
4987 			/* XXX stitch chain */
4988 			prev->m_next = m_free(m);
4989 			m = prev;
4990 			continue;
4991 		} else if (m->m_next != NULL &&
4992 			    M_TRAILINGSPACE(m) >= shortfall &&
4993 			    m->m_next->m_len >= (8 + shortfall)) {
4994 		    /* m is writable and have enough data in next, pull up. */
4995 
4996 			memcpy(m->m_data + m->m_len, m->m_next->m_data,
4997 			    shortfall);
4998 			m->m_len += shortfall;
4999 			m->m_next->m_len -= shortfall;
5000 			m->m_next->m_data += shortfall;
5001 		} else if (m->m_next == NULL || 1) {
5002 			/*
5003 			 * Got a runt at the very end of the packet.
5004 			 * borrow data from the tail of the preceding mbuf and
5005 			 * update its length in-place. (The original data is
5006 			 * still valid, so we can do this even if prev is not
5007 			 * writable.)
5008 			 */
5009 
5010 			/*
5011 			 * If we'd make prev a runt, just move all of its data.
5012 			 */
5013 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5014 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5015 
5016 			if ((prev->m_len - shortfall) < 8)
5017 				shortfall = prev->m_len;
5018 
5019 #ifdef notyet	/* just do the safe slow thing for now */
5020 			if (!M_READONLY(m)) {
5021 				if (M_LEADINGSPACE(m) < shorfall) {
5022 					void *m_dat;
5023 					m_dat = M_BUFADDR(m);
5024 					memmove(m_dat, mtod(m, void*),
5025 					    m->m_len);
5026 					m->m_data = m_dat;
5027 				}
5028 			} else
5029 #endif	/* just do the safe slow thing */
5030 			{
5031 				struct mbuf * n = NULL;
5032 				int newprevlen = prev->m_len - shortfall;
5033 
5034 				MGET(n, M_NOWAIT, MT_DATA);
5035 				if (n == NULL)
5036 				   return ENOBUFS;
5037 				KASSERT(m->m_len + shortfall < MLEN
5038 					/*,
5039 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5040 
5041 				/* first copy the data we're stealing from prev */
5042 				memcpy(n->m_data, prev->m_data + newprevlen,
5043 				    shortfall);
5044 
5045 				/* update prev->m_len accordingly */
5046 				prev->m_len -= shortfall;
5047 
5048 				/* copy data from runt m */
5049 				memcpy(n->m_data + shortfall, m->m_data,
5050 				    m->m_len);
5051 
5052 				/* n holds what we stole from prev, plus m */
5053 				n->m_len = shortfall + m->m_len;
5054 
5055 				/* stitch n into chain and free m */
5056 				n->m_next = m->m_next;
5057 				prev->m_next = n;
5058 				/* KASSERT(m->m_next == NULL); */
5059 				m->m_next = NULL;
5060 				m_free(m);
5061 				m = n;	/* for continuing loop */
5062 			}
5063 		}
5064 	}
5065 	return 0;
5066 }
5067 
5068 /*
5069  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5070  * pointers to descriptors.
5071  */
5072 static int
5073 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5074 {
5075 	struct ifnet * const ifp = &sc->ethercom.ec_if;
5076 	struct bge_tx_bd	*f, *prev_f;
5077 	uint32_t		frag, cur;
5078 	uint16_t		csum_flags = 0;
5079 	uint16_t		txbd_tso_flags = 0;
5080 	struct txdmamap_pool_entry *dma;
5081 	bus_dmamap_t dmamap;
5082 	bus_dma_tag_t dmatag;
5083 	int			i = 0;
5084 	int			use_tso, maxsegsize, error;
5085 	bool			have_vtag;
5086 	uint16_t		vtag;
5087 	bool			remap;
5088 
5089 	if (m_head->m_pkthdr.csum_flags) {
5090 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5091 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5092 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5093 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5094 	}
5095 
5096 	/*
5097 	 * If we were asked to do an outboard checksum, and the NIC
5098 	 * has the bug where it sometimes adds in the Ethernet padding,
5099 	 * explicitly pad with zeros so the cksum will be correct either way.
5100 	 * (For now, do this for all chip versions, until newer
5101 	 * are confirmed to not require the workaround.)
5102 	 */
5103 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5104 #ifdef notyet
5105 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5106 #endif
5107 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5108 		goto check_dma_bug;
5109 
5110 	if (bge_cksum_pad(m_head) != 0)
5111 		return ENOBUFS;
5112 
5113 check_dma_bug:
5114 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5115 		goto doit;
5116 
5117 	/*
5118 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5119 	 * less than eight bytes.  If we encounter a teeny mbuf
5120 	 * at the end of a chain, we can pad.  Otherwise, copy.
5121 	 */
5122 	if (bge_compact_dma_runt(m_head) != 0)
5123 		return ENOBUFS;
5124 
5125 doit:
5126 	dma = SLIST_FIRST(&sc->txdma_list);
5127 	if (dma == NULL) {
5128 		ifp->if_flags |= IFF_OACTIVE;
5129 		return ENOBUFS;
5130 	}
5131 	dmamap = dma->dmamap;
5132 	dmatag = sc->bge_dmatag;
5133 	dma->is_dma32 = false;
5134 
5135 	/*
5136 	 * Set up any necessary TSO state before we start packing...
5137 	 */
5138 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5139 	if (!use_tso) {
5140 		maxsegsize = 0;
5141 	} else {	/* TSO setup */
5142 		unsigned  mss;
5143 		struct ether_header *eh;
5144 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5145 		unsigned bge_hlen;
5146 		struct mbuf * m0 = m_head;
5147 		struct ip *ip;
5148 		struct tcphdr *th;
5149 		int iphl, hlen;
5150 
5151 		/*
5152 		 * XXX It would be nice if the mbuf pkthdr had offset
5153 		 * fields for the protocol headers.
5154 		 */
5155 
5156 		eh = mtod(m0, struct ether_header *);
5157 		switch (htons(eh->ether_type)) {
5158 		case ETHERTYPE_IP:
5159 			offset = ETHER_HDR_LEN;
5160 			break;
5161 
5162 		case ETHERTYPE_VLAN:
5163 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5164 			break;
5165 
5166 		default:
5167 			/*
5168 			 * Don't support this protocol or encapsulation.
5169 			 */
5170 			return ENOBUFS;
5171 		}
5172 
5173 		/*
5174 		 * TCP/IP headers are in the first mbuf; we can do
5175 		 * this the easy way.
5176 		 */
5177 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5178 		hlen = iphl + offset;
5179 		if (__predict_false(m0->m_len <
5180 				    (hlen + sizeof(struct tcphdr)))) {
5181 
5182 			aprint_error_dev(sc->bge_dev,
5183 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5184 			    "not handled yet\n",
5185 			    m0->m_len, hlen+ sizeof(struct tcphdr));
5186 #ifdef NOTYET
5187 			/*
5188 			 * XXX jonathan@NetBSD.org: untested.
5189 			 * how to force this branch to be taken?
5190 			 */
5191 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5192 
5193 			m_copydata(m0, offset, sizeof(ip), &ip);
5194 			m_copydata(m0, hlen, sizeof(th), &th);
5195 
5196 			ip.ip_len = 0;
5197 
5198 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5199 			    sizeof(ip.ip_len), &ip.ip_len);
5200 
5201 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5202 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5203 
5204 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5205 			    sizeof(th.th_sum), &th.th_sum);
5206 
5207 			hlen += th.th_off << 2;
5208 			iptcp_opt_words	= hlen;
5209 #else
5210 			/*
5211 			 * if_wm "hard" case not yet supported, can we not
5212 			 * mandate it out of existence?
5213 			 */
5214 			(void) ip; (void)th; (void) ip_tcp_hlen;
5215 
5216 			return ENOBUFS;
5217 #endif
5218 		} else {
5219 			ip = (struct ip *) (mtod(m0, char *) + offset);
5220 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5221 			ip_tcp_hlen = iphl +  (th->th_off << 2);
5222 
5223 			/* Total IP/TCP options, in 32-bit words */
5224 			iptcp_opt_words = (ip_tcp_hlen
5225 					   - sizeof(struct tcphdr)
5226 					   - sizeof(struct ip)) >> 2;
5227 		}
5228 		if (BGE_IS_575X_PLUS(sc)) {
5229 			th->th_sum = 0;
5230 			csum_flags = 0;
5231 		} else {
5232 			/*
5233 			 * XXX jonathan@NetBSD.org: 5705 untested.
5234 			 * Requires TSO firmware patch for 5701/5703/5704.
5235 			 */
5236 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5237 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5238 		}
5239 
5240 		mss = m_head->m_pkthdr.segsz;
5241 		txbd_tso_flags |=
5242 		    BGE_TXBDFLAG_CPU_PRE_DMA |
5243 		    BGE_TXBDFLAG_CPU_POST_DMA;
5244 
5245 		/*
5246 		 * Our NIC TSO-assist assumes TSO has standard, optionless
5247 		 * IPv4 and TCP headers, which total 40 bytes. By default,
5248 		 * the NIC copies 40 bytes of IP/TCP header from the
5249 		 * supplied header into the IP/TCP header portion of
5250 		 * each post-TSO-segment. If the supplied packet has IP or
5251 		 * TCP options, we need to tell the NIC to copy those extra
5252 		 * bytes into each  post-TSO header, in addition to the normal
5253 		 * 40-byte IP/TCP header (and to leave space accordingly).
5254 		 * Unfortunately, the driver encoding of option length
5255 		 * varies across different ASIC families.
5256 		 */
5257 		tcp_seg_flags = 0;
5258 		bge_hlen = ip_tcp_hlen >> 2;
5259 		if (BGE_IS_5717_PLUS(sc)) {
5260 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
5261 			txbd_tso_flags |=
5262 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5263 		} else if (BGE_IS_5705_PLUS(sc)) {
5264 			tcp_seg_flags = bge_hlen << 11;
5265 		} else {
5266 			/* XXX iptcp_opt_words or bge_hlen ? */
5267 			txbd_tso_flags |= iptcp_opt_words << 12;
5268 		}
5269 		maxsegsize = mss | tcp_seg_flags;
5270 		ip->ip_len = htons(mss + ip_tcp_hlen);
5271 		ip->ip_sum = 0;
5272 
5273 	}	/* TSO setup */
5274 
5275 	have_vtag = vlan_has_tag(m_head);
5276 	if (have_vtag)
5277 		vtag = vlan_get_tag(m_head);
5278 
5279 	/*
5280 	 * Start packing the mbufs in this chain into
5281 	 * the fragment pointers. Stop when we run out
5282 	 * of fragments or hit the end of the mbuf chain.
5283 	 */
5284 	remap = true;
5285 load_again:
5286 	error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5287 	if (__predict_false(error)) {
5288 		if (error == EFBIG && remap) {
5289 			struct mbuf *m;
5290 			remap = false;
5291 			m = m_defrag(m_head, M_NOWAIT);
5292 			if (m != NULL) {
5293 				KASSERT(m == m_head);
5294 				goto load_again;
5295 			}
5296 		}
5297 		return error;
5298 	}
5299 	/*
5300 	 * Sanity check: avoid coming within 16 descriptors
5301 	 * of the end of the ring.
5302 	 */
5303 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5304 		BGE_TSO_PRINTF(("%s: "
5305 		    " dmamap_load_mbuf too close to ring wrap\n",
5306 		    device_xname(sc->bge_dev)));
5307 		goto fail_unload;
5308 	}
5309 
5310 	/* Iterate over dmap-map fragments. */
5311 	f = prev_f = NULL;
5312 	cur = frag = *txidx;
5313 
5314 	for (i = 0; i < dmamap->dm_nsegs; i++) {
5315 		f = &sc->bge_rdata->bge_tx_ring[frag];
5316 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5317 			break;
5318 
5319 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5320 		f->bge_len = dmamap->dm_segs[i].ds_len;
5321 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5322 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5323 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5324 		    (prev_f != NULL &&
5325 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5326 		   ) {
5327 			/*
5328 			 * watchdog timeout issue was observed with TSO,
5329 			 * limiting DMA address space to 32bits seems to
5330 			 * address the issue.
5331 			 */
5332 			bus_dmamap_unload(dmatag, dmamap);
5333 			dmatag = sc->bge_dmatag32;
5334 			dmamap = dma->dmamap32;
5335 			dma->is_dma32 = true;
5336 			remap = true;
5337 			goto load_again;
5338 		}
5339 
5340 		/*
5341 		 * For 5751 and follow-ons, for TSO we must turn
5342 		 * off checksum-assist flag in the tx-descr, and
5343 		 * supply the ASIC-revision-specific encoding
5344 		 * of TSO flags and segsize.
5345 		 */
5346 		if (use_tso) {
5347 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
5348 				f->bge_rsvd = maxsegsize;
5349 				f->bge_flags = csum_flags | txbd_tso_flags;
5350 			} else {
5351 				f->bge_rsvd = 0;
5352 				f->bge_flags =
5353 				  (csum_flags | txbd_tso_flags) & 0x0fff;
5354 			}
5355 		} else {
5356 			f->bge_rsvd = 0;
5357 			f->bge_flags = csum_flags;
5358 		}
5359 
5360 		if (have_vtag) {
5361 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5362 			f->bge_vlan_tag = vtag;
5363 		} else {
5364 			f->bge_vlan_tag = 0;
5365 		}
5366 		prev_f = f;
5367 		cur = frag;
5368 		BGE_INC(frag, BGE_TX_RING_CNT);
5369 	}
5370 
5371 	if (i < dmamap->dm_nsegs) {
5372 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5373 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5374 		goto fail_unload;
5375 	}
5376 
5377 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5378 	    BUS_DMASYNC_PREWRITE);
5379 
5380 	if (frag == sc->bge_tx_saved_considx) {
5381 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5382 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5383 
5384 		goto fail_unload;
5385 	}
5386 
5387 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5388 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
5389 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5390 	sc->txdma[cur] = dma;
5391 	sc->bge_txcnt += dmamap->dm_nsegs;
5392 
5393 	*txidx = frag;
5394 
5395 	return 0;
5396 
5397 fail_unload:
5398 	bus_dmamap_unload(dmatag, dmamap);
5399 	ifp->if_flags |= IFF_OACTIVE;
5400 
5401 	return ENOBUFS;
5402 }
5403 
5404 /*
5405  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5406  * to the mbuf data regions directly in the transmit descriptors.
5407  */
5408 static void
5409 bge_start(struct ifnet *ifp)
5410 {
5411 	struct bge_softc * const sc = ifp->if_softc;
5412 	struct mbuf *m_head = NULL;
5413 	struct mbuf *m;
5414 	uint32_t prodidx;
5415 	int pkts = 0;
5416 	int error;
5417 
5418 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5419 		return;
5420 
5421 	prodidx = sc->bge_tx_prodidx;
5422 
5423 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5424 		IFQ_POLL(&ifp->if_snd, m_head);
5425 		if (m_head == NULL)
5426 			break;
5427 
5428 #if 0
5429 		/*
5430 		 * XXX
5431 		 * safety overkill.  If this is a fragmented packet chain
5432 		 * with delayed TCP/UDP checksums, then only encapsulate
5433 		 * it if we have enough descriptors to handle the entire
5434 		 * chain at once.
5435 		 * (paranoia -- may not actually be needed)
5436 		 */
5437 		if (m_head->m_flags & M_FIRSTFRAG &&
5438 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5439 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5440 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5441 				ifp->if_flags |= IFF_OACTIVE;
5442 				break;
5443 			}
5444 		}
5445 #endif
5446 
5447 		/*
5448 		 * Pack the data into the transmit ring. If we
5449 		 * don't have room, set the OACTIVE flag and wait
5450 		 * for the NIC to drain the ring.
5451 		 */
5452 		error = bge_encap(sc, m_head, &prodidx);
5453 		if (__predict_false(error)) {
5454 			if (ifp->if_flags & IFF_OACTIVE) {
5455 				/* just wait for the transmit ring to drain */
5456 				break;
5457 			}
5458 			IFQ_DEQUEUE(&ifp->if_snd, m);
5459 			KASSERT(m == m_head);
5460 			m_freem(m_head);
5461 			continue;
5462 		}
5463 
5464 		/* now we are committed to transmit the packet */
5465 		IFQ_DEQUEUE(&ifp->if_snd, m);
5466 		KASSERT(m == m_head);
5467 		pkts++;
5468 
5469 		/*
5470 		 * If there's a BPF listener, bounce a copy of this frame
5471 		 * to him.
5472 		 */
5473 		bpf_mtap(ifp, m_head, BPF_D_OUT);
5474 	}
5475 	if (pkts == 0)
5476 		return;
5477 
5478 	/* Transmit */
5479 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5480 	/* 5700 b2 errata */
5481 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5482 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5483 
5484 	sc->bge_tx_prodidx = prodidx;
5485 
5486 	/*
5487 	 * Set a timeout in case the chip goes out to lunch.
5488 	 */
5489 	ifp->if_timer = 5;
5490 }
5491 
5492 static int
5493 bge_init(struct ifnet *ifp)
5494 {
5495 	struct bge_softc * const sc = ifp->if_softc;
5496 	const uint16_t *m;
5497 	uint32_t mode, reg;
5498 	int s, error = 0;
5499 
5500 	s = splnet();
5501 
5502 	KASSERT(ifp == &sc->ethercom.ec_if);
5503 
5504 	/* Cancel pending I/O and flush buffers. */
5505 	bge_stop(ifp, 0);
5506 
5507 	bge_stop_fw(sc);
5508 	bge_sig_pre_reset(sc, BGE_RESET_START);
5509 	bge_reset(sc);
5510 	bge_sig_legacy(sc, BGE_RESET_START);
5511 
5512 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5513 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5514 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5515 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
5516 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5517 
5518 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5519 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5520 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5521 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5522 
5523 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5524 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5525 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5526 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5527 
5528 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5529 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5530 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5531 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5532 	}
5533 
5534 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5535 		pcireg_t aercap;
5536 
5537 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5538 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5539 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
5540 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5541 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5542 
5543 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5544 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5545 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
5546 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5547 
5548 		/* Clear correctable error */
5549 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5550 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
5551 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5552 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
5553 
5554 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5555 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5556 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5557 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5558 	}
5559 
5560 	bge_sig_post_reset(sc, BGE_RESET_START);
5561 
5562 	bge_chipinit(sc);
5563 
5564 	/*
5565 	 * Init the various state machines, ring
5566 	 * control blocks and firmware.
5567 	 */
5568 	error = bge_blockinit(sc);
5569 	if (error != 0) {
5570 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5571 		    error);
5572 		splx(s);
5573 		return error;
5574 	}
5575 
5576 	/* 5718 step 25, 57XX step 54 */
5577 	/* Specify MTU. */
5578 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5579 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5580 
5581 	/* 5718 step 23 */
5582 	/* Load our MAC address. */
5583 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5584 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5585 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5586 	    ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5587 
5588 	/* Enable or disable promiscuous mode as needed. */
5589 	if (ifp->if_flags & IFF_PROMISC)
5590 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5591 	else
5592 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5593 
5594 	/* Program multicast filter. */
5595 	bge_setmulti(sc);
5596 
5597 	/* Init RX ring. */
5598 	bge_init_rx_ring_std(sc);
5599 
5600 	/*
5601 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5602 	 * memory to insure that the chip has in fact read the first
5603 	 * entry of the ring.
5604 	 */
5605 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5606 		uint32_t		v, i;
5607 		for (i = 0; i < 10; i++) {
5608 			DELAY(20);
5609 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5610 			if (v == (MCLBYTES - ETHER_ALIGN))
5611 				break;
5612 		}
5613 		if (i == 10)
5614 			aprint_error_dev(sc->bge_dev,
5615 			    "5705 A0 chip failed to load RX ring\n");
5616 	}
5617 
5618 	/* Init jumbo RX ring. */
5619 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5620 		bge_init_rx_ring_jumbo(sc);
5621 
5622 	/* Init our RX return ring index */
5623 	sc->bge_rx_saved_considx = 0;
5624 
5625 	/* Init TX ring. */
5626 	bge_init_tx_ring(sc);
5627 
5628 	/* 5718 step 63, 57XX step 94 */
5629 	/* Enable TX MAC state machine lockup fix. */
5630 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5631 	if (BGE_IS_5755_PLUS(sc) ||
5632 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5633 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5634 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5635 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5636 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5637 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5638 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5639 	}
5640 
5641 	/* Turn on transmitter */
5642 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5643 	/* 5718 step 64 */
5644 	DELAY(100);
5645 
5646 	/* 5718 step 65, 57XX step 95 */
5647 	/* Turn on receiver */
5648 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5649 	if (BGE_IS_5755_PLUS(sc))
5650 		mode |= BGE_RXMODE_IPV6_ENABLE;
5651 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5652 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5653 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5654 	/* 5718 step 66 */
5655 	DELAY(10);
5656 
5657 	/* 5718 step 12, 57XX step 37 */
5658 	/*
5659 	 * XXX Doucments of 5718 series and 577xx say the recommended value
5660 	 * is 1, but tg3 set 1 only on 57765 series.
5661 	 */
5662 	if (BGE_IS_57765_PLUS(sc))
5663 		reg = 1;
5664 	else
5665 		reg = 2;
5666 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5667 
5668 	/* Tell firmware we're alive. */
5669 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5670 
5671 	/* Enable host interrupts. */
5672 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5673 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5674 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5675 
5676 	if ((error = bge_ifmedia_upd(ifp)) != 0)
5677 		goto out;
5678 
5679 	ifp->if_flags |= IFF_RUNNING;
5680 	ifp->if_flags &= ~IFF_OACTIVE;
5681 
5682 	callout_schedule(&sc->bge_timeout, hz);
5683 
5684 out:
5685 	sc->bge_if_flags = ifp->if_flags;
5686 	splx(s);
5687 
5688 	return error;
5689 }
5690 
5691 /*
5692  * Set media options.
5693  */
5694 static int
5695 bge_ifmedia_upd(struct ifnet *ifp)
5696 {
5697 	struct bge_softc * const sc = ifp->if_softc;
5698 	struct mii_data * const mii = &sc->bge_mii;
5699 	struct ifmedia * const ifm = &sc->bge_ifmedia;
5700 	int rc;
5701 
5702 	/* If this is a 1000baseX NIC, enable the TBI port. */
5703 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5704 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5705 			return EINVAL;
5706 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
5707 		case IFM_AUTO:
5708 			/*
5709 			 * The BCM5704 ASIC appears to have a special
5710 			 * mechanism for programming the autoneg
5711 			 * advertisement registers in TBI mode.
5712 			 */
5713 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5714 				uint32_t sgdig;
5715 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5716 				if (sgdig & BGE_SGDIGSTS_DONE) {
5717 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5718 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5719 					sgdig |= BGE_SGDIGCFG_AUTO |
5720 					    BGE_SGDIGCFG_PAUSE_CAP |
5721 					    BGE_SGDIGCFG_ASYM_PAUSE;
5722 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5723 					    sgdig | BGE_SGDIGCFG_SEND);
5724 					DELAY(5);
5725 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5726 					    sgdig);
5727 				}
5728 			}
5729 			break;
5730 		case IFM_1000_SX:
5731 			if ((ifm->ifm_media & IFM_FDX) != 0) {
5732 				BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5733 				    BGE_MACMODE_HALF_DUPLEX);
5734 			} else {
5735 				BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5736 				    BGE_MACMODE_HALF_DUPLEX);
5737 			}
5738 			DELAY(40);
5739 			break;
5740 		default:
5741 			return EINVAL;
5742 		}
5743 		/* XXX 802.3x flow control for 1000BASE-SX */
5744 		return 0;
5745 	}
5746 
5747 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5748 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5749 		uint32_t reg;
5750 
5751 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5752 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5753 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5754 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5755 		}
5756 	}
5757 
5758 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5759 	if ((rc = mii_mediachg(mii)) == ENXIO)
5760 		return 0;
5761 
5762 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5763 		uint32_t reg;
5764 
5765 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5766 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5767 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5768 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5769 			delay(40);
5770 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5771 		}
5772 	}
5773 
5774 	/*
5775 	 * Force an interrupt so that we will call bge_link_upd
5776 	 * if needed and clear any pending link state attention.
5777 	 * Without this we are not getting any further interrupts
5778 	 * for link state changes and thus will not UP the link and
5779 	 * not be able to send in bge_start. The only way to get
5780 	 * things working was to receive a packet and get a RX intr.
5781 	 */
5782 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5783 	    sc->bge_flags & BGEF_IS_5788)
5784 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5785 	else
5786 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5787 
5788 	return rc;
5789 }
5790 
5791 /*
5792  * Report current media status.
5793  */
5794 static void
5795 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5796 {
5797 	struct bge_softc * const sc = ifp->if_softc;
5798 	struct mii_data * const mii = &sc->bge_mii;
5799 
5800 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5801 		ifmr->ifm_status = IFM_AVALID;
5802 		ifmr->ifm_active = IFM_ETHER;
5803 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5804 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5805 			ifmr->ifm_status |= IFM_ACTIVE;
5806 		ifmr->ifm_active |= IFM_1000_SX;
5807 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5808 			ifmr->ifm_active |= IFM_HDX;
5809 		else
5810 			ifmr->ifm_active |= IFM_FDX;
5811 		return;
5812 	}
5813 
5814 	mii_pollstat(mii);
5815 	ifmr->ifm_status = mii->mii_media_status;
5816 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5817 	    sc->bge_flowflags;
5818 }
5819 
5820 static int
5821 bge_ifflags_cb(struct ethercom *ec)
5822 {
5823 	struct ifnet * const ifp = &ec->ec_if;
5824 	struct bge_softc * const sc = ifp->if_softc;
5825 	u_short change = ifp->if_flags ^ sc->bge_if_flags;
5826 
5827 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5828 		return ENETRESET;
5829 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5830 		return 0;
5831 
5832 	if ((ifp->if_flags & IFF_PROMISC) == 0)
5833 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5834 	else
5835 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5836 
5837 	bge_setmulti(sc);
5838 
5839 	sc->bge_if_flags = ifp->if_flags;
5840 	return 0;
5841 }
5842 
5843 static int
5844 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5845 {
5846 	struct bge_softc * const sc = ifp->if_softc;
5847 	struct ifreq * const ifr = (struct ifreq *) data;
5848 	int s, error = 0;
5849 	struct mii_data *mii;
5850 
5851 	s = splnet();
5852 
5853 	switch (command) {
5854 	case SIOCSIFMEDIA:
5855 		/* XXX Flow control is not supported for 1000BASE-SX */
5856 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5857 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5858 			sc->bge_flowflags = 0;
5859 		}
5860 
5861 		/* Flow control requires full-duplex mode. */
5862 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5863 		    (ifr->ifr_media & IFM_FDX) == 0) {
5864 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5865 		}
5866 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5867 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5868 				/* We can do both TXPAUSE and RXPAUSE. */
5869 				ifr->ifr_media |=
5870 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5871 			}
5872 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5873 		}
5874 
5875 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5876 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5877 			    command);
5878 		} else {
5879 			mii = &sc->bge_mii;
5880 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5881 			    command);
5882 		}
5883 		break;
5884 	default:
5885 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5886 			break;
5887 
5888 		error = 0;
5889 
5890 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5891 			;
5892 		else if (ifp->if_flags & IFF_RUNNING)
5893 			bge_setmulti(sc);
5894 		break;
5895 	}
5896 
5897 	splx(s);
5898 
5899 	return error;
5900 }
5901 
5902 static void
5903 bge_watchdog(struct ifnet *ifp)
5904 {
5905 	struct bge_softc * const sc = ifp->if_softc;
5906 	uint32_t status;
5907 
5908 	/* If pause frames are active then don't reset the hardware. */
5909 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5910 		status = CSR_READ_4(sc, BGE_RX_STS);
5911 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5912 			/*
5913 			 * If link partner has us in XOFF state then wait for
5914 			 * the condition to clear.
5915 			 */
5916 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5917 			ifp->if_timer = 5;
5918 			return;
5919 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5920 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5921 			/*
5922 			 * If link partner has us in XOFF state then wait for
5923 			 * the condition to clear.
5924 			 */
5925 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5926 			ifp->if_timer = 5;
5927 			return;
5928 		}
5929 		/*
5930 		 * Any other condition is unexpected and the controller
5931 		 * should be reset.
5932 		 */
5933 	}
5934 
5935 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5936 
5937 	ifp->if_flags &= ~IFF_RUNNING;
5938 	bge_init(ifp);
5939 
5940 	if_statinc(ifp, if_oerrors);
5941 }
5942 
5943 static void
5944 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5945 {
5946 	int i;
5947 
5948 	BGE_CLRBIT_FLUSH(sc, reg, bit);
5949 
5950 	for (i = 0; i < 1000; i++) {
5951 		delay(100);
5952 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5953 			return;
5954 	}
5955 
5956 	/*
5957 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5958 	 * on some environment (and once after boot?)
5959 	 */
5960 	if (reg != BGE_SRS_MODE)
5961 		aprint_error_dev(sc->bge_dev,
5962 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5963 		    (u_long)reg, bit);
5964 }
5965 
5966 /*
5967  * Stop the adapter and free any mbufs allocated to the
5968  * RX and TX lists.
5969  */
5970 static void
5971 bge_stop(struct ifnet *ifp, int disable)
5972 {
5973 	struct bge_softc * const sc = ifp->if_softc;
5974 
5975 	if (disable) {
5976 		sc->bge_detaching = 1;
5977 		callout_halt(&sc->bge_timeout, NULL);
5978 	} else
5979 		callout_stop(&sc->bge_timeout);
5980 
5981 	/* Disable host interrupts. */
5982 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5983 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5984 
5985 	/*
5986 	 * Tell firmware we're shutting down.
5987 	 */
5988 	bge_stop_fw(sc);
5989 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5990 
5991 	/*
5992 	 * Disable all of the receiver blocks.
5993 	 */
5994 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5995 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5996 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5997 	if (BGE_IS_5700_FAMILY(sc))
5998 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5999 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6000 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6001 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6002 
6003 	/*
6004 	 * Disable all of the transmit blocks.
6005 	 */
6006 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6007 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6008 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6009 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6010 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6011 	if (BGE_IS_5700_FAMILY(sc))
6012 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6013 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6014 
6015 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6016 	delay(40);
6017 
6018 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6019 
6020 	/*
6021 	 * Shut down all of the memory managers and related
6022 	 * state machines.
6023 	 */
6024 	/* 5718 step 5a,5b */
6025 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6026 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6027 	if (BGE_IS_5700_FAMILY(sc))
6028 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6029 
6030 	/* 5718 step 5c,5d */
6031 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6032 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6033 
6034 	if (BGE_IS_5700_FAMILY(sc)) {
6035 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6036 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6037 	}
6038 
6039 	bge_reset(sc);
6040 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6041 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6042 
6043 	/*
6044 	 * Keep the ASF firmware running if up.
6045 	 */
6046 	if (sc->bge_asf_mode & ASF_STACKUP)
6047 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6048 	else
6049 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6050 
6051 	/* Free the RX lists. */
6052 	bge_free_rx_ring_std(sc, disable);
6053 
6054 	/* Free jumbo RX list. */
6055 	if (BGE_IS_JUMBO_CAPABLE(sc))
6056 		bge_free_rx_ring_jumbo(sc);
6057 
6058 	/* Free TX buffers. */
6059 	bge_free_tx_ring(sc, disable);
6060 
6061 	/*
6062 	 * Isolate/power down the PHY.
6063 	 */
6064 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
6065 		mii_down(&sc->bge_mii);
6066 
6067 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6068 
6069 	/* Clear MAC's link state (PHY may still have link UP). */
6070 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6071 
6072 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6073 }
6074 
6075 static void
6076 bge_link_upd(struct bge_softc *sc)
6077 {
6078 	struct ifnet * const ifp = &sc->ethercom.ec_if;
6079 	struct mii_data * const mii = &sc->bge_mii;
6080 	uint32_t status;
6081 	uint16_t phyval;
6082 	int link;
6083 
6084 	/* Clear 'pending link event' flag */
6085 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6086 
6087 	/*
6088 	 * Process link state changes.
6089 	 * Grrr. The link status word in the status block does
6090 	 * not work correctly on the BCM5700 rev AX and BX chips,
6091 	 * according to all available information. Hence, we have
6092 	 * to enable MII interrupts in order to properly obtain
6093 	 * async link changes. Unfortunately, this also means that
6094 	 * we have to read the MAC status register to detect link
6095 	 * changes, thereby adding an additional register access to
6096 	 * the interrupt handler.
6097 	 */
6098 
6099 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6100 		status = CSR_READ_4(sc, BGE_MAC_STS);
6101 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6102 			mii_pollstat(mii);
6103 
6104 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6105 			    mii->mii_media_status & IFM_ACTIVE &&
6106 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6107 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6108 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6109 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6110 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6111 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6112 
6113 			/* Clear the interrupt */
6114 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6115 			    BGE_EVTENB_MI_INTERRUPT);
6116 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6117 			    BRGPHY_MII_ISR, &phyval);
6118 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6119 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6120 		}
6121 		return;
6122 	}
6123 
6124 	if (sc->bge_flags & BGEF_FIBER_TBI) {
6125 		status = CSR_READ_4(sc, BGE_MAC_STS);
6126 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6127 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6128 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6129 				if (BGE_ASICREV(sc->bge_chipid)
6130 				    == BGE_ASICREV_BCM5704) {
6131 					BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6132 					    BGE_MACMODE_TBI_SEND_CFGS);
6133 					DELAY(40);
6134 				}
6135 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6136 				if_link_state_change(ifp, LINK_STATE_UP);
6137 			}
6138 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6139 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6140 			if_link_state_change(ifp, LINK_STATE_DOWN);
6141 		}
6142 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6143 		/*
6144 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6145 		 * bit in status word always set. Workaround this bug by
6146 		 * reading PHY link status directly.
6147 		 */
6148 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6149 		    BGE_STS_LINK : 0;
6150 
6151 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6152 			mii_pollstat(mii);
6153 
6154 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6155 			    mii->mii_media_status & IFM_ACTIVE &&
6156 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6157 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6158 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6159 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6160 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6161 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6162 		}
6163 	} else {
6164 		/*
6165 		 * For controllers that call mii_tick, we have to poll
6166 		 * link status.
6167 		 */
6168 		mii_pollstat(mii);
6169 	}
6170 
6171 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6172 		uint32_t reg, scale;
6173 
6174 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6175 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6176 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6177 			scale = 65;
6178 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6179 			scale = 6;
6180 		else
6181 			scale = 12;
6182 
6183 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6184 		    ~BGE_MISCCFG_TIMER_PRESCALER;
6185 		reg |= scale << 1;
6186 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6187 	}
6188 	/* Clear the attention */
6189 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6190 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6191 	    BGE_MACSTAT_LINK_CHANGED);
6192 }
6193 
6194 static int
6195 bge_sysctl_verify(SYSCTLFN_ARGS)
6196 {
6197 	int error, t;
6198 	struct sysctlnode node;
6199 
6200 	node = *rnode;
6201 	t = *(int*)rnode->sysctl_data;
6202 	node.sysctl_data = &t;
6203 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
6204 	if (error || newp == NULL)
6205 		return error;
6206 
6207 #if 0
6208 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6209 	    node.sysctl_num, rnode->sysctl_num));
6210 #endif
6211 
6212 	if (node.sysctl_num == bge_rxthresh_nodenum) {
6213 		if (t < 0 || t >= NBGE_RX_THRESH)
6214 			return EINVAL;
6215 		bge_update_all_threshes(t);
6216 	} else
6217 		return EINVAL;
6218 
6219 	*(int*)rnode->sysctl_data = t;
6220 
6221 	return 0;
6222 }
6223 
6224 /*
6225  * Set up sysctl(3) MIB, hw.bge.*.
6226  */
6227 static void
6228 bge_sysctl_init(struct bge_softc *sc)
6229 {
6230 	int rc, bge_root_num;
6231 	const struct sysctlnode *node;
6232 
6233 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6234 	    0, CTLTYPE_NODE, "bge",
6235 	    SYSCTL_DESCR("BGE interface controls"),
6236 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6237 		goto out;
6238 	}
6239 
6240 	bge_root_num = node->sysctl_num;
6241 
6242 	/* BGE Rx interrupt mitigation level */
6243 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6244 	    CTLFLAG_READWRITE,
6245 	    CTLTYPE_INT, "rx_lvl",
6246 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6247 	    bge_sysctl_verify, 0,
6248 	    &bge_rx_thresh_lvl,
6249 	    0, CTL_HW, bge_root_num, CTL_CREATE,
6250 	    CTL_EOL)) != 0) {
6251 		goto out;
6252 	}
6253 
6254 	bge_rxthresh_nodenum = node->sysctl_num;
6255 
6256 	return;
6257 
6258 out:
6259 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6260 }
6261 
6262 #ifdef BGE_DEBUG
6263 void
6264 bge_debug_info(struct bge_softc *sc)
6265 {
6266 
6267 	printf("Hardware Flags:\n");
6268 	if (BGE_IS_57765_PLUS(sc))
6269 		printf(" - 57765 Plus\n");
6270 	if (BGE_IS_5717_PLUS(sc))
6271 		printf(" - 5717 Plus\n");
6272 	if (BGE_IS_5755_PLUS(sc))
6273 		printf(" - 5755 Plus\n");
6274 	if (BGE_IS_575X_PLUS(sc))
6275 		printf(" - 575X Plus\n");
6276 	if (BGE_IS_5705_PLUS(sc))
6277 		printf(" - 5705 Plus\n");
6278 	if (BGE_IS_5714_FAMILY(sc))
6279 		printf(" - 5714 Family\n");
6280 	if (BGE_IS_5700_FAMILY(sc))
6281 		printf(" - 5700 Family\n");
6282 	if (sc->bge_flags & BGEF_IS_5788)
6283 		printf(" - 5788\n");
6284 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6285 		printf(" - Supports Jumbo Frames\n");
6286 	if (sc->bge_flags & BGEF_NO_EEPROM)
6287 		printf(" - No EEPROM\n");
6288 	if (sc->bge_flags & BGEF_PCIX)
6289 		printf(" - PCI-X Bus\n");
6290 	if (sc->bge_flags & BGEF_PCIE)
6291 		printf(" - PCI Express Bus\n");
6292 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6293 		printf(" - RX Alignment Bug\n");
6294 	if (sc->bge_flags & BGEF_APE)
6295 		printf(" - APE\n");
6296 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
6297 		printf(" - CPMU\n");
6298 	if (sc->bge_flags & BGEF_TSO)
6299 		printf(" - TSO\n");
6300 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
6301 		printf(" - TAGGED_STATUS\n");
6302 
6303 	/* PHY related */
6304 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6305 		printf(" - No 3 LEDs\n");
6306 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6307 		printf(" - CRC bug\n");
6308 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6309 		printf(" - ADC bug\n");
6310 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6311 		printf(" - 5704 A0 bug\n");
6312 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6313 		printf(" - jitter bug\n");
6314 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6315 		printf(" - BER bug\n");
6316 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6317 		printf(" - adjust trim\n");
6318 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6319 		printf(" - no wirespeed\n");
6320 
6321 	/* ASF related */
6322 	if (sc->bge_asf_mode & ASF_ENABLE)
6323 		printf(" - ASF enable\n");
6324 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6325 		printf(" - ASF new handshake\n");
6326 	if (sc->bge_asf_mode & ASF_STACKUP)
6327 		printf(" - ASF stackup\n");
6328 }
6329 #endif /* BGE_DEBUG */
6330 
6331 static int
6332 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6333 {
6334 	prop_dictionary_t dict;
6335 	prop_data_t ea;
6336 
6337 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6338 		return 1;
6339 
6340 	dict = device_properties(sc->bge_dev);
6341 	ea = prop_dictionary_get(dict, "mac-address");
6342 	if (ea != NULL) {
6343 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6344 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6345 		memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6346 		return 0;
6347 	}
6348 
6349 	return 1;
6350 }
6351 
6352 static int
6353 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6354 {
6355 	uint32_t mac_addr;
6356 
6357 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6358 	if ((mac_addr >> 16) == 0x484b) {
6359 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6360 		ether_addr[1] = (uint8_t)mac_addr;
6361 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6362 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6363 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6364 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6365 		ether_addr[5] = (uint8_t)mac_addr;
6366 		return 0;
6367 	}
6368 	return 1;
6369 }
6370 
6371 static int
6372 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6373 {
6374 	int mac_offset = BGE_EE_MAC_OFFSET;
6375 
6376 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6377 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6378 
6379 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6380 	    ETHER_ADDR_LEN));
6381 }
6382 
6383 static int
6384 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6385 {
6386 
6387 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6388 		return 1;
6389 
6390 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6391 	   ETHER_ADDR_LEN));
6392 }
6393 
6394 static int
6395 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6396 {
6397 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6398 		/* NOTE: Order is critical */
6399 		bge_get_eaddr_fw,
6400 		bge_get_eaddr_mem,
6401 		bge_get_eaddr_nvram,
6402 		bge_get_eaddr_eeprom,
6403 		NULL
6404 	};
6405 	const bge_eaddr_fcn_t *func;
6406 
6407 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6408 		if ((*func)(sc, eaddr) == 0)
6409 			break;
6410 	}
6411 	return *func == NULL ? ENXIO : 0;
6412 }
6413