xref: /netbsd/sys/dev/pci/if_bnx.c (revision 6550d01e)
1 /*	$NetBSD: if_bnx.c,v 1.42 2011/01/26 00:09:27 dyoung Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3 
4 /*-
5  * Copyright (c) 2006 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.42 2011/01/26 00:09:27 dyoung Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5706S A2, A3
44  *   BCM5708C B1, B2
45  *   BCM5708S B1, B2
46  *   BCM5709C A1, C0
47  *   BCM5709S A1, C0
48  *   BCM5716  C0
49  *
50  * The following controllers are not supported by this driver:
51  *
52  *   BCM5706C A0, A1
53  *   BCM5706S A0, A1
54  *   BCM5708C A0, B0
55  *   BCM5708S A0, B0
56  *   BCM5709C A0  B0, B1, B2 (pre-production)
57  *   BCM5709S A0, B0, B1, B2 (pre-production)
58  */
59 
60 #include <sys/callout.h>
61 #include <sys/mutex.h>
62 
63 #include <dev/pci/if_bnxreg.h>
64 #include <dev/pci/if_bnxvar.h>
65 
66 #include <dev/microcode/bnx/bnxfw.h>
67 
68 /****************************************************************************/
69 /* BNX Driver Version                                                       */
70 /****************************************************************************/
71 #define BNX_DRIVER_VERSION	"v0.9.6"
72 
73 /****************************************************************************/
74 /* BNX Debug Options                                                        */
75 /****************************************************************************/
76 #ifdef BNX_DEBUG
77 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
78 
79 	/*          0 = Never              */
80 	/*          1 = 1 in 2,147,483,648 */
81 	/*        256 = 1 in     8,388,608 */
82 	/*       2048 = 1 in     1,048,576 */
83 	/*      65536 = 1 in        32,768 */
84 	/*    1048576 = 1 in         2,048 */
85 	/*  268435456 =	1 in             8 */
86 	/*  536870912 = 1 in             4 */
87 	/* 1073741824 = 1 in             2 */
88 
89 	/* Controls how often the l2_fhdr frame error check will fail. */
90 	int bnx_debug_l2fhdr_status_check = 0;
91 
92 	/* Controls how often the unexpected attention check will fail. */
93 	int bnx_debug_unexpected_attention = 0;
94 
95 	/* Controls how often to simulate an mbuf allocation failure. */
96 	int bnx_debug_mbuf_allocation_failure = 0;
97 
98 	/* Controls how often to simulate a DMA mapping failure. */
99 	int bnx_debug_dma_map_addr_failure = 0;
100 
101 	/* Controls how often to simulate a bootcode failure. */
102 	int bnx_debug_bootcode_running_failure = 0;
103 #endif
104 
105 /****************************************************************************/
106 /* PCI Device ID Table                                                      */
107 /*                                                                          */
108 /* Used by bnx_probe() to identify the devices supported by this driver.    */
109 /****************************************************************************/
110 static const struct bnx_product {
111 	pci_vendor_id_t		bp_vendor;
112 	pci_product_id_t	bp_product;
113 	pci_vendor_id_t		bp_subvendor;
114 	pci_product_id_t	bp_subproduct;
115 	const char		*bp_name;
116 } bnx_devices[] = {
117 #ifdef PCI_SUBPRODUCT_HP_NC370T
118 	{
119 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
120 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
121 	  "HP NC370T Multifunction Gigabit Server Adapter"
122 	},
123 #endif
124 #ifdef PCI_SUBPRODUCT_HP_NC370i
125 	{
126 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
127 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
128 	  "HP NC370i Multifunction Gigabit Server Adapter"
129 	},
130 #endif
131 	{
132 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
133 	  0, 0,
134 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
135 	},
136 #ifdef PCI_SUBPRODUCT_HP_NC370F
137 	{
138 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
139 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
140 	  "HP NC370F Multifunction Gigabit Server Adapter"
141 	},
142 #endif
143 	{
144 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
145 	  0, 0,
146 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
147 	},
148 	{
149 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
150 	  0, 0,
151 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
152 	},
153 	{
154 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
155 	  0, 0,
156 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
157 	},
158 	{
159 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
160 	  0, 0,
161 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
162 	},
163 	{
164 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
165 	  0, 0,
166 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
167 	},
168 	{
169 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
170 	  0, 0,
171 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
172 	},
173 	{
174 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
175 	  0, 0,
176 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
177 	},
178 };
179 
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data.                                       */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
187 	/* Slow EEPROM */
188 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
189 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
190 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
191 	 "EEPROM - slow"},
192 	/* Expansion entry 0001 */
193 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
194 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
196 	 "Entry 0001"},
197 	/* Saifun SA25F010 (non-buffered flash) */
198 	/* strap, cfg1, & write1 need updates */
199 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
200 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
201 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
202 	 "Non-buffered flash (128kB)"},
203 	/* Saifun SA25F020 (non-buffered flash) */
204 	/* strap, cfg1, & write1 need updates */
205 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
206 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
208 	 "Non-buffered flash (256kB)"},
209 	/* Expansion entry 0100 */
210 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
211 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 	 "Entry 0100"},
214 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
215 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
216 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
217 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
218 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
219 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
220 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
221 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
222 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
223 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
224 	/* Saifun SA25F005 (non-buffered flash) */
225 	/* strap, cfg1, & write1 need updates */
226 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
227 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
228 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
229 	 "Non-buffered flash (64kB)"},
230 	/* Fast EEPROM */
231 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
232 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
233 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
234 	 "EEPROM - fast"},
235 	/* Expansion entry 1001 */
236 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 	 "Entry 1001"},
240 	/* Expansion entry 1010 */
241 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
242 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
243 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
244 	 "Entry 1010"},
245 	/* ATMEL AT45DB011B (buffered flash) */
246 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
247 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
248 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
249 	 "Buffered flash (128kB)"},
250 	/* Expansion entry 1100 */
251 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
252 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
253 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
254 	 "Entry 1100"},
255 	/* Expansion entry 1101 */
256 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
257 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
259 	 "Entry 1101"},
260 	/* Ateml Expansion entry 1110 */
261 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
262 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
263 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
264 	 "Entry 1110 (Atmel)"},
265 	/* ATMEL AT45DB021B (buffered flash) */
266 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
267 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
268 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
269 	 "Buffered flash (256kB)"},
270 };
271 
272 /*
273  * The BCM5709 controllers transparently handle the
274  * differences between Atmel 264 byte pages and all
275  * flash devices which use 256 byte pages, so no
276  * logical-to-physical mapping is required in the
277  * driver.
278  */
279 static struct flash_spec flash_5709 = {
280 	.flags		= BNX_NV_BUFFERED,
281 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
282 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
283 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
284 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
285 	.name		= "5709 buffered flash (256kB)",
286 };
287 
288 /****************************************************************************/
289 /* OpenBSD device entry points.                                             */
290 /****************************************************************************/
291 static int	bnx_probe(device_t, cfdata_t, void *);
292 void	bnx_attach(device_t, device_t, void *);
293 int	bnx_detach(device_t, int);
294 
295 /****************************************************************************/
296 /* BNX Debug Data Structure Dump Routines                                   */
297 /****************************************************************************/
298 #ifdef BNX_DEBUG
299 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
300 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
301 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
302 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
303 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
304 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
305 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
306 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
307 void	bnx_dump_status_block(struct bnx_softc *);
308 void	bnx_dump_stats_block(struct bnx_softc *);
309 void	bnx_dump_driver_state(struct bnx_softc *);
310 void	bnx_dump_hw_state(struct bnx_softc *);
311 void	bnx_breakpoint(struct bnx_softc *);
312 #endif
313 
314 /****************************************************************************/
315 /* BNX Register/Memory Access Routines                                      */
316 /****************************************************************************/
317 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
318 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
319 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
320 int	bnx_miibus_read_reg(device_t, int, int);
321 void	bnx_miibus_write_reg(device_t, int, int, int);
322 void	bnx_miibus_statchg(device_t);
323 
324 /****************************************************************************/
325 /* BNX NVRAM Access Routines                                                */
326 /****************************************************************************/
327 int	bnx_acquire_nvram_lock(struct bnx_softc *);
328 int	bnx_release_nvram_lock(struct bnx_softc *);
329 void	bnx_enable_nvram_access(struct bnx_softc *);
330 void	bnx_disable_nvram_access(struct bnx_softc *);
331 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
332 	    u_int32_t);
333 int	bnx_init_nvram(struct bnx_softc *);
334 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
335 int	bnx_nvram_test(struct bnx_softc *);
336 #ifdef BNX_NVRAM_WRITE_SUPPORT
337 int	bnx_enable_nvram_write(struct bnx_softc *);
338 void	bnx_disable_nvram_write(struct bnx_softc *);
339 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
340 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
341 	    u_int32_t);
342 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
343 #endif
344 
345 /****************************************************************************/
346 /*                                                                          */
347 /****************************************************************************/
348 void	bnx_get_media(struct bnx_softc *);
349 void	bnx_init_media(struct bnx_softc *);
350 int	bnx_dma_alloc(struct bnx_softc *);
351 void	bnx_dma_free(struct bnx_softc *);
352 void	bnx_release_resources(struct bnx_softc *);
353 
354 /****************************************************************************/
355 /* BNX Firmware Synchronization and Load                                    */
356 /****************************************************************************/
357 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
358 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
359 	    u_int32_t);
360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 	    struct fw_info *);
362 void	bnx_init_cpus(struct bnx_softc *);
363 
364 void	bnx_stop(struct ifnet *, int);
365 int	bnx_reset(struct bnx_softc *, u_int32_t);
366 int	bnx_chipinit(struct bnx_softc *);
367 int	bnx_blockinit(struct bnx_softc *);
368 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
369 	    u_int16_t *, u_int32_t *);
370 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
371 
372 int	bnx_init_tx_chain(struct bnx_softc *);
373 void	bnx_init_tx_context(struct bnx_softc *);
374 int	bnx_init_rx_chain(struct bnx_softc *);
375 void	bnx_init_rx_context(struct bnx_softc *);
376 void	bnx_free_rx_chain(struct bnx_softc *);
377 void	bnx_free_tx_chain(struct bnx_softc *);
378 
379 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380 void	bnx_start(struct ifnet *);
381 int	bnx_ioctl(struct ifnet *, u_long, void *);
382 void	bnx_watchdog(struct ifnet *);
383 int	bnx_init(struct ifnet *);
384 
385 void	bnx_init_context(struct bnx_softc *);
386 void	bnx_get_mac_addr(struct bnx_softc *);
387 void	bnx_set_mac_addr(struct bnx_softc *);
388 void	bnx_phy_intr(struct bnx_softc *);
389 void	bnx_rx_intr(struct bnx_softc *);
390 void	bnx_tx_intr(struct bnx_softc *);
391 void	bnx_disable_intr(struct bnx_softc *);
392 void	bnx_enable_intr(struct bnx_softc *);
393 
394 int	bnx_intr(void *);
395 void	bnx_iff(struct bnx_softc *);
396 void	bnx_stats_update(struct bnx_softc *);
397 void	bnx_tick(void *);
398 
399 struct pool *bnx_tx_pool = NULL;
400 int	bnx_alloc_pkts(struct bnx_softc *);
401 
402 /****************************************************************************/
403 /* OpenBSD device dispatch table.                                           */
404 /****************************************************************************/
405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
406     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
407 
408 /****************************************************************************/
409 /* Device probe function.                                                   */
410 /*                                                                          */
411 /* Compares the device to the driver's list of supported devices and        */
412 /* reports back to the OS whether this is the right driver for the device.  */
413 /*                                                                          */
414 /* Returns:                                                                 */
415 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
416 /****************************************************************************/
417 static const struct bnx_product *
418 bnx_lookup(const struct pci_attach_args *pa)
419 {
420 	int i;
421 	pcireg_t subid;
422 
423 	for (i = 0; i < __arraycount(bnx_devices); i++) {
424 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
425 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
426 			continue;
427 		if (!bnx_devices[i].bp_subvendor)
428 			return &bnx_devices[i];
429 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
430 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
431 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
432 			return &bnx_devices[i];
433 	}
434 
435 	return NULL;
436 }
437 static int
438 bnx_probe(device_t parent, cfdata_t match, void *aux)
439 {
440 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
441 
442 	if (bnx_lookup(pa) != NULL)
443 		return (1);
444 
445 	return (0);
446 }
447 
448 /****************************************************************************/
449 /* Device attach function.                                                  */
450 /*                                                                          */
451 /* Allocates device resources, performs secondary chip identification,      */
452 /* resets and initializes the hardware, and initializes driver instance     */
453 /* variables.                                                               */
454 /*                                                                          */
455 /* Returns:                                                                 */
456 /*   0 on success, positive value on failure.                               */
457 /****************************************************************************/
458 void
459 bnx_attach(device_t parent, device_t self, void *aux)
460 {
461 	const struct bnx_product *bp;
462 	struct bnx_softc	*sc = device_private(self);
463 	prop_dictionary_t	dict;
464 	struct pci_attach_args	*pa = aux;
465 	pci_chipset_tag_t	pc = pa->pa_pc;
466 	pci_intr_handle_t	ih;
467 	const char 		*intrstr = NULL;
468 	u_int32_t		command;
469 	struct ifnet		*ifp;
470 	u_int32_t		val;
471 	int			mii_flags = MIIF_FORCEANEG;
472 	pcireg_t		memtype;
473 
474 	if (bnx_tx_pool == NULL) {
475 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
476 		if (bnx_tx_pool != NULL) {
477 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
478 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
479 		} else {
480 			aprint_error(": can't alloc bnx_tx_pool\n");
481 			return;
482 		}
483 	}
484 
485 	bp = bnx_lookup(pa);
486 	if (bp == NULL)
487 		panic("unknown device");
488 
489 	sc->bnx_dev = self;
490 
491 	aprint_naive("\n");
492 	aprint_normal(": %s\n", bp->bp_name);
493 
494 	sc->bnx_pa = *pa;
495 
496 	/*
497 	 * Map control/status registers.
498 	*/
499 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
500 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
501 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
502 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
503 
504 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
505 		aprint_error_dev(sc->bnx_dev,
506 		    "failed to enable memory mapping!\n");
507 		return;
508 	}
509 
510 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
511 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
512 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
513 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
514 		return;
515 	}
516 
517 	if (pci_intr_map(pa, &ih)) {
518 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
519 		goto bnx_attach_fail;
520 	}
521 
522 	intrstr = pci_intr_string(pc, ih);
523 
524 	/*
525 	 * Configure byte swap and enable indirect register access.
526 	 * Rely on CPU to do target byte swapping on big endian systems.
527 	 * Access to registers outside of PCI configurtion space are not
528 	 * valid until this is done.
529 	 */
530 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
531 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
532 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
533 
534 	/* Save ASIC revsion info. */
535 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
536 
537 	/*
538 	 * Find the base address for shared memory access.
539 	 * Newer versions of bootcode use a signature and offset
540 	 * while older versions use a fixed address.
541 	 */
542 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
543 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
544 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
545 		    (sc->bnx_pa.pa_function << 2));
546 	else
547 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
548 
549 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
550 
551 	/* Set initial device and PHY flags */
552 	sc->bnx_flags = 0;
553 	sc->bnx_phy_flags = 0;
554 
555 	/* Get PCI bus information (speed and type). */
556 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
557 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
558 		u_int32_t clkreg;
559 
560 		sc->bnx_flags |= BNX_PCIX_FLAG;
561 
562 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
563 
564 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
565 		switch (clkreg) {
566 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
567 			sc->bus_speed_mhz = 133;
568 			break;
569 
570 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
571 			sc->bus_speed_mhz = 100;
572 			break;
573 
574 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
576 			sc->bus_speed_mhz = 66;
577 			break;
578 
579 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
581 			sc->bus_speed_mhz = 50;
582 			break;
583 
584 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
585 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
586 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
587 			sc->bus_speed_mhz = 33;
588 			break;
589 		}
590 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
591 			sc->bus_speed_mhz = 66;
592 		else
593 			sc->bus_speed_mhz = 33;
594 
595 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
596 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
597 
598 	/* Reset the controller. */
599 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
600 		goto bnx_attach_fail;
601 
602 	/* Initialize the controller. */
603 	if (bnx_chipinit(sc)) {
604 		aprint_error_dev(sc->bnx_dev,
605 		    "Controller initialization failed!\n");
606 		goto bnx_attach_fail;
607 	}
608 
609 	/* Perform NVRAM test. */
610 	if (bnx_nvram_test(sc)) {
611 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
612 		goto bnx_attach_fail;
613 	}
614 
615 	/* Fetch the permanent Ethernet MAC address. */
616 	bnx_get_mac_addr(sc);
617 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
618 	    ether_sprintf(sc->eaddr));
619 
620 	/*
621 	 * Trip points control how many BDs
622 	 * should be ready before generating an
623 	 * interrupt while ticks control how long
624 	 * a BD can sit in the chain before
625 	 * generating an interrupt.  Set the default
626 	 * values for the RX and TX rings.
627 	 */
628 
629 #ifdef BNX_DEBUG
630 	/* Force more frequent interrupts. */
631 	sc->bnx_tx_quick_cons_trip_int = 1;
632 	sc->bnx_tx_quick_cons_trip     = 1;
633 	sc->bnx_tx_ticks_int           = 0;
634 	sc->bnx_tx_ticks               = 0;
635 
636 	sc->bnx_rx_quick_cons_trip_int = 1;
637 	sc->bnx_rx_quick_cons_trip     = 1;
638 	sc->bnx_rx_ticks_int           = 0;
639 	sc->bnx_rx_ticks               = 0;
640 #else
641 	sc->bnx_tx_quick_cons_trip_int = 20;
642 	sc->bnx_tx_quick_cons_trip     = 20;
643 	sc->bnx_tx_ticks_int           = 80;
644 	sc->bnx_tx_ticks               = 80;
645 
646 	sc->bnx_rx_quick_cons_trip_int = 6;
647 	sc->bnx_rx_quick_cons_trip     = 6;
648 	sc->bnx_rx_ticks_int           = 18;
649 	sc->bnx_rx_ticks               = 18;
650 #endif
651 
652 	/* Update statistics once every second. */
653 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
654 
655 	/* Find the media type for the adapter. */
656 	bnx_get_media(sc);
657 
658 	/*
659 	 * Store config data needed by the PHY driver for
660 	 * backplane applications
661 	 */
662 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
663 	    BNX_SHARED_HW_CFG_CONFIG);
664 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
665 	    BNX_PORT_HW_CFG_CONFIG);
666 
667 	/* Allocate DMA memory resources. */
668 	sc->bnx_dmatag = pa->pa_dmat;
669 	if (bnx_dma_alloc(sc)) {
670 		aprint_error_dev(sc->bnx_dev,
671 		    "DMA resource allocation failed!\n");
672 		goto bnx_attach_fail;
673 	}
674 
675 	/* Initialize the ifnet interface. */
676 	ifp = &sc->bnx_ec.ec_if;
677 	ifp->if_softc = sc;
678 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679 	ifp->if_ioctl = bnx_ioctl;
680 	ifp->if_stop = bnx_stop;
681 	ifp->if_start = bnx_start;
682 	ifp->if_init = bnx_init;
683 	ifp->if_timer = 0;
684 	ifp->if_watchdog = bnx_watchdog;
685 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
686 	IFQ_SET_READY(&ifp->if_snd);
687 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
688 
689 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
690 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
691 
692 	ifp->if_capabilities |=
693 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
694 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
695 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
696 
697 	/* Hookup IRQ last. */
698 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
699 	if (sc->bnx_intrhand == NULL) {
700 		aprint_error_dev(self, "couldn't establish interrupt");
701 		if (intrstr != NULL)
702 			aprint_error(" at %s", intrstr);
703 		aprint_error("\n");
704 		goto bnx_attach_fail;
705 	}
706 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
707 
708 	sc->bnx_mii.mii_ifp = ifp;
709 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
710 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
711 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
712 
713 	/* Handle any special PHY initialization for SerDes PHYs. */
714 	bnx_init_media(sc);
715 
716 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
717 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
718 	    ether_mediastatus);
719 
720 	/* set phyflags before mii_attach() */
721 	dict = device_properties(self);
722 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
723 
724 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
725 		mii_flags |= MIIF_HAVEFIBER;
726 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
727 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
728 
729 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
730 		aprint_error_dev(self, "no PHY found!\n");
731 		ifmedia_add(&sc->bnx_mii.mii_media,
732 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
733 		ifmedia_set(&sc->bnx_mii.mii_media,
734 		    IFM_ETHER|IFM_MANUAL);
735 	} else {
736 		ifmedia_set(&sc->bnx_mii.mii_media,
737 		    IFM_ETHER|IFM_AUTO);
738 	}
739 
740 	/* Attach to the Ethernet interface list. */
741 	if_attach(ifp);
742 	ether_ifattach(ifp,sc->eaddr);
743 
744 	callout_init(&sc->bnx_timeout, 0);
745 
746 	if (pmf_device_register(self, NULL, NULL))
747 		pmf_class_network_register(self, ifp);
748 	else
749 		aprint_error_dev(self, "couldn't establish power handler\n");
750 
751 	/* Print some important debugging info. */
752 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
753 
754 	goto bnx_attach_exit;
755 
756 bnx_attach_fail:
757 	bnx_release_resources(sc);
758 
759 bnx_attach_exit:
760 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
761 }
762 
763 /****************************************************************************/
764 /* Device detach function.                                                  */
765 /*                                                                          */
766 /* Stops the controller, resets the controller, and releases resources.     */
767 /*                                                                          */
768 /* Returns:                                                                 */
769 /*   0 on success, positive value on failure.                               */
770 /****************************************************************************/
771 int
772 bnx_detach(device_t dev, int flags)
773 {
774 	int s;
775 	struct bnx_softc *sc;
776 	struct ifnet *ifp;
777 
778 	sc = device_private(dev);
779 	ifp = &sc->bnx_ec.ec_if;
780 
781 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
782 
783 	/* Stop and reset the controller. */
784 	s = splnet();
785 	if (ifp->if_flags & IFF_RUNNING)
786 		bnx_stop(ifp, 1);
787 	else {
788 		/* Disable the transmit/receive blocks. */
789 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
790 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
791 		DELAY(20);
792 		bnx_disable_intr(sc);
793 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
794 	}
795 
796 	splx(s);
797 
798 	pmf_device_deregister(dev);
799 	callout_destroy(&sc->bnx_timeout);
800 	ether_ifdetach(ifp);
801 
802 	/* Delete all remaining media. */
803 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
804 
805 	if_detach(ifp);
806 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
807 
808 	/* Release all remaining resources. */
809 	bnx_release_resources(sc);
810 
811 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
812 
813 	return(0);
814 }
815 
816 /****************************************************************************/
817 /* Indirect register read.                                                  */
818 /*                                                                          */
819 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
820 /* configuration space.  Using this mechanism avoids issues with posted     */
821 /* reads but is much slower than memory-mapped I/O.                         */
822 /*                                                                          */
823 /* Returns:                                                                 */
824 /*   The value of the register.                                             */
825 /****************************************************************************/
826 u_int32_t
827 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
828 {
829 	struct pci_attach_args	*pa = &(sc->bnx_pa);
830 
831 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
832 	    offset);
833 #ifdef BNX_DEBUG
834 	{
835 		u_int32_t val;
836 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
837 		    BNX_PCICFG_REG_WINDOW);
838 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
839 		    "val = 0x%08X\n", __func__, offset, val);
840 		return (val);
841 	}
842 #else
843 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
844 #endif
845 }
846 
847 /****************************************************************************/
848 /* Indirect register write.                                                 */
849 /*                                                                          */
850 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
851 /* configuration space.  Using this mechanism avoids issues with posted     */
852 /* writes but is muchh slower than memory-mapped I/O.                       */
853 /*                                                                          */
854 /* Returns:                                                                 */
855 /*   Nothing.                                                               */
856 /****************************************************************************/
857 void
858 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
859 {
860 	struct pci_attach_args  *pa = &(sc->bnx_pa);
861 
862 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
863 		__func__, offset, val);
864 
865 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
866 	    offset);
867 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
868 }
869 
870 /****************************************************************************/
871 /* Context memory write.                                                    */
872 /*                                                                          */
873 /* The NetXtreme II controller uses context memory to track connection      */
874 /* information for L2 and higher network protocols.                         */
875 /*                                                                          */
876 /* Returns:                                                                 */
877 /*   Nothing.                                                               */
878 /****************************************************************************/
879 void
880 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
881     u_int32_t ctx_val)
882 {
883 	u_int32_t idx, offset = ctx_offset + cid_addr;
884 	u_int32_t val, retry_cnt = 5;
885 
886 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
887 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
888 		REG_WR(sc, BNX_CTX_CTX_CTRL,
889 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
890 
891 		for (idx = 0; idx < retry_cnt; idx++) {
892 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
893 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
894 				break;
895 			DELAY(5);
896 		}
897 
898 #if 0
899 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
900 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
901 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
902 				__FILE__, __LINE__, cid_addr, ctx_offset);
903 #endif
904 
905 	} else {
906 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
907 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
908 	}
909 }
910 
911 /****************************************************************************/
912 /* PHY register read.                                                       */
913 /*                                                                          */
914 /* Implements register reads on the MII bus.                                */
915 /*                                                                          */
916 /* Returns:                                                                 */
917 /*   The value of the register.                                             */
918 /****************************************************************************/
919 int
920 bnx_miibus_read_reg(device_t dev, int phy, int reg)
921 {
922 	struct bnx_softc	*sc = device_private(dev);
923 	u_int32_t		val;
924 	int			i;
925 
926 	/* Make sure we are accessing the correct PHY address. */
927 	if (phy != sc->bnx_phy_addr) {
928 		DBPRINT(sc, BNX_VERBOSE,
929 		    "Invalid PHY address %d for PHY read!\n", phy);
930 		return(0);
931 	}
932 
933 	/*
934 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
935 	 * with special mappings to work with IEEE
936 	 * Clause 22 register accesses.
937 	 */
938 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
939 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
940 			reg += 0x10;
941 	}
942 
943 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
944 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
945 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
946 
947 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
948 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
949 
950 		DELAY(40);
951 	}
952 
953 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
954 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
955 	    BNX_EMAC_MDIO_COMM_START_BUSY;
956 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
957 
958 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
959 		DELAY(10);
960 
961 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
962 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
963 			DELAY(5);
964 
965 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
966 			val &= BNX_EMAC_MDIO_COMM_DATA;
967 
968 			break;
969 		}
970 	}
971 
972 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
973 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
974 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
975 		val = 0x0;
976 	} else
977 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
978 
979 	DBPRINT(sc, BNX_EXCESSIVE,
980 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
981 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
982 
983 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
984 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
985 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
986 
987 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
988 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
989 
990 		DELAY(40);
991 	}
992 
993 	return (val & 0xffff);
994 }
995 
996 /****************************************************************************/
997 /* PHY register write.                                                      */
998 /*                                                                          */
999 /* Implements register writes on the MII bus.                               */
1000 /*                                                                          */
1001 /* Returns:                                                                 */
1002 /*   The value of the register.                                             */
1003 /****************************************************************************/
1004 void
1005 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1006 {
1007 	struct bnx_softc	*sc = device_private(dev);
1008 	u_int32_t		val1;
1009 	int			i;
1010 
1011 	/* Make sure we are accessing the correct PHY address. */
1012 	if (phy != sc->bnx_phy_addr) {
1013 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1014 		    phy);
1015 		return;
1016 	}
1017 
1018 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1019 	    "val = 0x%04X\n", __func__,
1020 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1021 
1022 	/*
1023 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1024 	 * with special mappings to work with IEEE
1025 	 * Clause 22 register accesses.
1026 	 */
1027 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1028 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1029 			reg += 0x10;
1030 	}
1031 
1032 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1033 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1034 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1035 
1036 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1037 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1038 
1039 		DELAY(40);
1040 	}
1041 
1042 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1043 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1044 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1045 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1046 
1047 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1048 		DELAY(10);
1049 
1050 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1051 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1052 			DELAY(5);
1053 			break;
1054 		}
1055 	}
1056 
1057 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1058 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1059 		    __LINE__);
1060 	}
1061 
1062 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1063 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1064 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1065 
1066 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1067 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1068 
1069 		DELAY(40);
1070 	}
1071 }
1072 
1073 /****************************************************************************/
1074 /* MII bus status change.                                                   */
1075 /*                                                                          */
1076 /* Called by the MII bus driver when the PHY establishes link to set the    */
1077 /* MAC interface registers.                                                 */
1078 /*                                                                          */
1079 /* Returns:                                                                 */
1080 /*   Nothing.                                                               */
1081 /****************************************************************************/
1082 void
1083 bnx_miibus_statchg(device_t dev)
1084 {
1085 	struct bnx_softc	*sc = device_private(dev);
1086 	struct mii_data		*mii = &sc->bnx_mii;
1087 	int			val;
1088 
1089 	val = REG_RD(sc, BNX_EMAC_MODE);
1090 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1091 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1092 	    BNX_EMAC_MODE_25G);
1093 
1094 	/* Set MII or GMII interface based on the speed
1095 	 * negotiated by the PHY.
1096 	 */
1097 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1098 	case IFM_10_T:
1099 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1100 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1101 			val |= BNX_EMAC_MODE_PORT_MII_10;
1102 			break;
1103 		}
1104 		/* FALLTHROUGH */
1105 	case IFM_100_TX:
1106 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1107 		val |= BNX_EMAC_MODE_PORT_MII;
1108 		break;
1109 	case IFM_2500_SX:
1110 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1111 		val |= BNX_EMAC_MODE_25G;
1112 		/* FALLTHROUGH */
1113 	case IFM_1000_T:
1114 	case IFM_1000_SX:
1115 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1116 		val |= BNX_EMAC_MODE_PORT_GMII;
1117 		break;
1118 	default:
1119 		val |= BNX_EMAC_MODE_PORT_GMII;
1120 		break;
1121 	}
1122 
1123 	/* Set half or full duplex based on the duplicity
1124 	 * negotiated by the PHY.
1125 	 */
1126 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1127 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1128 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1129 	} else {
1130 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1131 	}
1132 
1133 	REG_WR(sc, BNX_EMAC_MODE, val);
1134 }
1135 
1136 /****************************************************************************/
1137 /* Acquire NVRAM lock.                                                      */
1138 /*                                                                          */
1139 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1140 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1141 /* for use by the driver.                                                   */
1142 /*                                                                          */
1143 /* Returns:                                                                 */
1144 /*   0 on success, positive value on failure.                               */
1145 /****************************************************************************/
1146 int
1147 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1148 {
1149 	u_int32_t		val;
1150 	int			j;
1151 
1152 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1153 
1154 	/* Request access to the flash interface. */
1155 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1156 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1157 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1158 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1159 			break;
1160 
1161 		DELAY(5);
1162 	}
1163 
1164 	if (j >= NVRAM_TIMEOUT_COUNT) {
1165 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1166 		return (EBUSY);
1167 	}
1168 
1169 	return (0);
1170 }
1171 
1172 /****************************************************************************/
1173 /* Release NVRAM lock.                                                      */
1174 /*                                                                          */
1175 /* When the caller is finished accessing NVRAM the lock must be released.   */
1176 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1177 /* for use by the driver.                                                   */
1178 /*                                                                          */
1179 /* Returns:                                                                 */
1180 /*   0 on success, positive value on failure.                               */
1181 /****************************************************************************/
1182 int
1183 bnx_release_nvram_lock(struct bnx_softc *sc)
1184 {
1185 	int			j;
1186 	u_int32_t		val;
1187 
1188 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1189 
1190 	/* Relinquish nvram interface. */
1191 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1192 
1193 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1194 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1195 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1196 			break;
1197 
1198 		DELAY(5);
1199 	}
1200 
1201 	if (j >= NVRAM_TIMEOUT_COUNT) {
1202 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1203 		return (EBUSY);
1204 	}
1205 
1206 	return (0);
1207 }
1208 
1209 #ifdef BNX_NVRAM_WRITE_SUPPORT
1210 /****************************************************************************/
1211 /* Enable NVRAM write access.                                               */
1212 /*                                                                          */
1213 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1214 /*                                                                          */
1215 /* Returns:                                                                 */
1216 /*   0 on success, positive value on failure.                               */
1217 /****************************************************************************/
1218 int
1219 bnx_enable_nvram_write(struct bnx_softc *sc)
1220 {
1221 	u_int32_t		val;
1222 
1223 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1224 
1225 	val = REG_RD(sc, BNX_MISC_CFG);
1226 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1227 
1228 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1229 		int j;
1230 
1231 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1232 		REG_WR(sc, BNX_NVM_COMMAND,
1233 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1234 
1235 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1236 			DELAY(5);
1237 
1238 			val = REG_RD(sc, BNX_NVM_COMMAND);
1239 			if (val & BNX_NVM_COMMAND_DONE)
1240 				break;
1241 		}
1242 
1243 		if (j >= NVRAM_TIMEOUT_COUNT) {
1244 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1245 			return (EBUSY);
1246 		}
1247 	}
1248 
1249 	return (0);
1250 }
1251 
1252 /****************************************************************************/
1253 /* Disable NVRAM write access.                                              */
1254 /*                                                                          */
1255 /* When the caller is finished writing to NVRAM write access must be        */
1256 /* disabled.                                                                */
1257 /*                                                                          */
1258 /* Returns:                                                                 */
1259 /*   Nothing.                                                               */
1260 /****************************************************************************/
1261 void
1262 bnx_disable_nvram_write(struct bnx_softc *sc)
1263 {
1264 	u_int32_t		val;
1265 
1266 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1267 
1268 	val = REG_RD(sc, BNX_MISC_CFG);
1269 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1270 }
1271 #endif
1272 
1273 /****************************************************************************/
1274 /* Enable NVRAM access.                                                     */
1275 /*                                                                          */
1276 /* Before accessing NVRAM for read or write operations the caller must      */
1277 /* enabled NVRAM access.                                                    */
1278 /*                                                                          */
1279 /* Returns:                                                                 */
1280 /*   Nothing.                                                               */
1281 /****************************************************************************/
1282 void
1283 bnx_enable_nvram_access(struct bnx_softc *sc)
1284 {
1285 	u_int32_t		val;
1286 
1287 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1288 
1289 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1290 	/* Enable both bits, even on read. */
1291 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1292 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1293 }
1294 
1295 /****************************************************************************/
1296 /* Disable NVRAM access.                                                    */
1297 /*                                                                          */
1298 /* When the caller is finished accessing NVRAM access must be disabled.     */
1299 /*                                                                          */
1300 /* Returns:                                                                 */
1301 /*   Nothing.                                                               */
1302 /****************************************************************************/
1303 void
1304 bnx_disable_nvram_access(struct bnx_softc *sc)
1305 {
1306 	u_int32_t		val;
1307 
1308 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1309 
1310 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1311 
1312 	/* Disable both bits, even after read. */
1313 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1314 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1315 }
1316 
1317 #ifdef BNX_NVRAM_WRITE_SUPPORT
1318 /****************************************************************************/
1319 /* Erase NVRAM page before writing.                                         */
1320 /*                                                                          */
1321 /* Non-buffered flash parts require that a page be erased before it is      */
1322 /* written.                                                                 */
1323 /*                                                                          */
1324 /* Returns:                                                                 */
1325 /*   0 on success, positive value on failure.                               */
1326 /****************************************************************************/
1327 int
1328 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1329 {
1330 	u_int32_t		cmd;
1331 	int			j;
1332 
1333 	/* Buffered flash doesn't require an erase. */
1334 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1335 		return (0);
1336 
1337 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1338 
1339 	/* Build an erase command. */
1340 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1341 	    BNX_NVM_COMMAND_DOIT;
1342 
1343 	/*
1344 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
1345 	 * and issue the erase command.
1346 	 */
1347 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1348 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1349 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1350 
1351 	/* Wait for completion. */
1352 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1353 		u_int32_t val;
1354 
1355 		DELAY(5);
1356 
1357 		val = REG_RD(sc, BNX_NVM_COMMAND);
1358 		if (val & BNX_NVM_COMMAND_DONE)
1359 			break;
1360 	}
1361 
1362 	if (j >= NVRAM_TIMEOUT_COUNT) {
1363 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1364 		return (EBUSY);
1365 	}
1366 
1367 	return (0);
1368 }
1369 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1370 
1371 /****************************************************************************/
1372 /* Read a dword (32 bits) from NVRAM.                                       */
1373 /*                                                                          */
1374 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1375 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1376 /*                                                                          */
1377 /* Returns:                                                                 */
1378 /*   0 on success and the 32 bit value read, positive value on failure.     */
1379 /****************************************************************************/
1380 int
1381 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1382     u_int8_t *ret_val, u_int32_t cmd_flags)
1383 {
1384 	u_int32_t		cmd;
1385 	int			i, rc = 0;
1386 
1387 	/* Build the command word. */
1388 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1389 
1390 	/* Calculate the offset for buffered flash if translation is used. */
1391 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1392 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1393 		    sc->bnx_flash_info->page_bits) +
1394 		    (offset % sc->bnx_flash_info->page_size);
1395 	}
1396 
1397 	/*
1398 	 * Clear the DONE bit separately, set the address to read,
1399 	 * and issue the read.
1400 	 */
1401 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1402 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1403 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1404 
1405 	/* Wait for completion. */
1406 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1407 		u_int32_t val;
1408 
1409 		DELAY(5);
1410 
1411 		val = REG_RD(sc, BNX_NVM_COMMAND);
1412 		if (val & BNX_NVM_COMMAND_DONE) {
1413 			val = REG_RD(sc, BNX_NVM_READ);
1414 
1415 			val = bnx_be32toh(val);
1416 			memcpy(ret_val, &val, 4);
1417 			break;
1418 		}
1419 	}
1420 
1421 	/* Check for errors. */
1422 	if (i >= NVRAM_TIMEOUT_COUNT) {
1423 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1424 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1425 		rc = EBUSY;
1426 	}
1427 
1428 	return(rc);
1429 }
1430 
1431 #ifdef BNX_NVRAM_WRITE_SUPPORT
1432 /****************************************************************************/
1433 /* Write a dword (32 bits) to NVRAM.                                        */
1434 /*                                                                          */
1435 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1436 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1437 /* enabled NVRAM write access.                                              */
1438 /*                                                                          */
1439 /* Returns:                                                                 */
1440 /*   0 on success, positive value on failure.                               */
1441 /****************************************************************************/
1442 int
1443 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1444     u_int32_t cmd_flags)
1445 {
1446 	u_int32_t		cmd, val32;
1447 	int			j;
1448 
1449 	/* Build the command word. */
1450 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1451 
1452 	/* Calculate the offset for buffered flash if translation is used. */
1453 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1454 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1455 		    sc->bnx_flash_info->page_bits) +
1456 		    (offset % sc->bnx_flash_info->page_size);
1457 	}
1458 
1459 	/*
1460 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1461 	 * set the NVRAM address to write, and issue the write command
1462 	 */
1463 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1464 	memcpy(&val32, val, 4);
1465 	val32 = htobe32(val32);
1466 	REG_WR(sc, BNX_NVM_WRITE, val32);
1467 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1468 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1469 
1470 	/* Wait for completion. */
1471 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1472 		DELAY(5);
1473 
1474 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1475 			break;
1476 	}
1477 	if (j >= NVRAM_TIMEOUT_COUNT) {
1478 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1479 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1480 		return (EBUSY);
1481 	}
1482 
1483 	return (0);
1484 }
1485 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1486 
1487 /****************************************************************************/
1488 /* Initialize NVRAM access.                                                 */
1489 /*                                                                          */
1490 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1491 /* access that device.                                                      */
1492 /*                                                                          */
1493 /* Returns:                                                                 */
1494 /*   0 on success, positive value on failure.                               */
1495 /****************************************************************************/
1496 int
1497 bnx_init_nvram(struct bnx_softc *sc)
1498 {
1499 	u_int32_t		val;
1500 	int			j, entry_count, rc = 0;
1501 	struct flash_spec	*flash;
1502 
1503 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1504 
1505 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1506 		sc->bnx_flash_info = &flash_5709;
1507 		goto bnx_init_nvram_get_flash_size;
1508 	}
1509 
1510 	/* Determine the selected interface. */
1511 	val = REG_RD(sc, BNX_NVM_CFG1);
1512 
1513 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1514 
1515 	/*
1516 	 * Flash reconfiguration is required to support additional
1517 	 * NVRAM devices not directly supported in hardware.
1518 	 * Check if the flash interface was reconfigured
1519 	 * by the bootcode.
1520 	 */
1521 
1522 	if (val & 0x40000000) {
1523 		/* Flash interface reconfigured by bootcode. */
1524 
1525 		DBPRINT(sc,BNX_INFO_LOAD,
1526 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1527 
1528 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1529 		     j++, flash++) {
1530 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1531 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1532 				sc->bnx_flash_info = flash;
1533 				break;
1534 			}
1535 		}
1536 	} else {
1537 		/* Flash interface not yet reconfigured. */
1538 		u_int32_t mask;
1539 
1540 		DBPRINT(sc,BNX_INFO_LOAD,
1541 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1542 
1543 		if (val & (1 << 23))
1544 			mask = FLASH_BACKUP_STRAP_MASK;
1545 		else
1546 			mask = FLASH_STRAP_MASK;
1547 
1548 		/* Look for the matching NVRAM device configuration data. */
1549 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1550 		    j++, flash++) {
1551 			/* Check if the dev matches any of the known devices. */
1552 			if ((val & mask) == (flash->strapping & mask)) {
1553 				/* Found a device match. */
1554 				sc->bnx_flash_info = flash;
1555 
1556 				/* Request access to the flash interface. */
1557 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1558 					return (rc);
1559 
1560 				/* Reconfigure the flash interface. */
1561 				bnx_enable_nvram_access(sc);
1562 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1563 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1564 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1565 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1566 				bnx_disable_nvram_access(sc);
1567 				bnx_release_nvram_lock(sc);
1568 
1569 				break;
1570 			}
1571 		}
1572 	}
1573 
1574 	/* Check if a matching device was found. */
1575 	if (j == entry_count) {
1576 		sc->bnx_flash_info = NULL;
1577 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1578 			__FILE__, __LINE__);
1579 		rc = ENODEV;
1580 	}
1581 
1582 bnx_init_nvram_get_flash_size:
1583 	/* Write the flash config data to the shared memory interface. */
1584 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1585 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1586 	if (val)
1587 		sc->bnx_flash_size = val;
1588 	else
1589 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1590 
1591 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1592 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1593 
1594 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1595 
1596 	return (rc);
1597 }
1598 
1599 /****************************************************************************/
1600 /* Read an arbitrary range of data from NVRAM.                              */
1601 /*                                                                          */
1602 /* Prepares the NVRAM interface for access and reads the requested data     */
1603 /* into the supplied buffer.                                                */
1604 /*                                                                          */
1605 /* Returns:                                                                 */
1606 /*   0 on success and the data read, positive value on failure.             */
1607 /****************************************************************************/
1608 int
1609 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1610     int buf_size)
1611 {
1612 	int			rc = 0;
1613 	u_int32_t		cmd_flags, offset32, len32, extra;
1614 
1615 	if (buf_size == 0)
1616 		return (0);
1617 
1618 	/* Request access to the flash interface. */
1619 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1620 		return (rc);
1621 
1622 	/* Enable access to flash interface */
1623 	bnx_enable_nvram_access(sc);
1624 
1625 	len32 = buf_size;
1626 	offset32 = offset;
1627 	extra = 0;
1628 
1629 	cmd_flags = 0;
1630 
1631 	if (offset32 & 3) {
1632 		u_int8_t buf[4];
1633 		u_int32_t pre_len;
1634 
1635 		offset32 &= ~3;
1636 		pre_len = 4 - (offset & 3);
1637 
1638 		if (pre_len >= len32) {
1639 			pre_len = len32;
1640 			cmd_flags =
1641 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1642 		} else
1643 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1644 
1645 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1646 
1647 		if (rc)
1648 			return (rc);
1649 
1650 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1651 
1652 		offset32 += 4;
1653 		ret_buf += pre_len;
1654 		len32 -= pre_len;
1655 	}
1656 
1657 	if (len32 & 3) {
1658 		extra = 4 - (len32 & 3);
1659 		len32 = (len32 + 4) & ~3;
1660 	}
1661 
1662 	if (len32 == 4) {
1663 		u_int8_t buf[4];
1664 
1665 		if (cmd_flags)
1666 			cmd_flags = BNX_NVM_COMMAND_LAST;
1667 		else
1668 			cmd_flags =
1669 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1670 
1671 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1672 
1673 		memcpy(ret_buf, buf, 4 - extra);
1674 	} else if (len32 > 0) {
1675 		u_int8_t buf[4];
1676 
1677 		/* Read the first word. */
1678 		if (cmd_flags)
1679 			cmd_flags = 0;
1680 		else
1681 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1682 
1683 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1684 
1685 		/* Advance to the next dword. */
1686 		offset32 += 4;
1687 		ret_buf += 4;
1688 		len32 -= 4;
1689 
1690 		while (len32 > 4 && rc == 0) {
1691 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1692 
1693 			/* Advance to the next dword. */
1694 			offset32 += 4;
1695 			ret_buf += 4;
1696 			len32 -= 4;
1697 		}
1698 
1699 		if (rc)
1700 			return (rc);
1701 
1702 		cmd_flags = BNX_NVM_COMMAND_LAST;
1703 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1704 
1705 		memcpy(ret_buf, buf, 4 - extra);
1706 	}
1707 
1708 	/* Disable access to flash interface and release the lock. */
1709 	bnx_disable_nvram_access(sc);
1710 	bnx_release_nvram_lock(sc);
1711 
1712 	return (rc);
1713 }
1714 
1715 #ifdef BNX_NVRAM_WRITE_SUPPORT
1716 /****************************************************************************/
1717 /* Write an arbitrary range of data from NVRAM.                             */
1718 /*                                                                          */
1719 /* Prepares the NVRAM interface for write access and writes the requested   */
1720 /* data from the supplied buffer.  The caller is responsible for            */
1721 /* calculating any appropriate CRCs.                                        */
1722 /*                                                                          */
1723 /* Returns:                                                                 */
1724 /*   0 on success, positive value on failure.                               */
1725 /****************************************************************************/
1726 int
1727 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1728     int buf_size)
1729 {
1730 	u_int32_t		written, offset32, len32;
1731 	u_int8_t		*buf, start[4], end[4];
1732 	int			rc = 0;
1733 	int			align_start, align_end;
1734 
1735 	buf = data_buf;
1736 	offset32 = offset;
1737 	len32 = buf_size;
1738 	align_start = align_end = 0;
1739 
1740 	if ((align_start = (offset32 & 3))) {
1741 		offset32 &= ~3;
1742 		len32 += align_start;
1743 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1744 			return (rc);
1745 	}
1746 
1747 	if (len32 & 3) {
1748 	       	if ((len32 > 4) || !align_start) {
1749 			align_end = 4 - (len32 & 3);
1750 			len32 += align_end;
1751 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1752 			    end, 4))) {
1753 				return (rc);
1754 			}
1755 		}
1756 	}
1757 
1758 	if (align_start || align_end) {
1759 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1760 		if (buf == 0)
1761 			return (ENOMEM);
1762 
1763 		if (align_start)
1764 			memcpy(buf, start, 4);
1765 
1766 		if (align_end)
1767 			memcpy(buf + len32 - 4, end, 4);
1768 
1769 		memcpy(buf + align_start, data_buf, buf_size);
1770 	}
1771 
1772 	written = 0;
1773 	while ((written < len32) && (rc == 0)) {
1774 		u_int32_t page_start, page_end, data_start, data_end;
1775 		u_int32_t addr, cmd_flags;
1776 		int i;
1777 		u_int8_t flash_buffer[264];
1778 
1779 	    /* Find the page_start addr */
1780 		page_start = offset32 + written;
1781 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1782 		/* Find the page_end addr */
1783 		page_end = page_start + sc->bnx_flash_info->page_size;
1784 		/* Find the data_start addr */
1785 		data_start = (written == 0) ? offset32 : page_start;
1786 		/* Find the data_end addr */
1787 		data_end = (page_end > offset32 + len32) ?
1788 		    (offset32 + len32) : page_end;
1789 
1790 		/* Request access to the flash interface. */
1791 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1792 			goto nvram_write_end;
1793 
1794 		/* Enable access to flash interface */
1795 		bnx_enable_nvram_access(sc);
1796 
1797 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1798 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1799 			int j;
1800 
1801 			/* Read the whole page into the buffer
1802 			 * (non-buffer flash only) */
1803 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1804 				if (j == (sc->bnx_flash_info->page_size - 4))
1805 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1806 
1807 				rc = bnx_nvram_read_dword(sc,
1808 					page_start + j,
1809 					&flash_buffer[j],
1810 					cmd_flags);
1811 
1812 				if (rc)
1813 					goto nvram_write_end;
1814 
1815 				cmd_flags = 0;
1816 			}
1817 		}
1818 
1819 		/* Enable writes to flash interface (unlock write-protect) */
1820 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1821 			goto nvram_write_end;
1822 
1823 		/* Erase the page */
1824 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1825 			goto nvram_write_end;
1826 
1827 		/* Re-enable the write again for the actual write */
1828 		bnx_enable_nvram_write(sc);
1829 
1830 		/* Loop to write back the buffer data from page_start to
1831 		 * data_start */
1832 		i = 0;
1833 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1834 			for (addr = page_start; addr < data_start;
1835 				addr += 4, i += 4) {
1836 
1837 				rc = bnx_nvram_write_dword(sc, addr,
1838 				    &flash_buffer[i], cmd_flags);
1839 
1840 				if (rc != 0)
1841 					goto nvram_write_end;
1842 
1843 				cmd_flags = 0;
1844 			}
1845 		}
1846 
1847 		/* Loop to write the new data from data_start to data_end */
1848 		for (addr = data_start; addr < data_end; addr += 4, i++) {
1849 			if ((addr == page_end - 4) ||
1850 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1851 			    && (addr == data_end - 4))) {
1852 
1853 				cmd_flags |= BNX_NVM_COMMAND_LAST;
1854 			}
1855 
1856 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1857 
1858 			if (rc != 0)
1859 				goto nvram_write_end;
1860 
1861 			cmd_flags = 0;
1862 			buf += 4;
1863 		}
1864 
1865 		/* Loop to write back the buffer data from data_end
1866 		 * to page_end */
1867 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1868 			for (addr = data_end; addr < page_end;
1869 			    addr += 4, i += 4) {
1870 
1871 				if (addr == page_end-4)
1872 					cmd_flags = BNX_NVM_COMMAND_LAST;
1873 
1874 				rc = bnx_nvram_write_dword(sc, addr,
1875 				    &flash_buffer[i], cmd_flags);
1876 
1877 				if (rc != 0)
1878 					goto nvram_write_end;
1879 
1880 				cmd_flags = 0;
1881 			}
1882 		}
1883 
1884 		/* Disable writes to flash interface (lock write-protect) */
1885 		bnx_disable_nvram_write(sc);
1886 
1887 		/* Disable access to flash interface */
1888 		bnx_disable_nvram_access(sc);
1889 		bnx_release_nvram_lock(sc);
1890 
1891 		/* Increment written */
1892 		written += data_end - data_start;
1893 	}
1894 
1895 nvram_write_end:
1896 	if (align_start || align_end)
1897 		free(buf, M_DEVBUF);
1898 
1899 	return (rc);
1900 }
1901 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1902 
1903 /****************************************************************************/
1904 /* Verifies that NVRAM is accessible and contains valid data.               */
1905 /*                                                                          */
1906 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1907 /* correct.                                                                 */
1908 /*                                                                          */
1909 /* Returns:                                                                 */
1910 /*   0 on success, positive value on failure.                               */
1911 /****************************************************************************/
1912 int
1913 bnx_nvram_test(struct bnx_softc *sc)
1914 {
1915 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
1916 	u_int8_t		*data = (u_int8_t *) buf;
1917 	int			rc = 0;
1918 	u_int32_t		magic, csum;
1919 
1920 	/*
1921 	 * Check that the device NVRAM is valid by reading
1922 	 * the magic value at offset 0.
1923 	 */
1924 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1925 		goto bnx_nvram_test_done;
1926 
1927 	magic = bnx_be32toh(buf[0]);
1928 	if (magic != BNX_NVRAM_MAGIC) {
1929 		rc = ENODEV;
1930 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1931 		    "Expected: 0x%08X, Found: 0x%08X\n",
1932 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1933 		goto bnx_nvram_test_done;
1934 	}
1935 
1936 	/*
1937 	 * Verify that the device NVRAM includes valid
1938 	 * configuration data.
1939 	 */
1940 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1941 		goto bnx_nvram_test_done;
1942 
1943 	csum = ether_crc32_le(data, 0x100);
1944 	if (csum != BNX_CRC32_RESIDUAL) {
1945 		rc = ENODEV;
1946 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1947 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1948 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1949 		goto bnx_nvram_test_done;
1950 	}
1951 
1952 	csum = ether_crc32_le(data + 0x100, 0x100);
1953 	if (csum != BNX_CRC32_RESIDUAL) {
1954 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1955 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1956 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1957 		rc = ENODEV;
1958 	}
1959 
1960 bnx_nvram_test_done:
1961 	return (rc);
1962 }
1963 
1964 /****************************************************************************/
1965 /* Identifies the current media type of the controller and sets the PHY     */
1966 /* address.                                                                 */
1967 /*                                                                          */
1968 /* Returns:                                                                 */
1969 /*   Nothing.                                                               */
1970 /****************************************************************************/
1971 void
1972 bnx_get_media(struct bnx_softc *sc)
1973 {
1974 	sc->bnx_phy_addr = 1;
1975 
1976 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1977 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1978 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1979 		u_int32_t strap;
1980 
1981 		/*
1982 		 * The BCM5709S is software configurable
1983 		 * for Copper or SerDes operation.
1984 		 */
1985 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1986 			DBPRINT(sc, BNX_INFO_LOAD,
1987 			    "5709 bonded for copper.\n");
1988 			goto bnx_get_media_exit;
1989 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1990 			DBPRINT(sc, BNX_INFO_LOAD,
1991 			    "5709 bonded for dual media.\n");
1992 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1993 			goto bnx_get_media_exit;
1994 		}
1995 
1996 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
1997 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1998 		else {
1999 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2000 			    >> 8;
2001 		}
2002 
2003 		if (sc->bnx_pa.pa_function == 0) {
2004 			switch (strap) {
2005 			case 0x4:
2006 			case 0x5:
2007 			case 0x6:
2008 				DBPRINT(sc, BNX_INFO_LOAD,
2009 					"BCM5709 s/w configured for SerDes.\n");
2010 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2011 				break;
2012 			default:
2013 				DBPRINT(sc, BNX_INFO_LOAD,
2014 					"BCM5709 s/w configured for Copper.\n");
2015 			}
2016 		} else {
2017 			switch (strap) {
2018 			case 0x1:
2019 			case 0x2:
2020 			case 0x4:
2021 				DBPRINT(sc, BNX_INFO_LOAD,
2022 					"BCM5709 s/w configured for SerDes.\n");
2023 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2024 				break;
2025 			default:
2026 				DBPRINT(sc, BNX_INFO_LOAD,
2027 					"BCM5709 s/w configured for Copper.\n");
2028 			}
2029 		}
2030 
2031 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2032 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2033 
2034 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2035 		u_int32_t val;
2036 
2037 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
2038 
2039 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2040 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2041 
2042 		/*
2043 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2044 		 * separate PHY for SerDes.
2045 		 */
2046 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2047 			sc->bnx_phy_addr = 2;
2048 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2049 				 BNX_SHARED_HW_CFG_CONFIG);
2050 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2051 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2052 				DBPRINT(sc, BNX_INFO_LOAD,
2053 				    "Found 2.5Gb capable adapter\n");
2054 			}
2055 		}
2056 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2057 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2058 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2059 
2060 bnx_get_media_exit:
2061 	DBPRINT(sc, (BNX_INFO_LOAD),
2062 		"Using PHY address %d.\n", sc->bnx_phy_addr);
2063 }
2064 
2065 /****************************************************************************/
2066 /* Performs PHY initialization required before MII drivers access the       */
2067 /* device.                                                                  */
2068 /*                                                                          */
2069 /* Returns:                                                                 */
2070 /*   Nothing.                                                               */
2071 /****************************************************************************/
2072 void
2073 bnx_init_media(struct bnx_softc *sc)
2074 {
2075 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2076 		/*
2077 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2078 		 * IEEE Clause 22 method. Otherwise we have no way to attach
2079 		 * the PHY to the mii(4) layer. PHY specific configuration
2080 		 * is done by the mii(4) layer.
2081 		 */
2082 
2083 		/* Select auto-negotiation MMD of the PHY. */
2084 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2085 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2086 
2087 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2088 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2089 
2090 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2091 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2092 	}
2093 }
2094 
2095 /****************************************************************************/
2096 /* Free any DMA memory owned by the driver.                                 */
2097 /*                                                                          */
2098 /* Scans through each data structre that requires DMA memory and frees      */
2099 /* the memory if allocated.                                                 */
2100 /*                                                                          */
2101 /* Returns:                                                                 */
2102 /*   Nothing.                                                               */
2103 /****************************************************************************/
2104 void
2105 bnx_dma_free(struct bnx_softc *sc)
2106 {
2107 	int			i;
2108 
2109 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2110 
2111 	/* Destroy the status block. */
2112 	if (sc->status_block != NULL && sc->status_map != NULL) {
2113 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2114 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2115 		    BNX_STATUS_BLK_SZ);
2116 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2117 		    sc->status_rseg);
2118 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2119 		sc->status_block = NULL;
2120 		sc->status_map = NULL;
2121 	}
2122 
2123 	/* Destroy the statistics block. */
2124 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2125 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2126 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2127 		    BNX_STATS_BLK_SZ);
2128 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2129 		    sc->stats_rseg);
2130 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2131 		sc->stats_block = NULL;
2132 		sc->stats_map = NULL;
2133 	}
2134 
2135 	/* Free, unmap and destroy all context memory pages. */
2136 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2137 		for (i = 0; i < sc->ctx_pages; i++) {
2138 			if (sc->ctx_block[i] != NULL) {
2139 				bus_dmamap_unload(sc->bnx_dmatag,
2140 				    sc->ctx_map[i]);
2141 				bus_dmamem_unmap(sc->bnx_dmatag,
2142 				    (void *)sc->ctx_block[i],
2143 				    BCM_PAGE_SIZE);
2144 				bus_dmamem_free(sc->bnx_dmatag,
2145 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2146 				bus_dmamap_destroy(sc->bnx_dmatag,
2147 				    sc->ctx_map[i]);
2148 				sc->ctx_block[i] = NULL;
2149 			}
2150 		}
2151 	}
2152 
2153 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2154 	for (i = 0; i < TX_PAGES; i++ ) {
2155 		if (sc->tx_bd_chain[i] != NULL &&
2156 		    sc->tx_bd_chain_map[i] != NULL) {
2157 			bus_dmamap_unload(sc->bnx_dmatag,
2158 			    sc->tx_bd_chain_map[i]);
2159 			bus_dmamem_unmap(sc->bnx_dmatag,
2160 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2161 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2162 			    sc->tx_bd_chain_rseg[i]);
2163 			bus_dmamap_destroy(sc->bnx_dmatag,
2164 			    sc->tx_bd_chain_map[i]);
2165 			sc->tx_bd_chain[i] = NULL;
2166 			sc->tx_bd_chain_map[i] = NULL;
2167 		}
2168 	}
2169 
2170 	/* Destroy the TX dmamaps. */
2171 	/* This isn't necessary since we dont allocate them up front */
2172 
2173 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2174 	for (i = 0; i < RX_PAGES; i++ ) {
2175 		if (sc->rx_bd_chain[i] != NULL &&
2176 		    sc->rx_bd_chain_map[i] != NULL) {
2177 			bus_dmamap_unload(sc->bnx_dmatag,
2178 			    sc->rx_bd_chain_map[i]);
2179 			bus_dmamem_unmap(sc->bnx_dmatag,
2180 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2181 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2182 			    sc->rx_bd_chain_rseg[i]);
2183 
2184 			bus_dmamap_destroy(sc->bnx_dmatag,
2185 			    sc->rx_bd_chain_map[i]);
2186 			sc->rx_bd_chain[i] = NULL;
2187 			sc->rx_bd_chain_map[i] = NULL;
2188 		}
2189 	}
2190 
2191 	/* Unload and destroy the RX mbuf maps. */
2192 	for (i = 0; i < TOTAL_RX_BD; i++) {
2193 		if (sc->rx_mbuf_map[i] != NULL) {
2194 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2195 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2196 		}
2197 	}
2198 
2199 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2200 }
2201 
2202 /****************************************************************************/
2203 /* Allocate any DMA memory needed by the driver.                            */
2204 /*                                                                          */
2205 /* Allocates DMA memory needed for the various global structures needed by  */
2206 /* hardware.                                                                */
2207 /*                                                                          */
2208 /* Returns:                                                                 */
2209 /*   0 for success, positive value for failure.                             */
2210 /****************************************************************************/
2211 int
2212 bnx_dma_alloc(struct bnx_softc *sc)
2213 {
2214 	int			i, rc = 0;
2215 
2216 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2217 
2218 	/*
2219 	 * Allocate DMA memory for the status block, map the memory into DMA
2220 	 * space, and fetch the physical address of the block.
2221 	 */
2222 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2223 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2224 		aprint_error_dev(sc->bnx_dev,
2225 		    "Could not create status block DMA map!\n");
2226 		rc = ENOMEM;
2227 		goto bnx_dma_alloc_exit;
2228 	}
2229 
2230 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2231 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2232 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
2233 		aprint_error_dev(sc->bnx_dev,
2234 		    "Could not allocate status block DMA memory!\n");
2235 		rc = ENOMEM;
2236 		goto bnx_dma_alloc_exit;
2237 	}
2238 
2239 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2240 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2241 		aprint_error_dev(sc->bnx_dev,
2242 		    "Could not map status block DMA memory!\n");
2243 		rc = ENOMEM;
2244 		goto bnx_dma_alloc_exit;
2245 	}
2246 
2247 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2248 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2249 		aprint_error_dev(sc->bnx_dev,
2250 		    "Could not load status block DMA memory!\n");
2251 		rc = ENOMEM;
2252 		goto bnx_dma_alloc_exit;
2253 	}
2254 
2255 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2256 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2257 
2258 	/* DRC - Fix for 64 bit addresses. */
2259 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2260 		(u_int32_t) sc->status_block_paddr);
2261 
2262 	/* BCM5709 uses host memory as cache for context memory. */
2263 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2264 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2265 		if (sc->ctx_pages == 0)
2266 			sc->ctx_pages = 1;
2267 		if (sc->ctx_pages > 4) /* XXX */
2268 			sc->ctx_pages = 4;
2269 
2270 		DBRUNIF((sc->ctx_pages > 512),
2271 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2272 				__FILE__, __LINE__, sc->ctx_pages));
2273 
2274 
2275 		for (i = 0; i < sc->ctx_pages; i++) {
2276 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2277 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2278 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2279 			    &sc->ctx_map[i]) != 0) {
2280 				rc = ENOMEM;
2281 				goto bnx_dma_alloc_exit;
2282 			}
2283 
2284 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2285 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2286 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2287 				rc = ENOMEM;
2288 				goto bnx_dma_alloc_exit;
2289 			}
2290 
2291 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2292 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2293 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2294 				rc = ENOMEM;
2295 				goto bnx_dma_alloc_exit;
2296 			}
2297 
2298 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2299 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2300 			    BUS_DMA_NOWAIT) != 0) {
2301 				rc = ENOMEM;
2302 				goto bnx_dma_alloc_exit;
2303 			}
2304 
2305 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2306 		}
2307 	}
2308 
2309 	/*
2310 	 * Allocate DMA memory for the statistics block, map the memory into
2311 	 * DMA space, and fetch the physical address of the block.
2312 	 */
2313 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2314 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2315 		aprint_error_dev(sc->bnx_dev,
2316 		    "Could not create stats block DMA map!\n");
2317 		rc = ENOMEM;
2318 		goto bnx_dma_alloc_exit;
2319 	}
2320 
2321 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2322 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2323 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2324 		aprint_error_dev(sc->bnx_dev,
2325 		    "Could not allocate stats block DMA memory!\n");
2326 		rc = ENOMEM;
2327 		goto bnx_dma_alloc_exit;
2328 	}
2329 
2330 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2331 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2332 		aprint_error_dev(sc->bnx_dev,
2333 		    "Could not map stats block DMA memory!\n");
2334 		rc = ENOMEM;
2335 		goto bnx_dma_alloc_exit;
2336 	}
2337 
2338 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2339 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2340 		aprint_error_dev(sc->bnx_dev,
2341 		    "Could not load status block DMA memory!\n");
2342 		rc = ENOMEM;
2343 		goto bnx_dma_alloc_exit;
2344 	}
2345 
2346 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2347 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2348 
2349 	/* DRC - Fix for 64 bit address. */
2350 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2351 	    (u_int32_t) sc->stats_block_paddr);
2352 
2353 	/*
2354 	 * Allocate DMA memory for the TX buffer descriptor chain,
2355 	 * and fetch the physical address of the block.
2356 	 */
2357 	for (i = 0; i < TX_PAGES; i++) {
2358 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2359 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2360 		    &sc->tx_bd_chain_map[i])) {
2361 			aprint_error_dev(sc->bnx_dev,
2362 			    "Could not create Tx desc %d DMA map!\n", i);
2363 			rc = ENOMEM;
2364 			goto bnx_dma_alloc_exit;
2365 		}
2366 
2367 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2368 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2369 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2370 			aprint_error_dev(sc->bnx_dev,
2371 			    "Could not allocate TX desc %d DMA memory!\n",
2372 			    i);
2373 			rc = ENOMEM;
2374 			goto bnx_dma_alloc_exit;
2375 		}
2376 
2377 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2378 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2379 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2380 			aprint_error_dev(sc->bnx_dev,
2381 			    "Could not map TX desc %d DMA memory!\n", i);
2382 			rc = ENOMEM;
2383 			goto bnx_dma_alloc_exit;
2384 		}
2385 
2386 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2387 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2388 		    BUS_DMA_NOWAIT)) {
2389 			aprint_error_dev(sc->bnx_dev,
2390 			    "Could not load TX desc %d DMA memory!\n", i);
2391 			rc = ENOMEM;
2392 			goto bnx_dma_alloc_exit;
2393 		}
2394 
2395 		sc->tx_bd_chain_paddr[i] =
2396 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2397 
2398 		/* DRC - Fix for 64 bit systems. */
2399 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2400 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2401 	}
2402 
2403 	/*
2404 	 * Create lists to hold TX mbufs.
2405 	 */
2406 	TAILQ_INIT(&sc->tx_free_pkts);
2407 	TAILQ_INIT(&sc->tx_used_pkts);
2408 	sc->tx_pkt_count = 0;
2409 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2410 
2411 	/*
2412 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2413 	 * and fetch the physical address of the block.
2414 	 */
2415 	for (i = 0; i < RX_PAGES; i++) {
2416 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2417 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2418 		    &sc->rx_bd_chain_map[i])) {
2419 			aprint_error_dev(sc->bnx_dev,
2420 			    "Could not create Rx desc %d DMA map!\n", i);
2421 			rc = ENOMEM;
2422 			goto bnx_dma_alloc_exit;
2423 		}
2424 
2425 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2426 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2427 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2428 			aprint_error_dev(sc->bnx_dev,
2429 			    "Could not allocate Rx desc %d DMA memory!\n", i);
2430 			rc = ENOMEM;
2431 			goto bnx_dma_alloc_exit;
2432 		}
2433 
2434 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2435 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2436 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2437 			aprint_error_dev(sc->bnx_dev,
2438 			    "Could not map Rx desc %d DMA memory!\n", i);
2439 			rc = ENOMEM;
2440 			goto bnx_dma_alloc_exit;
2441 		}
2442 
2443 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2444 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2445 		    BUS_DMA_NOWAIT)) {
2446 			aprint_error_dev(sc->bnx_dev,
2447 			    "Could not load Rx desc %d DMA memory!\n", i);
2448 			rc = ENOMEM;
2449 			goto bnx_dma_alloc_exit;
2450 		}
2451 
2452 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2453 		sc->rx_bd_chain_paddr[i] =
2454 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2455 
2456 		/* DRC - Fix for 64 bit systems. */
2457 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2458 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2459 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2460 		    0, BNX_RX_CHAIN_PAGE_SZ,
2461 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2462 	}
2463 
2464 	/*
2465 	 * Create DMA maps for the Rx buffer mbufs.
2466 	 */
2467 	for (i = 0; i < TOTAL_RX_BD; i++) {
2468 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2469 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2470 		    &sc->rx_mbuf_map[i])) {
2471 			aprint_error_dev(sc->bnx_dev,
2472 			    "Could not create Rx mbuf %d DMA map!\n", i);
2473 			rc = ENOMEM;
2474 			goto bnx_dma_alloc_exit;
2475 		}
2476 	}
2477 
2478  bnx_dma_alloc_exit:
2479 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2480 
2481 	return(rc);
2482 }
2483 
2484 /****************************************************************************/
2485 /* Release all resources used by the driver.                                */
2486 /*                                                                          */
2487 /* Releases all resources acquired by the driver including interrupts,      */
2488 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2489 /*                                                                          */
2490 /* Returns:                                                                 */
2491 /*   Nothing.                                                               */
2492 /****************************************************************************/
2493 void
2494 bnx_release_resources(struct bnx_softc *sc)
2495 {
2496 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2497 
2498 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2499 
2500 	bnx_dma_free(sc);
2501 
2502 	if (sc->bnx_intrhand != NULL)
2503 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2504 
2505 	if (sc->bnx_size)
2506 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2507 
2508 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2509 }
2510 
2511 /****************************************************************************/
2512 /* Firmware synchronization.                                                */
2513 /*                                                                          */
2514 /* Before performing certain events such as a chip reset, synchronize with  */
2515 /* the firmware first.                                                      */
2516 /*                                                                          */
2517 /* Returns:                                                                 */
2518 /*   0 for success, positive value for failure.                             */
2519 /****************************************************************************/
2520 int
2521 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2522 {
2523 	int			i, rc = 0;
2524 	u_int32_t		val;
2525 
2526 	/* Don't waste any time if we've timed out before. */
2527 	if (sc->bnx_fw_timed_out) {
2528 		rc = EBUSY;
2529 		goto bnx_fw_sync_exit;
2530 	}
2531 
2532 	/* Increment the message sequence number. */
2533 	sc->bnx_fw_wr_seq++;
2534 	msg_data |= sc->bnx_fw_wr_seq;
2535 
2536  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2537 	    msg_data);
2538 
2539 	/* Send the message to the bootcode driver mailbox. */
2540 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2541 
2542 	/* Wait for the bootcode to acknowledge the message. */
2543 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2544 		/* Check for a response in the bootcode firmware mailbox. */
2545 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2546 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2547 			break;
2548 		DELAY(1000);
2549 	}
2550 
2551 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2552 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2553 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2554 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2555 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2556 
2557 		msg_data &= ~BNX_DRV_MSG_CODE;
2558 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2559 
2560 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2561 
2562 		sc->bnx_fw_timed_out = 1;
2563 		rc = EBUSY;
2564 	}
2565 
2566 bnx_fw_sync_exit:
2567 	return (rc);
2568 }
2569 
2570 /****************************************************************************/
2571 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2572 /*                                                                          */
2573 /* Returns:                                                                 */
2574 /*   Nothing.                                                               */
2575 /****************************************************************************/
2576 void
2577 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2578     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2579 {
2580 	int			i;
2581 	u_int32_t		val;
2582 
2583 	/* Set the page size used by RV2P. */
2584 	if (rv2p_proc == RV2P_PROC2) {
2585 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2586 		    USABLE_RX_BD_PER_PAGE);
2587 	}
2588 
2589 	for (i = 0; i < rv2p_code_len; i += 8) {
2590 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2591 		rv2p_code++;
2592 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2593 		rv2p_code++;
2594 
2595 		if (rv2p_proc == RV2P_PROC1) {
2596 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2597 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2598 		} else {
2599 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2600 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2601 		}
2602 	}
2603 
2604 	/* Reset the processor, un-stall is done later. */
2605 	if (rv2p_proc == RV2P_PROC1)
2606 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2607 	else
2608 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2609 }
2610 
2611 /****************************************************************************/
2612 /* Load RISC processor firmware.                                            */
2613 /*                                                                          */
2614 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2615 /* associated with a particular processor.                                  */
2616 /*                                                                          */
2617 /* Returns:                                                                 */
2618 /*   Nothing.                                                               */
2619 /****************************************************************************/
2620 void
2621 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2622     struct fw_info *fw)
2623 {
2624 	u_int32_t		offset;
2625 	u_int32_t		val;
2626 
2627 	/* Halt the CPU. */
2628 	val = REG_RD_IND(sc, cpu_reg->mode);
2629 	val |= cpu_reg->mode_value_halt;
2630 	REG_WR_IND(sc, cpu_reg->mode, val);
2631 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2632 
2633 	/* Load the Text area. */
2634 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2635 	if (fw->text) {
2636 		int j;
2637 
2638 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2639 			REG_WR_IND(sc, offset, fw->text[j]);
2640 	}
2641 
2642 	/* Load the Data area. */
2643 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2644 	if (fw->data) {
2645 		int j;
2646 
2647 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2648 			REG_WR_IND(sc, offset, fw->data[j]);
2649 	}
2650 
2651 	/* Load the SBSS area. */
2652 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2653 	if (fw->sbss) {
2654 		int j;
2655 
2656 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2657 			REG_WR_IND(sc, offset, fw->sbss[j]);
2658 	}
2659 
2660 	/* Load the BSS area. */
2661 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2662 	if (fw->bss) {
2663 		int j;
2664 
2665 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2666 			REG_WR_IND(sc, offset, fw->bss[j]);
2667 	}
2668 
2669 	/* Load the Read-Only area. */
2670 	offset = cpu_reg->spad_base +
2671 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2672 	if (fw->rodata) {
2673 		int j;
2674 
2675 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2676 			REG_WR_IND(sc, offset, fw->rodata[j]);
2677 	}
2678 
2679 	/* Clear the pre-fetch instruction. */
2680 	REG_WR_IND(sc, cpu_reg->inst, 0);
2681 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2682 
2683 	/* Start the CPU. */
2684 	val = REG_RD_IND(sc, cpu_reg->mode);
2685 	val &= ~cpu_reg->mode_value_halt;
2686 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2687 	REG_WR_IND(sc, cpu_reg->mode, val);
2688 }
2689 
2690 /****************************************************************************/
2691 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2692 /*                                                                          */
2693 /* Loads the firmware for each CPU and starts the CPU.                      */
2694 /*                                                                          */
2695 /* Returns:                                                                 */
2696 /*   Nothing.                                                               */
2697 /****************************************************************************/
2698 void
2699 bnx_init_cpus(struct bnx_softc *sc)
2700 {
2701 	struct cpu_reg cpu_reg;
2702 	struct fw_info fw;
2703 
2704 	switch(BNX_CHIP_NUM(sc)) {
2705 	case BNX_CHIP_NUM_5709:
2706 		/* Initialize the RV2P processor. */
2707 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2708 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2709 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2710 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2711 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2712 		} else {
2713 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2714 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2715 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2716 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2717 		}
2718 
2719 		/* Initialize the RX Processor. */
2720 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2721 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2722 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2723 		cpu_reg.state = BNX_RXP_CPU_STATE;
2724 		cpu_reg.state_value_clear = 0xffffff;
2725 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2726 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2727 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2728 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2729 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2730 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2731 		cpu_reg.mips_view_base = 0x8000000;
2732 
2733 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2734 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2735 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2736 		fw.start_addr = bnx_RXP_b09FwStartAddr;
2737 
2738 		fw.text_addr = bnx_RXP_b09FwTextAddr;
2739 		fw.text_len = bnx_RXP_b09FwTextLen;
2740 		fw.text_index = 0;
2741 		fw.text = bnx_RXP_b09FwText;
2742 
2743 		fw.data_addr = bnx_RXP_b09FwDataAddr;
2744 		fw.data_len = bnx_RXP_b09FwDataLen;
2745 		fw.data_index = 0;
2746 		fw.data = bnx_RXP_b09FwData;
2747 
2748 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2749 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
2750 		fw.sbss_index = 0;
2751 		fw.sbss = bnx_RXP_b09FwSbss;
2752 
2753 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
2754 		fw.bss_len = bnx_RXP_b09FwBssLen;
2755 		fw.bss_index = 0;
2756 		fw.bss = bnx_RXP_b09FwBss;
2757 
2758 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2759 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
2760 		fw.rodata_index = 0;
2761 		fw.rodata = bnx_RXP_b09FwRodata;
2762 
2763 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2764 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2765 
2766 		/* Initialize the TX Processor. */
2767 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2768 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2769 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2770 		cpu_reg.state = BNX_TXP_CPU_STATE;
2771 		cpu_reg.state_value_clear = 0xffffff;
2772 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2773 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2774 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2775 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2776 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2777 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2778 		cpu_reg.mips_view_base = 0x8000000;
2779 
2780 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2781 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2782 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2783 		fw.start_addr = bnx_TXP_b09FwStartAddr;
2784 
2785 		fw.text_addr = bnx_TXP_b09FwTextAddr;
2786 		fw.text_len = bnx_TXP_b09FwTextLen;
2787 		fw.text_index = 0;
2788 		fw.text = bnx_TXP_b09FwText;
2789 
2790 		fw.data_addr = bnx_TXP_b09FwDataAddr;
2791 		fw.data_len = bnx_TXP_b09FwDataLen;
2792 		fw.data_index = 0;
2793 		fw.data = bnx_TXP_b09FwData;
2794 
2795 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2796 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
2797 		fw.sbss_index = 0;
2798 		fw.sbss = bnx_TXP_b09FwSbss;
2799 
2800 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
2801 		fw.bss_len = bnx_TXP_b09FwBssLen;
2802 		fw.bss_index = 0;
2803 		fw.bss = bnx_TXP_b09FwBss;
2804 
2805 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2806 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
2807 		fw.rodata_index = 0;
2808 		fw.rodata = bnx_TXP_b09FwRodata;
2809 
2810 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2811 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2812 
2813 		/* Initialize the TX Patch-up Processor. */
2814 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2815 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2816 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2817 		cpu_reg.state = BNX_TPAT_CPU_STATE;
2818 		cpu_reg.state_value_clear = 0xffffff;
2819 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2820 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2821 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2822 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2823 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2824 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2825 		cpu_reg.mips_view_base = 0x8000000;
2826 
2827 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2828 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2829 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2830 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
2831 
2832 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
2833 		fw.text_len = bnx_TPAT_b09FwTextLen;
2834 		fw.text_index = 0;
2835 		fw.text = bnx_TPAT_b09FwText;
2836 
2837 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
2838 		fw.data_len = bnx_TPAT_b09FwDataLen;
2839 		fw.data_index = 0;
2840 		fw.data = bnx_TPAT_b09FwData;
2841 
2842 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2843 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2844 		fw.sbss_index = 0;
2845 		fw.sbss = bnx_TPAT_b09FwSbss;
2846 
2847 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2848 		fw.bss_len = bnx_TPAT_b09FwBssLen;
2849 		fw.bss_index = 0;
2850 		fw.bss = bnx_TPAT_b09FwBss;
2851 
2852 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2853 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2854 		fw.rodata_index = 0;
2855 		fw.rodata = bnx_TPAT_b09FwRodata;
2856 
2857 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2858 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2859 
2860 		/* Initialize the Completion Processor. */
2861 		cpu_reg.mode = BNX_COM_CPU_MODE;
2862 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2863 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2864 		cpu_reg.state = BNX_COM_CPU_STATE;
2865 		cpu_reg.state_value_clear = 0xffffff;
2866 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2867 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2868 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2869 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2870 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2871 		cpu_reg.spad_base = BNX_COM_SCRATCH;
2872 		cpu_reg.mips_view_base = 0x8000000;
2873 
2874 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
2875 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2876 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
2877 		fw.start_addr = bnx_COM_b09FwStartAddr;
2878 
2879 		fw.text_addr = bnx_COM_b09FwTextAddr;
2880 		fw.text_len = bnx_COM_b09FwTextLen;
2881 		fw.text_index = 0;
2882 		fw.text = bnx_COM_b09FwText;
2883 
2884 		fw.data_addr = bnx_COM_b09FwDataAddr;
2885 		fw.data_len = bnx_COM_b09FwDataLen;
2886 		fw.data_index = 0;
2887 		fw.data = bnx_COM_b09FwData;
2888 
2889 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2890 		fw.sbss_len = bnx_COM_b09FwSbssLen;
2891 		fw.sbss_index = 0;
2892 		fw.sbss = bnx_COM_b09FwSbss;
2893 
2894 		fw.bss_addr = bnx_COM_b09FwBssAddr;
2895 		fw.bss_len = bnx_COM_b09FwBssLen;
2896 		fw.bss_index = 0;
2897 		fw.bss = bnx_COM_b09FwBss;
2898 
2899 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2900 		fw.rodata_len = bnx_COM_b09FwRodataLen;
2901 		fw.rodata_index = 0;
2902 		fw.rodata = bnx_COM_b09FwRodata;
2903 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2904 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2905 		break;
2906 	default:
2907 		/* Initialize the RV2P processor. */
2908 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2909 		    RV2P_PROC1);
2910 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2911 		    RV2P_PROC2);
2912 
2913 		/* Initialize the RX Processor. */
2914 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2915 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2916 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2917 		cpu_reg.state = BNX_RXP_CPU_STATE;
2918 		cpu_reg.state_value_clear = 0xffffff;
2919 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2920 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2921 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2922 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2923 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2924 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2925 		cpu_reg.mips_view_base = 0x8000000;
2926 
2927 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2928 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2929 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2930 		fw.start_addr = bnx_RXP_b06FwStartAddr;
2931 
2932 		fw.text_addr = bnx_RXP_b06FwTextAddr;
2933 		fw.text_len = bnx_RXP_b06FwTextLen;
2934 		fw.text_index = 0;
2935 		fw.text = bnx_RXP_b06FwText;
2936 
2937 		fw.data_addr = bnx_RXP_b06FwDataAddr;
2938 		fw.data_len = bnx_RXP_b06FwDataLen;
2939 		fw.data_index = 0;
2940 		fw.data = bnx_RXP_b06FwData;
2941 
2942 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2943 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
2944 		fw.sbss_index = 0;
2945 		fw.sbss = bnx_RXP_b06FwSbss;
2946 
2947 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
2948 		fw.bss_len = bnx_RXP_b06FwBssLen;
2949 		fw.bss_index = 0;
2950 		fw.bss = bnx_RXP_b06FwBss;
2951 
2952 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2953 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
2954 		fw.rodata_index = 0;
2955 		fw.rodata = bnx_RXP_b06FwRodata;
2956 
2957 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2958 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2959 
2960 		/* Initialize the TX Processor. */
2961 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2962 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2963 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2964 		cpu_reg.state = BNX_TXP_CPU_STATE;
2965 		cpu_reg.state_value_clear = 0xffffff;
2966 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2967 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2968 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2969 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2970 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2971 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2972 		cpu_reg.mips_view_base = 0x8000000;
2973 
2974 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2975 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2976 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2977 		fw.start_addr = bnx_TXP_b06FwStartAddr;
2978 
2979 		fw.text_addr = bnx_TXP_b06FwTextAddr;
2980 		fw.text_len = bnx_TXP_b06FwTextLen;
2981 		fw.text_index = 0;
2982 		fw.text = bnx_TXP_b06FwText;
2983 
2984 		fw.data_addr = bnx_TXP_b06FwDataAddr;
2985 		fw.data_len = bnx_TXP_b06FwDataLen;
2986 		fw.data_index = 0;
2987 		fw.data = bnx_TXP_b06FwData;
2988 
2989 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2990 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
2991 		fw.sbss_index = 0;
2992 		fw.sbss = bnx_TXP_b06FwSbss;
2993 
2994 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
2995 		fw.bss_len = bnx_TXP_b06FwBssLen;
2996 		fw.bss_index = 0;
2997 		fw.bss = bnx_TXP_b06FwBss;
2998 
2999 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3000 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
3001 		fw.rodata_index = 0;
3002 		fw.rodata = bnx_TXP_b06FwRodata;
3003 
3004 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3005 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3006 
3007 		/* Initialize the TX Patch-up Processor. */
3008 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
3009 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3010 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3011 		cpu_reg.state = BNX_TPAT_CPU_STATE;
3012 		cpu_reg.state_value_clear = 0xffffff;
3013 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3014 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3015 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3016 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3017 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3018 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3019 		cpu_reg.mips_view_base = 0x8000000;
3020 
3021 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3022 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3023 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3024 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
3025 
3026 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
3027 		fw.text_len = bnx_TPAT_b06FwTextLen;
3028 		fw.text_index = 0;
3029 		fw.text = bnx_TPAT_b06FwText;
3030 
3031 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
3032 		fw.data_len = bnx_TPAT_b06FwDataLen;
3033 		fw.data_index = 0;
3034 		fw.data = bnx_TPAT_b06FwData;
3035 
3036 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3037 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3038 		fw.sbss_index = 0;
3039 		fw.sbss = bnx_TPAT_b06FwSbss;
3040 
3041 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3042 		fw.bss_len = bnx_TPAT_b06FwBssLen;
3043 		fw.bss_index = 0;
3044 		fw.bss = bnx_TPAT_b06FwBss;
3045 
3046 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3047 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3048 		fw.rodata_index = 0;
3049 		fw.rodata = bnx_TPAT_b06FwRodata;
3050 
3051 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3052 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3053 
3054 		/* Initialize the Completion Processor. */
3055 		cpu_reg.mode = BNX_COM_CPU_MODE;
3056 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3057 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3058 		cpu_reg.state = BNX_COM_CPU_STATE;
3059 		cpu_reg.state_value_clear = 0xffffff;
3060 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3061 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3062 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3063 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3064 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3065 		cpu_reg.spad_base = BNX_COM_SCRATCH;
3066 		cpu_reg.mips_view_base = 0x8000000;
3067 
3068 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
3069 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3070 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
3071 		fw.start_addr = bnx_COM_b06FwStartAddr;
3072 
3073 		fw.text_addr = bnx_COM_b06FwTextAddr;
3074 		fw.text_len = bnx_COM_b06FwTextLen;
3075 		fw.text_index = 0;
3076 		fw.text = bnx_COM_b06FwText;
3077 
3078 		fw.data_addr = bnx_COM_b06FwDataAddr;
3079 		fw.data_len = bnx_COM_b06FwDataLen;
3080 		fw.data_index = 0;
3081 		fw.data = bnx_COM_b06FwData;
3082 
3083 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3084 		fw.sbss_len = bnx_COM_b06FwSbssLen;
3085 		fw.sbss_index = 0;
3086 		fw.sbss = bnx_COM_b06FwSbss;
3087 
3088 		fw.bss_addr = bnx_COM_b06FwBssAddr;
3089 		fw.bss_len = bnx_COM_b06FwBssLen;
3090 		fw.bss_index = 0;
3091 		fw.bss = bnx_COM_b06FwBss;
3092 
3093 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3094 		fw.rodata_len = bnx_COM_b06FwRodataLen;
3095 		fw.rodata_index = 0;
3096 		fw.rodata = bnx_COM_b06FwRodata;
3097 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3098 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3099 		break;
3100 	}
3101 }
3102 
3103 /****************************************************************************/
3104 /* Initialize context memory.                                               */
3105 /*                                                                          */
3106 /* Clears the memory associated with each Context ID (CID).                 */
3107 /*                                                                          */
3108 /* Returns:                                                                 */
3109 /*   Nothing.                                                               */
3110 /****************************************************************************/
3111 void
3112 bnx_init_context(struct bnx_softc *sc)
3113 {
3114 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3115 		/* DRC: Replace this constant value with a #define. */
3116 		int i, retry_cnt = 10;
3117 		u_int32_t val;
3118 
3119 		/*
3120 		 * BCM5709 context memory may be cached
3121 		 * in host memory so prepare the host memory
3122 		 * for access.
3123 		 */
3124 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3125 		    | (1 << 12);
3126 		val |= (BCM_PAGE_BITS - 8) << 16;
3127 		REG_WR(sc, BNX_CTX_COMMAND, val);
3128 
3129 		/* Wait for mem init command to complete. */
3130 		for (i = 0; i < retry_cnt; i++) {
3131 			val = REG_RD(sc, BNX_CTX_COMMAND);
3132 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3133 				break;
3134 			DELAY(2);
3135 		}
3136 
3137 
3138 		/* ToDo: Consider returning an error here. */
3139 
3140 		for (i = 0; i < sc->ctx_pages; i++) {
3141 			int j;
3142 
3143 
3144 			/* Set the physaddr of the context memory cache. */
3145 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3146 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3147 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3148 			val = (u_int32_t)
3149 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3150 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3151 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3152 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3153 
3154 
3155 			/* Verify that the context memory write was successful. */
3156 			for (j = 0; j < retry_cnt; j++) {
3157 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3158 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3159 					break;
3160 				DELAY(5);
3161 			}
3162 
3163 			/* ToDo: Consider returning an error here. */
3164 		}
3165 	} else {
3166 		u_int32_t vcid_addr, offset;
3167 
3168 		/*
3169 		 * For the 5706/5708, context memory is local to
3170 		 * the controller, so initialize the controller
3171 		 * context memory.
3172 		 */
3173 
3174 		vcid_addr = GET_CID_ADDR(96);
3175 		while (vcid_addr) {
3176 
3177 			vcid_addr -= BNX_PHY_CTX_SIZE;
3178 
3179 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3180 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3181 
3182 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3183 				CTX_WR(sc, 0x00, offset, 0);
3184 			}
3185 
3186 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3187 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3188 		}
3189 	}
3190 }
3191 
3192 /****************************************************************************/
3193 /* Fetch the permanent MAC address of the controller.                       */
3194 /*                                                                          */
3195 /* Returns:                                                                 */
3196 /*   Nothing.                                                               */
3197 /****************************************************************************/
3198 void
3199 bnx_get_mac_addr(struct bnx_softc *sc)
3200 {
3201 	u_int32_t		mac_lo = 0, mac_hi = 0;
3202 
3203 	/*
3204 	 * The NetXtreme II bootcode populates various NIC
3205 	 * power-on and runtime configuration items in a
3206 	 * shared memory area.  The factory configured MAC
3207 	 * address is available from both NVRAM and the
3208 	 * shared memory area so we'll read the value from
3209 	 * shared memory for speed.
3210 	 */
3211 
3212 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3213 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3214 
3215 	if ((mac_lo == 0) && (mac_hi == 0)) {
3216 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3217 		    __FILE__, __LINE__);
3218 	} else {
3219 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3220 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3221 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3222 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3223 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3224 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3225 	}
3226 
3227 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3228 	    "%s\n", ether_sprintf(sc->eaddr));
3229 }
3230 
3231 /****************************************************************************/
3232 /* Program the MAC address.                                                 */
3233 /*                                                                          */
3234 /* Returns:                                                                 */
3235 /*   Nothing.                                                               */
3236 /****************************************************************************/
3237 void
3238 bnx_set_mac_addr(struct bnx_softc *sc)
3239 {
3240 	u_int32_t		val;
3241 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3242 
3243 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3244 	    "%s\n", ether_sprintf(sc->eaddr));
3245 
3246 	val = (mac_addr[0] << 8) | mac_addr[1];
3247 
3248 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3249 
3250 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3251 		(mac_addr[4] << 8) | mac_addr[5];
3252 
3253 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3254 }
3255 
3256 /****************************************************************************/
3257 /* Stop the controller.                                                     */
3258 /*                                                                          */
3259 /* Returns:                                                                 */
3260 /*   Nothing.                                                               */
3261 /****************************************************************************/
3262 void
3263 bnx_stop(struct ifnet *ifp, int disable)
3264 {
3265 	struct bnx_softc *sc = ifp->if_softc;
3266 
3267 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3268 
3269 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3270 		return;
3271 
3272 	callout_stop(&sc->bnx_timeout);
3273 
3274 	mii_down(&sc->bnx_mii);
3275 
3276 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3277 
3278 	/* Disable the transmit/receive blocks. */
3279 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3280 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3281 	DELAY(20);
3282 
3283 	bnx_disable_intr(sc);
3284 
3285 	/* Tell firmware that the driver is going away. */
3286 	if (disable)
3287 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3288 	else
3289 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3290 
3291 	/* Free RX buffers. */
3292 	bnx_free_rx_chain(sc);
3293 
3294 	/* Free TX buffers. */
3295 	bnx_free_tx_chain(sc);
3296 
3297 	ifp->if_timer = 0;
3298 
3299 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3300 
3301 }
3302 
3303 int
3304 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3305 {
3306 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3307 	u_int32_t		val;
3308 	int			i, rc = 0;
3309 
3310 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3311 
3312 	/* Wait for pending PCI transactions to complete. */
3313 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3314 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3315 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3316 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3317 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3318 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3319 	DELAY(5);
3320 
3321 	/* Disable DMA */
3322 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3323 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3324 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3325 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3326 	}
3327 
3328 	/* Assume bootcode is running. */
3329 	sc->bnx_fw_timed_out = 0;
3330 
3331 	/* Give the firmware a chance to prepare for the reset. */
3332 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3333 	if (rc)
3334 		goto bnx_reset_exit;
3335 
3336 	/* Set a firmware reminder that this is a soft reset. */
3337 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3338 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3339 
3340 	/* Dummy read to force the chip to complete all current transactions. */
3341 	val = REG_RD(sc, BNX_MISC_ID);
3342 
3343 	/* Chip reset. */
3344 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3345 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3346 		REG_RD(sc, BNX_MISC_COMMAND);
3347 		DELAY(5);
3348 
3349 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3350 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3351 
3352 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3353 		    val);
3354 	} else {
3355 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3356 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3357 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3358 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3359 
3360 		/* Allow up to 30us for reset to complete. */
3361 		for (i = 0; i < 10; i++) {
3362 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3363 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3364 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3365 				break;
3366 			}
3367 			DELAY(10);
3368 		}
3369 
3370 		/* Check that reset completed successfully. */
3371 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3372 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3373 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3374 			    __FILE__, __LINE__);
3375 			rc = EBUSY;
3376 			goto bnx_reset_exit;
3377 		}
3378 	}
3379 
3380 	/* Make sure byte swapping is properly configured. */
3381 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3382 	if (val != 0x01020304) {
3383 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3384 		    __FILE__, __LINE__);
3385 		rc = ENODEV;
3386 		goto bnx_reset_exit;
3387 	}
3388 
3389 	/* Just completed a reset, assume that firmware is running again. */
3390 	sc->bnx_fw_timed_out = 0;
3391 
3392 	/* Wait for the firmware to finish its initialization. */
3393 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3394 	if (rc)
3395 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3396 		    "initialization!\n", __FILE__, __LINE__);
3397 
3398 bnx_reset_exit:
3399 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3400 
3401 	return (rc);
3402 }
3403 
3404 int
3405 bnx_chipinit(struct bnx_softc *sc)
3406 {
3407 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3408 	u_int32_t		val;
3409 	int			rc = 0;
3410 
3411 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3412 
3413 	/* Make sure the interrupt is not active. */
3414 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3415 
3416 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3417 	/* channels and PCI clock compensation delay.                      */
3418 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3419 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3420 #if BYTE_ORDER == BIG_ENDIAN
3421 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3422 #endif
3423 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3424 	    DMA_READ_CHANS << 12 |
3425 	    DMA_WRITE_CHANS << 16;
3426 
3427 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3428 
3429 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3430 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3431 
3432 	/*
3433 	 * This setting resolves a problem observed on certain Intel PCI
3434 	 * chipsets that cannot handle multiple outstanding DMA operations.
3435 	 * See errata E9_5706A1_65.
3436 	 */
3437 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3438 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3439 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3440 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3441 
3442 	REG_WR(sc, BNX_DMA_CONFIG, val);
3443 
3444 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3445 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3446 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3447 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3448 		    val & ~0x20000);
3449 	}
3450 
3451 	/* Enable the RX_V2P and Context state machines before access. */
3452 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3453 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3454 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3455 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3456 
3457 	/* Initialize context mapping and zero out the quick contexts. */
3458 	bnx_init_context(sc);
3459 
3460 	/* Initialize the on-boards CPUs */
3461 	bnx_init_cpus(sc);
3462 
3463 	/* Prepare NVRAM for access. */
3464 	if (bnx_init_nvram(sc)) {
3465 		rc = ENODEV;
3466 		goto bnx_chipinit_exit;
3467 	}
3468 
3469 	/* Set the kernel bypass block size */
3470 	val = REG_RD(sc, BNX_MQ_CONFIG);
3471 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3472 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3473 
3474 	/* Enable bins used on the 5709. */
3475 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3476 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3477 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3478 			val |= BNX_MQ_CONFIG_HALT_DIS;
3479 	}
3480 
3481 	REG_WR(sc, BNX_MQ_CONFIG, val);
3482 
3483 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3484 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3485 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3486 
3487 	val = (BCM_PAGE_BITS - 8) << 24;
3488 	REG_WR(sc, BNX_RV2P_CONFIG, val);
3489 
3490 	/* Configure page size. */
3491 	val = REG_RD(sc, BNX_TBDR_CONFIG);
3492 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3493 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3494 	REG_WR(sc, BNX_TBDR_CONFIG, val);
3495 
3496 #if 0
3497 	/* Set the perfect match control register to default. */
3498 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3499 #endif
3500 
3501 bnx_chipinit_exit:
3502 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3503 
3504 	return(rc);
3505 }
3506 
3507 /****************************************************************************/
3508 /* Initialize the controller in preparation to send/receive traffic.        */
3509 /*                                                                          */
3510 /* Returns:                                                                 */
3511 /*   0 for success, positive value for failure.                             */
3512 /****************************************************************************/
3513 int
3514 bnx_blockinit(struct bnx_softc *sc)
3515 {
3516 	u_int32_t		reg, val;
3517 	int 			rc = 0;
3518 
3519 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3520 
3521 	/* Load the hardware default MAC address. */
3522 	bnx_set_mac_addr(sc);
3523 
3524 	/* Set the Ethernet backoff seed value */
3525 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3526 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3527 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3528 
3529 	sc->last_status_idx = 0;
3530 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3531 
3532 	/* Set up link change interrupt generation. */
3533 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3534 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3535 
3536 	/* Program the physical address of the status block. */
3537 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3538 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3539 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3540 
3541 	/* Program the physical address of the statistics block. */
3542 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3543 	    (u_int32_t)(sc->stats_block_paddr));
3544 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3545 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3546 
3547 	/* Program various host coalescing parameters. */
3548 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3549 	    << 16) | sc->bnx_tx_quick_cons_trip);
3550 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3551 	    << 16) | sc->bnx_rx_quick_cons_trip);
3552 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3553 	    sc->bnx_comp_prod_trip);
3554 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3555 	    sc->bnx_tx_ticks);
3556 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3557 	    sc->bnx_rx_ticks);
3558 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3559 	    sc->bnx_com_ticks);
3560 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3561 	    sc->bnx_cmd_ticks);
3562 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3563 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3564 	REG_WR(sc, BNX_HC_CONFIG,
3565 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3566 	    BNX_HC_CONFIG_COLLECT_STATS));
3567 
3568 	/* Clear the internal statistics counters. */
3569 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3570 
3571 	/* Verify that bootcode is running. */
3572 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3573 
3574 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3575 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3576 	    __FILE__, __LINE__); reg = 0);
3577 
3578 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3579 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3580 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3581 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3582 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3583 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3584 		rc = ENODEV;
3585 		goto bnx_blockinit_exit;
3586 	}
3587 
3588 	/* Check if any management firmware is running. */
3589 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3590 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3591 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3592 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3593 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3594 	}
3595 
3596 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3597 	    BNX_DEV_INFO_BC_REV);
3598 
3599 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3600 
3601 	/* Enable DMA */
3602 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3603 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3604 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3605 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3606 	}
3607 
3608 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3609 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3610 
3611 	/* Enable link state change interrupt generation. */
3612 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3613 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3614 		    BNX_MISC_ENABLE_DEFAULT_XI);
3615 	} else
3616 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3617 
3618 	/* Enable all remaining blocks in the MAC. */
3619 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3620 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3621 	DELAY(20);
3622 
3623 bnx_blockinit_exit:
3624 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3625 
3626 	return (rc);
3627 }
3628 
3629 static int
3630 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3631     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3632 {
3633 	bus_dmamap_t		map;
3634 	struct rx_bd		*rxbd;
3635 	u_int32_t		addr;
3636 	int i;
3637 #ifdef BNX_DEBUG
3638 	u_int16_t debug_chain_prod =	*chain_prod;
3639 #endif
3640 	u_int16_t first_chain_prod;
3641 
3642 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3643 
3644 	/* Map the mbuf cluster into device memory. */
3645 	map = sc->rx_mbuf_map[*chain_prod];
3646 	first_chain_prod = *chain_prod;
3647 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3648 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3649 		    __FILE__, __LINE__);
3650 
3651 		m_freem(m_new);
3652 
3653 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3654 
3655 		return ENOBUFS;
3656 	}
3657 	/* Make sure there is room in the receive chain. */
3658 	if (map->dm_nsegs > sc->free_rx_bd) {
3659 		bus_dmamap_unload(sc->bnx_dmatag, map);
3660 		m_freem(m_new);
3661 		return EFBIG;
3662 	}
3663 #ifdef BNX_DEBUG
3664 	/* Track the distribution of buffer segments. */
3665 	sc->rx_mbuf_segs[map->dm_nsegs]++;
3666 #endif
3667 
3668 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3669 	    BUS_DMASYNC_PREREAD);
3670 
3671 	/* Update some debug statistics counters */
3672 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3673 	    sc->rx_low_watermark = sc->free_rx_bd);
3674 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3675 
3676 	/*
3677 	 * Setup the rx_bd for the first segment
3678 	 */
3679 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3680 
3681 	addr = (u_int32_t)map->dm_segs[0].ds_addr;
3682 	rxbd->rx_bd_haddr_lo = addr;
3683 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3684 	rxbd->rx_bd_haddr_hi = addr;
3685 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3686 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3687 	*prod_bseq += map->dm_segs[0].ds_len;
3688 	bus_dmamap_sync(sc->bnx_dmatag,
3689 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3690 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3691 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3692 
3693 	for (i = 1; i < map->dm_nsegs; i++) {
3694 		*prod = NEXT_RX_BD(*prod);
3695 		*chain_prod = RX_CHAIN_IDX(*prod);
3696 
3697 		rxbd =
3698 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3699 
3700 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
3701 		rxbd->rx_bd_haddr_lo = addr;
3702 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3703 		rxbd->rx_bd_haddr_hi = addr;
3704 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3705 		rxbd->rx_bd_flags = 0;
3706 		*prod_bseq += map->dm_segs[i].ds_len;
3707 		bus_dmamap_sync(sc->bnx_dmatag,
3708 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3709 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3710 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3711 	}
3712 
3713 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3714 	bus_dmamap_sync(sc->bnx_dmatag,
3715 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3716 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3717 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3718 
3719 	/*
3720 	 * Save the mbuf, ajust the map pointer (swap map for first and
3721 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3722 	 * and update counter.
3723 	 */
3724 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3725 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3726 	sc->rx_mbuf_map[*chain_prod] = map;
3727 	sc->free_rx_bd -= map->dm_nsegs;
3728 
3729 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3730 	    map->dm_nsegs));
3731 	*prod = NEXT_RX_BD(*prod);
3732 	*chain_prod = RX_CHAIN_IDX(*prod);
3733 
3734 	return 0;
3735 }
3736 
3737 /****************************************************************************/
3738 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3739 /*                                                                          */
3740 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3741 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3742 /* necessary.                                                               */
3743 /*                                                                          */
3744 /* Returns:                                                                 */
3745 /*   0 for success, positive value for failure.                             */
3746 /****************************************************************************/
3747 int
3748 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3749     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3750 {
3751 	struct mbuf 		*m_new = NULL;
3752 	int			rc = 0;
3753 	u_int16_t min_free_bd;
3754 
3755 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3756 	    __func__);
3757 
3758 	/* Make sure the inputs are valid. */
3759 	DBRUNIF((*chain_prod > MAX_RX_BD),
3760 	    aprint_error_dev(sc->bnx_dev,
3761 	        "RX producer out of range: 0x%04X > 0x%04X\n",
3762 		*chain_prod, (u_int16_t)MAX_RX_BD));
3763 
3764 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3765 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3766 	    *prod_bseq);
3767 
3768 	/* try to get in as many mbufs as possible */
3769 	if (sc->mbuf_alloc_size == MCLBYTES)
3770 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3771 	else
3772 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3773 	while (sc->free_rx_bd >= min_free_bd) {
3774 		/* Simulate an mbuf allocation failure. */
3775 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3776 		    aprint_error_dev(sc->bnx_dev,
3777 		    "Simulating mbuf allocation failure.\n");
3778 			sc->mbuf_sim_alloc_failed++;
3779 			rc = ENOBUFS;
3780 			goto bnx_get_buf_exit);
3781 
3782 		/* This is a new mbuf allocation. */
3783 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3784 		if (m_new == NULL) {
3785 			DBPRINT(sc, BNX_WARN,
3786 			    "%s(%d): RX mbuf header allocation failed!\n",
3787 			    __FILE__, __LINE__);
3788 
3789 			sc->mbuf_alloc_failed++;
3790 
3791 			rc = ENOBUFS;
3792 			goto bnx_get_buf_exit;
3793 		}
3794 
3795 		DBRUNIF(1, sc->rx_mbuf_alloc++);
3796 
3797 		/* Simulate an mbuf cluster allocation failure. */
3798 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3799 			m_freem(m_new);
3800 			sc->rx_mbuf_alloc--;
3801 			sc->mbuf_alloc_failed++;
3802 			sc->mbuf_sim_alloc_failed++;
3803 			rc = ENOBUFS;
3804 			goto bnx_get_buf_exit);
3805 
3806 		if (sc->mbuf_alloc_size == MCLBYTES)
3807 			MCLGET(m_new, M_DONTWAIT);
3808 		else
3809 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3810 			    M_DONTWAIT);
3811 		if (!(m_new->m_flags & M_EXT)) {
3812 			DBPRINT(sc, BNX_WARN,
3813 			    "%s(%d): RX mbuf chain allocation failed!\n",
3814 			    __FILE__, __LINE__);
3815 
3816 			m_freem(m_new);
3817 
3818 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3819 			sc->mbuf_alloc_failed++;
3820 
3821 			rc = ENOBUFS;
3822 			goto bnx_get_buf_exit;
3823 		}
3824 
3825 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3826 		if (rc != 0)
3827 			goto bnx_get_buf_exit;
3828 	}
3829 
3830 bnx_get_buf_exit:
3831 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3832 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3833 	    *chain_prod, *prod_bseq);
3834 
3835 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3836 	    __func__);
3837 
3838 	return(rc);
3839 }
3840 
3841 int
3842 bnx_alloc_pkts(struct bnx_softc *sc)
3843 {
3844 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
3845 	struct bnx_pkt *pkt;
3846 	int i;
3847 
3848 	for (i = 0; i < 4; i++) { /* magic! */
3849 		pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
3850 		if (pkt == NULL)
3851 			break;
3852 
3853 		if (bus_dmamap_create(sc->bnx_dmatag,
3854 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3855 		    MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
3856 		    &pkt->pkt_dmamap) != 0)
3857 			goto put;
3858 
3859 		if (!ISSET(ifp->if_flags, IFF_UP))
3860 			goto stopping;
3861 
3862 		mutex_enter(&sc->tx_pkt_mtx);
3863 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3864 		sc->tx_pkt_count++;
3865 		mutex_exit(&sc->tx_pkt_mtx);
3866 	}
3867 
3868 	return (i == 0) ? ENOMEM : 0;
3869 
3870 stopping:
3871 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3872 put:
3873 	pool_put(bnx_tx_pool, pkt);
3874 	return (i == 0) ? ENOMEM : 0;
3875 }
3876 
3877 /****************************************************************************/
3878 /* Initialize the TX context memory.                                        */
3879 /*                                                                          */
3880 /* Returns:                                                                 */
3881 /*   Nothing                                                                */
3882 /****************************************************************************/
3883 void
3884 bnx_init_tx_context(struct bnx_softc *sc)
3885 {
3886 	u_int32_t val;
3887 
3888 	/* Initialize the context ID for an L2 TX chain. */
3889 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3890 		/* Set the CID type to support an L2 connection. */
3891 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3892 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3893 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3894 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3895 
3896 		/* Point the hardware to the first page in the chain. */
3897 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3898 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3899 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3900 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3901 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3902 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3903 	} else {
3904 		/* Set the CID type to support an L2 connection. */
3905 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3906 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3907 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3908 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3909 
3910 		/* Point the hardware to the first page in the chain. */
3911 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3912 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3913 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3914 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3915 	}
3916 }
3917 
3918 
3919 /****************************************************************************/
3920 /* Allocate memory and initialize the TX data structures.                   */
3921 /*                                                                          */
3922 /* Returns:                                                                 */
3923 /*   0 for success, positive value for failure.                             */
3924 /****************************************************************************/
3925 int
3926 bnx_init_tx_chain(struct bnx_softc *sc)
3927 {
3928 	struct tx_bd		*txbd;
3929 	u_int32_t		addr;
3930 	int			i, rc = 0;
3931 
3932 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3933 
3934 	/* Force an allocation of some dmamaps for tx up front */
3935 	bnx_alloc_pkts(sc);
3936 
3937 	/* Set the initial TX producer/consumer indices. */
3938 	sc->tx_prod = 0;
3939 	sc->tx_cons = 0;
3940 	sc->tx_prod_bseq = 0;
3941 	sc->used_tx_bd = 0;
3942 	sc->max_tx_bd = USABLE_TX_BD;
3943 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3944 	DBRUNIF(1, sc->tx_full_count = 0);
3945 
3946 	/*
3947 	 * The NetXtreme II supports a linked-list structure called
3948 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
3949 	 * consists of a series of 1 or more chain pages, each of which
3950 	 * consists of a fixed number of BD entries.
3951 	 * The last BD entry on each page is a pointer to the next page
3952 	 * in the chain, and the last pointer in the BD chain
3953 	 * points back to the beginning of the chain.
3954 	 */
3955 
3956 	/* Set the TX next pointer chain entries. */
3957 	for (i = 0; i < TX_PAGES; i++) {
3958 		int j;
3959 
3960 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3961 
3962 		/* Check if we've reached the last page. */
3963 		if (i == (TX_PAGES - 1))
3964 			j = 0;
3965 		else
3966 			j = i + 1;
3967 
3968 		addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
3969 		txbd->tx_bd_haddr_lo = addr;
3970 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3971 		txbd->tx_bd_haddr_hi = addr;
3972 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3973 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3974 	}
3975 
3976 	/*
3977 	 * Initialize the context ID for an L2 TX chain.
3978 	 */
3979 	bnx_init_tx_context(sc);
3980 
3981 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3982 
3983 	return(rc);
3984 }
3985 
3986 /****************************************************************************/
3987 /* Free memory and clear the TX data structures.                            */
3988 /*                                                                          */
3989 /* Returns:                                                                 */
3990 /*   Nothing.                                                               */
3991 /****************************************************************************/
3992 void
3993 bnx_free_tx_chain(struct bnx_softc *sc)
3994 {
3995 	struct bnx_pkt		*pkt;
3996 	int			i;
3997 
3998 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3999 
4000 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4001 	mutex_enter(&sc->tx_pkt_mtx);
4002 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4003 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4004 		mutex_exit(&sc->tx_pkt_mtx);
4005 
4006 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4007 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4008 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4009 
4010 		m_freem(pkt->pkt_mbuf);
4011 		DBRUNIF(1, sc->tx_mbuf_alloc--);
4012 
4013 		mutex_enter(&sc->tx_pkt_mtx);
4014 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4015         }
4016 
4017 	/* Destroy all the dmamaps we allocated for TX */
4018 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4019 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4020 		sc->tx_pkt_count--;
4021 		mutex_exit(&sc->tx_pkt_mtx);
4022 
4023 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4024 		pool_put(bnx_tx_pool, pkt);
4025 
4026 		mutex_enter(&sc->tx_pkt_mtx);
4027 	}
4028 	mutex_exit(&sc->tx_pkt_mtx);
4029 
4030 
4031 
4032 	/* Clear each TX chain page. */
4033 	for (i = 0; i < TX_PAGES; i++) {
4034 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4035 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4036 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4037 	}
4038 
4039 	sc->used_tx_bd = 0;
4040 
4041 	/* Check if we lost any mbufs in the process. */
4042 	DBRUNIF((sc->tx_mbuf_alloc),
4043 	    aprint_error_dev(sc->bnx_dev,
4044 	        "Memory leak! Lost %d mbufs from tx chain!\n",
4045 		sc->tx_mbuf_alloc));
4046 
4047 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4048 }
4049 
4050 /****************************************************************************/
4051 /* Initialize the RX context memory.                                        */
4052 /*                                                                          */
4053 /* Returns:                                                                 */
4054 /*   Nothing                                                                */
4055 /****************************************************************************/
4056 void
4057 bnx_init_rx_context(struct bnx_softc *sc)
4058 {
4059 	u_int32_t val;
4060 
4061 	/* Initialize the context ID for an L2 RX chain. */
4062 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4063 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4064 
4065 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4066 		u_int32_t lo_water, hi_water;
4067 
4068 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4069 		hi_water = USABLE_RX_BD / 4;
4070 
4071 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4072 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4073 
4074 		if (hi_water > 0xf)
4075 			hi_water = 0xf;
4076 		else if (hi_water == 0)
4077 			lo_water = 0;
4078 		val |= lo_water |
4079 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4080 	}
4081 
4082  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4083 
4084 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4085 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4086 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4087 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4088 	}
4089 
4090 	/* Point the hardware to the first page in the chain. */
4091 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4092 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4093 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4094 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4095 }
4096 
4097 /****************************************************************************/
4098 /* Allocate memory and initialize the RX data structures.                   */
4099 /*                                                                          */
4100 /* Returns:                                                                 */
4101 /*   0 for success, positive value for failure.                             */
4102 /****************************************************************************/
4103 int
4104 bnx_init_rx_chain(struct bnx_softc *sc)
4105 {
4106 	struct rx_bd		*rxbd;
4107 	int			i, rc = 0;
4108 	u_int16_t		prod, chain_prod;
4109 	u_int32_t		prod_bseq, addr;
4110 
4111 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4112 
4113 	/* Initialize the RX producer and consumer indices. */
4114 	sc->rx_prod = 0;
4115 	sc->rx_cons = 0;
4116 	sc->rx_prod_bseq = 0;
4117 	sc->free_rx_bd = USABLE_RX_BD;
4118 	sc->max_rx_bd = USABLE_RX_BD;
4119 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4120 	DBRUNIF(1, sc->rx_empty_count = 0);
4121 
4122 	/* Initialize the RX next pointer chain entries. */
4123 	for (i = 0; i < RX_PAGES; i++) {
4124 		int j;
4125 
4126 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4127 
4128 		/* Check if we've reached the last page. */
4129 		if (i == (RX_PAGES - 1))
4130 			j = 0;
4131 		else
4132 			j = i + 1;
4133 
4134 		/* Setup the chain page pointers. */
4135 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4136 		rxbd->rx_bd_haddr_hi = addr;
4137 		addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
4138 		rxbd->rx_bd_haddr_lo = addr;
4139 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4140 		    0, BNX_RX_CHAIN_PAGE_SZ,
4141 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4142 	}
4143 
4144 	/* Allocate mbuf clusters for the rx_bd chain. */
4145 	prod = prod_bseq = 0;
4146 	chain_prod = RX_CHAIN_IDX(prod);
4147 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4148 		BNX_PRINTF(sc,
4149 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4150 	}
4151 
4152 	/* Save the RX chain producer index. */
4153 	sc->rx_prod = prod;
4154 	sc->rx_prod_bseq = prod_bseq;
4155 
4156 	for (i = 0; i < RX_PAGES; i++)
4157 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4158 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4159 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4160 
4161 	/* Tell the chip about the waiting rx_bd's. */
4162 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4163 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4164 
4165 	bnx_init_rx_context(sc);
4166 
4167 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4168 
4169 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4170 
4171 	return(rc);
4172 }
4173 
4174 /****************************************************************************/
4175 /* Free memory and clear the RX data structures.                            */
4176 /*                                                                          */
4177 /* Returns:                                                                 */
4178 /*   Nothing.                                                               */
4179 /****************************************************************************/
4180 void
4181 bnx_free_rx_chain(struct bnx_softc *sc)
4182 {
4183 	int			i;
4184 
4185 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4186 
4187 	/* Free any mbufs still in the RX mbuf chain. */
4188 	for (i = 0; i < TOTAL_RX_BD; i++) {
4189 		if (sc->rx_mbuf_ptr[i] != NULL) {
4190 			if (sc->rx_mbuf_map[i] != NULL) {
4191 				bus_dmamap_sync(sc->bnx_dmatag,
4192 				    sc->rx_mbuf_map[i],	0,
4193 				    sc->rx_mbuf_map[i]->dm_mapsize,
4194 				    BUS_DMASYNC_POSTREAD);
4195 				bus_dmamap_unload(sc->bnx_dmatag,
4196 				    sc->rx_mbuf_map[i]);
4197 			}
4198 			m_freem(sc->rx_mbuf_ptr[i]);
4199 			sc->rx_mbuf_ptr[i] = NULL;
4200 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4201 		}
4202 	}
4203 
4204 	/* Clear each RX chain page. */
4205 	for (i = 0; i < RX_PAGES; i++)
4206 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4207 
4208 	sc->free_rx_bd = sc->max_rx_bd;
4209 
4210 	/* Check if we lost any mbufs in the process. */
4211 	DBRUNIF((sc->rx_mbuf_alloc),
4212 	    aprint_error_dev(sc->bnx_dev,
4213 	        "Memory leak! Lost %d mbufs from rx chain!\n",
4214 		sc->rx_mbuf_alloc));
4215 
4216 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4217 }
4218 
4219 /****************************************************************************/
4220 /* Handles PHY generated interrupt events.                                  */
4221 /*                                                                          */
4222 /* Returns:                                                                 */
4223 /*   Nothing.                                                               */
4224 /****************************************************************************/
4225 void
4226 bnx_phy_intr(struct bnx_softc *sc)
4227 {
4228 	u_int32_t		new_link_state, old_link_state;
4229 
4230 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4231 	    BUS_DMASYNC_POSTREAD);
4232 	new_link_state = sc->status_block->status_attn_bits &
4233 	    STATUS_ATTN_BITS_LINK_STATE;
4234 	old_link_state = sc->status_block->status_attn_bits_ack &
4235 	    STATUS_ATTN_BITS_LINK_STATE;
4236 
4237 	/* Handle any changes if the link state has changed. */
4238 	if (new_link_state != old_link_state) {
4239 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4240 
4241 		callout_stop(&sc->bnx_timeout);
4242 		bnx_tick(sc);
4243 
4244 		/* Update the status_attn_bits_ack field in the status block. */
4245 		if (new_link_state) {
4246 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4247 			    STATUS_ATTN_BITS_LINK_STATE);
4248 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4249 		} else {
4250 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4251 			    STATUS_ATTN_BITS_LINK_STATE);
4252 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4253 		}
4254 	}
4255 
4256 	/* Acknowledge the link change interrupt. */
4257 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4258 }
4259 
4260 /****************************************************************************/
4261 /* Handles received frame interrupt events.                                 */
4262 /*                                                                          */
4263 /* Returns:                                                                 */
4264 /*   Nothing.                                                               */
4265 /****************************************************************************/
4266 void
4267 bnx_rx_intr(struct bnx_softc *sc)
4268 {
4269 	struct status_block	*sblk = sc->status_block;
4270 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4271 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
4272 	u_int16_t		sw_prod, sw_chain_prod;
4273 	u_int32_t		sw_prod_bseq;
4274 	struct l2_fhdr		*l2fhdr;
4275 	int			i;
4276 
4277 	DBRUNIF(1, sc->rx_interrupts++);
4278 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4279 	    BUS_DMASYNC_POSTREAD);
4280 
4281 	/* Prepare the RX chain pages to be accessed by the host CPU. */
4282 	for (i = 0; i < RX_PAGES; i++)
4283 		bus_dmamap_sync(sc->bnx_dmatag,
4284 		    sc->rx_bd_chain_map[i], 0,
4285 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4286 		    BUS_DMASYNC_POSTWRITE);
4287 
4288 	/* Get the hardware's view of the RX consumer index. */
4289 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4290 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4291 		hw_cons++;
4292 
4293 	/* Get working copies of the driver's view of the RX indices. */
4294 	sw_cons = sc->rx_cons;
4295 	sw_prod = sc->rx_prod;
4296 	sw_prod_bseq = sc->rx_prod_bseq;
4297 
4298 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4299 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4300 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
4301 
4302 	/* Prevent speculative reads from getting ahead of the status block. */
4303 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4304 	    BUS_SPACE_BARRIER_READ);
4305 
4306 	/* Update some debug statistics counters */
4307 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4308 	    sc->rx_low_watermark = sc->free_rx_bd);
4309 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4310 
4311 	/*
4312 	 * Scan through the receive chain as long
4313 	 * as there is work to do.
4314 	 */
4315 	while (sw_cons != hw_cons) {
4316 		struct mbuf *m;
4317 		struct rx_bd *rxbd;
4318 		unsigned int len;
4319 		u_int32_t status;
4320 
4321 		/* Convert the producer/consumer indices to an actual
4322 		 * rx_bd index.
4323 		 */
4324 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4325 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4326 
4327 		/* Get the used rx_bd. */
4328 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4329 		sc->free_rx_bd++;
4330 
4331 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4332 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4333 
4334 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4335 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4336 #ifdef DIAGNOSTIC
4337 			/* Validate that this is the last rx_bd. */
4338 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4339 			    printf("%s: Unexpected mbuf found in "
4340 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4341 			        sw_chain_cons);
4342 			}
4343 #endif
4344 
4345 			/* DRC - ToDo: If the received packet is small, say less
4346 			 *             than 128 bytes, allocate a new mbuf here,
4347 			 *             copy the data to that mbuf, and recycle
4348 			 *             the mapped jumbo frame.
4349 			 */
4350 
4351 			/* Unmap the mbuf from DMA space. */
4352 #ifdef DIAGNOSTIC
4353 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4354 				printf("invalid map sw_cons 0x%x "
4355 				"sw_prod 0x%x "
4356 				"sw_chain_cons 0x%x "
4357 				"sw_chain_prod 0x%x "
4358 				"hw_cons 0x%x "
4359 				"TOTAL_RX_BD_PER_PAGE 0x%x "
4360 				"TOTAL_RX_BD 0x%x\n",
4361 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4362 				hw_cons,
4363 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4364 			}
4365 #endif
4366 			bus_dmamap_sync(sc->bnx_dmatag,
4367 			    sc->rx_mbuf_map[sw_chain_cons], 0,
4368 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4369 			    BUS_DMASYNC_POSTREAD);
4370 			bus_dmamap_unload(sc->bnx_dmatag,
4371 			    sc->rx_mbuf_map[sw_chain_cons]);
4372 
4373 			/* Remove the mbuf from the driver's chain. */
4374 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4375 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4376 
4377 			/*
4378 			 * Frames received on the NetXteme II are prepended
4379 			 * with the l2_fhdr structure which provides status
4380 			 * information about the received frame (including
4381 			 * VLAN tags and checksum info) and are also
4382 			 * automatically adjusted to align the IP header
4383 			 * (i.e. two null bytes are inserted before the
4384 			 * Ethernet header).
4385 			 */
4386 			l2fhdr = mtod(m, struct l2_fhdr *);
4387 
4388 			len    = l2fhdr->l2_fhdr_pkt_len;
4389 			status = l2fhdr->l2_fhdr_status;
4390 
4391 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4392 			    aprint_error("Simulating l2_fhdr status error.\n");
4393 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4394 
4395 			/* Watch for unusual sized frames. */
4396 			DBRUNIF(((len < BNX_MIN_MTU) ||
4397 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4398 			    aprint_error_dev(sc->bnx_dev,
4399 			        "Unusual frame size found. "
4400 				"Min(%d), Actual(%d), Max(%d)\n",
4401 				(int)BNX_MIN_MTU, len,
4402 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4403 
4404 			bnx_dump_mbuf(sc, m);
4405 			bnx_breakpoint(sc));
4406 
4407 			len -= ETHER_CRC_LEN;
4408 
4409 			/* Check the received frame for errors. */
4410 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
4411 			    L2_FHDR_ERRORS_PHY_DECODE |
4412 			    L2_FHDR_ERRORS_ALIGNMENT |
4413 			    L2_FHDR_ERRORS_TOO_SHORT |
4414 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
4415 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4416 			    len >
4417 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4418 				ifp->if_ierrors++;
4419 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4420 
4421 				/* Reuse the mbuf for a new frame. */
4422 				if (bnx_add_buf(sc, m, &sw_prod,
4423 				    &sw_chain_prod, &sw_prod_bseq)) {
4424 					DBRUNIF(1, bnx_breakpoint(sc));
4425 					panic("%s: Can't reuse RX mbuf!\n",
4426 					    device_xname(sc->bnx_dev));
4427 				}
4428 				continue;
4429 			}
4430 
4431 			/*
4432 			 * Get a new mbuf for the rx_bd.   If no new
4433 			 * mbufs are available then reuse the current mbuf,
4434 			 * log an ierror on the interface, and generate
4435 			 * an error in the system log.
4436 			 */
4437 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4438 			    &sw_prod_bseq)) {
4439 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4440 				    "Failed to allocate "
4441 				    "new mbuf, incoming frame dropped!\n"));
4442 
4443 				ifp->if_ierrors++;
4444 
4445 				/* Try and reuse the exisitng mbuf. */
4446 				if (bnx_add_buf(sc, m, &sw_prod,
4447 				    &sw_chain_prod, &sw_prod_bseq)) {
4448 					DBRUNIF(1, bnx_breakpoint(sc));
4449 					panic("%s: Double mbuf allocation "
4450 					    "failure!",
4451 					    device_xname(sc->bnx_dev));
4452 				}
4453 				continue;
4454 			}
4455 
4456 			/* Skip over the l2_fhdr when passing the data up
4457 			 * the stack.
4458 			 */
4459 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4460 
4461 			/* Adjust the pckt length to match the received data. */
4462 			m->m_pkthdr.len = m->m_len = len;
4463 
4464 			/* Send the packet to the appropriate interface. */
4465 			m->m_pkthdr.rcvif = ifp;
4466 
4467 			DBRUN(BNX_VERBOSE_RECV,
4468 			    struct ether_header *eh;
4469 			    eh = mtod(m, struct ether_header *);
4470 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4471 			    __func__, ether_sprintf(eh->ether_dhost),
4472 			    ether_sprintf(eh->ether_shost),
4473 			    htons(eh->ether_type)));
4474 
4475 			/* Validate the checksum. */
4476 
4477 			/* Check for an IP datagram. */
4478 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4479 				/* Check if the IP checksum is valid. */
4480 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4481 				    == 0)
4482 					m->m_pkthdr.csum_flags |=
4483 					    M_CSUM_IPv4;
4484 #ifdef BNX_DEBUG
4485 				else
4486 					DBPRINT(sc, BNX_WARN_SEND,
4487 					    "%s(): Invalid IP checksum "
4488 					        "= 0x%04X!\n",
4489 						__func__,
4490 						l2fhdr->l2_fhdr_ip_xsum
4491 						);
4492 #endif
4493 			}
4494 
4495 			/* Check for a valid TCP/UDP frame. */
4496 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4497 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4498 				/* Check for a good TCP/UDP checksum. */
4499 				if ((status &
4500 				    (L2_FHDR_ERRORS_TCP_XSUM |
4501 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4502 					m->m_pkthdr.csum_flags |=
4503 					    M_CSUM_TCPv4 |
4504 					    M_CSUM_UDPv4;
4505 				} else {
4506 					DBPRINT(sc, BNX_WARN_SEND,
4507 					    "%s(): Invalid TCP/UDP "
4508 					    "checksum = 0x%04X!\n",
4509 					    __func__,
4510 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4511 				}
4512 			}
4513 
4514 			/*
4515 			 * If we received a packet with a vlan tag,
4516 			 * attach that information to the packet.
4517 			 */
4518 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4519 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4520 				VLAN_INPUT_TAG(ifp, m,
4521 				    l2fhdr->l2_fhdr_vlan_tag,
4522 				    continue);
4523 			}
4524 
4525 			/*
4526 			 * Handle BPF listeners. Let the BPF
4527 			 * user see the packet.
4528 			 */
4529 			bpf_mtap(ifp, m);
4530 
4531 			/* Pass the mbuf off to the upper layers. */
4532 			ifp->if_ipackets++;
4533 			DBPRINT(sc, BNX_VERBOSE_RECV,
4534 			    "%s(): Passing received frame up.\n", __func__);
4535 			(*ifp->if_input)(ifp, m);
4536 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4537 
4538 		}
4539 
4540 		sw_cons = NEXT_RX_BD(sw_cons);
4541 
4542 		/* Refresh hw_cons to see if there's new work */
4543 		if (sw_cons == hw_cons) {
4544 			hw_cons = sc->hw_rx_cons =
4545 			    sblk->status_rx_quick_consumer_index0;
4546 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4547 			    USABLE_RX_BD_PER_PAGE)
4548 				hw_cons++;
4549 		}
4550 
4551 		/* Prevent speculative reads from getting ahead of
4552 		 * the status block.
4553 		 */
4554 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4555 		    BUS_SPACE_BARRIER_READ);
4556 	}
4557 
4558 	for (i = 0; i < RX_PAGES; i++)
4559 		bus_dmamap_sync(sc->bnx_dmatag,
4560 		    sc->rx_bd_chain_map[i], 0,
4561 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4562 		    BUS_DMASYNC_PREWRITE);
4563 
4564 	sc->rx_cons = sw_cons;
4565 	sc->rx_prod = sw_prod;
4566 	sc->rx_prod_bseq = sw_prod_bseq;
4567 
4568 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4569 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4570 
4571 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4572 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4573 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4574 }
4575 
4576 /****************************************************************************/
4577 /* Handles transmit completion interrupt events.                            */
4578 /*                                                                          */
4579 /* Returns:                                                                 */
4580 /*   Nothing.                                                               */
4581 /****************************************************************************/
4582 void
4583 bnx_tx_intr(struct bnx_softc *sc)
4584 {
4585 	struct status_block	*sblk = sc->status_block;
4586 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4587 	struct bnx_pkt		*pkt;
4588 	bus_dmamap_t		map;
4589 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4590 
4591 	DBRUNIF(1, sc->tx_interrupts++);
4592 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4593 	    BUS_DMASYNC_POSTREAD);
4594 
4595 	/* Get the hardware's view of the TX consumer index. */
4596 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4597 
4598 	/* Skip to the next entry if this is a chain page pointer. */
4599 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4600 		hw_tx_cons++;
4601 
4602 	sw_tx_cons = sc->tx_cons;
4603 
4604 	/* Prevent speculative reads from getting ahead of the status block. */
4605 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4606 	    BUS_SPACE_BARRIER_READ);
4607 
4608 	/* Cycle through any completed TX chain page entries. */
4609 	while (sw_tx_cons != hw_tx_cons) {
4610 #ifdef BNX_DEBUG
4611 		struct tx_bd *txbd = NULL;
4612 #endif
4613 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4614 
4615 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4616 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4617 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4618 
4619 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4620 		    aprint_error_dev(sc->bnx_dev,
4621 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4622 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4623 
4624 		DBRUNIF(1, txbd = &sc->tx_bd_chain
4625 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4626 
4627 		DBRUNIF((txbd == NULL),
4628 		    aprint_error_dev(sc->bnx_dev,
4629 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4630 		    bnx_breakpoint(sc));
4631 
4632 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4633 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4634 
4635 
4636 		mutex_enter(&sc->tx_pkt_mtx);
4637 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4638 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4639 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4640 			mutex_exit(&sc->tx_pkt_mtx);
4641 			/*
4642 			 * Free the associated mbuf. Remember
4643 			 * that only the last tx_bd of a packet
4644 			 * has an mbuf pointer and DMA map.
4645 			 */
4646 			map = pkt->pkt_dmamap;
4647 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4648 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4649 			bus_dmamap_unload(sc->bnx_dmatag, map);
4650 
4651 			m_freem(pkt->pkt_mbuf);
4652 			DBRUNIF(1, sc->tx_mbuf_alloc--);
4653 
4654 			ifp->if_opackets++;
4655 
4656 			mutex_enter(&sc->tx_pkt_mtx);
4657 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4658 		}
4659 		mutex_exit(&sc->tx_pkt_mtx);
4660 
4661 		sc->used_tx_bd--;
4662 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4663 			__FILE__, __LINE__, sc->used_tx_bd);
4664 
4665 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4666 
4667 		/* Refresh hw_cons to see if there's new work. */
4668 		hw_tx_cons = sc->hw_tx_cons =
4669 		    sblk->status_tx_quick_consumer_index0;
4670 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4671 		    USABLE_TX_BD_PER_PAGE)
4672 			hw_tx_cons++;
4673 
4674 		/* Prevent speculative reads from getting ahead of
4675 		 * the status block.
4676 		 */
4677 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4678 		    BUS_SPACE_BARRIER_READ);
4679 	}
4680 
4681 	/* Clear the TX timeout timer. */
4682 	ifp->if_timer = 0;
4683 
4684 	/* Clear the tx hardware queue full flag. */
4685 	if (sc->used_tx_bd < sc->max_tx_bd) {
4686 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4687 		    aprint_debug_dev(sc->bnx_dev,
4688 		        "Open TX chain! %d/%d (used/total)\n",
4689 			sc->used_tx_bd, sc->max_tx_bd));
4690 		ifp->if_flags &= ~IFF_OACTIVE;
4691 	}
4692 
4693 	sc->tx_cons = sw_tx_cons;
4694 }
4695 
4696 /****************************************************************************/
4697 /* Disables interrupt generation.                                           */
4698 /*                                                                          */
4699 /* Returns:                                                                 */
4700 /*   Nothing.                                                               */
4701 /****************************************************************************/
4702 void
4703 bnx_disable_intr(struct bnx_softc *sc)
4704 {
4705 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4706 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4707 }
4708 
4709 /****************************************************************************/
4710 /* Enables interrupt generation.                                            */
4711 /*                                                                          */
4712 /* Returns:                                                                 */
4713 /*   Nothing.                                                               */
4714 /****************************************************************************/
4715 void
4716 bnx_enable_intr(struct bnx_softc *sc)
4717 {
4718 	u_int32_t		val;
4719 
4720 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4721 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4722 
4723 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4724 	    sc->last_status_idx);
4725 
4726 	val = REG_RD(sc, BNX_HC_COMMAND);
4727 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4728 }
4729 
4730 /****************************************************************************/
4731 /* Handles controller initialization.                                       */
4732 /*                                                                          */
4733 /****************************************************************************/
4734 int
4735 bnx_init(struct ifnet *ifp)
4736 {
4737 	struct bnx_softc	*sc = ifp->if_softc;
4738 	u_int32_t		ether_mtu;
4739 	int			s, error = 0;
4740 
4741 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4742 
4743 	s = splnet();
4744 
4745 	bnx_stop(ifp, 0);
4746 
4747 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4748 		aprint_error_dev(sc->bnx_dev,
4749 		    "Controller reset failed!\n");
4750 		goto bnx_init_exit;
4751 	}
4752 
4753 	if ((error = bnx_chipinit(sc)) != 0) {
4754 		aprint_error_dev(sc->bnx_dev,
4755 		    "Controller initialization failed!\n");
4756 		goto bnx_init_exit;
4757 	}
4758 
4759 	if ((error = bnx_blockinit(sc)) != 0) {
4760 		aprint_error_dev(sc->bnx_dev,
4761 		    "Block initialization failed!\n");
4762 		goto bnx_init_exit;
4763 	}
4764 
4765 	/* Calculate and program the Ethernet MRU size. */
4766 	if (ifp->if_mtu <= ETHERMTU) {
4767 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4768 		sc->mbuf_alloc_size = MCLBYTES;
4769 	} else {
4770 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4771 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4772 	}
4773 
4774 
4775 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4776 	    __func__, ether_mtu);
4777 
4778 	/*
4779 	 * Program the MRU and enable Jumbo frame
4780 	 * support.
4781 	 */
4782 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4783 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4784 
4785 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4786 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4787 
4788 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4789 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4790 	    sc->mbuf_alloc_size, sc->max_frame_size);
4791 
4792 	/* Program appropriate promiscuous/multicast filtering. */
4793 	bnx_iff(sc);
4794 
4795 	/* Init RX buffer descriptor chain. */
4796 	bnx_init_rx_chain(sc);
4797 
4798 	/* Init TX buffer descriptor chain. */
4799 	bnx_init_tx_chain(sc);
4800 
4801 	/* Enable host interrupts. */
4802 	bnx_enable_intr(sc);
4803 
4804 	if ((error = ether_mediachange(ifp)) != 0)
4805 		goto bnx_init_exit;
4806 
4807 	ifp->if_flags |= IFF_RUNNING;
4808 	ifp->if_flags &= ~IFF_OACTIVE;
4809 
4810 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4811 
4812 bnx_init_exit:
4813 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4814 
4815 	splx(s);
4816 
4817 	return(error);
4818 }
4819 
4820 /****************************************************************************/
4821 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4822 /* memory visible to the controller.                                        */
4823 /*                                                                          */
4824 /* Returns:                                                                 */
4825 /*   0 for success, positive value for failure.                             */
4826 /****************************************************************************/
4827 int
4828 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4829 {
4830 	struct bnx_pkt		*pkt;
4831 	bus_dmamap_t		map;
4832 	struct tx_bd		*txbd = NULL;
4833 	u_int16_t		vlan_tag = 0, flags = 0;
4834 	u_int16_t		chain_prod, prod;
4835 #ifdef BNX_DEBUG
4836 	u_int16_t		debug_prod;
4837 #endif
4838 	u_int32_t		addr, prod_bseq;
4839 	int			i, error;
4840 	struct m_tag		*mtag;
4841 
4842 again:
4843 	mutex_enter(&sc->tx_pkt_mtx);
4844 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4845 	if (pkt == NULL) {
4846 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4847 			mutex_exit(&sc->tx_pkt_mtx);
4848 			return ENETDOWN;
4849 		}
4850 		if (sc->tx_pkt_count <= TOTAL_TX_BD) {
4851 			mutex_exit(&sc->tx_pkt_mtx);
4852 			if (bnx_alloc_pkts(sc) == 0)
4853 				goto again;
4854 		} else {
4855 			mutex_exit(&sc->tx_pkt_mtx);
4856 		}
4857 		return (ENOMEM);
4858 	}
4859 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4860 	mutex_exit(&sc->tx_pkt_mtx);
4861 
4862 	/* Transfer any checksum offload flags to the bd. */
4863 	if (m->m_pkthdr.csum_flags) {
4864 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4865 			flags |= TX_BD_FLAGS_IP_CKSUM;
4866 		if (m->m_pkthdr.csum_flags &
4867 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4868 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4869 	}
4870 
4871 	/* Transfer any VLAN tags to the bd. */
4872 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4873 	if (mtag != NULL) {
4874 		flags |= TX_BD_FLAGS_VLAN_TAG;
4875 		vlan_tag = VLAN_TAG_VALUE(mtag);
4876 	}
4877 
4878 	/* Map the mbuf into DMAable memory. */
4879 	prod = sc->tx_prod;
4880 	chain_prod = TX_CHAIN_IDX(prod);
4881 	map = pkt->pkt_dmamap;
4882 
4883 	/* Map the mbuf into our DMA address space. */
4884 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4885 	if (error != 0) {
4886 		aprint_error_dev(sc->bnx_dev,
4887 		    "Error mapping mbuf into TX chain!\n");
4888 		sc->tx_dma_map_failures++;
4889 		goto maperr;
4890 	}
4891 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4892 	    BUS_DMASYNC_PREWRITE);
4893         /* Make sure there's room in the chain */
4894 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4895                 goto nospace;
4896 
4897 	/* prod points to an empty tx_bd at this point. */
4898 	prod_bseq = sc->tx_prod_bseq;
4899 #ifdef BNX_DEBUG
4900 	debug_prod = chain_prod;
4901 #endif
4902 	DBPRINT(sc, BNX_INFO_SEND,
4903 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4904 		"prod_bseq = 0x%08X\n",
4905 		__func__, prod, chain_prod, prod_bseq);
4906 
4907 	/*
4908 	 * Cycle through each mbuf segment that makes up
4909 	 * the outgoing frame, gathering the mapping info
4910 	 * for that segment and creating a tx_bd for the
4911 	 * mbuf.
4912 	 */
4913 	for (i = 0; i < map->dm_nsegs ; i++) {
4914 		chain_prod = TX_CHAIN_IDX(prod);
4915 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4916 
4917 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
4918 		txbd->tx_bd_haddr_lo = addr;
4919 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4920 		txbd->tx_bd_haddr_hi = addr;
4921 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4922 		txbd->tx_bd_vlan_tag = vlan_tag;
4923 		txbd->tx_bd_flags = flags;
4924 		prod_bseq += map->dm_segs[i].ds_len;
4925 		if (i == 0)
4926 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4927 		prod = NEXT_TX_BD(prod);
4928 	}
4929 	/* Set the END flag on the last TX buffer descriptor. */
4930 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4931 
4932 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4933 
4934 	DBPRINT(sc, BNX_INFO_SEND,
4935 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
4936 		"prod_bseq = 0x%08X\n",
4937 		__func__, prod, chain_prod, prod_bseq);
4938 
4939 	pkt->pkt_mbuf = m;
4940 	pkt->pkt_end_desc = chain_prod;
4941 
4942 	mutex_enter(&sc->tx_pkt_mtx);
4943 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4944 	mutex_exit(&sc->tx_pkt_mtx);
4945 
4946 	sc->used_tx_bd += map->dm_nsegs;
4947 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4948 		__FILE__, __LINE__, sc->used_tx_bd);
4949 
4950 	/* Update some debug statistics counters */
4951 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4952 	    sc->tx_hi_watermark = sc->used_tx_bd);
4953 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4954 	DBRUNIF(1, sc->tx_mbuf_alloc++);
4955 
4956 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4957 	    map->dm_nsegs));
4958 
4959 	/* prod points to the next free tx_bd at this point. */
4960 	sc->tx_prod = prod;
4961 	sc->tx_prod_bseq = prod_bseq;
4962 
4963 	return (0);
4964 
4965 
4966 nospace:
4967 	bus_dmamap_unload(sc->bnx_dmatag, map);
4968 maperr:
4969 	mutex_enter(&sc->tx_pkt_mtx);
4970 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4971 	mutex_exit(&sc->tx_pkt_mtx);
4972 
4973 	return (ENOMEM);
4974 }
4975 
4976 /****************************************************************************/
4977 /* Main transmit routine.                                                   */
4978 /*                                                                          */
4979 /* Returns:                                                                 */
4980 /*   Nothing.                                                               */
4981 /****************************************************************************/
4982 void
4983 bnx_start(struct ifnet *ifp)
4984 {
4985 	struct bnx_softc	*sc = ifp->if_softc;
4986 	struct mbuf		*m_head = NULL;
4987 	int			count = 0;
4988 	u_int16_t		tx_prod, tx_chain_prod;
4989 
4990 	/* If there's no link or the transmit queue is empty then just exit. */
4991 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4992 		DBPRINT(sc, BNX_INFO_SEND,
4993 		    "%s(): output active or device not running.\n", __func__);
4994 		goto bnx_start_exit;
4995 	}
4996 
4997 	/* prod points to the next free tx_bd. */
4998 	tx_prod = sc->tx_prod;
4999 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
5000 
5001 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5002 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5003 	    "used_tx %d max_tx %d\n",
5004 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5005 	    sc->used_tx_bd, sc->max_tx_bd);
5006 
5007 	/*
5008 	 * Keep adding entries while there is space in the ring.
5009 	 */
5010 	while (sc->used_tx_bd < sc->max_tx_bd) {
5011 		/* Check for any frames to send. */
5012 		IFQ_POLL(&ifp->if_snd, m_head);
5013 		if (m_head == NULL)
5014 			break;
5015 
5016 		/*
5017 		 * Pack the data into the transmit ring. If we
5018 		 * don't have room, set the OACTIVE flag to wait
5019 		 * for the NIC to drain the chain.
5020 		 */
5021 		if (bnx_tx_encap(sc, m_head)) {
5022 			ifp->if_flags |= IFF_OACTIVE;
5023 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5024 			    "business! Total tx_bd used = %d\n",
5025 			    sc->used_tx_bd);
5026 			break;
5027 		}
5028 
5029 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5030 		count++;
5031 
5032 		/* Send a copy of the frame to any BPF listeners. */
5033 		bpf_mtap(ifp, m_head);
5034 	}
5035 
5036 	if (count == 0) {
5037 		/* no packets were dequeued */
5038 		DBPRINT(sc, BNX_VERBOSE_SEND,
5039 		    "%s(): No packets were dequeued\n", __func__);
5040 		goto bnx_start_exit;
5041 	}
5042 
5043 	/* Update the driver's counters. */
5044 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5045 
5046 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5047 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
5048 	    tx_chain_prod, sc->tx_prod_bseq);
5049 
5050 	/* Start the transmit. */
5051 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5052 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5053 
5054 	/* Set the tx timeout. */
5055 	ifp->if_timer = BNX_TX_TIMEOUT;
5056 
5057 bnx_start_exit:
5058 	return;
5059 }
5060 
5061 /****************************************************************************/
5062 /* Handles any IOCTL calls from the operating system.                       */
5063 /*                                                                          */
5064 /* Returns:                                                                 */
5065 /*   0 for success, positive value for failure.                             */
5066 /****************************************************************************/
5067 int
5068 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5069 {
5070 	struct bnx_softc	*sc = ifp->if_softc;
5071 	struct ifreq		*ifr = (struct ifreq *) data;
5072 	struct mii_data		*mii = &sc->bnx_mii;
5073 	int			s, error = 0;
5074 
5075 	s = splnet();
5076 
5077 	switch (command) {
5078 	case SIOCSIFFLAGS:
5079 		if ((error = ifioctl_common(ifp, command, data)) != 0)
5080 			break;
5081 		/* XXX set an ifflags callback and let ether_ioctl
5082 		 * handle all of this.
5083 		 */
5084 		if (ifp->if_flags & IFF_UP) {
5085 			if (ifp->if_flags & IFF_RUNNING)
5086 				error = ENETRESET;
5087 			else
5088 				bnx_init(ifp);
5089 		} else if (ifp->if_flags & IFF_RUNNING)
5090 			bnx_stop(ifp, 1);
5091 		break;
5092 
5093 	case SIOCSIFMEDIA:
5094 	case SIOCGIFMEDIA:
5095 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5096 		    sc->bnx_phy_flags);
5097 
5098 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5099 		break;
5100 
5101 	default:
5102 		error = ether_ioctl(ifp, command, data);
5103 	}
5104 
5105 	if (error == ENETRESET) {
5106 		if (ifp->if_flags & IFF_RUNNING)
5107 			bnx_iff(sc);
5108 		error = 0;
5109 	}
5110 
5111 	splx(s);
5112 	return (error);
5113 }
5114 
5115 /****************************************************************************/
5116 /* Transmit timeout handler.                                                */
5117 /*                                                                          */
5118 /* Returns:                                                                 */
5119 /*   Nothing.                                                               */
5120 /****************************************************************************/
5121 void
5122 bnx_watchdog(struct ifnet *ifp)
5123 {
5124 	struct bnx_softc	*sc = ifp->if_softc;
5125 
5126 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5127 	    bnx_dump_status_block(sc));
5128 	/*
5129 	 * If we are in this routine because of pause frames, then
5130 	 * don't reset the hardware.
5131 	 */
5132 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5133 		return;
5134 
5135 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5136 
5137 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5138 
5139 	bnx_init(ifp);
5140 
5141 	ifp->if_oerrors++;
5142 }
5143 
5144 /*
5145  * Interrupt handler.
5146  */
5147 /****************************************************************************/
5148 /* Main interrupt entry point.  Verifies that the controller generated the  */
5149 /* interrupt and then calls a separate routine for handle the various       */
5150 /* interrupt causes (PHY, TX, RX).                                          */
5151 /*                                                                          */
5152 /* Returns:                                                                 */
5153 /*   0 for success, positive value for failure.                             */
5154 /****************************************************************************/
5155 int
5156 bnx_intr(void *xsc)
5157 {
5158 	struct bnx_softc	*sc;
5159 	struct ifnet		*ifp;
5160 	u_int32_t		status_attn_bits;
5161 	const struct status_block *sblk;
5162 
5163 	sc = xsc;
5164 
5165 	ifp = &sc->bnx_ec.ec_if;
5166 
5167 	if (!device_is_active(sc->bnx_dev) ||
5168 	    (ifp->if_flags & IFF_RUNNING) == 0)
5169 		return 0;
5170 
5171 	DBRUNIF(1, sc->interrupts_generated++);
5172 
5173 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5174 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5175 
5176 	/*
5177 	 * If the hardware status block index
5178 	 * matches the last value read by the
5179 	 * driver and we haven't asserted our
5180 	 * interrupt then there's nothing to do.
5181 	 */
5182 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
5183 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5184 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5185 		return (0);
5186 
5187 	/* Ack the interrupt and stop others from occuring. */
5188 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5189 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5190 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5191 
5192 	/* Keep processing data as long as there is work to do. */
5193 	for (;;) {
5194 		sblk = sc->status_block;
5195 		status_attn_bits = sblk->status_attn_bits;
5196 
5197 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5198 		    aprint_debug("Simulating unexpected status attention bit set.");
5199 		    status_attn_bits = status_attn_bits |
5200 		    STATUS_ATTN_BITS_PARITY_ERROR);
5201 
5202 		/* Was it a link change interrupt? */
5203 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5204 		    (sblk->status_attn_bits_ack &
5205 		    STATUS_ATTN_BITS_LINK_STATE))
5206 			bnx_phy_intr(sc);
5207 
5208 		/* If any other attention is asserted then the chip is toast. */
5209 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5210 		    (sblk->status_attn_bits_ack &
5211 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5212 			DBRUN(1, sc->unexpected_attentions++);
5213 
5214 			BNX_PRINTF(sc,
5215 			    "Fatal attention detected: 0x%08X\n",
5216 			    sblk->status_attn_bits);
5217 
5218 			DBRUN(BNX_FATAL,
5219 			    if (bnx_debug_unexpected_attention == 0)
5220 			    bnx_breakpoint(sc));
5221 
5222 			bnx_init(ifp);
5223 			return (1);
5224 		}
5225 
5226 		/* Check for any completed RX frames. */
5227 		if (sblk->status_rx_quick_consumer_index0 !=
5228 		    sc->hw_rx_cons)
5229 			bnx_rx_intr(sc);
5230 
5231 		/* Check for any completed TX frames. */
5232 		if (sblk->status_tx_quick_consumer_index0 !=
5233 		    sc->hw_tx_cons)
5234 			bnx_tx_intr(sc);
5235 
5236 		/* Save the status block index value for use during the
5237 		 * next interrupt.
5238 		 */
5239 		sc->last_status_idx = sblk->status_idx;
5240 
5241 		/* Prevent speculative reads from getting ahead of the
5242 		 * status block.
5243 		 */
5244 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5245 		    BUS_SPACE_BARRIER_READ);
5246 
5247 		/* If there's no work left then exit the isr. */
5248 		if ((sblk->status_rx_quick_consumer_index0 ==
5249 		    sc->hw_rx_cons) &&
5250 		    (sblk->status_tx_quick_consumer_index0 ==
5251 		    sc->hw_tx_cons))
5252 			break;
5253 	}
5254 
5255 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5256 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5257 
5258 	/* Re-enable interrupts. */
5259 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5260 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5261 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5262 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5263 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5264 
5265 	/* Handle any frames that arrived while handling the interrupt. */
5266 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
5267 		bnx_start(ifp);
5268 
5269 	return (1);
5270 }
5271 
5272 /****************************************************************************/
5273 /* Programs the various packet receive modes (broadcast and multicast).     */
5274 /*                                                                          */
5275 /* Returns:                                                                 */
5276 /*   Nothing.                                                               */
5277 /****************************************************************************/
5278 void
5279 bnx_iff(struct bnx_softc *sc)
5280 {
5281 	struct ethercom		*ec = &sc->bnx_ec;
5282 	struct ifnet		*ifp = &ec->ec_if;
5283 	struct ether_multi	*enm;
5284 	struct ether_multistep	step;
5285 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5286 	u_int32_t		rx_mode, sort_mode;
5287 	int			h, i;
5288 
5289 	/* Initialize receive mode default settings. */
5290 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5291 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5292 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5293 	ifp->if_flags &= ~IFF_ALLMULTI;
5294 
5295 	/*
5296 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5297 	 * be enbled.
5298 	 */
5299 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5300 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5301 
5302 	/*
5303 	 * Check for promiscuous, all multicast, or selected
5304 	 * multicast address filtering.
5305 	 */
5306 	if (ifp->if_flags & IFF_PROMISC) {
5307 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5308 
5309 		ifp->if_flags |= IFF_ALLMULTI;
5310 		/* Enable promiscuous mode. */
5311 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5312 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5313 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5314 allmulti:
5315 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5316 
5317 		ifp->if_flags |= IFF_ALLMULTI;
5318 		/* Enable all multicast addresses. */
5319 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5320 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5321 			    0xffffffff);
5322 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5323 	} else {
5324 		/* Accept one or more multicast(s). */
5325 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5326 
5327 		ETHER_FIRST_MULTI(step, ec, enm);
5328 		while (enm != NULL) {
5329 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5330 			    ETHER_ADDR_LEN)) {
5331 				goto allmulti;
5332 			}
5333 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5334 			    0xFF;
5335 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5336 			ETHER_NEXT_MULTI(step, enm);
5337 		}
5338 
5339 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5340 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5341 			    hashes[i]);
5342 
5343 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5344 	}
5345 
5346 	/* Only make changes if the recive mode has actually changed. */
5347 	if (rx_mode != sc->rx_mode) {
5348 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5349 		    rx_mode);
5350 
5351 		sc->rx_mode = rx_mode;
5352 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5353 	}
5354 
5355 	/* Disable and clear the exisitng sort before enabling a new sort. */
5356 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5357 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5358 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5359 }
5360 
5361 /****************************************************************************/
5362 /* Called periodically to updates statistics from the controllers           */
5363 /* statistics block.                                                        */
5364 /*                                                                          */
5365 /* Returns:                                                                 */
5366 /*   Nothing.                                                               */
5367 /****************************************************************************/
5368 void
5369 bnx_stats_update(struct bnx_softc *sc)
5370 {
5371 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5372 	struct statistics_block	*stats;
5373 
5374 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5375 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5376 	    BUS_DMASYNC_POSTREAD);
5377 
5378 	stats = (struct statistics_block *)sc->stats_block;
5379 
5380 	/*
5381 	 * Update the interface statistics from the
5382 	 * hardware statistics.
5383 	 */
5384 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5385 
5386 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5387 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5388 	    (u_long)stats->stat_IfInMBUFDiscards +
5389 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5390 	    (u_long)stats->stat_Dot3StatsFCSErrors;
5391 
5392 	ifp->if_oerrors = (u_long)
5393 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5394 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5395 	    (u_long)stats->stat_Dot3StatsLateCollisions;
5396 
5397 	/*
5398 	 * Certain controllers don't report
5399 	 * carrier sense errors correctly.
5400 	 * See errata E11_5708CA0_1165.
5401 	 */
5402 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5403 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5404 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5405 
5406 	/*
5407 	 * Update the sysctl statistics from the
5408 	 * hardware statistics.
5409 	 */
5410 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5411 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
5412 
5413 	sc->stat_IfHCInBadOctets =
5414 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5415 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5416 
5417 	sc->stat_IfHCOutOctets =
5418 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5419 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
5420 
5421 	sc->stat_IfHCOutBadOctets =
5422 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5423 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5424 
5425 	sc->stat_IfHCInUcastPkts =
5426 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5427 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5428 
5429 	sc->stat_IfHCInMulticastPkts =
5430 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5431 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5432 
5433 	sc->stat_IfHCInBroadcastPkts =
5434 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5435 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5436 
5437 	sc->stat_IfHCOutUcastPkts =
5438 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5439 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5440 
5441 	sc->stat_IfHCOutMulticastPkts =
5442 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5443 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5444 
5445 	sc->stat_IfHCOutBroadcastPkts =
5446 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5447 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5448 
5449 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5450 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5451 
5452 	sc->stat_Dot3StatsCarrierSenseErrors =
5453 	    stats->stat_Dot3StatsCarrierSenseErrors;
5454 
5455 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5456 
5457 	sc->stat_Dot3StatsAlignmentErrors =
5458 	    stats->stat_Dot3StatsAlignmentErrors;
5459 
5460 	sc->stat_Dot3StatsSingleCollisionFrames =
5461 	    stats->stat_Dot3StatsSingleCollisionFrames;
5462 
5463 	sc->stat_Dot3StatsMultipleCollisionFrames =
5464 	    stats->stat_Dot3StatsMultipleCollisionFrames;
5465 
5466 	sc->stat_Dot3StatsDeferredTransmissions =
5467 	    stats->stat_Dot3StatsDeferredTransmissions;
5468 
5469 	sc->stat_Dot3StatsExcessiveCollisions =
5470 	    stats->stat_Dot3StatsExcessiveCollisions;
5471 
5472 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5473 
5474 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5475 
5476 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5477 
5478 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5479 
5480 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5481 
5482 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5483 
5484 	sc->stat_EtherStatsPktsRx64Octets =
5485 	    stats->stat_EtherStatsPktsRx64Octets;
5486 
5487 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5488 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5489 
5490 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5491 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5492 
5493 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5494 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5495 
5496 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5497 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5498 
5499 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5500 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5501 
5502 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5503 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5504 
5505 	sc->stat_EtherStatsPktsTx64Octets =
5506 	    stats->stat_EtherStatsPktsTx64Octets;
5507 
5508 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5509 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5510 
5511 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5512 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5513 
5514 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5515 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5516 
5517 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5518 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5519 
5520 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5521 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5522 
5523 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5524 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5525 
5526 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5527 
5528 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5529 
5530 	sc->stat_OutXonSent = stats->stat_OutXonSent;
5531 
5532 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5533 
5534 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5535 
5536 	sc->stat_MacControlFramesReceived =
5537 	    stats->stat_MacControlFramesReceived;
5538 
5539 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5540 
5541 	sc->stat_IfInFramesL2FilterDiscards =
5542 	    stats->stat_IfInFramesL2FilterDiscards;
5543 
5544 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5545 
5546 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5547 
5548 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5549 
5550 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5551 
5552 	sc->stat_CatchupInRuleCheckerDiscards =
5553 	    stats->stat_CatchupInRuleCheckerDiscards;
5554 
5555 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5556 
5557 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5558 
5559 	sc->stat_CatchupInRuleCheckerP4Hit =
5560 	    stats->stat_CatchupInRuleCheckerP4Hit;
5561 
5562 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5563 }
5564 
5565 void
5566 bnx_tick(void *xsc)
5567 {
5568 	struct bnx_softc	*sc = xsc;
5569 	struct mii_data		*mii;
5570 	u_int32_t		msg;
5571 	u_int16_t		prod, chain_prod;
5572 	u_int32_t		prod_bseq;
5573 	int s = splnet();
5574 
5575 	/* Tell the firmware that the driver is still running. */
5576 #ifdef BNX_DEBUG
5577 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5578 #else
5579 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5580 #endif
5581 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5582 
5583 	/* Update the statistics from the hardware statistics block. */
5584 	bnx_stats_update(sc);
5585 
5586 	/* Schedule the next tick. */
5587 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5588 
5589 	mii = &sc->bnx_mii;
5590 	mii_tick(mii);
5591 
5592 	/* try to get more RX buffers, just in case */
5593 	prod = sc->rx_prod;
5594 	prod_bseq = sc->rx_prod_bseq;
5595 	chain_prod = RX_CHAIN_IDX(prod);
5596 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5597 	sc->rx_prod = prod;
5598 	sc->rx_prod_bseq = prod_bseq;
5599 	splx(s);
5600 	return;
5601 }
5602 
5603 /****************************************************************************/
5604 /* BNX Debug Routines                                                       */
5605 /****************************************************************************/
5606 #ifdef BNX_DEBUG
5607 
5608 /****************************************************************************/
5609 /* Prints out information about an mbuf.                                    */
5610 /*                                                                          */
5611 /* Returns:                                                                 */
5612 /*   Nothing.                                                               */
5613 /****************************************************************************/
5614 void
5615 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5616 {
5617 	struct mbuf		*mp = m;
5618 
5619 	if (m == NULL) {
5620 		/* Index out of range. */
5621 		aprint_error("mbuf ptr is null!\n");
5622 		return;
5623 	}
5624 
5625 	while (mp) {
5626 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5627 		    mp, mp->m_len);
5628 
5629 		if (mp->m_flags & M_EXT)
5630 			aprint_debug("M_EXT ");
5631 		if (mp->m_flags & M_PKTHDR)
5632 			aprint_debug("M_PKTHDR ");
5633 		aprint_debug("\n");
5634 
5635 		if (mp->m_flags & M_EXT)
5636 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5637 			    mp, mp->m_ext.ext_size);
5638 
5639 		mp = mp->m_next;
5640 	}
5641 }
5642 
5643 /****************************************************************************/
5644 /* Prints out the mbufs in the TX mbuf chain.                               */
5645 /*                                                                          */
5646 /* Returns:                                                                 */
5647 /*   Nothing.                                                               */
5648 /****************************************************************************/
5649 void
5650 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5651 {
5652 #if 0
5653 	struct mbuf		*m;
5654 	int			i;
5655 
5656 	aprint_debug_dev(sc->bnx_dev,
5657 	    "----------------------------"
5658 	    "  tx mbuf data  "
5659 	    "----------------------------\n");
5660 
5661 	for (i = 0; i < count; i++) {
5662 	 	m = sc->tx_mbuf_ptr[chain_prod];
5663 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5664 		bnx_dump_mbuf(sc, m);
5665 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5666 	}
5667 
5668 	aprint_debug_dev(sc->bnx_dev,
5669 	    "--------------------------------------------"
5670 	    "----------------------------\n");
5671 #endif
5672 }
5673 
5674 /*
5675  * This routine prints the RX mbuf chain.
5676  */
5677 void
5678 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5679 {
5680 	struct mbuf		*m;
5681 	int			i;
5682 
5683 	aprint_debug_dev(sc->bnx_dev,
5684 	    "----------------------------"
5685 	    "  rx mbuf data  "
5686 	    "----------------------------\n");
5687 
5688 	for (i = 0; i < count; i++) {
5689 	 	m = sc->rx_mbuf_ptr[chain_prod];
5690 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5691 		bnx_dump_mbuf(sc, m);
5692 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5693 	}
5694 
5695 
5696 	aprint_debug_dev(sc->bnx_dev,
5697 	    "--------------------------------------------"
5698 	    "----------------------------\n");
5699 }
5700 
5701 void
5702 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5703 {
5704 	if (idx > MAX_TX_BD)
5705 		/* Index out of range. */
5706 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5707 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5708 		/* TX Chain page pointer. */
5709 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5710 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5711 		    txbd->tx_bd_haddr_lo);
5712 	else
5713 		/* Normal tx_bd entry. */
5714 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5715 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5716 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5717 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5718 		    txbd->tx_bd_flags);
5719 }
5720 
5721 void
5722 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5723 {
5724 	if (idx > MAX_RX_BD)
5725 		/* Index out of range. */
5726 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5727 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5728 		/* TX Chain page pointer. */
5729 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5730 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5731 		    rxbd->rx_bd_haddr_lo);
5732 	else
5733 		/* Normal tx_bd entry. */
5734 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5735 		    "0x%08X, flags = 0x%08X\n", idx,
5736 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5737 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5738 }
5739 
5740 void
5741 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5742 {
5743 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5744 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5745 	    "tcp_udp_xsum = 0x%04X\n", idx,
5746 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5747 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5748 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5749 }
5750 
5751 /*
5752  * This routine prints the TX chain.
5753  */
5754 void
5755 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5756 {
5757 	struct tx_bd		*txbd;
5758 	int			i;
5759 
5760 	/* First some info about the tx_bd chain structure. */
5761 	aprint_debug_dev(sc->bnx_dev,
5762 	    "----------------------------"
5763 	    "  tx_bd  chain  "
5764 	    "----------------------------\n");
5765 
5766 	BNX_PRINTF(sc,
5767 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5768 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5769 
5770 	BNX_PRINTF(sc,
5771 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5772 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5773 
5774 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
5775 
5776 	aprint_error_dev(sc->bnx_dev, ""
5777 	    "-----------------------------"
5778 	    "   tx_bd data   "
5779 	    "-----------------------------\n");
5780 
5781 	/* Now print out the tx_bd's themselves. */
5782 	for (i = 0; i < count; i++) {
5783 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5784 		bnx_dump_txbd(sc, tx_prod, txbd);
5785 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5786 	}
5787 
5788 	aprint_debug_dev(sc->bnx_dev,
5789 	    "-----------------------------"
5790 	    "--------------"
5791 	    "-----------------------------\n");
5792 }
5793 
5794 /*
5795  * This routine prints the RX chain.
5796  */
5797 void
5798 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5799 {
5800 	struct rx_bd		*rxbd;
5801 	int			i;
5802 
5803 	/* First some info about the tx_bd chain structure. */
5804 	aprint_debug_dev(sc->bnx_dev,
5805 	    "----------------------------"
5806 	    "  rx_bd  chain  "
5807 	    "----------------------------\n");
5808 
5809 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5810 
5811 	BNX_PRINTF(sc,
5812 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5813 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5814 
5815 	BNX_PRINTF(sc,
5816 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5817 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5818 
5819 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
5820 
5821 	aprint_error_dev(sc->bnx_dev,
5822 	    "----------------------------"
5823 	    "   rx_bd data   "
5824 	    "----------------------------\n");
5825 
5826 	/* Now print out the rx_bd's themselves. */
5827 	for (i = 0; i < count; i++) {
5828 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5829 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5830 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5831 	}
5832 
5833 	aprint_debug_dev(sc->bnx_dev,
5834 	    "----------------------------"
5835 	    "--------------"
5836 	    "----------------------------\n");
5837 }
5838 
5839 /*
5840  * This routine prints the status block.
5841  */
5842 void
5843 bnx_dump_status_block(struct bnx_softc *sc)
5844 {
5845 	struct status_block	*sblk;
5846 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5847 	    BUS_DMASYNC_POSTREAD);
5848 
5849 	sblk = sc->status_block;
5850 
5851    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5852 	    "-----------------------------\n");
5853 
5854 	BNX_PRINTF(sc,
5855 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5856 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5857 	    sblk->status_idx);
5858 
5859 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5860 	    sblk->status_rx_quick_consumer_index0,
5861 	    sblk->status_tx_quick_consumer_index0);
5862 
5863 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5864 
5865 	/* Theses indices are not used for normal L2 drivers. */
5866 	if (sblk->status_rx_quick_consumer_index1 ||
5867 		sblk->status_tx_quick_consumer_index1)
5868 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5869 		    sblk->status_rx_quick_consumer_index1,
5870 		    sblk->status_tx_quick_consumer_index1);
5871 
5872 	if (sblk->status_rx_quick_consumer_index2 ||
5873 		sblk->status_tx_quick_consumer_index2)
5874 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5875 		    sblk->status_rx_quick_consumer_index2,
5876 		    sblk->status_tx_quick_consumer_index2);
5877 
5878 	if (sblk->status_rx_quick_consumer_index3 ||
5879 		sblk->status_tx_quick_consumer_index3)
5880 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
5881 		    sblk->status_rx_quick_consumer_index3,
5882 		    sblk->status_tx_quick_consumer_index3);
5883 
5884 	if (sblk->status_rx_quick_consumer_index4 ||
5885 		sblk->status_rx_quick_consumer_index5)
5886 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
5887 		    sblk->status_rx_quick_consumer_index4,
5888 		    sblk->status_rx_quick_consumer_index5);
5889 
5890 	if (sblk->status_rx_quick_consumer_index6 ||
5891 		sblk->status_rx_quick_consumer_index7)
5892 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
5893 		    sblk->status_rx_quick_consumer_index6,
5894 		    sblk->status_rx_quick_consumer_index7);
5895 
5896 	if (sblk->status_rx_quick_consumer_index8 ||
5897 		sblk->status_rx_quick_consumer_index9)
5898 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
5899 		    sblk->status_rx_quick_consumer_index8,
5900 		    sblk->status_rx_quick_consumer_index9);
5901 
5902 	if (sblk->status_rx_quick_consumer_index10 ||
5903 		sblk->status_rx_quick_consumer_index11)
5904 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
5905 		    sblk->status_rx_quick_consumer_index10,
5906 		    sblk->status_rx_quick_consumer_index11);
5907 
5908 	if (sblk->status_rx_quick_consumer_index12 ||
5909 		sblk->status_rx_quick_consumer_index13)
5910 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
5911 		    sblk->status_rx_quick_consumer_index12,
5912 		    sblk->status_rx_quick_consumer_index13);
5913 
5914 	if (sblk->status_rx_quick_consumer_index14 ||
5915 		sblk->status_rx_quick_consumer_index15)
5916 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
5917 		    sblk->status_rx_quick_consumer_index14,
5918 		    sblk->status_rx_quick_consumer_index15);
5919 
5920 	if (sblk->status_completion_producer_index ||
5921 		sblk->status_cmd_consumer_index)
5922 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
5923 		    sblk->status_completion_producer_index,
5924 		    sblk->status_cmd_consumer_index);
5925 
5926 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5927 	    "-----------------------------\n");
5928 }
5929 
5930 /*
5931  * This routine prints the statistics block.
5932  */
5933 void
5934 bnx_dump_stats_block(struct bnx_softc *sc)
5935 {
5936 	struct statistics_block	*sblk;
5937 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5938 	    BUS_DMASYNC_POSTREAD);
5939 
5940 	sblk = sc->stats_block;
5941 
5942 	aprint_debug_dev(sc->bnx_dev, ""
5943 	    "-----------------------------"
5944 	    " Stats  Block "
5945 	    "-----------------------------\n");
5946 
5947 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
5948 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
5949 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5950 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5951 
5952 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
5953 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
5954 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5955 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5956 
5957 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
5958 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
5959 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5960 	    sblk->stat_IfHCInMulticastPkts_hi,
5961 	    sblk->stat_IfHCInMulticastPkts_lo);
5962 
5963 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
5964 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
5965 	    sblk->stat_IfHCInBroadcastPkts_hi,
5966 	    sblk->stat_IfHCInBroadcastPkts_lo,
5967 	    sblk->stat_IfHCOutUcastPkts_hi,
5968 	    sblk->stat_IfHCOutUcastPkts_lo);
5969 
5970 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5971 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5972 	    sblk->stat_IfHCOutMulticastPkts_hi,
5973 	    sblk->stat_IfHCOutMulticastPkts_lo,
5974 	    sblk->stat_IfHCOutBroadcastPkts_hi,
5975 	    sblk->stat_IfHCOutBroadcastPkts_lo);
5976 
5977 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5978 		BNX_PRINTF(sc, "0x%08X : "
5979 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5980 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5981 
5982 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
5983 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5984 		    sblk->stat_Dot3StatsCarrierSenseErrors);
5985 
5986 	if (sblk->stat_Dot3StatsFCSErrors)
5987 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5988 		    sblk->stat_Dot3StatsFCSErrors);
5989 
5990 	if (sblk->stat_Dot3StatsAlignmentErrors)
5991 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5992 		    sblk->stat_Dot3StatsAlignmentErrors);
5993 
5994 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
5995 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5996 		    sblk->stat_Dot3StatsSingleCollisionFrames);
5997 
5998 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5999 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6000 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
6001 
6002 	if (sblk->stat_Dot3StatsDeferredTransmissions)
6003 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6004 		    sblk->stat_Dot3StatsDeferredTransmissions);
6005 
6006 	if (sblk->stat_Dot3StatsExcessiveCollisions)
6007 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6008 		    sblk->stat_Dot3StatsExcessiveCollisions);
6009 
6010 	if (sblk->stat_Dot3StatsLateCollisions)
6011 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6012 		    sblk->stat_Dot3StatsLateCollisions);
6013 
6014 	if (sblk->stat_EtherStatsCollisions)
6015 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6016 		    sblk->stat_EtherStatsCollisions);
6017 
6018 	if (sblk->stat_EtherStatsFragments)
6019 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6020 		    sblk->stat_EtherStatsFragments);
6021 
6022 	if (sblk->stat_EtherStatsJabbers)
6023 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6024 		    sblk->stat_EtherStatsJabbers);
6025 
6026 	if (sblk->stat_EtherStatsUndersizePkts)
6027 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6028 		    sblk->stat_EtherStatsUndersizePkts);
6029 
6030 	if (sblk->stat_EtherStatsOverrsizePkts)
6031 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6032 		    sblk->stat_EtherStatsOverrsizePkts);
6033 
6034 	if (sblk->stat_EtherStatsPktsRx64Octets)
6035 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6036 		    sblk->stat_EtherStatsPktsRx64Octets);
6037 
6038 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6039 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6040 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6041 
6042 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6043 		BNX_PRINTF(sc, "0x%08X : "
6044 		    "EtherStatsPktsRx128Octetsto255Octets\n",
6045 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6046 
6047 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6048 		BNX_PRINTF(sc, "0x%08X : "
6049 		    "EtherStatsPktsRx256Octetsto511Octets\n",
6050 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6051 
6052 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6053 		BNX_PRINTF(sc, "0x%08X : "
6054 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
6055 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6056 
6057 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6058 		BNX_PRINTF(sc, "0x%08X : "
6059 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
6060 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6061 
6062 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6063 		BNX_PRINTF(sc, "0x%08X : "
6064 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
6065 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6066 
6067 	if (sblk->stat_EtherStatsPktsTx64Octets)
6068 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6069 		    sblk->stat_EtherStatsPktsTx64Octets);
6070 
6071 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6072 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6073 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6074 
6075 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6076 		BNX_PRINTF(sc, "0x%08X : "
6077 		    "EtherStatsPktsTx128Octetsto255Octets\n",
6078 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6079 
6080 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6081 		BNX_PRINTF(sc, "0x%08X : "
6082 		    "EtherStatsPktsTx256Octetsto511Octets\n",
6083 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6084 
6085 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6086 		BNX_PRINTF(sc, "0x%08X : "
6087 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
6088 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6089 
6090 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6091 		BNX_PRINTF(sc, "0x%08X : "
6092 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
6093 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6094 
6095 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6096 		BNX_PRINTF(sc, "0x%08X : "
6097 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
6098 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6099 
6100 	if (sblk->stat_XonPauseFramesReceived)
6101 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6102 		    sblk->stat_XonPauseFramesReceived);
6103 
6104 	if (sblk->stat_XoffPauseFramesReceived)
6105 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6106 		    sblk->stat_XoffPauseFramesReceived);
6107 
6108 	if (sblk->stat_OutXonSent)
6109 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6110 		    sblk->stat_OutXonSent);
6111 
6112 	if (sblk->stat_OutXoffSent)
6113 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6114 		    sblk->stat_OutXoffSent);
6115 
6116 	if (sblk->stat_FlowControlDone)
6117 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6118 		    sblk->stat_FlowControlDone);
6119 
6120 	if (sblk->stat_MacControlFramesReceived)
6121 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6122 		    sblk->stat_MacControlFramesReceived);
6123 
6124 	if (sblk->stat_XoffStateEntered)
6125 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6126 		    sblk->stat_XoffStateEntered);
6127 
6128 	if (sblk->stat_IfInFramesL2FilterDiscards)
6129 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6130 		    sblk->stat_IfInFramesL2FilterDiscards);
6131 
6132 	if (sblk->stat_IfInRuleCheckerDiscards)
6133 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6134 		    sblk->stat_IfInRuleCheckerDiscards);
6135 
6136 	if (sblk->stat_IfInFTQDiscards)
6137 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6138 		    sblk->stat_IfInFTQDiscards);
6139 
6140 	if (sblk->stat_IfInMBUFDiscards)
6141 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6142 		    sblk->stat_IfInMBUFDiscards);
6143 
6144 	if (sblk->stat_IfInRuleCheckerP4Hit)
6145 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6146 		    sblk->stat_IfInRuleCheckerP4Hit);
6147 
6148 	if (sblk->stat_CatchupInRuleCheckerDiscards)
6149 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6150 		    sblk->stat_CatchupInRuleCheckerDiscards);
6151 
6152 	if (sblk->stat_CatchupInFTQDiscards)
6153 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6154 		    sblk->stat_CatchupInFTQDiscards);
6155 
6156 	if (sblk->stat_CatchupInMBUFDiscards)
6157 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6158 		    sblk->stat_CatchupInMBUFDiscards);
6159 
6160 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6161 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6162 		    sblk->stat_CatchupInRuleCheckerP4Hit);
6163 
6164 	aprint_debug_dev(sc->bnx_dev,
6165 	    "-----------------------------"
6166 	    "--------------"
6167 	    "-----------------------------\n");
6168 }
6169 
6170 void
6171 bnx_dump_driver_state(struct bnx_softc *sc)
6172 {
6173 	aprint_debug_dev(sc->bnx_dev,
6174 	    "-----------------------------"
6175 	    " Driver State "
6176 	    "-----------------------------\n");
6177 
6178 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6179 	    "address\n", sc);
6180 
6181 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6182 	    sc->status_block);
6183 
6184 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6185 	    "address\n", sc->stats_block);
6186 
6187 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6188 	    "adddress\n", sc->tx_bd_chain);
6189 
6190 #if 0
6191 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6192 	    sc->rx_bd_chain);
6193 
6194 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6195 	    sc->tx_mbuf_ptr);
6196 #endif
6197 
6198 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6199 	    sc->rx_mbuf_ptr);
6200 
6201 	BNX_PRINTF(sc,
6202 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6203 	    sc->interrupts_generated);
6204 
6205 	BNX_PRINTF(sc,
6206 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6207 	    sc->rx_interrupts);
6208 
6209 	BNX_PRINTF(sc,
6210 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6211 	    sc->tx_interrupts);
6212 
6213 	BNX_PRINTF(sc,
6214 	    "         0x%08X - (sc->last_status_idx) status block index\n",
6215 	    sc->last_status_idx);
6216 
6217 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6218 	    sc->tx_prod);
6219 
6220 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6221 	    sc->tx_cons);
6222 
6223 	BNX_PRINTF(sc,
6224 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6225 	    sc->tx_prod_bseq);
6226 	BNX_PRINTF(sc,
6227 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6228 	    sc->tx_mbuf_alloc);
6229 
6230 	BNX_PRINTF(sc,
6231 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6232 	    sc->used_tx_bd);
6233 
6234 	BNX_PRINTF(sc,
6235 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6236 	    sc->tx_hi_watermark, sc->max_tx_bd);
6237 
6238 
6239 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6240 	    sc->rx_prod);
6241 
6242 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6243 	    sc->rx_cons);
6244 
6245 	BNX_PRINTF(sc,
6246 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6247 	    sc->rx_prod_bseq);
6248 
6249 	BNX_PRINTF(sc,
6250 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6251 	    sc->rx_mbuf_alloc);
6252 
6253 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6254 	    sc->free_rx_bd);
6255 
6256 	BNX_PRINTF(sc,
6257 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6258 	    sc->rx_low_watermark, sc->max_rx_bd);
6259 
6260 	BNX_PRINTF(sc,
6261 	    "         0x%08X - (sc->mbuf_alloc_failed) "
6262 	    "mbuf alloc failures\n",
6263 	    sc->mbuf_alloc_failed);
6264 
6265 	BNX_PRINTF(sc,
6266 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6267 	    "simulated mbuf alloc failures\n",
6268 	    sc->mbuf_sim_alloc_failed);
6269 
6270 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6271 	    "-----------------------------\n");
6272 }
6273 
6274 void
6275 bnx_dump_hw_state(struct bnx_softc *sc)
6276 {
6277 	u_int32_t		val1;
6278 	int			i;
6279 
6280 	aprint_debug_dev(sc->bnx_dev,
6281 	    "----------------------------"
6282 	    " Hardware State "
6283 	    "----------------------------\n");
6284 
6285 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6286 
6287 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6288 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6289 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6290 
6291 	val1 = REG_RD(sc, BNX_DMA_STATUS);
6292 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6293 
6294 	val1 = REG_RD(sc, BNX_CTX_STATUS);
6295 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6296 
6297 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6298 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6299 	    BNX_EMAC_STATUS);
6300 
6301 	val1 = REG_RD(sc, BNX_RPM_STATUS);
6302 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6303 
6304 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6305 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6306 	    BNX_TBDR_STATUS);
6307 
6308 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6309 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6310 	    BNX_TDMA_STATUS);
6311 
6312 	val1 = REG_RD(sc, BNX_HC_STATUS);
6313 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6314 
6315 	aprint_debug_dev(sc->bnx_dev,
6316 	    "----------------------------"
6317 	    "----------------"
6318 	    "----------------------------\n");
6319 
6320 	aprint_debug_dev(sc->bnx_dev,
6321 	    "----------------------------"
6322 	    " Register  Dump "
6323 	    "----------------------------\n");
6324 
6325 	for (i = 0x400; i < 0x8000; i += 0x10)
6326 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6327 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6328 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6329 
6330 	aprint_debug_dev(sc->bnx_dev,
6331 	    "----------------------------"
6332 	    "----------------"
6333 	    "----------------------------\n");
6334 }
6335 
6336 void
6337 bnx_breakpoint(struct bnx_softc *sc)
6338 {
6339 	/* Unreachable code to shut the compiler up about unused functions. */
6340 	if (0) {
6341    		bnx_dump_txbd(sc, 0, NULL);
6342 		bnx_dump_rxbd(sc, 0, NULL);
6343 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6344 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6345 		bnx_dump_l2fhdr(sc, 0, NULL);
6346 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6347 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6348 		bnx_dump_status_block(sc);
6349 		bnx_dump_stats_block(sc);
6350 		bnx_dump_driver_state(sc);
6351 		bnx_dump_hw_state(sc);
6352 	}
6353 
6354 	bnx_dump_driver_state(sc);
6355 	/* Print the important status block fields. */
6356 	bnx_dump_status_block(sc);
6357 
6358 #if 0
6359 	/* Call the debugger. */
6360 	breakpoint();
6361 #endif
6362 
6363 	return;
6364 }
6365 #endif
6366