xref: /netbsd/sys/dev/pci/if_pcn.c (revision 6550d01e)
1 /*	$NetBSD: if_pcn.c,v 1.52 2010/11/13 13:52:06 uebayasi Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the AMD PCnet-PCI series of Ethernet
40  * chips:
41  *
42  *	* Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43  *	  Local Bus
44  *
45  *	* Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46  *	  for PCI Local Bus
47  *
48  *	* Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49  *	  Ethernet Controller for PCI Local Bus
50  *
51  *	* Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52  *	  with OnNow Support
53  *
54  *	* Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55  *	  Ethernet Controller with Integrated PHY
56  *
57  * This also supports the virtual PCnet-PCI Ethernet interface found
58  * in VMware.
59  *
60  * TODO:
61  *
62  *	* Split this into bus-specific and bus-independent portions.
63  *	  The core could also be used for the ILACC (Am79900) 32-bit
64  *	  Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65  */
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.52 2010/11/13 13:52:06 uebayasi Exp $");
69 
70 #include "rnd.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 #include <sys/ioctl.h>
80 #include <sys/errno.h>
81 #include <sys/device.h>
82 #include <sys/queue.h>
83 
84 #if NRND > 0
85 #include <sys/rnd.h>
86 #endif
87 
88 #include <net/if.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_ether.h>
92 
93 #include <net/bpf.h>
94 
95 #include <sys/bus.h>
96 #include <sys/intr.h>
97 #include <machine/endian.h>
98 
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101 
102 #include <dev/ic/am79900reg.h>
103 #include <dev/ic/lancereg.h>
104 
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108 
109 #include <dev/pci/if_pcnreg.h>
110 
111 /*
112  * Transmit descriptor list size.  This is arbitrary, but allocate
113  * enough descriptors for 128 pending transmissions, and 4 segments
114  * per packet.  This MUST work out to a power of 2.
115  *
116  * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
117  *
118  * So we play a little trick here.  We give each packet up to 16
119  * DMA segments, but only allocate the max of 512 descriptors.  The
120  * transmit logic can deal with this, we just are hoping to sneak by.
121  */
122 #define	PCN_NTXSEGS		16
123 #define	PCN_NTXSEGS_VMWARE	8	/* bug in VMware's emulation */
124 
125 #define	PCN_TXQUEUELEN		128
126 #define	PCN_TXQUEUELEN_MASK	(PCN_TXQUEUELEN - 1)
127 #define	PCN_NTXDESC		512
128 #define	PCN_NTXDESC_MASK	(PCN_NTXDESC - 1)
129 #define	PCN_NEXTTX(x)		(((x) + 1) & PCN_NTXDESC_MASK)
130 #define	PCN_NEXTTXS(x)		(((x) + 1) & PCN_TXQUEUELEN_MASK)
131 
132 /* Tx interrupt every N + 1 packets. */
133 #define	PCN_TXINTR_MASK		7
134 
135 /*
136  * Receive descriptor list size.  We have one Rx buffer per incoming
137  * packet, so this logic is a little simpler.
138  */
139 #define	PCN_NRXDESC		128
140 #define	PCN_NRXDESC_MASK	(PCN_NRXDESC - 1)
141 #define	PCN_NEXTRX(x)		(((x) + 1) & PCN_NRXDESC_MASK)
142 
143 /*
144  * Control structures are DMA'd to the PCnet chip.  We allocate them in
145  * a single clump that maps to a single DMA segment to make several things
146  * easier.
147  */
148 struct pcn_control_data {
149 	/* The transmit descriptors. */
150 	struct letmd pcd_txdescs[PCN_NTXDESC];
151 
152 	/* The receive descriptors. */
153 	struct lermd pcd_rxdescs[PCN_NRXDESC];
154 
155 	/* The init block. */
156 	struct leinit pcd_initblock;
157 };
158 
159 #define	PCN_CDOFF(x)	offsetof(struct pcn_control_data, x)
160 #define	PCN_CDTXOFF(x)	PCN_CDOFF(pcd_txdescs[(x)])
161 #define	PCN_CDRXOFF(x)	PCN_CDOFF(pcd_rxdescs[(x)])
162 #define	PCN_CDINITOFF	PCN_CDOFF(pcd_initblock)
163 
164 /*
165  * Software state for transmit jobs.
166  */
167 struct pcn_txsoft {
168 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
169 	bus_dmamap_t txs_dmamap;	/* our DMA map */
170 	int txs_firstdesc;		/* first descriptor in packet */
171 	int txs_lastdesc;		/* last descriptor in packet */
172 };
173 
174 /*
175  * Software state for receive jobs.
176  */
177 struct pcn_rxsoft {
178 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
179 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
180 };
181 
182 /*
183  * Description of Rx FIFO watermarks for various revisions.
184  */
185 static const char * const pcn_79c970_rcvfw[] = {
186 	"16 bytes",
187 	"64 bytes",
188 	"128 bytes",
189 	NULL,
190 };
191 
192 static const char * const pcn_79c971_rcvfw[] = {
193 	"16 bytes",
194 	"64 bytes",
195 	"112 bytes",
196 	NULL,
197 };
198 
199 /*
200  * Description of Tx start points for various revisions.
201  */
202 static const char * const pcn_79c970_xmtsp[] = {
203 	"8 bytes",
204 	"64 bytes",
205 	"128 bytes",
206 	"248 bytes",
207 };
208 
209 static const char * const pcn_79c971_xmtsp[] = {
210 	"20 bytes",
211 	"64 bytes",
212 	"128 bytes",
213 	"248 bytes",
214 };
215 
216 static const char * const pcn_79c971_xmtsp_sram[] = {
217 	"44 bytes",
218 	"64 bytes",
219 	"128 bytes",
220 	"store-and-forward",
221 };
222 
223 /*
224  * Description of Tx FIFO watermarks for various revisions.
225  */
226 static const char * const pcn_79c970_xmtfw[] = {
227 	"16 bytes",
228 	"64 bytes",
229 	"128 bytes",
230 	NULL,
231 };
232 
233 static const char * const pcn_79c971_xmtfw[] = {
234 	"16 bytes",
235 	"64 bytes",
236 	"108 bytes",
237 	NULL,
238 };
239 
240 /*
241  * Software state per device.
242  */
243 struct pcn_softc {
244 	device_t sc_dev;		/* generic device information */
245 	bus_space_tag_t sc_st;		/* bus space tag */
246 	bus_space_handle_t sc_sh;	/* bus space handle */
247 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
248 	struct ethercom sc_ethercom;	/* Ethernet common data */
249 
250 	/* Points to our media routines, etc. */
251 	const struct pcn_variant *sc_variant;
252 
253 	void *sc_ih;			/* interrupt cookie */
254 
255 	struct mii_data sc_mii;		/* MII/media information */
256 
257 	callout_t sc_tick_ch;		/* tick callout */
258 
259 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
260 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
261 
262 	/* Software state for transmit and receive descriptors. */
263 	struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
264 	struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
265 
266 	/* Control data structures */
267 	struct pcn_control_data *sc_control_data;
268 #define	sc_txdescs	sc_control_data->pcd_txdescs
269 #define	sc_rxdescs	sc_control_data->pcd_rxdescs
270 #define	sc_initblock	sc_control_data->pcd_initblock
271 
272 #ifdef PCN_EVENT_COUNTERS
273 	/* Event counters. */
274 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
275 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
276 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
277 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
278 	struct evcnt sc_ev_babl;	/* BABL in pcn_intr() */
279 	struct evcnt sc_ev_miss;	/* MISS in pcn_intr() */
280 	struct evcnt sc_ev_merr;	/* MERR in pcn_intr() */
281 
282 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
283 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
284 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
285 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
286 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
287 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
288 	struct evcnt sc_ev_txcopy;	/* Tx copies required */
289 #endif /* PCN_EVENT_COUNTERS */
290 
291 	const char * const *sc_rcvfw_desc;	/* Rx FIFO watermark info */
292 	int sc_rcvfw;
293 
294 	const char * const *sc_xmtsp_desc;	/* Tx start point info */
295 	int sc_xmtsp;
296 
297 	const char * const *sc_xmtfw_desc;	/* Tx FIFO watermark info */
298 	int sc_xmtfw;
299 
300 	int sc_flags;			/* misc. flags; see below */
301 	int sc_swstyle;			/* the software style in use */
302 
303 	int sc_txfree;			/* number of free Tx descriptors */
304 	int sc_txnext;			/* next ready Tx descriptor */
305 
306 	int sc_txsfree;			/* number of free Tx jobs */
307 	int sc_txsnext;			/* next free Tx job */
308 	int sc_txsdirty;		/* dirty Tx jobs */
309 
310 	int sc_rxptr;			/* next ready Rx descriptor/job */
311 
312 	uint32_t sc_csr5;		/* prototype CSR5 register */
313 	uint32_t sc_mode;		/* prototype MODE register */
314 
315 #if NRND > 0
316 	rndsource_element_t rnd_source;	/* random source */
317 #endif
318 };
319 
320 /* sc_flags */
321 #define	PCN_F_HAS_MII		0x0001	/* has MII */
322 
323 #ifdef PCN_EVENT_COUNTERS
324 #define	PCN_EVCNT_INCR(ev)	(ev)->ev_count++
325 #else
326 #define	PCN_EVCNT_INCR(ev)	/* nothing */
327 #endif
328 
329 #define	PCN_CDTXADDR(sc, x)	((sc)->sc_cddma + PCN_CDTXOFF((x)))
330 #define	PCN_CDRXADDR(sc, x)	((sc)->sc_cddma + PCN_CDRXOFF((x)))
331 #define	PCN_CDINITADDR(sc)	((sc)->sc_cddma + PCN_CDINITOFF)
332 
333 #define	PCN_CDTXSYNC(sc, x, n, ops)					\
334 do {									\
335 	int __x, __n;							\
336 									\
337 	__x = (x);							\
338 	__n = (n);							\
339 									\
340 	/* If it will wrap around, sync to the end of the ring. */	\
341 	if ((__x + __n) > PCN_NTXDESC) {				\
342 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
343 		    PCN_CDTXOFF(__x), sizeof(struct letmd) *		\
344 		    (PCN_NTXDESC - __x), (ops));			\
345 		__n -= (PCN_NTXDESC - __x);				\
346 		__x = 0;						\
347 	}								\
348 									\
349 	/* Now sync whatever is left. */				\
350 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
351 	    PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops));	\
352 } while (/*CONSTCOND*/0)
353 
354 #define	PCN_CDRXSYNC(sc, x, ops)					\
355 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
356 	    PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
357 
358 #define	PCN_CDINITSYNC(sc, ops)						\
359 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
360 	    PCN_CDINITOFF, sizeof(struct leinit), (ops))
361 
362 #define	PCN_INIT_RXDESC(sc, x)						\
363 do {									\
364 	struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
365 	struct lermd *__rmd = &(sc)->sc_rxdescs[(x)];			\
366 	struct mbuf *__m = __rxs->rxs_mbuf;				\
367 									\
368 	/*								\
369 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
370 	 * so that the payload after the Ethernet header is aligned	\
371 	 * to a 4-byte boundary.					\
372 	 */								\
373 	__m->m_data = __m->m_ext.ext_buf + 2;				\
374 									\
375 	if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {		\
376 		__rmd->rmd2 =						\
377 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
378 		__rmd->rmd0 = 0;					\
379 	} else {							\
380 		__rmd->rmd2 = 0;					\
381 		__rmd->rmd0 =						\
382 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
383 	}								\
384 	__rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| 			\
385 	    (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK));			\
386 	PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
387 } while(/*CONSTCOND*/0)
388 
389 static void	pcn_start(struct ifnet *);
390 static void	pcn_watchdog(struct ifnet *);
391 static int	pcn_ioctl(struct ifnet *, u_long, void *);
392 static int	pcn_init(struct ifnet *);
393 static void	pcn_stop(struct ifnet *, int);
394 
395 static bool	pcn_shutdown(device_t, int);
396 
397 static void	pcn_reset(struct pcn_softc *);
398 static void	pcn_rxdrain(struct pcn_softc *);
399 static int	pcn_add_rxbuf(struct pcn_softc *, int);
400 static void	pcn_tick(void *);
401 
402 static void	pcn_spnd(struct pcn_softc *);
403 
404 static void	pcn_set_filter(struct pcn_softc *);
405 
406 static int	pcn_intr(void *);
407 static void	pcn_txintr(struct pcn_softc *);
408 static int	pcn_rxintr(struct pcn_softc *);
409 
410 static int	pcn_mii_readreg(device_t, int, int);
411 static void	pcn_mii_writereg(device_t, int, int, int);
412 static void	pcn_mii_statchg(device_t);
413 
414 static void	pcn_79c970_mediainit(struct pcn_softc *);
415 static int	pcn_79c970_mediachange(struct ifnet *);
416 static void	pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
417 
418 static void	pcn_79c971_mediainit(struct pcn_softc *);
419 
420 /*
421  * Description of a PCnet-PCI variant.  Used to select media access
422  * method, mostly, and to print a nice description of the chip.
423  */
424 static const struct pcn_variant {
425 	const char *pcv_desc;
426 	void (*pcv_mediainit)(struct pcn_softc *);
427 	uint16_t pcv_chipid;
428 } pcn_variants[] = {
429 	{ "Am79c970 PCnet-PCI",
430 	  pcn_79c970_mediainit,
431 	  PARTID_Am79c970 },
432 
433 	{ "Am79c970A PCnet-PCI II",
434 	  pcn_79c970_mediainit,
435 	  PARTID_Am79c970A },
436 
437 	{ "Am79c971 PCnet-FAST",
438 	  pcn_79c971_mediainit,
439 	  PARTID_Am79c971 },
440 
441 	{ "Am79c972 PCnet-FAST+",
442 	  pcn_79c971_mediainit,
443 	  PARTID_Am79c972 },
444 
445 	{ "Am79c973 PCnet-FAST III",
446 	  pcn_79c971_mediainit,
447 	  PARTID_Am79c973 },
448 
449 	{ "Am79c975 PCnet-FAST III",
450 	  pcn_79c971_mediainit,
451 	  PARTID_Am79c975 },
452 
453 	{ "Unknown PCnet-PCI variant",
454 	  pcn_79c971_mediainit,
455 	  0 },
456 };
457 
458 int	pcn_copy_small = 0;
459 
460 static int	pcn_match(device_t, cfdata_t, void *);
461 static void	pcn_attach(device_t, device_t, void *);
462 
463 CFATTACH_DECL_NEW(pcn, sizeof(struct pcn_softc),
464     pcn_match, pcn_attach, NULL, NULL);
465 
466 /*
467  * Routines to read and write the PCnet-PCI CSR/BCR space.
468  */
469 
470 static inline uint32_t
471 pcn_csr_read(struct pcn_softc *sc, int reg)
472 {
473 
474 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
475 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
476 }
477 
478 static inline void
479 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
480 {
481 
482 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
483 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
484 }
485 
486 static inline uint32_t
487 pcn_bcr_read(struct pcn_softc *sc, int reg)
488 {
489 
490 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
491 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
492 }
493 
494 static inline void
495 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
496 {
497 
498 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
499 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
500 }
501 
502 static bool
503 pcn_is_vmware(const char *enaddr)
504 {
505 
506 	/*
507 	 * VMware uses the OUI 00:0c:29 for auto-generated MAC
508 	 * addresses.
509 	 */
510 	if (enaddr[0] == 0x00 && enaddr[1] == 0x0c && enaddr[2] == 0x29)
511 		return (TRUE);
512 
513 	/*
514 	 * VMware uses the OUI 00:50:56 for manually-set MAC
515 	 * addresses (and some auto-generated ones).
516 	 */
517 	if (enaddr[0] == 0x00 && enaddr[1] == 0x50 && enaddr[2] == 0x56)
518 		return (TRUE);
519 
520 	return (FALSE);
521 }
522 
523 static const struct pcn_variant *
524 pcn_lookup_variant(uint16_t chipid)
525 {
526 	const struct pcn_variant *pcv;
527 
528 	for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
529 		if (chipid == pcv->pcv_chipid)
530 			return (pcv);
531 	}
532 
533 	/*
534 	 * This covers unknown chips, which we simply treat like
535 	 * a generic PCnet-FAST.
536 	 */
537 	return (pcv);
538 }
539 
540 static int
541 pcn_match(device_t parent, cfdata_t cf, void *aux)
542 {
543 	struct pci_attach_args *pa = aux;
544 
545 	/*
546 	 * IBM Makes a PCI variant of this card which shows up as a
547 	 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
548 	 * this card is truly a pcn card, so we have a special case match for
549 	 * it
550 	 */
551 
552 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
553 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
554 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
555 		return(1);
556 
557 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
558 		return (0);
559 
560 	switch (PCI_PRODUCT(pa->pa_id)) {
561 	case PCI_PRODUCT_AMD_PCNET_PCI:
562 		/* Beat if_le_pci.c */
563 		return (10);
564 	}
565 
566 	return (0);
567 }
568 
569 static void
570 pcn_attach(device_t parent, device_t self, void *aux)
571 {
572 	struct pcn_softc *sc = device_private(self);
573 	struct pci_attach_args *pa = aux;
574 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
575 	pci_chipset_tag_t pc = pa->pa_pc;
576 	pci_intr_handle_t ih;
577 	const char *intrstr = NULL;
578 	bus_space_tag_t iot, memt;
579 	bus_space_handle_t ioh, memh;
580 	bus_dma_segment_t seg;
581 	int ioh_valid, memh_valid;
582 	int ntxsegs, i, rseg, error;
583 	uint32_t chipid, reg;
584 	uint8_t enaddr[ETHER_ADDR_LEN];
585 	prop_object_t obj;
586 	bool is_vmware;
587 
588 	sc->sc_dev = self;
589 	callout_init(&sc->sc_tick_ch, 0);
590 
591 	aprint_normal(": AMD PCnet-PCI Ethernet\n");
592 
593 	/*
594 	 * Map the device.
595 	 */
596 	ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
597 	    &iot, &ioh, NULL, NULL) == 0);
598 	memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
599 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
600 	    &memt, &memh, NULL, NULL) == 0);
601 
602 	if (memh_valid) {
603 		sc->sc_st = memt;
604 		sc->sc_sh = memh;
605 	} else if (ioh_valid) {
606 		sc->sc_st = iot;
607 		sc->sc_sh = ioh;
608 	} else {
609 		aprint_error_dev(self, "unable to map device registers\n");
610 		return;
611 	}
612 
613 	sc->sc_dmat = pa->pa_dmat;
614 
615 	/* Make sure bus mastering is enabled. */
616 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
617 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
618 	    PCI_COMMAND_MASTER_ENABLE);
619 
620 	/* power up chip */
621 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
622 	    NULL)) && error != EOPNOTSUPP) {
623 		aprint_error_dev(self, "cannot activate %d\n", error);
624 		return;
625 	}
626 
627 	/*
628 	 * Reset the chip to a known state.  This also puts the
629 	 * chip into 32-bit mode.
630 	 */
631 	pcn_reset(sc);
632 
633 	/*
634 	 * On some systems with the chip is an on-board device, the
635 	 * EEPROM is not used.  Handle this by reading the MAC address
636 	 * from the CSRs (assuming that boot firmware has written
637 	 * it there).
638 	 */
639 	obj = prop_dictionary_get(device_properties(sc->sc_dev),
640 				  "am79c970-no-eeprom");
641 	if (prop_bool_true(obj)) {
642 	        for (i = 0; i < 3; i++) {
643 			uint32_t val;
644 			val = pcn_csr_read(sc, LE_CSR12 + i);
645 			enaddr[2 * i] = val & 0xff;
646 			enaddr[2 * i + 1] = (val >> 8) & 0xff;
647 		}
648 	} else {
649 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
650 			enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
651 			    PCN32_APROM + i);
652 		}
653 	}
654 
655 	/* Check to see if this is a VMware emulated network interface. */
656 	is_vmware = pcn_is_vmware(enaddr);
657 
658 	/*
659 	 * Now that the device is mapped, attempt to figure out what
660 	 * kind of chip we have.  Note that IDL has all 32 bits of
661 	 * the chip ID when we're in 32-bit mode.
662 	 */
663 	chipid = pcn_csr_read(sc, LE_CSR88);
664 	sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
665 
666 	aprint_normal_dev(self, "%s rev %d, Ethernet address %s\n",
667 	    sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
668 	    ether_sprintf(enaddr));
669 
670 	/*
671 	 * VMware has a bug in its network interface emulation; we must
672 	 * limit the number of Tx segments.
673 	 */
674 	if (is_vmware) {
675 		ntxsegs = PCN_NTXSEGS_VMWARE;
676 		prop_dictionary_set_bool(device_properties(sc->sc_dev),
677 					 "am79c970-vmware-tx-bug", TRUE);
678 		aprint_verbose_dev(self,
679 		    "VMware Tx segment count bug detected\n");
680 	} else {
681 		ntxsegs = PCN_NTXSEGS;
682 	}
683 
684 	/*
685 	 * Map and establish our interrupt.
686 	 */
687 	if (pci_intr_map(pa, &ih)) {
688 		aprint_error_dev(self, "unable to map interrupt\n");
689 		return;
690 	}
691 	intrstr = pci_intr_string(pc, ih);
692 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
693 	if (sc->sc_ih == NULL) {
694 		aprint_error_dev(self, "unable to establish interrupt");
695 		if (intrstr != NULL)
696 			aprint_error(" at %s", intrstr);
697 		aprint_error("\n");
698 		return;
699 	}
700 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
701 
702 	/*
703 	 * Allocate the control data structures, and create and load the
704 	 * DMA map for it.
705 	 */
706 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
707 	     sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
708 	     0)) != 0) {
709 		aprint_error_dev(self, "unable to allocate control data, "
710 		    "error = %d\n", error);
711 		goto fail_0;
712 	}
713 
714 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
715 	     sizeof(struct pcn_control_data), (void **)&sc->sc_control_data,
716 	     BUS_DMA_COHERENT)) != 0) {
717 		aprint_error_dev(self, "unable to map control data, "
718 		    "error = %d\n", error);
719 		goto fail_1;
720 	}
721 
722 	if ((error = bus_dmamap_create(sc->sc_dmat,
723 	     sizeof(struct pcn_control_data), 1,
724 	     sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
725 		aprint_error_dev(self, "unable to create control data DMA map, "
726 		    "error = %d\n", error);
727 		goto fail_2;
728 	}
729 
730 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
731 	     sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
732 	     0)) != 0) {
733 		aprint_error_dev(self,
734 		    "unable to load control data DMA map, error = %d\n", error);
735 		goto fail_3;
736 	}
737 
738 	/* Create the transmit buffer DMA maps. */
739 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
740 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
741 		     ntxsegs, MCLBYTES, 0, 0,
742 		     &sc->sc_txsoft[i].txs_dmamap)) != 0) {
743 			aprint_error_dev(self,
744 			    "unable to create tx DMA map %d, error = %d\n",
745 			    i, error);
746 			goto fail_4;
747 		}
748 	}
749 
750 	/* Create the receive buffer DMA maps. */
751 	for (i = 0; i < PCN_NRXDESC; i++) {
752 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
753 		     MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
754 			aprint_error_dev(self,
755 			    "unable to create rx DMA map %d, error = %d\n",
756 			    i, error);
757 			goto fail_5;
758 		}
759 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
760 	}
761 
762 	/* Initialize our media structures. */
763 	(*sc->sc_variant->pcv_mediainit)(sc);
764 
765 	/*
766 	 * Initialize FIFO watermark info.
767 	 */
768 	switch (sc->sc_variant->pcv_chipid) {
769 	case PARTID_Am79c970:
770 	case PARTID_Am79c970A:
771 		sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
772 		sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
773 		sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
774 		break;
775 
776 	default:
777 		sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
778 		/*
779 		 * Read BCR25 to determine how much SRAM is
780 		 * on the board.  If > 0, then we the chip
781 		 * uses different Start Point thresholds.
782 		 *
783 		 * Note BCR25 and BCR26 are loaded from the
784 		 * EEPROM on RST, and unaffected by S_RESET,
785 		 * so we don't really have to worry about
786 		 * them except for this.
787 		 */
788 		reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
789 		if (reg != 0)
790 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
791 		else
792 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
793 		sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
794 		break;
795 	}
796 
797 	/*
798 	 * Set up defaults -- see the tables above for what these
799 	 * values mean.
800 	 *
801 	 * XXX How should we tune RCVFW and XMTFW?
802 	 */
803 	sc->sc_rcvfw = 1;	/* minimum for full-duplex */
804 	sc->sc_xmtsp = 1;
805 	sc->sc_xmtfw = 0;
806 
807 	ifp = &sc->sc_ethercom.ec_if;
808 	strcpy(ifp->if_xname, device_xname(self));
809 	ifp->if_softc = sc;
810 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
811 	ifp->if_ioctl = pcn_ioctl;
812 	ifp->if_start = pcn_start;
813 	ifp->if_watchdog = pcn_watchdog;
814 	ifp->if_init = pcn_init;
815 	ifp->if_stop = pcn_stop;
816 	IFQ_SET_READY(&ifp->if_snd);
817 
818 	/* Attach the interface. */
819 	if_attach(ifp);
820 	ether_ifattach(ifp, enaddr);
821 #if NRND > 0
822 	rnd_attach_source(&sc->rnd_source, device_xname(self),
823 	    RND_TYPE_NET, 0);
824 #endif
825 
826 #ifdef PCN_EVENT_COUNTERS
827 	/* Attach event counters. */
828 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
829 	    NULL, device_xname(self), "txsstall");
830 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
831 	    NULL, device_xname(self), "txdstall");
832 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
833 	    NULL, device_xname(self), "txintr");
834 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
835 	    NULL, device_xname(self), "rxintr");
836 	evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
837 	    NULL, device_xname(self), "babl");
838 	evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
839 	    NULL, device_xname(self), "miss");
840 	evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
841 	    NULL, device_xname(self), "merr");
842 
843 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
844 	    NULL, device_xname(self), "txseg1");
845 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
846 	    NULL, device_xname(self), "txseg2");
847 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
848 	    NULL, device_xname(self), "txseg3");
849 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
850 	    NULL, device_xname(self), "txseg4");
851 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
852 	    NULL, device_xname(self), "txseg5");
853 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
854 	    NULL, device_xname(self), "txsegmore");
855 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
856 	    NULL, device_xname(self), "txcopy");
857 #endif /* PCN_EVENT_COUNTERS */
858 
859 	/*
860 	 * Establish power handler with shutdown hook, to make sure
861 	 * the interface is shutdown during reboot.
862 	 */
863 	if (pmf_device_register1(self, NULL, NULL, pcn_shutdown))
864 		pmf_class_network_register(self, ifp);
865 	else
866 		aprint_error_dev(self, "couldn't establish power handler\n");
867 
868 	return;
869 
870 	/*
871 	 * Free any resources we've allocated during the failed attach
872 	 * attempt.  Do this in reverse order and fall through.
873 	 */
874  fail_5:
875 	for (i = 0; i < PCN_NRXDESC; i++) {
876 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
877 			bus_dmamap_destroy(sc->sc_dmat,
878 			    sc->sc_rxsoft[i].rxs_dmamap);
879 	}
880  fail_4:
881 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
882 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
883 			bus_dmamap_destroy(sc->sc_dmat,
884 			    sc->sc_txsoft[i].txs_dmamap);
885 	}
886 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
887  fail_3:
888 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
889  fail_2:
890 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
891 	    sizeof(struct pcn_control_data));
892  fail_1:
893 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
894  fail_0:
895 	return;
896 }
897 
898 /*
899  * pcn_shutdown:
900  *
901  *	Make sure the interface is stopped at reboot time.
902  */
903 static bool
904 pcn_shutdown(device_t self, int howto)
905 {
906 	struct pcn_softc *sc = device_private(self);
907 
908 	pcn_stop(&sc->sc_ethercom.ec_if, 1);
909 	/* explicitly reset the chip for some onboard one with lazy firmware */
910 	pcn_reset(sc);
911 
912 	return true;
913 }
914 
915 /*
916  * pcn_start:		[ifnet interface function]
917  *
918  *	Start packet transmission on the interface.
919  */
920 static void
921 pcn_start(struct ifnet *ifp)
922 {
923 	struct pcn_softc *sc = ifp->if_softc;
924 	struct mbuf *m0, *m;
925 	struct pcn_txsoft *txs;
926 	bus_dmamap_t dmamap;
927 	int error, nexttx, lasttx = -1, ofree, seg;
928 
929 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
930 		return;
931 
932 	/*
933 	 * Remember the previous number of free descriptors and
934 	 * the first descriptor we'll use.
935 	 */
936 	ofree = sc->sc_txfree;
937 
938 	/*
939 	 * Loop through the send queue, setting up transmit descriptors
940 	 * until we drain the queue, or use up all available transmit
941 	 * descriptors.
942 	 */
943 	for (;;) {
944 		/* Grab a packet off the queue. */
945 		IFQ_POLL(&ifp->if_snd, m0);
946 		if (m0 == NULL)
947 			break;
948 		m = NULL;
949 
950 		/* Get a work queue entry. */
951 		if (sc->sc_txsfree == 0) {
952 			PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
953 			break;
954 		}
955 
956 		txs = &sc->sc_txsoft[sc->sc_txsnext];
957 		dmamap = txs->txs_dmamap;
958 
959 		/*
960 		 * Load the DMA map.  If this fails, the packet either
961 		 * didn't fit in the alloted number of segments, or we
962 		 * were short on resources.  In this case, we'll copy
963 		 * and try again.
964 		 */
965 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
966 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
967 			PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
968 			MGETHDR(m, M_DONTWAIT, MT_DATA);
969 			if (m == NULL) {
970 				printf("%s: unable to allocate Tx mbuf\n",
971 				    device_xname(sc->sc_dev));
972 				break;
973 			}
974 			if (m0->m_pkthdr.len > MHLEN) {
975 				MCLGET(m, M_DONTWAIT);
976 				if ((m->m_flags & M_EXT) == 0) {
977 					printf("%s: unable to allocate Tx "
978 					    "cluster\n",
979 					    device_xname(sc->sc_dev));
980 					m_freem(m);
981 					break;
982 				}
983 			}
984 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
985 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
986 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
987 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
988 			if (error) {
989 				printf("%s: unable to load Tx buffer, "
990 				    "error = %d\n", device_xname(sc->sc_dev),
991 				    error);
992 				break;
993 			}
994 		}
995 
996 		/*
997 		 * Ensure we have enough descriptors free to describe
998 		 * the packet.  Note, we always reserve one descriptor
999 		 * at the end of the ring as a termination point, to
1000 		 * prevent wrap-around.
1001 		 */
1002 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1003 			/*
1004 			 * Not enough free descriptors to transmit this
1005 			 * packet.  We haven't committed anything yet,
1006 			 * so just unload the DMA map, put the packet
1007 			 * back on the queue, and punt.  Notify the upper
1008 			 * layer that there are not more slots left.
1009 			 *
1010 			 * XXX We could allocate an mbuf and copy, but
1011 			 * XXX is it worth it?
1012 			 */
1013 			ifp->if_flags |= IFF_OACTIVE;
1014 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1015 			if (m != NULL)
1016 				m_freem(m);
1017 			PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
1018 			break;
1019 		}
1020 
1021 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1022 		if (m != NULL) {
1023 			m_freem(m0);
1024 			m0 = m;
1025 		}
1026 
1027 		/*
1028 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1029 		 */
1030 
1031 		/* Sync the DMA map. */
1032 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1033 		    BUS_DMASYNC_PREWRITE);
1034 
1035 #ifdef PCN_EVENT_COUNTERS
1036 		switch (dmamap->dm_nsegs) {
1037 		case 1:
1038 			PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
1039 			break;
1040 		case 2:
1041 			PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
1042 			break;
1043 		case 3:
1044 			PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
1045 			break;
1046 		case 4:
1047 			PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
1048 			break;
1049 		case 5:
1050 			PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
1051 			break;
1052 		default:
1053 			PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
1054 			break;
1055 		}
1056 #endif /* PCN_EVENT_COUNTERS */
1057 
1058 		/*
1059 		 * Initialize the transmit descriptors.
1060 		 */
1061 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
1062 			for (nexttx = sc->sc_txnext, seg = 0;
1063 			     seg < dmamap->dm_nsegs;
1064 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
1065 				/*
1066 				 * If this is the first descriptor we're
1067 				 * enqueueing, don't set the OWN bit just
1068 				 * yet.  That could cause a race condition.
1069 				 * We'll do it below.
1070 				 */
1071 				sc->sc_txdescs[nexttx].tmd0 = 0;
1072 				sc->sc_txdescs[nexttx].tmd2 =
1073 				    htole32(dmamap->dm_segs[seg].ds_addr);
1074 				sc->sc_txdescs[nexttx].tmd1 =
1075 				    htole32(LE_T1_ONES |
1076 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1077 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1078 				     LE_T1_BCNT_MASK));
1079 				lasttx = nexttx;
1080 			}
1081 		} else {
1082 			for (nexttx = sc->sc_txnext, seg = 0;
1083 			     seg < dmamap->dm_nsegs;
1084 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
1085 				/*
1086 				 * If this is the first descriptor we're
1087 				 * enqueueing, don't set the OWN bit just
1088 				 * yet.  That could cause a race condition.
1089 				 * We'll do it below.
1090 				 */
1091 				sc->sc_txdescs[nexttx].tmd0 =
1092 				    htole32(dmamap->dm_segs[seg].ds_addr);
1093 				sc->sc_txdescs[nexttx].tmd2 = 0;
1094 				sc->sc_txdescs[nexttx].tmd1 =
1095 				    htole32(LE_T1_ONES |
1096 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1097 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1098 				     LE_T1_BCNT_MASK));
1099 				lasttx = nexttx;
1100 			}
1101 		}
1102 
1103 		KASSERT(lasttx != -1);
1104 		/* Interrupt on the packet, if appropriate. */
1105 		if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1106 			sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1107 
1108 		/* Set `start of packet' and `end of packet' appropriately. */
1109 		sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1110 		sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1111 		    htole32(LE_T1_OWN|LE_T1_STP);
1112 
1113 		/* Sync the descriptors we're using. */
1114 		PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1115 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1116 
1117 		/* Kick the transmitter. */
1118 		pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1119 
1120 		/*
1121 		 * Store a pointer to the packet so we can free it later,
1122 		 * and remember what txdirty will be once the packet is
1123 		 * done.
1124 		 */
1125 		txs->txs_mbuf = m0;
1126 		txs->txs_firstdesc = sc->sc_txnext;
1127 		txs->txs_lastdesc = lasttx;
1128 
1129 		/* Advance the tx pointer. */
1130 		sc->sc_txfree -= dmamap->dm_nsegs;
1131 		sc->sc_txnext = nexttx;
1132 
1133 		sc->sc_txsfree--;
1134 		sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1135 
1136 		/* Pass the packet to any BPF listeners. */
1137 		bpf_mtap(ifp, m0);
1138 	}
1139 
1140 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1141 		/* No more slots left; notify upper layer. */
1142 		ifp->if_flags |= IFF_OACTIVE;
1143 	}
1144 
1145 	if (sc->sc_txfree != ofree) {
1146 		/* Set a watchdog timer in case the chip flakes out. */
1147 		ifp->if_timer = 5;
1148 	}
1149 }
1150 
1151 /*
1152  * pcn_watchdog:	[ifnet interface function]
1153  *
1154  *	Watchdog timer handler.
1155  */
1156 static void
1157 pcn_watchdog(struct ifnet *ifp)
1158 {
1159 	struct pcn_softc *sc = ifp->if_softc;
1160 
1161 	/*
1162 	 * Since we're not interrupting every packet, sweep
1163 	 * up before we report an error.
1164 	 */
1165 	pcn_txintr(sc);
1166 
1167 	if (sc->sc_txfree != PCN_NTXDESC) {
1168 		printf("%s: device timeout (txfree %d txsfree %d)\n",
1169 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree);
1170 		ifp->if_oerrors++;
1171 
1172 		/* Reset the interface. */
1173 		(void) pcn_init(ifp);
1174 	}
1175 
1176 	/* Try to get more packets going. */
1177 	pcn_start(ifp);
1178 }
1179 
1180 /*
1181  * pcn_ioctl:		[ifnet interface function]
1182  *
1183  *	Handle control requests from the operator.
1184  */
1185 static int
1186 pcn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1187 {
1188 	struct pcn_softc *sc = ifp->if_softc;
1189 	struct ifreq *ifr = (struct ifreq *) data;
1190 	int s, error;
1191 
1192 	s = splnet();
1193 
1194 	switch (cmd) {
1195 	case SIOCSIFMEDIA:
1196 	case SIOCGIFMEDIA:
1197 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1198 		break;
1199 
1200 	default:
1201 		error = ether_ioctl(ifp, cmd, data);
1202 		if (error == ENETRESET) {
1203 			/*
1204 			 * Multicast list has changed; set the hardware filter
1205 			 * accordingly.
1206 			 */
1207 			if (ifp->if_flags & IFF_RUNNING)
1208 				error = pcn_init(ifp);
1209 			else
1210 				error = 0;
1211 		}
1212 		break;
1213 	}
1214 
1215 	/* Try to get more packets going. */
1216 	pcn_start(ifp);
1217 
1218 	splx(s);
1219 	return (error);
1220 }
1221 
1222 /*
1223  * pcn_intr:
1224  *
1225  *	Interrupt service routine.
1226  */
1227 static int
1228 pcn_intr(void *arg)
1229 {
1230 	struct pcn_softc *sc = arg;
1231 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1232 	uint32_t csr0;
1233 	int wantinit, handled = 0;
1234 
1235 	for (wantinit = 0; wantinit == 0;) {
1236 		csr0 = pcn_csr_read(sc, LE_CSR0);
1237 		if ((csr0 & LE_C0_INTR) == 0)
1238 			break;
1239 
1240 #if NRND > 0
1241 		if (RND_ENABLED(&sc->rnd_source))
1242 			rnd_add_uint32(&sc->rnd_source, csr0);
1243 #endif
1244 
1245 		/* ACK the bits and re-enable interrupts. */
1246 		pcn_csr_write(sc, LE_CSR0, csr0 &
1247 		    (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1248 		     LE_C0_TINT|LE_C0_IDON));
1249 
1250 		handled = 1;
1251 
1252 		if (csr0 & LE_C0_RINT) {
1253 			PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1254 			wantinit = pcn_rxintr(sc);
1255 		}
1256 
1257 		if (csr0 & LE_C0_TINT) {
1258 			PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1259 			pcn_txintr(sc);
1260 		}
1261 
1262 		if (csr0 & LE_C0_ERR) {
1263 			if (csr0 & LE_C0_BABL) {
1264 				PCN_EVCNT_INCR(&sc->sc_ev_babl);
1265 				ifp->if_oerrors++;
1266 			}
1267 			if (csr0 & LE_C0_MISS) {
1268 				PCN_EVCNT_INCR(&sc->sc_ev_miss);
1269 				ifp->if_ierrors++;
1270 			}
1271 			if (csr0 & LE_C0_MERR) {
1272 				PCN_EVCNT_INCR(&sc->sc_ev_merr);
1273 				printf("%s: memory error\n",
1274 				    device_xname(sc->sc_dev));
1275 				wantinit = 1;
1276 				break;
1277 			}
1278 		}
1279 
1280 		if ((csr0 & LE_C0_RXON) == 0) {
1281 			printf("%s: receiver disabled\n",
1282 			    device_xname(sc->sc_dev));
1283 			ifp->if_ierrors++;
1284 			wantinit = 1;
1285 		}
1286 
1287 		if ((csr0 & LE_C0_TXON) == 0) {
1288 			printf("%s: transmitter disabled\n",
1289 			    device_xname(sc->sc_dev));
1290 			ifp->if_oerrors++;
1291 			wantinit = 1;
1292 		}
1293 	}
1294 
1295 	if (handled) {
1296 		if (wantinit)
1297 			pcn_init(ifp);
1298 
1299 		/* Try to get more packets going. */
1300 		pcn_start(ifp);
1301 	}
1302 
1303 	return (handled);
1304 }
1305 
1306 /*
1307  * pcn_spnd:
1308  *
1309  *	Suspend the chip.
1310  */
1311 static void
1312 pcn_spnd(struct pcn_softc *sc)
1313 {
1314 	int i;
1315 
1316 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1317 
1318 	for (i = 0; i < 10000; i++) {
1319 		if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1320 			return;
1321 		delay(5);
1322 	}
1323 
1324 	printf("%s: WARNING: chip failed to enter suspended state\n",
1325 	    device_xname(sc->sc_dev));
1326 }
1327 
1328 /*
1329  * pcn_txintr:
1330  *
1331  *	Helper; handle transmit interrupts.
1332  */
1333 static void
1334 pcn_txintr(struct pcn_softc *sc)
1335 {
1336 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1337 	struct pcn_txsoft *txs;
1338 	uint32_t tmd1, tmd2, tmd;
1339 	int i, j;
1340 
1341 	ifp->if_flags &= ~IFF_OACTIVE;
1342 
1343 	/*
1344 	 * Go through our Tx list and free mbufs for those
1345 	 * frames which have been transmitted.
1346 	 */
1347 	for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1348 	     i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1349 		txs = &sc->sc_txsoft[i];
1350 
1351 		PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1352 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1353 
1354 		tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1355 		if (tmd1 & LE_T1_OWN)
1356 			break;
1357 
1358 		/*
1359 		 * Slightly annoying -- we have to loop through the
1360 		 * descriptors we've used looking for ERR, since it
1361 		 * can appear on any descriptor in the chain.
1362 		 */
1363 		for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1364 			tmd = le32toh(sc->sc_txdescs[j].tmd1);
1365 			if (tmd & LE_T1_ERR) {
1366 				ifp->if_oerrors++;
1367 				if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1368 					tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1369 				else
1370 					tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1371 				if (tmd2 & LE_T2_UFLO) {
1372 					if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1373 						sc->sc_xmtsp++;
1374 						printf("%s: transmit "
1375 						    "underrun; new threshold: "
1376 						    "%s\n",
1377 						    device_xname(sc->sc_dev),
1378 						    sc->sc_xmtsp_desc[
1379 						    sc->sc_xmtsp]);
1380 						pcn_spnd(sc);
1381 						pcn_csr_write(sc, LE_CSR80,
1382 						    LE_C80_RCVFW(sc->sc_rcvfw) |
1383 						    LE_C80_XMTSP(sc->sc_xmtsp) |
1384 						    LE_C80_XMTFW(sc->sc_xmtfw));
1385 						pcn_csr_write(sc, LE_CSR5,
1386 						    sc->sc_csr5);
1387 					} else {
1388 						printf("%s: transmit "
1389 						    "underrun\n",
1390 						    device_xname(sc->sc_dev));
1391 					}
1392 				} else if (tmd2 & LE_T2_BUFF) {
1393 					printf("%s: transmit buffer error\n",
1394 					    device_xname(sc->sc_dev));
1395 				}
1396 				if (tmd2 & LE_T2_LCOL)
1397 					ifp->if_collisions++;
1398 				if (tmd2 & LE_T2_RTRY)
1399 					ifp->if_collisions += 16;
1400 				goto next_packet;
1401 			}
1402 			if (j == txs->txs_lastdesc)
1403 				break;
1404 		}
1405 		if (tmd1 & LE_T1_ONE)
1406 			ifp->if_collisions++;
1407 		else if (tmd & LE_T1_MORE) {
1408 			/* Real number is unknown. */
1409 			ifp->if_collisions += 2;
1410 		}
1411 		ifp->if_opackets++;
1412  next_packet:
1413 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1414 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1415 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1416 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1417 		m_freem(txs->txs_mbuf);
1418 		txs->txs_mbuf = NULL;
1419 	}
1420 
1421 	/* Update the dirty transmit buffer pointer. */
1422 	sc->sc_txsdirty = i;
1423 
1424 	/*
1425 	 * If there are no more pending transmissions, cancel the watchdog
1426 	 * timer.
1427 	 */
1428 	if (sc->sc_txsfree == PCN_TXQUEUELEN)
1429 		ifp->if_timer = 0;
1430 }
1431 
1432 /*
1433  * pcn_rxintr:
1434  *
1435  *	Helper; handle receive interrupts.
1436  */
1437 static int
1438 pcn_rxintr(struct pcn_softc *sc)
1439 {
1440 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1441 	struct pcn_rxsoft *rxs;
1442 	struct mbuf *m;
1443 	uint32_t rmd1;
1444 	int i, len;
1445 
1446 	for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1447 		rxs = &sc->sc_rxsoft[i];
1448 
1449 		PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1450 
1451 		rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1452 
1453 		if (rmd1 & LE_R1_OWN)
1454 			break;
1455 
1456 		/*
1457 		 * Check for errors and make sure the packet fit into
1458 		 * a single buffer.  We have structured this block of
1459 		 * code the way it is in order to compress it into
1460 		 * one test in the common case (no error).
1461 		 */
1462 		if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1463 		    (LE_R1_STP|LE_R1_ENP))) {
1464 			/* Make sure the packet is in a single buffer. */
1465 			if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1466 			    (LE_R1_STP|LE_R1_ENP)) {
1467 				printf("%s: packet spilled into next buffer\n",
1468 				    device_xname(sc->sc_dev));
1469 				return (1);	/* pcn_intr() will re-init */
1470 			}
1471 
1472 			/*
1473 			 * If the packet had an error, simple recycle the
1474 			 * buffer.
1475 			 */
1476 			if (rmd1 & LE_R1_ERR) {
1477 				ifp->if_ierrors++;
1478 				/*
1479 				 * If we got an overflow error, chances
1480 				 * are there will be a CRC error.  In
1481 				 * this case, just print the overflow
1482 				 * error, and skip the others.
1483 				 */
1484 				if (rmd1 & LE_R1_OFLO)
1485 					printf("%s: overflow error\n",
1486 					    device_xname(sc->sc_dev));
1487 				else {
1488 #define	PRINTIT(x, str)							\
1489 					if (rmd1 & (x))			\
1490 						printf("%s: %s\n",	\
1491 						    device_xname(sc->sc_dev), \
1492 						    str);
1493 					PRINTIT(LE_R1_FRAM, "framing error");
1494 					PRINTIT(LE_R1_CRC, "CRC error");
1495 					PRINTIT(LE_R1_BUFF, "buffer error");
1496 				}
1497 #undef PRINTIT
1498 				PCN_INIT_RXDESC(sc, i);
1499 				continue;
1500 			}
1501 		}
1502 
1503 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1504 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1505 
1506 		/*
1507 		 * No errors; receive the packet.
1508 		 */
1509 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1510 			len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1511 		else
1512 			len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1513 
1514 		/*
1515 		 * The LANCE family includes the CRC with every packet;
1516 		 * trim it off here.
1517 		 */
1518 		len -= ETHER_CRC_LEN;
1519 
1520 		/*
1521 		 * If the packet is small enough to fit in a
1522 		 * single header mbuf, allocate one and copy
1523 		 * the data into it.  This greatly reduces
1524 		 * memory consumption when we receive lots
1525 		 * of small packets.
1526 		 *
1527 		 * Otherwise, we add a new buffer to the receive
1528 		 * chain.  If this fails, we drop the packet and
1529 		 * recycle the old buffer.
1530 		 */
1531 		if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1532 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1533 			if (m == NULL)
1534 				goto dropit;
1535 			m->m_data += 2;
1536 			memcpy(mtod(m, void *),
1537 			    mtod(rxs->rxs_mbuf, void *), len);
1538 			PCN_INIT_RXDESC(sc, i);
1539 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1540 			    rxs->rxs_dmamap->dm_mapsize,
1541 			    BUS_DMASYNC_PREREAD);
1542 		} else {
1543 			m = rxs->rxs_mbuf;
1544 			if (pcn_add_rxbuf(sc, i) != 0) {
1545  dropit:
1546 				ifp->if_ierrors++;
1547 				PCN_INIT_RXDESC(sc, i);
1548 				bus_dmamap_sync(sc->sc_dmat,
1549 				    rxs->rxs_dmamap, 0,
1550 				    rxs->rxs_dmamap->dm_mapsize,
1551 				    BUS_DMASYNC_PREREAD);
1552 				continue;
1553 			}
1554 		}
1555 
1556 		m->m_pkthdr.rcvif = ifp;
1557 		m->m_pkthdr.len = m->m_len = len;
1558 
1559 		/* Pass this up to any BPF listeners. */
1560 		bpf_mtap(ifp, m);
1561 
1562 		/* Pass it on. */
1563 		(*ifp->if_input)(ifp, m);
1564 		ifp->if_ipackets++;
1565 	}
1566 
1567 	/* Update the receive pointer. */
1568 	sc->sc_rxptr = i;
1569 	return (0);
1570 }
1571 
1572 /*
1573  * pcn_tick:
1574  *
1575  *	One second timer, used to tick the MII.
1576  */
1577 static void
1578 pcn_tick(void *arg)
1579 {
1580 	struct pcn_softc *sc = arg;
1581 	int s;
1582 
1583 	s = splnet();
1584 	mii_tick(&sc->sc_mii);
1585 	splx(s);
1586 
1587 	callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1588 }
1589 
1590 /*
1591  * pcn_reset:
1592  *
1593  *	Perform a soft reset on the PCnet-PCI.
1594  */
1595 static void
1596 pcn_reset(struct pcn_softc *sc)
1597 {
1598 
1599 	/*
1600 	 * The PCnet-PCI chip is reset by reading from the
1601 	 * RESET register.  Note that while the NE2100 LANCE
1602 	 * boards require a write after the read, the PCnet-PCI
1603 	 * chips do not require this.
1604 	 *
1605 	 * Since we don't know if we're in 16-bit or 32-bit
1606 	 * mode right now, issue both (it's safe) in the
1607 	 * hopes that one will succeed.
1608 	 */
1609 	(void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1610 	(void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1611 
1612 	/* Wait 1ms for it to finish. */
1613 	delay(1000);
1614 
1615 	/*
1616 	 * Select 32-bit I/O mode by issuing a 32-bit write to the
1617 	 * RDP.  Since the RAP is 0 after a reset, writing a 0
1618 	 * to RDP is safe (since it simply clears CSR0).
1619 	 */
1620 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1621 }
1622 
1623 /*
1624  * pcn_init:		[ifnet interface function]
1625  *
1626  *	Initialize the interface.  Must be called at splnet().
1627  */
1628 static int
1629 pcn_init(struct ifnet *ifp)
1630 {
1631 	struct pcn_softc *sc = ifp->if_softc;
1632 	struct pcn_rxsoft *rxs;
1633 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
1634 	int i, error = 0;
1635 	uint32_t reg;
1636 
1637 	/* Cancel any pending I/O. */
1638 	pcn_stop(ifp, 0);
1639 
1640 	/* Reset the chip to a known state. */
1641 	pcn_reset(sc);
1642 
1643 	/*
1644 	 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1645 	 * else.
1646 	 *
1647 	 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1648 	 * because the structure layout is compatible with ILACC,
1649 	 * but the burst mode is only available in SSTYLE 3, and
1650 	 * burst mode should provide some performance enhancement.
1651 	 */
1652 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1653 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1654 	else
1655 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1656 	pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1657 
1658 	/* Initialize the transmit descriptor ring. */
1659 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1660 	PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1661 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1662 	sc->sc_txfree = PCN_NTXDESC;
1663 	sc->sc_txnext = 0;
1664 
1665 	/* Initialize the transmit job descriptors. */
1666 	for (i = 0; i < PCN_TXQUEUELEN; i++)
1667 		sc->sc_txsoft[i].txs_mbuf = NULL;
1668 	sc->sc_txsfree = PCN_TXQUEUELEN;
1669 	sc->sc_txsnext = 0;
1670 	sc->sc_txsdirty = 0;
1671 
1672 	/*
1673 	 * Initialize the receive descriptor and receive job
1674 	 * descriptor rings.
1675 	 */
1676 	for (i = 0; i < PCN_NRXDESC; i++) {
1677 		rxs = &sc->sc_rxsoft[i];
1678 		if (rxs->rxs_mbuf == NULL) {
1679 			if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1680 				printf("%s: unable to allocate or map rx "
1681 				    "buffer %d, error = %d\n",
1682 				    device_xname(sc->sc_dev), i, error);
1683 				/*
1684 				 * XXX Should attempt to run with fewer receive
1685 				 * XXX buffers instead of just failing.
1686 				 */
1687 				pcn_rxdrain(sc);
1688 				goto out;
1689 			}
1690 		} else
1691 			PCN_INIT_RXDESC(sc, i);
1692 	}
1693 	sc->sc_rxptr = 0;
1694 
1695 	/* Initialize MODE for the initialization block. */
1696 	sc->sc_mode = 0;
1697 	if (ifp->if_flags & IFF_PROMISC)
1698 		sc->sc_mode |= LE_C15_PROM;
1699 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
1700 		sc->sc_mode |= LE_C15_DRCVBC;
1701 
1702 	/*
1703 	 * If we have MII, simply select MII in the MODE register,
1704 	 * and clear ASEL.  Otherwise, let ASEL stand (for now),
1705 	 * and leave PORTSEL alone (it is ignored with ASEL is set).
1706 	 */
1707 	if (sc->sc_flags & PCN_F_HAS_MII) {
1708 		pcn_bcr_write(sc, LE_BCR2,
1709 		    pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1710 		sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1711 
1712 		/*
1713 		 * Disable MII auto-negotiation.  We handle that in
1714 		 * our own MII layer.
1715 		 */
1716 		pcn_bcr_write(sc, LE_BCR32,
1717 		    pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1718 	}
1719 
1720 	/*
1721 	 * Set the Tx and Rx descriptor ring addresses in the init
1722 	 * block, the TLEN and RLEN other fields of the init block
1723 	 * MODE register.
1724 	 */
1725 	sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1726 	sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1727 	sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1728 	    ((ffs(PCN_NTXDESC) - 1) << 28) |
1729 	    ((ffs(PCN_NRXDESC) - 1) << 20));
1730 
1731 	/* Set the station address in the init block. */
1732 	sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1733 	    (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1734 	sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1735 	    (enaddr[5] << 8));
1736 
1737 	/* Set the multicast filter in the init block. */
1738 	pcn_set_filter(sc);
1739 
1740 	/* Initialize CSR3. */
1741 	pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1742 
1743 	/* Initialize CSR4. */
1744 	pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1745 	    LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1746 
1747 	/* Initialize CSR5. */
1748 	sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1749 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1750 
1751 	/*
1752 	 * If we have an Am79c971 or greater, initialize CSR7.
1753 	 *
1754 	 * XXX Might be nice to use the MII auto-poll interrupt someday.
1755 	 */
1756 	switch (sc->sc_variant->pcv_chipid) {
1757 	case PARTID_Am79c970:
1758 	case PARTID_Am79c970A:
1759 		/* Not available on these chips. */
1760 		break;
1761 
1762 	default:
1763 		pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1764 		break;
1765 	}
1766 
1767 	/*
1768 	 * On the Am79c970A and greater, initialize BCR18 to
1769 	 * enable burst mode.
1770 	 *
1771 	 * Also enable the "no underflow" option on the Am79c971 and
1772 	 * higher, which prevents the chip from generating transmit
1773 	 * underflows, yet sill provides decent performance.  Note if
1774 	 * chip is not connected to external SRAM, then we still have
1775 	 * to handle underflow errors (the NOUFLO bit is ignored in
1776 	 * that case).
1777 	 */
1778 	reg = pcn_bcr_read(sc, LE_BCR18);
1779 	switch (sc->sc_variant->pcv_chipid) {
1780 	case PARTID_Am79c970:
1781 		break;
1782 
1783 	case PARTID_Am79c970A:
1784 		reg |= LE_B18_BREADE|LE_B18_BWRITE;
1785 		break;
1786 
1787 	default:
1788 		reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1789 		break;
1790 	}
1791 	pcn_bcr_write(sc, LE_BCR18, reg);
1792 
1793 	/*
1794 	 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1795 	 */
1796 	pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1797 	    LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1798 
1799 	/*
1800 	 * Send the init block to the chip, and wait for it
1801 	 * to be processed.
1802 	 */
1803 	PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1804 	pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1805 	pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1806 	pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1807 	delay(100);
1808 	for (i = 0; i < 10000; i++) {
1809 		if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1810 			break;
1811 		delay(10);
1812 	}
1813 	PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1814 	if (i == 10000) {
1815 		printf("%s: timeout processing init block\n",
1816 		    device_xname(sc->sc_dev));
1817 		error = EIO;
1818 		goto out;
1819 	}
1820 
1821 	/* Set the media. */
1822 	if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1823 		goto out;
1824 
1825 	/* Enable interrupts and external activity (and ACK IDON). */
1826 	pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1827 
1828 	if (sc->sc_flags & PCN_F_HAS_MII) {
1829 		/* Start the one second MII clock. */
1830 		callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1831 	}
1832 
1833 	/* ...all done! */
1834 	ifp->if_flags |= IFF_RUNNING;
1835 	ifp->if_flags &= ~IFF_OACTIVE;
1836 
1837  out:
1838 	if (error)
1839 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1840 	return (error);
1841 }
1842 
1843 /*
1844  * pcn_rxdrain:
1845  *
1846  *	Drain the receive queue.
1847  */
1848 static void
1849 pcn_rxdrain(struct pcn_softc *sc)
1850 {
1851 	struct pcn_rxsoft *rxs;
1852 	int i;
1853 
1854 	for (i = 0; i < PCN_NRXDESC; i++) {
1855 		rxs = &sc->sc_rxsoft[i];
1856 		if (rxs->rxs_mbuf != NULL) {
1857 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1858 			m_freem(rxs->rxs_mbuf);
1859 			rxs->rxs_mbuf = NULL;
1860 		}
1861 	}
1862 }
1863 
1864 /*
1865  * pcn_stop:		[ifnet interface function]
1866  *
1867  *	Stop transmission on the interface.
1868  */
1869 static void
1870 pcn_stop(struct ifnet *ifp, int disable)
1871 {
1872 	struct pcn_softc *sc = ifp->if_softc;
1873 	struct pcn_txsoft *txs;
1874 	int i;
1875 
1876 	if (sc->sc_flags & PCN_F_HAS_MII) {
1877 		/* Stop the one second clock. */
1878 		callout_stop(&sc->sc_tick_ch);
1879 
1880 		/* Down the MII. */
1881 		mii_down(&sc->sc_mii);
1882 	}
1883 
1884 	/* Stop the chip. */
1885 	pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1886 
1887 	/* Release any queued transmit buffers. */
1888 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
1889 		txs = &sc->sc_txsoft[i];
1890 		if (txs->txs_mbuf != NULL) {
1891 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1892 			m_freem(txs->txs_mbuf);
1893 			txs->txs_mbuf = NULL;
1894 		}
1895 	}
1896 
1897 	/* Mark the interface as down and cancel the watchdog timer. */
1898 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1899 	ifp->if_timer = 0;
1900 
1901 	if (disable)
1902 		pcn_rxdrain(sc);
1903 }
1904 
1905 /*
1906  * pcn_add_rxbuf:
1907  *
1908  *	Add a receive buffer to the indicated descriptor.
1909  */
1910 static int
1911 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1912 {
1913 	struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1914 	struct mbuf *m;
1915 	int error;
1916 
1917 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1918 	if (m == NULL)
1919 		return (ENOBUFS);
1920 
1921 	MCLGET(m, M_DONTWAIT);
1922 	if ((m->m_flags & M_EXT) == 0) {
1923 		m_freem(m);
1924 		return (ENOBUFS);
1925 	}
1926 
1927 	if (rxs->rxs_mbuf != NULL)
1928 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1929 
1930 	rxs->rxs_mbuf = m;
1931 
1932 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1933 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1934 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1935 	if (error) {
1936 		printf("%s: can't load rx DMA map %d, error = %d\n",
1937 		    device_xname(sc->sc_dev), idx, error);
1938 		panic("pcn_add_rxbuf");
1939 	}
1940 
1941 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1942 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1943 
1944 	PCN_INIT_RXDESC(sc, idx);
1945 
1946 	return (0);
1947 }
1948 
1949 /*
1950  * pcn_set_filter:
1951  *
1952  *	Set up the receive filter.
1953  */
1954 static void
1955 pcn_set_filter(struct pcn_softc *sc)
1956 {
1957 	struct ethercom *ec = &sc->sc_ethercom;
1958 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1959 	struct ether_multi *enm;
1960 	struct ether_multistep step;
1961 	uint32_t crc;
1962 
1963 	/*
1964 	 * Set up the multicast address filter by passing all multicast
1965 	 * addresses through a CRC generator, and then using the high
1966 	 * order 6 bits as an index into the 64-bit logical address
1967 	 * filter.  The high order bits select the word, while the rest
1968 	 * of the bits select the bit within the word.
1969 	 */
1970 
1971 	if (ifp->if_flags & IFF_PROMISC)
1972 		goto allmulti;
1973 
1974 	sc->sc_initblock.init_ladrf[0] =
1975 	    sc->sc_initblock.init_ladrf[1] =
1976 	    sc->sc_initblock.init_ladrf[2] =
1977 	    sc->sc_initblock.init_ladrf[3] = 0;
1978 
1979 	ETHER_FIRST_MULTI(step, ec, enm);
1980 	while (enm != NULL) {
1981 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1982 			/*
1983 			 * We must listen to a range of multicast addresses.
1984 			 * For now, just accept all multicasts, rather than
1985 			 * trying to set only those filter bits needed to match
1986 			 * the range.  (At this time, the only use of address
1987 			 * ranges is for IP multicast routing, for which the
1988 			 * range is big enough to require all bits set.)
1989 			 */
1990 			goto allmulti;
1991 		}
1992 
1993 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1994 
1995 		/* Just want the 6 most significant bits. */
1996 		crc >>= 26;
1997 
1998 		/* Set the corresponding bit in the filter. */
1999 		sc->sc_initblock.init_ladrf[crc >> 4] |=
2000 		    htole16(1 << (crc & 0xf));
2001 
2002 		ETHER_NEXT_MULTI(step, enm);
2003 	}
2004 
2005 	ifp->if_flags &= ~IFF_ALLMULTI;
2006 	return;
2007 
2008  allmulti:
2009 	ifp->if_flags |= IFF_ALLMULTI;
2010 	sc->sc_initblock.init_ladrf[0] =
2011 	    sc->sc_initblock.init_ladrf[1] =
2012 	    sc->sc_initblock.init_ladrf[2] =
2013 	    sc->sc_initblock.init_ladrf[3] = 0xffff;
2014 }
2015 
2016 /*
2017  * pcn_79c970_mediainit:
2018  *
2019  *	Initialize media for the Am79c970.
2020  */
2021 static void
2022 pcn_79c970_mediainit(struct pcn_softc *sc)
2023 {
2024 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2025 	const char *sep = "";
2026 
2027 	sc->sc_mii.mii_ifp = ifp;
2028 
2029 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
2030 	    pcn_79c970_mediastatus);
2031 
2032 #define	ADD(str, m, d)							\
2033 do {									\
2034 	aprint_normal("%s%s", sep, str);					\
2035 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL);	\
2036 	sep = ", ";							\
2037 } while (/*CONSTCOND*/0)
2038 
2039 	aprint_normal("%s: ", device_xname(sc->sc_dev));
2040 	ADD("10base5", IFM_10_5, PORTSEL_AUI);
2041 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2042 		ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
2043 	ADD("10baseT", IFM_10_T, PORTSEL_10T);
2044 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2045 		ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
2046 	ADD("auto", IFM_AUTO, 0);
2047 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2048 		ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
2049 	aprint_normal("\n");
2050 
2051 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2052 }
2053 
2054 /*
2055  * pcn_79c970_mediastatus:	[ifmedia interface function]
2056  *
2057  *	Get the current interface media status (Am79c970 version).
2058  */
2059 static void
2060 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2061 {
2062 	struct pcn_softc *sc = ifp->if_softc;
2063 
2064 	/*
2065 	 * The currently selected media is always the active media.
2066 	 * Note: We have no way to determine what media the AUTO
2067 	 * process picked.
2068 	 */
2069 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
2070 }
2071 
2072 /*
2073  * pcn_79c970_mediachange:	[ifmedia interface function]
2074  *
2075  *	Set hardware to newly-selected media (Am79c970 version).
2076  */
2077 static int
2078 pcn_79c970_mediachange(struct ifnet *ifp)
2079 {
2080 	struct pcn_softc *sc = ifp->if_softc;
2081 	uint32_t reg;
2082 
2083 	if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2084 		/*
2085 		 * CSR15:PORTSEL doesn't matter.  Just set BCR2:ASEL.
2086 		 */
2087 		reg = pcn_bcr_read(sc, LE_BCR2);
2088 		reg |= LE_B2_ASEL;
2089 		pcn_bcr_write(sc, LE_BCR2, reg);
2090 	} else {
2091 		/*
2092 		 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2093 		 */
2094 		reg = pcn_bcr_read(sc, LE_BCR2);
2095 		reg &= ~LE_B2_ASEL;
2096 		pcn_bcr_write(sc, LE_BCR2, reg);
2097 
2098 		reg = pcn_csr_read(sc, LE_CSR15);
2099 		reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2100 		    LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2101 		pcn_csr_write(sc, LE_CSR15, reg);
2102 	}
2103 
2104 	if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2105 		reg = LE_B9_FDEN;
2106 		if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2107 			reg |= LE_B9_AUIFD;
2108 		pcn_bcr_write(sc, LE_BCR9, reg);
2109 	} else
2110 		pcn_bcr_write(sc, LE_BCR9, 0);
2111 
2112 	return (0);
2113 }
2114 
2115 /*
2116  * pcn_79c971_mediainit:
2117  *
2118  *	Initialize media for the Am79c971.
2119  */
2120 static void
2121 pcn_79c971_mediainit(struct pcn_softc *sc)
2122 {
2123 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2124 
2125 	/* We have MII. */
2126 	sc->sc_flags |= PCN_F_HAS_MII;
2127 
2128 	/*
2129 	 * The built-in 10BASE-T interface is mapped to the MII
2130 	 * on the PCNet-FAST.  Unfortunately, there's no EEPROM
2131 	 * word that tells us which PHY to use.
2132 	 * This driver used to ignore all but the first PHY to
2133 	 * answer, but this code was removed to support multiple
2134 	 * external PHYs. As the default instance will be the first
2135 	 * one to answer, no harm is done by letting the possibly
2136 	 * non-connected internal PHY show up.
2137 	 */
2138 
2139 	/* Initialize our media structures and probe the MII. */
2140 	sc->sc_mii.mii_ifp = ifp;
2141 	sc->sc_mii.mii_readreg = pcn_mii_readreg;
2142 	sc->sc_mii.mii_writereg = pcn_mii_writereg;
2143 	sc->sc_mii.mii_statchg = pcn_mii_statchg;
2144 
2145 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
2146 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
2147 	    ether_mediastatus);
2148 
2149 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2150 	    MII_OFFSET_ANY, 0);
2151 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2152 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2153 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2154 	} else
2155 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2156 }
2157 
2158 /*
2159  * pcn_mii_readreg:	[mii interface function]
2160  *
2161  *	Read a PHY register on the MII.
2162  */
2163 static int
2164 pcn_mii_readreg(device_t self, int phy, int reg)
2165 {
2166 	struct pcn_softc *sc = device_private(self);
2167 	uint32_t rv;
2168 
2169 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2170 	rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2171 	if (rv == 0xffff)
2172 		return (0);
2173 
2174 	return (rv);
2175 }
2176 
2177 /*
2178  * pcn_mii_writereg:	[mii interface function]
2179  *
2180  *	Write a PHY register on the MII.
2181  */
2182 static void
2183 pcn_mii_writereg(device_t self, int phy, int reg, int val)
2184 {
2185 	struct pcn_softc *sc = device_private(self);
2186 
2187 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2188 	pcn_bcr_write(sc, LE_BCR34, val);
2189 }
2190 
2191 /*
2192  * pcn_mii_statchg:	[mii interface function]
2193  *
2194  *	Callback from MII layer when media changes.
2195  */
2196 static void
2197 pcn_mii_statchg(device_t self)
2198 {
2199 	struct pcn_softc *sc = device_private(self);
2200 
2201 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2202 		pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2203 	else
2204 		pcn_bcr_write(sc, LE_BCR9, 0);
2205 }
2206