xref: /netbsd/sys/dev/pci/if_cas.c (revision 6550d01e)
1 /*	$NetBSD: if_cas.c,v 1.13 2011/01/07 11:17:22 jmcneill Exp $	*/
2 /*	$OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $	*/
3 
4 /*
5  *
6  * Copyright (C) 2007 Mark Kettenis.
7  * Copyright (C) 2001 Eduardo Horvath.
8  * All rights reserved.
9  *
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33 
34 /*
35  * Driver for Sun Cassini ethernet controllers.
36  *
37  * There are basically two variants of this chip: Cassini and
38  * Cassini+.  We can distinguish between the two by revision: 0x10 and
39  * up are Cassini+.  The most important difference is that Cassini+
40  * has a second RX descriptor ring.  Cassini+ will not work without
41  * configuring that second ring.  However, since we don't use it we
42  * don't actually fill the descriptors, and only hand off the first
43  * four to the chip.
44  */
45 
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.13 2011/01/07 11:17:22 jmcneill Exp $");
48 
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65 
66 #include <machine/endian.h>
67 
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72 
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81 
82 #include <net/bpf.h>
83 
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 #include <dev/mii/mii_bitbang.h>
90 
91 #include <dev/pci/pcivar.h>
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcidevs.h>
94 #include <prop/proplib.h>
95 
96 #include <dev/pci/if_casreg.h>
97 #include <dev/pci/if_casvar.h>
98 
99 #define TRIES	10000
100 
101 static bool	cas_estintr(struct cas_softc *sc, int);
102 bool		cas_shutdown(device_t, int);
103 static bool	cas_suspend(device_t, const pmf_qual_t *);
104 static bool	cas_resume(device_t, const pmf_qual_t *);
105 static int	cas_detach(device_t, int);
106 static void	cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
107 
108 int		cas_match(device_t, cfdata_t, void *);
109 void		cas_attach(device_t, device_t, void *);
110 
111 
112 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
113     cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
114     DVF_DETACH_SHUTDOWN);
115 
116 int	cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
117 
118 void		cas_config(struct cas_softc *, const uint8_t *);
119 void		cas_start(struct ifnet *);
120 void		cas_stop(struct ifnet *, int);
121 int		cas_ioctl(struct ifnet *, u_long, void *);
122 void		cas_tick(void *);
123 void		cas_watchdog(struct ifnet *);
124 int		cas_init(struct ifnet *);
125 void		cas_init_regs(struct cas_softc *);
126 int		cas_ringsize(int);
127 int		cas_cringsize(int);
128 int		cas_meminit(struct cas_softc *);
129 void		cas_mifinit(struct cas_softc *);
130 int		cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
131 		    u_int32_t, u_int32_t);
132 void		cas_reset(struct cas_softc *);
133 int		cas_reset_rx(struct cas_softc *);
134 int		cas_reset_tx(struct cas_softc *);
135 int		cas_disable_rx(struct cas_softc *);
136 int		cas_disable_tx(struct cas_softc *);
137 void		cas_rxdrain(struct cas_softc *);
138 int		cas_add_rxbuf(struct cas_softc *, int idx);
139 void		cas_iff(struct cas_softc *);
140 int		cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
141 
142 /* MII methods & callbacks */
143 int		cas_mii_readreg(device_t, int, int);
144 void		cas_mii_writereg(device_t, int, int, int);
145 void		cas_mii_statchg(device_t);
146 int		cas_pcs_readreg(device_t, int, int);
147 void		cas_pcs_writereg(device_t, int, int, int);
148 
149 int		cas_mediachange(struct ifnet *);
150 void		cas_mediastatus(struct ifnet *, struct ifmediareq *);
151 
152 int		cas_eint(struct cas_softc *, u_int);
153 int		cas_rint(struct cas_softc *);
154 int		cas_tint(struct cas_softc *, u_int32_t);
155 int		cas_pint(struct cas_softc *);
156 int		cas_intr(void *);
157 
158 #ifdef CAS_DEBUG
159 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
160 				printf x
161 #else
162 #define	DPRINTF(sc, x)	/* nothing */
163 #endif
164 
165 int
166 cas_match(device_t parent, cfdata_t cf, void *aux)
167 {
168 	struct pci_attach_args *pa = aux;
169 
170 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
171 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
172 		return 1;
173 
174 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
175 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
176 		return 1;
177 
178 	return 0;
179 }
180 
181 #define	PROMHDR_PTR_DATA	0x18
182 #define	PROMDATA_PTR_VPD	0x08
183 #define	PROMDATA_DATA2		0x0a
184 
185 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
186 static const u_int8_t cas_promdat[] = {
187 	'P', 'C', 'I', 'R',
188 	PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
189 	PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
190 };
191 static const u_int8_t cas_promdat_ns[] = {
192 	'P', 'C', 'I', 'R',
193 	PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
194 	PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
195 };
196 
197 static const u_int8_t cas_promdat2[] = {
198 	0x18, 0x00,			/* structure length */
199 	0x00,				/* structure revision */
200 	0x00,				/* interface revision */
201 	PCI_SUBCLASS_NETWORK_ETHERNET,	/* subclass code */
202 	PCI_CLASS_NETWORK		/* class code */
203 };
204 
205 int
206 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
207     uint8_t *enaddr)
208 {
209 	struct pci_vpd_largeres *res;
210 	struct pci_vpd *vpd;
211 	bus_space_handle_t romh;
212 	bus_space_tag_t romt;
213 	bus_size_t romsize = 0;
214 	u_int8_t buf[32], *desc;
215 	pcireg_t address;
216 	int dataoff, vpdoff, len;
217 	int rv = -1;
218 
219 	if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
220 	    &romt, &romh, NULL, &romsize))
221 		return (-1);
222 
223 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
224 	address |= PCI_MAPREG_ROM_ENABLE;
225 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
226 
227 	bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
228 	if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
229 		goto fail;
230 
231 	dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
232 	if (dataoff < 0x1c)
233 		goto fail;
234 
235 	bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
236 	if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
237 	     bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
238 	    bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
239 		goto fail;
240 
241 	vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
242 	if (vpdoff < 0x1c)
243 		goto fail;
244 
245 next:
246 	bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
247 	if (!PCI_VPDRES_ISLARGE(buf[0]))
248 		goto fail;
249 
250 	res = (struct pci_vpd_largeres *)buf;
251 	vpdoff += sizeof(*res);
252 
253 	len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
254 	switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
255 	case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
256 		/* Skip identifier string. */
257 		vpdoff += len;
258 		goto next;
259 
260 	case PCI_VPDRES_TYPE_VPD:
261 		while (len > 0) {
262 			bus_space_read_region_1(romt, romh, vpdoff,
263 			     buf, sizeof(buf));
264 
265 			vpd = (struct pci_vpd *)buf;
266 			vpdoff += sizeof(*vpd) + vpd->vpd_len;
267 			len -= sizeof(*vpd) + vpd->vpd_len;
268 
269 			/*
270 			 * We're looking for an "Enhanced" VPD...
271 			 */
272 			if (vpd->vpd_key0 != 'Z')
273 				continue;
274 
275 			desc = buf + sizeof(*vpd);
276 
277 			/*
278 			 * ...which is an instance property...
279 			 */
280 			if (desc[0] != 'I')
281 				continue;
282 			desc += 3;
283 
284 			/*
285 			 * ...that's a byte array with the proper
286 			 * length for a MAC address...
287 			 */
288 			if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
289 				continue;
290 			desc += 2;
291 
292 			/*
293 			 * ...named "local-mac-address".
294 			 */
295 			if (strcmp(desc, "local-mac-address") != 0)
296 				continue;
297 			desc += strlen("local-mac-address") + 1;
298 
299 			memcpy(enaddr, desc, ETHER_ADDR_LEN);
300 			rv = 0;
301 		}
302 		break;
303 
304 	default:
305 		goto fail;
306 	}
307 
308  fail:
309 	if (romsize != 0)
310 		bus_space_unmap(romt, romh, romsize);
311 
312 	address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
313 	address &= ~PCI_MAPREG_ROM_ENABLE;
314 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
315 
316 	return (rv);
317 }
318 
319 void
320 cas_attach(device_t parent, device_t self, void *aux)
321 {
322 	struct pci_attach_args *pa = aux;
323 	struct cas_softc *sc = device_private(self);
324 	char devinfo[256];
325 	prop_data_t data;
326 	uint8_t enaddr[ETHER_ADDR_LEN];
327 
328 	sc->sc_dev = self;
329 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
330 	sc->sc_rev = PCI_REVISION(pa->pa_class);
331 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
332 	sc->sc_dmatag = pa->pa_dmat;
333 
334 #define PCI_CAS_BASEADDR	0x10
335 	if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
336 	    &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
337 		aprint_error_dev(sc->sc_dev,
338 		    "unable to map device registers\n");
339 		return;
340 	}
341 
342 	if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
343 	    "mac-address")) != NULL)
344 		memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
345 	else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
346 		aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
347 		memset(enaddr, 0, sizeof(enaddr));
348 	}
349 
350 	sc->sc_burst = 16;	/* XXX */
351 
352 	sc->sc_att_stage = CAS_ATT_BACKEND_0;
353 
354 	if (pci_intr_map(pa, &sc->sc_handle) != 0) {
355 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
356 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
357 		return;
358 	}
359 	sc->sc_pc = pa->pa_pc;
360 	if (!cas_estintr(sc, CAS_INTR_PCI)) {
361 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
362 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
363 		return;
364 	}
365 
366 	sc->sc_att_stage = CAS_ATT_BACKEND_1;
367 
368 	/*
369 	 * call the main configure
370 	 */
371 	cas_config(sc, enaddr);
372 
373 	if (pmf_device_register1(sc->sc_dev,
374 	    cas_suspend, cas_resume, cas_shutdown))
375 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
376 	else
377 		aprint_error_dev(sc->sc_dev,
378 		    "could not establish power handlers\n");
379 
380 	sc->sc_att_stage = CAS_ATT_FINISHED;
381 		/*FALLTHROUGH*/
382 }
383 
384 /*
385  * cas_config:
386  *
387  *	Attach a Cassini interface to the system.
388  */
389 void
390 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
391 {
392 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
393 	struct mii_data *mii = &sc->sc_mii;
394 	struct mii_softc *child;
395 	int i, error;
396 
397 	/* Make sure the chip is stopped. */
398 	ifp->if_softc = sc;
399 	cas_reset(sc);
400 
401 	/*
402 	 * Allocate the control data structures, and create and load the
403 	 * DMA map for it.
404 	 */
405 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
406 	    sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
407 	    1, &sc->sc_cdnseg, 0)) != 0) {
408 		aprint_error_dev(sc->sc_dev,
409 		    "unable to allocate control data, error = %d\n",
410 		    error);
411 		cas_partial_detach(sc, CAS_ATT_0);
412 	}
413 
414 	/* XXX should map this in with correct endianness */
415 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
416 	    sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
417 	    BUS_DMA_COHERENT)) != 0) {
418 		aprint_error_dev(sc->sc_dev,
419 		    "unable to map control data, error = %d\n", error);
420 		cas_partial_detach(sc, CAS_ATT_1);
421 	}
422 
423 	if ((error = bus_dmamap_create(sc->sc_dmatag,
424 	    sizeof(struct cas_control_data), 1,
425 	    sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
426 		aprint_error_dev(sc->sc_dev,
427 		    "unable to create control data DMA map, error = %d\n", error);
428 		cas_partial_detach(sc, CAS_ATT_2);
429 	}
430 
431 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
432 	    sc->sc_control_data, sizeof(struct cas_control_data), NULL,
433 	    0)) != 0) {
434 		aprint_error_dev(sc->sc_dev,
435 		    "unable to load control data DMA map, error = %d\n",
436 		    error);
437 		cas_partial_detach(sc, CAS_ATT_3);
438 	}
439 
440 	memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
441 
442 	/*
443 	 * Create the receive buffer DMA maps.
444 	 */
445 	for (i = 0; i < CAS_NRXDESC; i++) {
446 		bus_dma_segment_t seg;
447 		char *kva;
448 		int rseg;
449 
450 		if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
451 		    CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
452 			aprint_error_dev(sc->sc_dev,
453 			    "unable to alloc rx DMA mem %d, error = %d\n",
454 			    i, error);
455 			cas_partial_detach(sc, CAS_ATT_5);
456 		}
457 		sc->sc_rxsoft[i].rxs_dmaseg = seg;
458 
459 		if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
460 		    CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
461 			aprint_error_dev(sc->sc_dev,
462 			    "unable to alloc rx DMA mem %d, error = %d\n",
463 			    i, error);
464 			cas_partial_detach(sc, CAS_ATT_5);
465 		}
466 		sc->sc_rxsoft[i].rxs_kva = kva;
467 
468 		if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
469 		    CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
470 			aprint_error_dev(sc->sc_dev,
471 			    "unable to create rx DMA map %d, error = %d\n",
472 			    i, error);
473 			cas_partial_detach(sc, CAS_ATT_5);
474 		}
475 
476 		if ((error = bus_dmamap_load(sc->sc_dmatag,
477 		   sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
478 		   BUS_DMA_NOWAIT)) != 0) {
479 			aprint_error_dev(sc->sc_dev,
480 			    "unable to load rx DMA map %d, error = %d\n",
481 			    i, error);
482 			cas_partial_detach(sc, CAS_ATT_5);
483 		}
484 	}
485 
486 	/*
487 	 * Create the transmit buffer DMA maps.
488 	 */
489 	for (i = 0; i < CAS_NTXDESC; i++) {
490 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
491 		    CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
492 		    &sc->sc_txd[i].sd_map)) != 0) {
493 			aprint_error_dev(sc->sc_dev,
494 			    "unable to create tx DMA map %d, error = %d\n",
495 			    i, error);
496 			cas_partial_detach(sc, CAS_ATT_6);
497 		}
498 		sc->sc_txd[i].sd_mbuf = NULL;
499 	}
500 
501 	/*
502 	 * From this point forward, the attachment cannot fail.  A failure
503 	 * before this point releases all resources that may have been
504 	 * allocated.
505 	 */
506 
507 	/* Announce ourselves. */
508 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
509 	    ether_sprintf(enaddr));
510 	aprint_naive(": Ethernet controller\n");
511 
512 	/* Get RX FIFO size */
513 	sc->sc_rxfifosize = 16 * 1024;
514 
515 	/* Initialize ifnet structure. */
516 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
517 	ifp->if_softc = sc;
518 	ifp->if_flags =
519 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
520 	ifp->if_start = cas_start;
521 	ifp->if_ioctl = cas_ioctl;
522 	ifp->if_watchdog = cas_watchdog;
523 	ifp->if_stop = cas_stop;
524 	ifp->if_init = cas_init;
525 	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
526 	IFQ_SET_READY(&ifp->if_snd);
527 
528 	/* Initialize ifmedia structures and MII info */
529 	mii->mii_ifp = ifp;
530 	mii->mii_readreg = cas_mii_readreg;
531 	mii->mii_writereg = cas_mii_writereg;
532 	mii->mii_statchg = cas_mii_statchg;
533 
534 	ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
535 	sc->sc_ethercom.ec_mii = mii;
536 
537 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
538 
539 	cas_mifinit(sc);
540 
541 	if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
542 		sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
543 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
544 	            CAS_MIF_CONFIG, sc->sc_mif_config);
545 	}
546 
547 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
548 	    MII_OFFSET_ANY, 0);
549 
550 	child = LIST_FIRST(&mii->mii_phys);
551 	if (child == NULL &&
552 	    sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
553 		/*
554 		 * Try the external PCS SERDES if we didn't find any
555 		 * MII devices.
556 		 */
557 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
558 		    CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
559 
560 		bus_space_write_4(sc->sc_memt, sc->sc_memh,
561 		     CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
562 
563 		mii->mii_readreg = cas_pcs_readreg;
564 		mii->mii_writereg = cas_pcs_writereg;
565 
566 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
567 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
568 	}
569 
570 	child = LIST_FIRST(&mii->mii_phys);
571 	if (child == NULL) {
572 		/* No PHY attached */
573 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
574 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
575 	} else {
576 		/*
577 		 * Walk along the list of attached MII devices and
578 		 * establish an `MII instance' to `phy number'
579 		 * mapping. We'll use this mapping in media change
580 		 * requests to determine which phy to use to program
581 		 * the MIF configuration register.
582 		 */
583 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
584 			/*
585 			 * Note: we support just two PHYs: the built-in
586 			 * internal device and an external on the MII
587 			 * connector.
588 			 */
589 			if (child->mii_phy > 1 || child->mii_inst > 1) {
590 				aprint_error_dev(sc->sc_dev,
591 				    "cannot accommodate MII device %s"
592 				    " at phy %d, instance %d\n",
593 				    device_xname(child->mii_dev),
594 				    child->mii_phy, child->mii_inst);
595 				continue;
596 			}
597 
598 			sc->sc_phys[child->mii_inst] = child->mii_phy;
599 		}
600 
601 		/*
602 		 * XXX - we can really do the following ONLY if the
603 		 * phy indeed has the auto negotiation capability!!
604 		 */
605 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
606 	}
607 
608 	/* claim 802.1q capability */
609 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
610 
611 	/* Attach the interface. */
612 	if_attach(ifp);
613 	ether_ifattach(ifp, enaddr);
614 
615 #if NRND > 0
616 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
617 			  RND_TYPE_NET, 0);
618 #endif
619 
620 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
621 	    NULL, device_xname(sc->sc_dev), "interrupts");
622 
623 	callout_init(&sc->sc_tick_ch, 0);
624 
625 	return;
626 }
627 
628 int
629 cas_detach(device_t self, int flags)
630 {
631 	int i;
632 	struct cas_softc *sc = device_private(self);
633 	bus_space_tag_t t = sc->sc_memt;
634 	bus_space_handle_t h = sc->sc_memh;
635 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
636 
637 	/*
638 	 * Free any resources we've allocated during the failed attach
639 	 * attempt.  Do this in reverse order and fall through.
640 	 */
641 	switch (sc->sc_att_stage) {
642 	case CAS_ATT_FINISHED:
643 		bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
644 		pmf_device_deregister(self);
645 		cas_stop(&sc->sc_ethercom.ec_if, 1);
646 		evcnt_detach(&sc->sc_ev_intr);
647 
648 #if NRND > 0
649 		rnd_detach_source(&sc->rnd_source);
650 #endif
651 
652 		ether_ifdetach(ifp);
653 		if_detach(ifp);
654 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
655 
656 		callout_destroy(&sc->sc_tick_ch);
657 
658 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
659 
660 		/*FALLTHROUGH*/
661 	case CAS_ATT_MII:
662 	case CAS_ATT_7:
663 	case CAS_ATT_6:
664 		for (i = 0; i < CAS_NTXDESC; i++) {
665 			if (sc->sc_txd[i].sd_map != NULL)
666 				bus_dmamap_destroy(sc->sc_dmatag,
667 				    sc->sc_txd[i].sd_map);
668 		}
669 		/*FALLTHROUGH*/
670 	case CAS_ATT_5:
671 		for (i = 0; i < CAS_NRXDESC; i++) {
672 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
673 				bus_dmamap_unload(sc->sc_dmatag,
674 				    sc->sc_rxsoft[i].rxs_dmamap);
675 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
676 				bus_dmamap_destroy(sc->sc_dmatag,
677 				    sc->sc_rxsoft[i].rxs_dmamap);
678 			if (sc->sc_rxsoft[i].rxs_kva != NULL)
679 				bus_dmamem_unmap(sc->sc_dmatag,
680 				    sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
681 			/* XXX   need to check that bus_dmamem_alloc suceeded
682 			if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
683 			*/
684 				bus_dmamem_free(sc->sc_dmatag,
685 				    &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
686 		}
687 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
688 		/*FALLTHROUGH*/
689 	case CAS_ATT_4:
690 	case CAS_ATT_3:
691 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
692 		/*FALLTHROUGH*/
693 	case CAS_ATT_2:
694 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
695 		    sizeof(struct cas_control_data));
696 		/*FALLTHROUGH*/
697 	case CAS_ATT_1:
698 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
699 		/*FALLTHROUGH*/
700 	case CAS_ATT_0:
701 		sc->sc_att_stage = CAS_ATT_0;
702 		/*FALLTHROUGH*/
703 	case CAS_ATT_BACKEND_2:
704 	case CAS_ATT_BACKEND_1:
705 		if (sc->sc_ih != NULL) {
706 			pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
707 			sc->sc_ih = NULL;
708 		}
709 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
710 		/*FALLTHROUGH*/
711 	case CAS_ATT_BACKEND_0:
712 		break;
713 	}
714 	return 0;
715 }
716 
717 static void
718 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
719 {
720 	cfattach_t ca = device_cfattach(sc->sc_dev);
721 
722 	sc->sc_att_stage = stage;
723 	(*ca->ca_detach)(sc->sc_dev, 0);
724 }
725 
726 void
727 cas_tick(void *arg)
728 {
729 	struct cas_softc *sc = arg;
730 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
731 	bus_space_tag_t t = sc->sc_memt;
732 	bus_space_handle_t mac = sc->sc_memh;
733 	int s;
734 	u_int32_t v;
735 
736 	/* unload collisions counters */
737 	v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
738 	    bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
739 	ifp->if_collisions += v +
740 	    bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
741 	    bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
742 	ifp->if_oerrors += v;
743 
744 	/* read error counters */
745 	ifp->if_ierrors +=
746 	    bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
747 	    bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
748 	    bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
749 	    bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
750 
751 	/* clear the hardware counters */
752 	bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
753 	bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
754 	bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
755 	bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
756 	bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
757 	bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
758 	bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
759 	bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
760 
761 	s = splnet();
762 	mii_tick(&sc->sc_mii);
763 	splx(s);
764 
765 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
766 }
767 
768 int
769 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
770     u_int32_t clr, u_int32_t set)
771 {
772 	int i;
773 	u_int32_t reg;
774 
775 	for (i = TRIES; i--; DELAY(100)) {
776 		reg = bus_space_read_4(sc->sc_memt, h, r);
777 		if ((reg & clr) == 0 && (reg & set) == set)
778 			return (1);
779 	}
780 
781 	return (0);
782 }
783 
784 void
785 cas_reset(struct cas_softc *sc)
786 {
787 	bus_space_tag_t t = sc->sc_memt;
788 	bus_space_handle_t h = sc->sc_memh;
789 	int s;
790 
791 	s = splnet();
792 	DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
793 	cas_reset_rx(sc);
794 	cas_reset_tx(sc);
795 
796 	/* Disable interrupts */
797 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
798 
799 	/* Do a full reset */
800 	bus_space_write_4(t, h, CAS_RESET,
801 	    CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
802 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
803 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
804 	splx(s);
805 }
806 
807 
808 /*
809  * cas_rxdrain:
810  *
811  *	Drain the receive queue.
812  */
813 void
814 cas_rxdrain(struct cas_softc *sc)
815 {
816 	/* Nothing to do yet. */
817 }
818 
819 /*
820  * Reset the whole thing.
821  */
822 void
823 cas_stop(struct ifnet *ifp, int disable)
824 {
825 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
826 	struct cas_sxd *sd;
827 	u_int32_t i;
828 
829 	DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
830 
831 	callout_stop(&sc->sc_tick_ch);
832 
833 	/*
834 	 * Mark the interface down and cancel the watchdog timer.
835 	 */
836 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
837 	ifp->if_timer = 0;
838 
839 	mii_down(&sc->sc_mii);
840 
841 	cas_reset_rx(sc);
842 	cas_reset_tx(sc);
843 
844 	/*
845 	 * Release any queued transmit buffers.
846 	 */
847 	for (i = 0; i < CAS_NTXDESC; i++) {
848 		sd = &sc->sc_txd[i];
849 		if (sd->sd_mbuf != NULL) {
850 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
851 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
852 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
853 			m_freem(sd->sd_mbuf);
854 			sd->sd_mbuf = NULL;
855 		}
856 	}
857 	sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
858 
859 	if (disable)
860 		cas_rxdrain(sc);
861 }
862 
863 
864 /*
865  * Reset the receiver
866  */
867 int
868 cas_reset_rx(struct cas_softc *sc)
869 {
870 	bus_space_tag_t t = sc->sc_memt;
871 	bus_space_handle_t h = sc->sc_memh;
872 
873 	/*
874 	 * Resetting while DMA is in progress can cause a bus hang, so we
875 	 * disable DMA first.
876 	 */
877 	cas_disable_rx(sc);
878 	bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
879 	/* Wait till it finishes */
880 	if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
881 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
882 	/* Wait 5ms extra. */
883 	delay(5000);
884 
885 	/* Finally, reset the ERX */
886 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
887 	/* Wait till it finishes */
888 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
889 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
890 		return (1);
891 	}
892 	return (0);
893 }
894 
895 
896 /*
897  * Reset the transmitter
898  */
899 int
900 cas_reset_tx(struct cas_softc *sc)
901 {
902 	bus_space_tag_t t = sc->sc_memt;
903 	bus_space_handle_t h = sc->sc_memh;
904 
905 	/*
906 	 * Resetting while DMA is in progress can cause a bus hang, so we
907 	 * disable DMA first.
908 	 */
909 	cas_disable_tx(sc);
910 	bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
911 	/* Wait till it finishes */
912 	if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
913 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
914 	/* Wait 5ms extra. */
915 	delay(5000);
916 
917 	/* Finally, reset the ETX */
918 	bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
919 	/* Wait till it finishes */
920 	if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
921 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
922 		return (1);
923 	}
924 	return (0);
925 }
926 
927 /*
928  * Disable receiver.
929  */
930 int
931 cas_disable_rx(struct cas_softc *sc)
932 {
933 	bus_space_tag_t t = sc->sc_memt;
934 	bus_space_handle_t h = sc->sc_memh;
935 	u_int32_t cfg;
936 
937 	/* Flip the enable bit */
938 	cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
939 	cfg &= ~CAS_MAC_RX_ENABLE;
940 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
941 
942 	/* Wait for it to finish */
943 	return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
944 }
945 
946 /*
947  * Disable transmitter.
948  */
949 int
950 cas_disable_tx(struct cas_softc *sc)
951 {
952 	bus_space_tag_t t = sc->sc_memt;
953 	bus_space_handle_t h = sc->sc_memh;
954 	u_int32_t cfg;
955 
956 	/* Flip the enable bit */
957 	cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
958 	cfg &= ~CAS_MAC_TX_ENABLE;
959 	bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
960 
961 	/* Wait for it to finish */
962 	return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
963 }
964 
965 /*
966  * Initialize interface.
967  */
968 int
969 cas_meminit(struct cas_softc *sc)
970 {
971 	struct cas_rxsoft *rxs;
972 	int i, error;
973 
974 	rxs = (void *)&error;
975 
976 	/*
977 	 * Initialize the transmit descriptor ring.
978 	 */
979 	for (i = 0; i < CAS_NTXDESC; i++) {
980 		sc->sc_txdescs[i].cd_flags = 0;
981 		sc->sc_txdescs[i].cd_addr = 0;
982 	}
983 	CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
984 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
985 
986 	/*
987 	 * Initialize the receive descriptor and receive job
988 	 * descriptor rings.
989 	 */
990 	for (i = 0; i < CAS_NRXDESC; i++)
991 		CAS_INIT_RXDESC(sc, i, i);
992 	sc->sc_rxdptr = 0;
993 	sc->sc_rxptr = 0;
994 
995 	/*
996 	 * Initialize the receive completion ring.
997 	 */
998 	for (i = 0; i < CAS_NRXCOMP; i++) {
999 		sc->sc_rxcomps[i].cc_word[0] = 0;
1000 		sc->sc_rxcomps[i].cc_word[1] = 0;
1001 		sc->sc_rxcomps[i].cc_word[2] = 0;
1002 		sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1003 		CAS_CDRXCSYNC(sc, i,
1004 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1005 	}
1006 
1007 	return (0);
1008 }
1009 
1010 int
1011 cas_ringsize(int sz)
1012 {
1013 	switch (sz) {
1014 	case 32:
1015 		return CAS_RING_SZ_32;
1016 	case 64:
1017 		return CAS_RING_SZ_64;
1018 	case 128:
1019 		return CAS_RING_SZ_128;
1020 	case 256:
1021 		return CAS_RING_SZ_256;
1022 	case 512:
1023 		return CAS_RING_SZ_512;
1024 	case 1024:
1025 		return CAS_RING_SZ_1024;
1026 	case 2048:
1027 		return CAS_RING_SZ_2048;
1028 	case 4096:
1029 		return CAS_RING_SZ_4096;
1030 	case 8192:
1031 		return CAS_RING_SZ_8192;
1032 	default:
1033 		aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1034 		    sz);
1035 		return CAS_RING_SZ_32;
1036 	}
1037 }
1038 
1039 int
1040 cas_cringsize(int sz)
1041 {
1042 	int i;
1043 
1044 	for (i = 0; i < 9; i++)
1045 		if (sz == (128 << i))
1046 			return i;
1047 
1048 	aprint_error("cas: invalid completion ring size %d\n", sz);
1049 	return 128;
1050 }
1051 
1052 /*
1053  * Initialization of interface; set up initialization block
1054  * and transmit/receive descriptor rings.
1055  */
1056 int
1057 cas_init(struct ifnet *ifp)
1058 {
1059 	struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1060 	bus_space_tag_t t = sc->sc_memt;
1061 	bus_space_handle_t h = sc->sc_memh;
1062 	int s;
1063 	u_int max_frame_size;
1064 	u_int32_t v;
1065 
1066 	s = splnet();
1067 
1068 	DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1069 	/*
1070 	 * Initialization sequence. The numbered steps below correspond
1071 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1072 	 * Channel Engine manual (part of the PCIO manual).
1073 	 * See also the STP2002-STQ document from Sun Microsystems.
1074 	 */
1075 
1076 	/* step 1 & 2. Reset the Ethernet Channel */
1077 	cas_stop(ifp, 0);
1078 	cas_reset(sc);
1079 	DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1080 
1081 	/* Re-initialize the MIF */
1082 	cas_mifinit(sc);
1083 
1084 	/* step 3. Setup data structures in host memory */
1085 	cas_meminit(sc);
1086 
1087 	/* step 4. TX MAC registers & counters */
1088 	cas_init_regs(sc);
1089 	max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1090 	v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1091 	bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1092 
1093 	/* step 5. RX MAC registers & counters */
1094 	cas_iff(sc);
1095 
1096 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1097 	KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1098 	bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1099 	    (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1100 	bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1101 
1102 	KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1103 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1104 	    (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1105 	bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1106 
1107 	KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1108 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1109 	    (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1110 	bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1111 
1112 	if (CAS_PLUS(sc)) {
1113 		KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1114 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1115 		    (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1116 		bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1117 		    CAS_CDRXADDR2(sc, 0));
1118 	}
1119 
1120 	/* step 8. Global Configuration & Interrupt Mask */
1121 	cas_estintr(sc, CAS_INTR_REG);
1122 
1123 	/* step 9. ETX Configuration: use mostly default values */
1124 
1125 	/* Enable DMA */
1126 	v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1127 	bus_space_write_4(t, h, CAS_TX_CONFIG,
1128 	    v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1129 	bus_space_write_4(t, h, CAS_TX_KICK, 0);
1130 
1131 	/* step 10. ERX Configuration */
1132 
1133 	/* Encode Receive Descriptor ring size */
1134 	v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1135 	if (CAS_PLUS(sc))
1136 		v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1137 
1138 	/* Encode Receive Completion ring size */
1139 	v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1140 
1141 	/* Enable DMA */
1142 	bus_space_write_4(t, h, CAS_RX_CONFIG,
1143 	    v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1144 
1145 	/*
1146 	 * The following value is for an OFF Threshold of about 3/4 full
1147 	 * and an ON Threshold of 1/4 full.
1148 	 */
1149 	bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1150 	    (3 * sc->sc_rxfifosize / 256) |
1151 	    ((sc->sc_rxfifosize / 256) << 12));
1152 	bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1153 
1154 	/* step 11. Configure Media */
1155 	mii_ifmedia_change(&sc->sc_mii);
1156 
1157 	/* step 12. RX_MAC Configuration Register */
1158 	v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1159 	v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1160 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1161 
1162 	/* step 14. Issue Transmit Pending command */
1163 
1164 	/* step 15.  Give the receiver a swift kick */
1165 	bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1166 	if (CAS_PLUS(sc))
1167 		bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1168 
1169 	/* Start the one second timer. */
1170 	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1171 
1172 	ifp->if_flags |= IFF_RUNNING;
1173 	ifp->if_flags &= ~IFF_OACTIVE;
1174 	ifp->if_timer = 0;
1175 	splx(s);
1176 
1177 	return (0);
1178 }
1179 
1180 void
1181 cas_init_regs(struct cas_softc *sc)
1182 {
1183 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1184 	bus_space_tag_t t = sc->sc_memt;
1185 	bus_space_handle_t h = sc->sc_memh;
1186 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1187 	u_int32_t v, r;
1188 
1189 	/* These regs are not cleared on reset */
1190 	sc->sc_inited = 0;
1191 	if (!sc->sc_inited) {
1192 		/* Load recommended values  */
1193 		bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1194 		bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1195 		bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1196 
1197 		bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1198 		/* Max frame and max burst size */
1199 		v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1200 		bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1201 
1202 		bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1203 		bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1204 		bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1205 		bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1206 		bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1207 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1208 
1209 		/* Secondary MAC addresses set to 0:0:0:0:0:0 */
1210 		for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1211 			bus_space_write_4(t, h, r, 0);
1212 
1213 		/* MAC control addr set to 0:1:c2:0:1:80 */
1214 		bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1215 		bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1216 		bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1217 
1218 		/* MAC filter addr set to 0:0:0:0:0:0 */
1219 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1220 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1221 		bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1222 
1223 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1224 		bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1225 
1226 		/* Hash table initialized to 0 */
1227 		for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1228 			bus_space_write_4(t, h, r, 0);
1229 
1230 		sc->sc_inited = 1;
1231 	}
1232 
1233 	/* Counters need to be zeroed */
1234 	bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1235 	bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1236 	bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1237 	bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1238 	bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1239 	bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1240 	bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1241 	bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1242 	bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1243 	bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1244 	bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1245 
1246 	/* Un-pause stuff */
1247 	bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1248 
1249 	/*
1250 	 * Set the station address.
1251 	 */
1252 	bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1253 	bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1254 	bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1255 }
1256 
1257 /*
1258  * Receive interrupt.
1259  */
1260 int
1261 cas_rint(struct cas_softc *sc)
1262 {
1263 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1264 	bus_space_tag_t t = sc->sc_memt;
1265 	bus_space_handle_t h = sc->sc_memh;
1266 	struct cas_rxsoft *rxs;
1267 	struct mbuf *m;
1268 	u_int64_t word[4];
1269 	int len, off, idx;
1270 	int i, skip;
1271 	void *cp;
1272 
1273 	for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1274 		CAS_CDRXCSYNC(sc, i,
1275 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1276 
1277 		word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1278 		word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1279 		word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1280 		word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1281 
1282 		/* Stop if the hardware still owns the descriptor. */
1283 		if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1284 			break;
1285 
1286 		len = CAS_RC1_HDR_LEN(word[1]);
1287 		if (len > 0) {
1288 			off = CAS_RC1_HDR_OFF(word[1]);
1289 			idx = CAS_RC1_HDR_IDX(word[1]);
1290 			rxs = &sc->sc_rxsoft[idx];
1291 
1292 			DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1293 			    idx, off, len));
1294 
1295 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1296 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1297 
1298 			cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1299 			m = m_devget(cp, len, 0, ifp, NULL);
1300 
1301 			if (word[0] & CAS_RC0_RELEASE_HDR)
1302 				cas_add_rxbuf(sc, idx);
1303 
1304 			if (m != NULL) {
1305 
1306 				/*
1307 				 * Pass this up to any BPF listeners, but only
1308 				 * pass it up the stack if its for us.
1309 				 */
1310 				bpf_mtap(ifp, m);
1311 
1312 				ifp->if_ipackets++;
1313 				m->m_pkthdr.csum_flags = 0;
1314 				(*ifp->if_input)(ifp, m);
1315 			} else
1316 				ifp->if_ierrors++;
1317 		}
1318 
1319 		len = CAS_RC0_DATA_LEN(word[0]);
1320 		if (len > 0) {
1321 			off = CAS_RC0_DATA_OFF(word[0]);
1322 			idx = CAS_RC0_DATA_IDX(word[0]);
1323 			rxs = &sc->sc_rxsoft[idx];
1324 
1325 			DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1326 			    idx, off, len));
1327 
1328 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1329 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1330 
1331 			/* XXX We should not be copying the packet here. */
1332 			cp = rxs->rxs_kva + off + ETHER_ALIGN;
1333 			m = m_devget(cp, len, 0, ifp, NULL);
1334 
1335 			if (word[0] & CAS_RC0_RELEASE_DATA)
1336 				cas_add_rxbuf(sc, idx);
1337 
1338 			if (m != NULL) {
1339 				/*
1340 				 * Pass this up to any BPF listeners, but only
1341 				 * pass it up the stack if its for us.
1342 				 */
1343 				bpf_mtap(ifp, m);
1344 
1345 				ifp->if_ipackets++;
1346 				m->m_pkthdr.csum_flags = 0;
1347 				(*ifp->if_input)(ifp, m);
1348 			} else
1349 				ifp->if_ierrors++;
1350 		}
1351 
1352 		if (word[0] & CAS_RC0_SPLIT)
1353 			aprint_error_dev(sc->sc_dev, "split packet\n");
1354 
1355 		skip = CAS_RC0_SKIP(word[0]);
1356 	}
1357 
1358 	while (sc->sc_rxptr != i) {
1359 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1360 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1361 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1362 		sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1363 		    CAS_DMA_WRITE(CAS_RC3_OWN);
1364 		CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1365 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1366 
1367 		sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1368 	}
1369 
1370 	bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1371 
1372 	DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1373 		sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1374 
1375 	return (1);
1376 }
1377 
1378 /*
1379  * cas_add_rxbuf:
1380  *
1381  *	Add a receive buffer to the indicated descriptor.
1382  */
1383 int
1384 cas_add_rxbuf(struct cas_softc *sc, int idx)
1385 {
1386 	bus_space_tag_t t = sc->sc_memt;
1387 	bus_space_handle_t h = sc->sc_memh;
1388 
1389 	CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1390 
1391 	if ((sc->sc_rxdptr % 4) == 0)
1392 		bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1393 
1394 	if (++sc->sc_rxdptr == CAS_NRXDESC)
1395 		sc->sc_rxdptr = 0;
1396 
1397 	return (0);
1398 }
1399 
1400 int
1401 cas_eint(struct cas_softc *sc, u_int status)
1402 {
1403 	char bits[128];
1404 	if ((status & CAS_INTR_MIF) != 0) {
1405 		DPRINTF(sc, ("%s: link status changed\n",
1406 		    device_xname(sc->sc_dev)));
1407 		return (1);
1408 	}
1409 
1410 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1411 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1412 	return (1);
1413 }
1414 
1415 int
1416 cas_pint(struct cas_softc *sc)
1417 {
1418 	bus_space_tag_t t = sc->sc_memt;
1419 	bus_space_handle_t seb = sc->sc_memh;
1420 	u_int32_t status;
1421 
1422 	status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1423 	status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1424 #ifdef CAS_DEBUG
1425 	if (status)
1426 		printf("%s: link status changed\n", device_xname(sc->sc_dev));
1427 #endif
1428 	return (1);
1429 }
1430 
1431 int
1432 cas_intr(void *v)
1433 {
1434 	struct cas_softc *sc = (struct cas_softc *)v;
1435 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1436 	bus_space_tag_t t = sc->sc_memt;
1437 	bus_space_handle_t seb = sc->sc_memh;
1438 	u_int32_t status;
1439 	int r = 0;
1440 #ifdef CAS_DEBUG
1441 	char bits[128];
1442 #endif
1443 
1444 	sc->sc_ev_intr.ev_count++;
1445 
1446 	status = bus_space_read_4(t, seb, CAS_STATUS);
1447 #ifdef CAS_DEBUG
1448 	snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1449 #endif
1450 	DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1451 		device_xname(sc->sc_dev), (status>>19), bits));
1452 
1453 	if ((status & CAS_INTR_PCS) != 0)
1454 		r |= cas_pint(sc);
1455 
1456 	if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1457 	    CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1458 		r |= cas_eint(sc, status);
1459 
1460 	if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1461 		r |= cas_tint(sc, status);
1462 
1463 	if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1464 		r |= cas_rint(sc);
1465 
1466 	/* We should eventually do more than just print out error stats. */
1467 	if (status & CAS_INTR_TX_MAC) {
1468 		int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1469 #ifdef CAS_DEBUG
1470 		if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1471 			printf("%s: MAC tx fault, status %x\n",
1472 			    device_xname(sc->sc_dev), txstat);
1473 #endif
1474 		if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1475 			cas_init(ifp);
1476 	}
1477 	if (status & CAS_INTR_RX_MAC) {
1478 		int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1479 #ifdef CAS_DEBUG
1480 		if (rxstat & ~CAS_MAC_RX_DONE)
1481 			printf("%s: MAC rx fault, status %x\n",
1482 			    device_xname(sc->sc_dev), rxstat);
1483 #endif
1484 		/*
1485 		 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1486 		 * due to a silicon bug so handle them silently.
1487 		 */
1488 		if (rxstat & CAS_MAC_RX_OVERFLOW) {
1489 			ifp->if_ierrors++;
1490 			cas_init(ifp);
1491 		}
1492 #ifdef CAS_DEBUG
1493 		else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1494 			printf("%s: MAC rx fault, status %x\n",
1495 			    device_xname(sc->sc_dev), rxstat);
1496 #endif
1497 	}
1498 #if NRND > 0
1499 	rnd_add_uint32(&sc->rnd_source, status);
1500 #endif
1501 	return (r);
1502 }
1503 
1504 
1505 void
1506 cas_watchdog(struct ifnet *ifp)
1507 {
1508 	struct cas_softc *sc = ifp->if_softc;
1509 
1510 	DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1511 		"CAS_MAC_RX_CONFIG %x\n",
1512 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1513 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1514 		bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1515 
1516 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1517 	++ifp->if_oerrors;
1518 
1519 	/* Try to get more packets going. */
1520 	cas_init(ifp);
1521 }
1522 
1523 /*
1524  * Initialize the MII Management Interface
1525  */
1526 void
1527 cas_mifinit(struct cas_softc *sc)
1528 {
1529 	bus_space_tag_t t = sc->sc_memt;
1530 	bus_space_handle_t mif = sc->sc_memh;
1531 
1532 	/* Configure the MIF in frame mode */
1533 	sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1534 	sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1535 	bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1536 }
1537 
1538 /*
1539  * MII interface
1540  *
1541  * The Cassini MII interface supports at least three different operating modes:
1542  *
1543  * Bitbang mode is implemented using data, clock and output enable registers.
1544  *
1545  * Frame mode is implemented by loading a complete frame into the frame
1546  * register and polling the valid bit for completion.
1547  *
1548  * Polling mode uses the frame register but completion is indicated by
1549  * an interrupt.
1550  *
1551  */
1552 int
1553 cas_mii_readreg(device_t self, int phy, int reg)
1554 {
1555 	struct cas_softc *sc = device_private(self);
1556 	bus_space_tag_t t = sc->sc_memt;
1557 	bus_space_handle_t mif = sc->sc_memh;
1558 	int n;
1559 	u_int32_t v;
1560 
1561 #ifdef CAS_DEBUG
1562 	if (sc->sc_debug)
1563 		printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1564 #endif
1565 
1566 	/* Construct the frame command */
1567 	v = (reg << CAS_MIF_REG_SHIFT)	| (phy << CAS_MIF_PHY_SHIFT) |
1568 		CAS_MIF_FRAME_READ;
1569 
1570 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1571 	for (n = 0; n < 100; n++) {
1572 		DELAY(1);
1573 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1574 		if (v & CAS_MIF_FRAME_TA0)
1575 			return (v & CAS_MIF_FRAME_DATA);
1576 	}
1577 
1578 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1579 	return (0);
1580 }
1581 
1582 void
1583 cas_mii_writereg(device_t self, int phy, int reg, int val)
1584 {
1585 	struct cas_softc *sc = device_private(self);
1586 	bus_space_tag_t t = sc->sc_memt;
1587 	bus_space_handle_t mif = sc->sc_memh;
1588 	int n;
1589 	u_int32_t v;
1590 
1591 #ifdef CAS_DEBUG
1592 	if (sc->sc_debug)
1593 		printf("cas_mii_writereg: phy %d reg %d val %x\n",
1594 			phy, reg, val);
1595 #endif
1596 
1597 	/* Construct the frame command */
1598 	v = CAS_MIF_FRAME_WRITE			|
1599 	    (phy << CAS_MIF_PHY_SHIFT)		|
1600 	    (reg << CAS_MIF_REG_SHIFT)		|
1601 	    (val & CAS_MIF_FRAME_DATA);
1602 
1603 	bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1604 	for (n = 0; n < 100; n++) {
1605 		DELAY(1);
1606 		v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1607 		if (v & CAS_MIF_FRAME_TA0)
1608 			return;
1609 	}
1610 
1611 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1612 }
1613 
1614 void
1615 cas_mii_statchg(device_t self)
1616 {
1617 	struct cas_softc *sc = device_private(self);
1618 #ifdef CAS_DEBUG
1619 	int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1620 #endif
1621 	bus_space_tag_t t = sc->sc_memt;
1622 	bus_space_handle_t mac = sc->sc_memh;
1623 	u_int32_t v;
1624 
1625 #ifdef CAS_DEBUG
1626 	if (sc->sc_debug)
1627 		printf("cas_mii_statchg: status change: phy = %d\n",
1628 		    sc->sc_phys[instance]);
1629 #endif
1630 
1631 	/* Set tx full duplex options */
1632 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1633 	delay(10000); /* reg must be cleared and delay before changing. */
1634 	v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1635 		CAS_MAC_TX_ENABLE;
1636 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1637 		v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1638 	}
1639 	bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1640 
1641 	/* XIF Configuration */
1642 	v = CAS_MAC_XIF_TX_MII_ENA;
1643 	v |= CAS_MAC_XIF_LINK_LED;
1644 
1645 	/* MII needs echo disable if half duplex. */
1646 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1647 		/* turn on full duplex LED */
1648 		v |= CAS_MAC_XIF_FDPLX_LED;
1649 	else
1650 		/* half duplex -- disable echo */
1651 		v |= CAS_MAC_XIF_ECHO_DISABL;
1652 
1653 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1654 	case IFM_1000_T:  /* Gigabit using GMII interface */
1655 	case IFM_1000_SX:
1656 		v |= CAS_MAC_XIF_GMII_MODE;
1657 		break;
1658 	default:
1659 		v &= ~CAS_MAC_XIF_GMII_MODE;
1660 	}
1661 	bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1662 }
1663 
1664 int
1665 cas_pcs_readreg(device_t self, int phy, int reg)
1666 {
1667 	struct cas_softc *sc = device_private(self);
1668 	bus_space_tag_t t = sc->sc_memt;
1669 	bus_space_handle_t pcs = sc->sc_memh;
1670 
1671 #ifdef CAS_DEBUG
1672 	if (sc->sc_debug)
1673 		printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1674 #endif
1675 
1676 	if (phy != CAS_PHYAD_EXTERNAL)
1677 		return (0);
1678 
1679 	switch (reg) {
1680 	case MII_BMCR:
1681 		reg = CAS_MII_CONTROL;
1682 		break;
1683 	case MII_BMSR:
1684 		reg = CAS_MII_STATUS;
1685 		break;
1686 	case MII_ANAR:
1687 		reg = CAS_MII_ANAR;
1688 		break;
1689 	case MII_ANLPAR:
1690 		reg = CAS_MII_ANLPAR;
1691 		break;
1692 	case MII_EXTSR:
1693 		return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1694 	default:
1695 		return (0);
1696 	}
1697 
1698 	return bus_space_read_4(t, pcs, reg);
1699 }
1700 
1701 void
1702 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1703 {
1704 	struct cas_softc *sc = device_private(self);
1705 	bus_space_tag_t t = sc->sc_memt;
1706 	bus_space_handle_t pcs = sc->sc_memh;
1707 	int reset = 0;
1708 
1709 #ifdef CAS_DEBUG
1710 	if (sc->sc_debug)
1711 		printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1712 			phy, reg, val);
1713 #endif
1714 
1715 	if (phy != CAS_PHYAD_EXTERNAL)
1716 		return;
1717 
1718 	if (reg == MII_ANAR)
1719 		bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1720 
1721 	switch (reg) {
1722 	case MII_BMCR:
1723 		reset = (val & CAS_MII_CONTROL_RESET);
1724 		reg = CAS_MII_CONTROL;
1725 		break;
1726 	case MII_BMSR:
1727 		reg = CAS_MII_STATUS;
1728 		break;
1729 	case MII_ANAR:
1730 		reg = CAS_MII_ANAR;
1731 		break;
1732 	case MII_ANLPAR:
1733 		reg = CAS_MII_ANLPAR;
1734 		break;
1735 	default:
1736 		return;
1737 	}
1738 
1739 	bus_space_write_4(t, pcs, reg, val);
1740 
1741 	if (reset)
1742 		cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1743 
1744 	if (reg == CAS_MII_ANAR || reset)
1745 		bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1746 		    CAS_MII_CONFIG_ENABLE);
1747 }
1748 
1749 int
1750 cas_mediachange(struct ifnet *ifp)
1751 {
1752 	struct cas_softc *sc = ifp->if_softc;
1753 	struct mii_data *mii = &sc->sc_mii;
1754 
1755 	if (mii->mii_instance) {
1756 		struct mii_softc *miisc;
1757 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1758 			mii_phy_reset(miisc);
1759 	}
1760 
1761 	return (mii_mediachg(&sc->sc_mii));
1762 }
1763 
1764 void
1765 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1766 {
1767 	struct cas_softc *sc = ifp->if_softc;
1768 
1769 	mii_pollstat(&sc->sc_mii);
1770 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1771 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1772 }
1773 
1774 /*
1775  * Process an ioctl request.
1776  */
1777 int
1778 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1779 {
1780 	struct cas_softc *sc = ifp->if_softc;
1781 	int s, error = 0;
1782 
1783 	s = splnet();
1784 
1785 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1786 		error = 0;
1787 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1788 			;
1789 		else if (ifp->if_flags & IFF_RUNNING) {
1790 			/*
1791 			 * Multicast list has changed; set the hardware filter
1792 			 * accordingly.
1793 			 */
1794 			cas_iff(sc);
1795 		}
1796 	}
1797 
1798 	splx(s);
1799 	return (error);
1800 }
1801 
1802 static bool
1803 cas_suspend(device_t self, const pmf_qual_t *qual)
1804 {
1805 	struct cas_softc *sc = device_private(self);
1806 	bus_space_tag_t t = sc->sc_memt;
1807 	bus_space_handle_t h = sc->sc_memh;
1808 
1809 	bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1810 	if (sc->sc_ih != NULL) {
1811 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1812 		sc->sc_ih = NULL;
1813 	}
1814 
1815 	return true;
1816 }
1817 
1818 static bool
1819 cas_resume(device_t self, const pmf_qual_t *qual)
1820 {
1821 	struct cas_softc *sc = device_private(self);
1822 
1823 	return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1824 }
1825 
1826 static bool
1827 cas_estintr(struct cas_softc *sc, int what)
1828 {
1829 	bus_space_tag_t t = sc->sc_memt;
1830 	bus_space_handle_t h = sc->sc_memh;
1831 	const char *intrstr = NULL;
1832 
1833 	/* PCI interrupts */
1834 	if (what & CAS_INTR_PCI) {
1835 		intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1836 		sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1837 		    IPL_NET, cas_intr, sc);
1838 		if (sc->sc_ih == NULL) {
1839 			aprint_error_dev(sc->sc_dev,
1840 			    "unable to establish interrupt");
1841 			if (intrstr != NULL)
1842 				aprint_error(" at %s", intrstr);
1843 			aprint_error("\n");
1844 			return false;
1845 		}
1846 
1847 		aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1848 	}
1849 
1850 	/* Interrupt register */
1851 	if (what & CAS_INTR_REG) {
1852 		bus_space_write_4(t, h, CAS_INTMASK,
1853 		    ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1854 		    CAS_INTR_TX_TAG_ERR|
1855 		    CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1856 		    CAS_INTR_RX_TAG_ERR|
1857 		    CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1858 		    CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1859 		    CAS_INTR_BERR));
1860 		bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1861 		    CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1862 		bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1863 		bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1864 	}
1865 	return true;
1866 }
1867 
1868 bool
1869 cas_shutdown(device_t self, int howto)
1870 {
1871 	struct cas_softc *sc = device_private(self);
1872 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1873 
1874 	cas_stop(ifp, 1);
1875 
1876 	return true;
1877 }
1878 
1879 void
1880 cas_iff(struct cas_softc *sc)
1881 {
1882 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1883 	struct ethercom *ec = &sc->sc_ethercom;
1884 	struct ether_multi *enm;
1885 	struct ether_multistep step;
1886 	bus_space_tag_t t = sc->sc_memt;
1887 	bus_space_handle_t h = sc->sc_memh;
1888 	u_int32_t crc, hash[16], rxcfg;
1889 	int i;
1890 
1891 	rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1892 	rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1893 	    CAS_MAC_RX_PROMISC_GRP);
1894 	ifp->if_flags &= ~IFF_ALLMULTI;
1895 
1896 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1897 		ifp->if_flags |= IFF_ALLMULTI;
1898 		if (ifp->if_flags & IFF_PROMISC)
1899 			rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1900 		else
1901 			rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1902         } else {
1903 		/*
1904 		 * Set up multicast address filter by passing all multicast
1905 		 * addresses through a crc generator, and then using the
1906 		 * high order 8 bits as an index into the 256 bit logical
1907 		 * address filter.  The high order 4 bits selects the word,
1908 		 * while the other 4 bits select the bit within the word
1909 		 * (where bit 0 is the MSB).
1910 		 */
1911 
1912 		rxcfg |= CAS_MAC_RX_HASH_FILTER;
1913 
1914 		/* Clear hash table */
1915 		for (i = 0; i < 16; i++)
1916 			hash[i] = 0;
1917 
1918 		ETHER_FIRST_MULTI(step, ec, enm);
1919 		while (enm != NULL) {
1920                         crc = ether_crc32_le(enm->enm_addrlo,
1921                             ETHER_ADDR_LEN);
1922 
1923                         /* Just want the 8 most significant bits. */
1924                         crc >>= 24;
1925 
1926                         /* Set the corresponding bit in the filter. */
1927                         hash[crc >> 4] |= 1 << (15 - (crc & 15));
1928 
1929 			ETHER_NEXT_MULTI(step, enm);
1930 		}
1931 
1932 		/* Now load the hash table into the chip (if we are using it) */
1933 		for (i = 0; i < 16; i++) {
1934 			bus_space_write_4(t, h,
1935 			    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1936 			    hash[i]);
1937 		}
1938 	}
1939 
1940 	bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1941 }
1942 
1943 int
1944 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1945 {
1946 	u_int64_t flags;
1947 	u_int32_t cur, frag, i;
1948 	bus_dmamap_t map;
1949 
1950 	cur = frag = *bixp;
1951 	map = sc->sc_txd[cur].sd_map;
1952 
1953 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1954 	    BUS_DMA_NOWAIT) != 0) {
1955 		return (ENOBUFS);
1956 	}
1957 
1958 	if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1959 		bus_dmamap_unload(sc->sc_dmatag, map);
1960 		return (ENOBUFS);
1961 	}
1962 
1963 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1964 	    BUS_DMASYNC_PREWRITE);
1965 
1966 	for (i = 0; i < map->dm_nsegs; i++) {
1967 		sc->sc_txdescs[frag].cd_addr =
1968 		    CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1969 		flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1970 		    (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1971 		    ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1972 		sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1973 		bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1974 		    CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1975 		    BUS_DMASYNC_PREWRITE);
1976 		cur = frag;
1977 		if (++frag == CAS_NTXDESC)
1978 			frag = 0;
1979 	}
1980 
1981 	sc->sc_tx_cnt += map->dm_nsegs;
1982 	sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1983 	sc->sc_txd[cur].sd_map = map;
1984 	sc->sc_txd[cur].sd_mbuf = mhead;
1985 
1986 	bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1987 
1988 	*bixp = frag;
1989 
1990 	/* sync descriptors */
1991 
1992 	return (0);
1993 }
1994 
1995 /*
1996  * Transmit interrupt.
1997  */
1998 int
1999 cas_tint(struct cas_softc *sc, u_int32_t status)
2000 {
2001 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2002 	struct cas_sxd *sd;
2003 	u_int32_t cons, comp;
2004 
2005 	comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2006 	cons = sc->sc_tx_cons;
2007 	while (cons != comp) {
2008 		sd = &sc->sc_txd[cons];
2009 		if (sd->sd_mbuf != NULL) {
2010 			bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2011 			    sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2012 			bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2013 			m_freem(sd->sd_mbuf);
2014 			sd->sd_mbuf = NULL;
2015 			ifp->if_opackets++;
2016 		}
2017 		sc->sc_tx_cnt--;
2018 		if (++cons == CAS_NTXDESC)
2019 			cons = 0;
2020 	}
2021 	sc->sc_tx_cons = cons;
2022 
2023 	if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2024 		ifp->if_flags &= ~IFF_OACTIVE;
2025 	if (sc->sc_tx_cnt == 0)
2026 		ifp->if_timer = 0;
2027 
2028 	cas_start(ifp);
2029 
2030 	return (1);
2031 }
2032 
2033 void
2034 cas_start(struct ifnet *ifp)
2035 {
2036 	struct cas_softc *sc = ifp->if_softc;
2037 	struct mbuf *m;
2038 	u_int32_t bix;
2039 
2040 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2041 		return;
2042 
2043 	bix = sc->sc_tx_prod;
2044 	while (sc->sc_txd[bix].sd_mbuf == NULL) {
2045 		IFQ_POLL(&ifp->if_snd, m);
2046 		if (m == NULL)
2047 			break;
2048 
2049 		/*
2050 		 * If BPF is listening on this interface, let it see the
2051 		 * packet before we commit it to the wire.
2052 		 */
2053 		bpf_mtap(ifp, m);
2054 
2055 		/*
2056 		 * Encapsulate this packet and start it going...
2057 		 * or fail...
2058 		 */
2059 		if (cas_encap(sc, m, &bix)) {
2060 			ifp->if_flags |= IFF_OACTIVE;
2061 			break;
2062 		}
2063 
2064 		IFQ_DEQUEUE(&ifp->if_snd, m);
2065 		ifp->if_timer = 5;
2066 	}
2067 
2068 	sc->sc_tx_prod = bix;
2069 }
2070 
2071 MODULE(MODULE_CLASS_DRIVER, if_cas, NULL);
2072 
2073 #ifdef _MODULE
2074 #include "ioconf.c"
2075 #endif
2076 
2077 static int
2078 if_cas_modcmd(modcmd_t cmd, void *opaque)
2079 {
2080 	int error = 0;
2081 
2082 	switch (cmd) {
2083 	case MODULE_CMD_INIT:
2084 #ifdef _MODULE
2085 		error = config_init_component(cfdriver_ioconf_cas,
2086 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2087 #endif
2088 		return error;
2089 	case MODULE_CMD_FINI:
2090 #ifdef _MODULE
2091 		error = config_fini_component(cfdriver_ioconf_cas,
2092 		    cfattach_ioconf_cas, cfdata_ioconf_cas);
2093 #endif
2094 		return error;
2095 	default:
2096 		return ENOTTY;
2097 	}
2098 }
2099