xref: /netbsd/sys/dev/pci/if_pcn.c (revision bf9ec67e)
1 /*	$NetBSD: if_pcn.c,v 1.9 2002/05/03 00:16:12 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the AMD PCnet-PCI series of Ethernet
40  * chips:
41  *
42  *	* Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43  *	  Local Bus
44  *
45  *	* Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46  *	  for PCI Local Bus
47  *
48  *	* Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49  *	  Ethernet Controller for PCI Local Bus
50  *
51  *	* Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52  *	  with OnNow Support
53  *
54  *	* Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55  *	  Ethernet Controller with Integrated PHY
56  *
57  * This also supports the virtual PCnet-PCI Ethernet interface found
58  * in VMware.
59  *
60  * TODO:
61  *
62  *	* Split this into bus-specific and bus-independent portions.
63  *	  The core could also be used for the ILACC (Am79900) 32-bit
64  *	  Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65  */
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.9 2002/05/03 00:16:12 thorpej Exp $");
69 
70 #include "bpfilter.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 #include <sys/ioctl.h>
80 #include <sys/errno.h>
81 #include <sys/device.h>
82 #include <sys/queue.h>
83 
84 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
85 
86 #include <net/if.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_ether.h>
90 
91 #if NBPFILTER > 0
92 #include <net/bpf.h>
93 #endif
94 
95 #include <machine/bus.h>
96 #include <machine/intr.h>
97 #include <machine/endian.h>
98 
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101 
102 #include <dev/ic/am79900reg.h>
103 #include <dev/ic/lancereg.h>
104 
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108 
109 #include <dev/pci/if_pcnreg.h>
110 
111 /*
112  * Transmit descriptor list size.  This is arbitrary, but allocate
113  * enough descriptors for 128 pending transmissions, and 4 segments
114  * per packet.  This MUST work out to a power of 2.
115  *
116  * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
117  *
118  * So we play a little trick here.  We give each packet up to 16
119  * DMA segments, but only allocate the max of 512 descriptors.  The
120  * transmit logic can deal with this, we just are hoping to sneak by.
121  */
122 #define	PCN_NTXSEGS		16
123 
124 #define	PCN_TXQUEUELEN		128
125 #define	PCN_TXQUEUELEN_MASK	(PCN_TXQUEUELEN - 1)
126 #define	PCN_NTXDESC		512
127 #define	PCN_NTXDESC_MASK	(PCN_NTXDESC - 1)
128 #define	PCN_NEXTTX(x)		(((x) + 1) & PCN_NTXDESC_MASK)
129 #define	PCN_NEXTTXS(x)		(((x) + 1) & PCN_TXQUEUELEN_MASK)
130 
131 /* Tx interrupt every N + 1 packets. */
132 #define	PCN_TXINTR_MASK		7
133 
134 /*
135  * Receive descriptor list size.  We have one Rx buffer per incoming
136  * packet, so this logic is a little simpler.
137  */
138 #define	PCN_NRXDESC		128
139 #define	PCN_NRXDESC_MASK	(PCN_NRXDESC - 1)
140 #define	PCN_NEXTRX(x)		(((x) + 1) & PCN_NRXDESC_MASK)
141 
142 /*
143  * Control structures are DMA'd to the PCnet chip.  We allocate them in
144  * a single clump that maps to a single DMA segment to make several things
145  * easier.
146  */
147 struct pcn_control_data {
148 	/* The transmit descriptors. */
149 	struct letmd pcd_txdescs[PCN_NTXDESC];
150 
151 	/* The receive descriptors. */
152 	struct lermd pcd_rxdescs[PCN_NRXDESC];
153 
154 	/* The init block. */
155 	struct leinit pcd_initblock;
156 };
157 
158 #define	PCN_CDOFF(x)	offsetof(struct pcn_control_data, x)
159 #define	PCN_CDTXOFF(x)	PCN_CDOFF(pcd_txdescs[(x)])
160 #define	PCN_CDRXOFF(x)	PCN_CDOFF(pcd_rxdescs[(x)])
161 #define	PCN_CDINITOFF	PCN_CDOFF(pcd_initblock)
162 
163 /*
164  * Software state for transmit jobs.
165  */
166 struct pcn_txsoft {
167 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
168 	bus_dmamap_t txs_dmamap;	/* our DMA map */
169 	int txs_firstdesc;		/* first descriptor in packet */
170 	int txs_lastdesc;		/* last descriptor in packet */
171 };
172 
173 /*
174  * Software state for receive jobs.
175  */
176 struct pcn_rxsoft {
177 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
178 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
179 };
180 
181 /*
182  * Description of Rx FIFO watermarks for various revisions.
183  */
184 const char *pcn_79c970_rcvfw[] = {
185 	"16 bytes",
186 	"64 bytes",
187 	"128 bytes",
188 	NULL,
189 };
190 
191 const char *pcn_79c971_rcvfw[] = {
192 	"16 bytes",
193 	"64 bytes",
194 	"112 bytes",
195 	NULL,
196 };
197 
198 /*
199  * Description of Tx start points for various revisions.
200  */
201 const char *pcn_79c970_xmtsp[] = {
202 	"8 bytes",
203 	"64 bytes",
204 	"128 bytes",
205 	"248 bytes",
206 };
207 
208 const char *pcn_79c971_xmtsp[] = {
209 	"20 bytes",
210 	"64 bytes",
211 	"128 bytes",
212 	"248 bytes",
213 };
214 
215 const char *pcn_79c971_xmtsp_sram[] = {
216 	"44 bytes",
217 	"64 bytes",
218 	"128 bytes",
219 	"store-and-forward",
220 };
221 
222 /*
223  * Description of Tx FIFO watermarks for various revisions.
224  */
225 const char *pcn_79c970_xmtfw[] = {
226 	"16 bytes",
227 	"64 bytes",
228 	"128 bytes",
229 	NULL,
230 };
231 
232 const char *pcn_79c971_xmtfw[] = {
233 	"16 bytes",
234 	"64 bytes",
235 	"108 bytes",
236 	NULL,
237 };
238 
239 /*
240  * Software state per device.
241  */
242 struct pcn_softc {
243 	struct device sc_dev;		/* generic device information */
244 	bus_space_tag_t sc_st;		/* bus space tag */
245 	bus_space_handle_t sc_sh;	/* bus space handle */
246 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
247 	struct ethercom sc_ethercom;	/* Ethernet common data */
248 	void *sc_sdhook;		/* shutdown hook */
249 
250 	/* Points to our media routines, etc. */
251 	const struct pcn_variant *sc_variant;
252 
253 	void *sc_ih;			/* interrupt cookie */
254 
255 	struct mii_data sc_mii;		/* MII/media information */
256 
257 	struct callout sc_tick_ch;	/* tick callout */
258 
259 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
260 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
261 
262 	/* Software state for transmit and receive descriptors. */
263 	struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
264 	struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
265 
266 	/* Control data structures */
267 	struct pcn_control_data *sc_control_data;
268 #define	sc_txdescs	sc_control_data->pcd_txdescs
269 #define	sc_rxdescs	sc_control_data->pcd_rxdescs
270 #define	sc_initblock	sc_control_data->pcd_initblock
271 
272 #ifdef PCN_EVENT_COUNTERS
273 	/* Event counters. */
274 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
275 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
276 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
277 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
278 	struct evcnt sc_ev_babl;	/* BABL in pcn_intr() */
279 	struct evcnt sc_ev_miss;	/* MISS in pcn_intr() */
280 	struct evcnt sc_ev_merr;	/* MERR in pcn_intr() */
281 
282 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
283 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
284 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
285 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
286 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
287 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
288 	struct evcnt sc_ev_txcopy;	/* Tx copies required */
289 #endif /* PCN_EVENT_COUNTERS */
290 
291 	const char **sc_rcvfw_desc;	/* Rx FIFO watermark info */
292 	int sc_rcvfw;
293 
294 	const char **sc_xmtsp_desc;	/* Tx start point info */
295 	int sc_xmtsp;
296 
297 	const char **sc_xmtfw_desc;	/* Tx FIFO watermark info */
298 	int sc_xmtfw;
299 
300 	int sc_flags;			/* misc. flags; see below */
301 	int sc_swstyle;			/* the software style in use */
302 
303 	int sc_txfree;			/* number of free Tx descriptors */
304 	int sc_txnext;			/* next ready Tx descriptor */
305 
306 	int sc_txsfree;			/* number of free Tx jobs */
307 	int sc_txsnext;			/* next free Tx job */
308 	int sc_txsdirty;		/* dirty Tx jobs */
309 
310 	int sc_rxptr;			/* next ready Rx descriptor/job */
311 
312 	uint32_t sc_csr5;		/* prototype CSR5 register */
313 	uint32_t sc_mode;		/* prototype MODE register */
314 	int sc_phyaddr;			/* PHY address */
315 };
316 
317 /* sc_flags */
318 #define	PCN_F_HAS_MII		0x0001	/* has MII */
319 
320 #ifdef PCN_EVENT_COUNTERS
321 #define	PCN_EVCNT_INCR(ev)	(ev)->ev_count++
322 #else
323 #define	PCN_EVCNT_INCR(ev)	/* nothing */
324 #endif
325 
326 #define	PCN_CDTXADDR(sc, x)	((sc)->sc_cddma + PCN_CDTXOFF((x)))
327 #define	PCN_CDRXADDR(sc, x)	((sc)->sc_cddma + PCN_CDRXOFF((x)))
328 #define	PCN_CDINITADDR(sc)	((sc)->sc_cddma + PCN_CDINITOFF)
329 
330 #define	PCN_CDTXSYNC(sc, x, n, ops)					\
331 do {									\
332 	int __x, __n;							\
333 									\
334 	__x = (x);							\
335 	__n = (n);							\
336 									\
337 	/* If it will wrap around, sync to the end of the ring. */	\
338 	if ((__x + __n) > PCN_NTXDESC) {				\
339 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
340 		    PCN_CDTXOFF(__x), sizeof(struct letmd) *		\
341 		    (PCN_NTXDESC - __x), (ops));			\
342 		__n -= (PCN_NTXDESC - __x);				\
343 		__x = 0;						\
344 	}								\
345 									\
346 	/* Now sync whatever is left. */				\
347 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
348 	    PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops));	\
349 } while (/*CONSTCOND*/0)
350 
351 #define	PCN_CDRXSYNC(sc, x, ops)					\
352 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
353 	    PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
354 
355 #define	PCN_CDINITSYNC(sc, ops)						\
356 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
357 	    PCN_CDINITOFF, sizeof(struct leinit), (ops))
358 
359 #define	PCN_INIT_RXDESC(sc, x)						\
360 do {									\
361 	struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
362 	struct lermd *__rmd = &(sc)->sc_rxdescs[(x)];			\
363 	struct mbuf *__m = __rxs->rxs_mbuf;				\
364 									\
365 	/*								\
366 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
367 	 * so that the payload after the Ethernet header is aligned	\
368 	 * to a 4-byte boundary.					\
369 	 */								\
370 	__m->m_data = __m->m_ext.ext_buf + 2;				\
371 									\
372 	if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {		\
373 		__rmd->rmd2 =						\
374 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
375 		__rmd->rmd0 = 0;					\
376 	} else {							\
377 		__rmd->rmd2 = 0;					\
378 		__rmd->rmd0 =						\
379 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
380 	}								\
381 	__rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| 			\
382 	    (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK));			\
383 	PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
384 } while(/*CONSTCOND*/0)
385 
386 void	pcn_start(struct ifnet *);
387 void	pcn_watchdog(struct ifnet *);
388 int	pcn_ioctl(struct ifnet *, u_long, caddr_t);
389 int	pcn_init(struct ifnet *);
390 void	pcn_stop(struct ifnet *, int);
391 
392 void	pcn_shutdown(void *);
393 
394 void	pcn_reset(struct pcn_softc *);
395 void	pcn_rxdrain(struct pcn_softc *);
396 int	pcn_add_rxbuf(struct pcn_softc *, int);
397 void	pcn_tick(void *);
398 
399 void	pcn_spnd(struct pcn_softc *);
400 
401 void	pcn_set_filter(struct pcn_softc *);
402 
403 int	pcn_intr(void *);
404 void	pcn_txintr(struct pcn_softc *);
405 int	pcn_rxintr(struct pcn_softc *);
406 
407 int	pcn_mii_readreg(struct device *, int, int);
408 void	pcn_mii_writereg(struct device *, int, int, int);
409 void	pcn_mii_statchg(struct device *);
410 
411 void	pcn_79c970_mediainit(struct pcn_softc *);
412 int	pcn_79c970_mediachange(struct ifnet *);
413 void	pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
414 
415 void	pcn_79c971_mediainit(struct pcn_softc *);
416 int	pcn_79c971_mediachange(struct ifnet *);
417 void	pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
418 
419 /*
420  * Description of a PCnet-PCI variant.  Used to select media access
421  * method, mostly, and to print a nice description of the chip.
422  */
423 const struct pcn_variant {
424 	const char *pcv_desc;
425 	void (*pcv_mediainit)(struct pcn_softc *);
426 	uint16_t pcv_chipid;
427 } pcn_variants[] = {
428 	{ "Am79c970 PCnet-PCI",
429 	  pcn_79c970_mediainit,
430 	  PARTID_Am79c970 },
431 
432 	{ "Am79c970A PCnet-PCI II",
433 	  pcn_79c970_mediainit,
434 	  PARTID_Am79c970A },
435 
436 	{ "Am79c971 PCnet-FAST",
437 	  pcn_79c971_mediainit,
438 	  PARTID_Am79c971 },
439 
440 	{ "Am79c972 PCnet-FAST+",
441 	  pcn_79c971_mediainit,
442 	  PARTID_Am79c972 },
443 
444 	{ "Am79c973 PCnet-FAST III",
445 	  pcn_79c971_mediainit,
446 	  PARTID_Am79c973 },
447 
448 	{ "Am79c975 PCnet-FAST III",
449 	  pcn_79c971_mediainit,
450 	  PARTID_Am79c975 },
451 
452 	{ "Unknown PCnet-PCI variant",
453 	  pcn_79c971_mediainit,
454 	  0 },
455 };
456 
457 int	pcn_copy_small = 0;
458 
459 int	pcn_match(struct device *, struct cfdata *, void *);
460 void	pcn_attach(struct device *, struct device *, void *);
461 
462 struct cfattach pcn_ca = {
463 	sizeof(struct pcn_softc), pcn_match, pcn_attach,
464 };
465 
466 /*
467  * Routines to read and write the PCnet-PCI CSR/BCR space.
468  */
469 
470 static __inline uint32_t
471 pcn_csr_read(struct pcn_softc *sc, int reg)
472 {
473 
474 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
475 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
476 }
477 
478 static __inline void
479 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
480 {
481 
482 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
483 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
484 }
485 
486 static __inline uint32_t
487 pcn_bcr_read(struct pcn_softc *sc, int reg)
488 {
489 
490 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
491 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
492 }
493 
494 static __inline void
495 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
496 {
497 
498 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
499 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
500 }
501 
502 static const struct pcn_variant *
503 pcn_lookup_variant(uint16_t chipid)
504 {
505 	const struct pcn_variant *pcv;
506 
507 	for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
508 		if (chipid == pcv->pcv_chipid)
509 			return (pcv);
510 	}
511 
512 	/*
513 	 * This covers unknown chips, which we simply treat like
514 	 * a generic PCnet-FAST.
515 	 */
516 	return (pcv);
517 }
518 
519 int
520 pcn_match(struct device *parent, struct cfdata *cf, void *aux)
521 {
522 	struct pci_attach_args *pa = aux;
523 
524 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
525 		return (0);
526 
527 	switch (PCI_PRODUCT(pa->pa_id)) {
528 	case PCI_PRODUCT_AMD_PCNET_PCI:
529 		/* Beat if_le_pci.c */
530 		return (10);
531 	}
532 
533 	return (0);
534 }
535 
536 void
537 pcn_attach(struct device *parent, struct device *self, void *aux)
538 {
539 	struct pcn_softc *sc = (struct pcn_softc *) self;
540 	struct pci_attach_args *pa = aux;
541 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
542 	pci_chipset_tag_t pc = pa->pa_pc;
543 	pci_intr_handle_t ih;
544 	const char *intrstr = NULL;
545 	bus_space_tag_t iot;
546 	bus_space_handle_t ioh;
547 	bus_dma_segment_t seg;
548 	int ioh_valid;
549 	int i, rseg, error;
550 	pcireg_t pmode;
551 	uint32_t chipid, reg;
552 	uint8_t enaddr[ETHER_ADDR_LEN];
553 	int pmreg;
554 
555 	callout_init(&sc->sc_tick_ch);
556 
557 	printf(": AMD PCnet-PCI Ethernet\n");
558 
559 	/*
560 	 * Map the device.
561 	 */
562 	ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
563 	    &iot, &ioh, NULL, NULL) == 0);
564 
565 	if (ioh_valid) {
566 		sc->sc_st = iot;
567 		sc->sc_sh = ioh;
568 	} else {
569 		printf("%s: unable to map device registers\n",
570 		    sc->sc_dev.dv_xname);
571 		return;
572 	}
573 
574 	sc->sc_dmat = pa->pa_dmat;
575 
576 	/* Make sure bus mastering is enabled. */
577 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
578 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
579 	    PCI_COMMAND_MASTER_ENABLE);
580 
581 	/* Get it out of power save mode, if needed. */
582 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
583 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
584 		if (pmode == 3) {
585 			/*
586 			 * The card has lost all configuration data in
587 			 * this state, so punt.
588 			 */
589 			printf("%s: unable to wake from power state D3\n",
590 			    sc->sc_dev.dv_xname);
591 			return;
592 		}
593 		if (pmode != 0) {
594 			printf("%s: waking up from power date D%d\n",
595 			    sc->sc_dev.dv_xname, pmode);
596 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
597 		}
598 	}
599 
600 	/*
601 	 * Reset the chip to a known state.  This also puts the
602 	 * chip into 32-bit mode.
603 	 */
604 	pcn_reset(sc);
605 
606 	/*
607 	 * Read the Ethernet address from the EEPROM.
608 	 */
609 	for (i = 0; i < ETHER_ADDR_LEN; i++)
610 		enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
611 		    PCN32_APROM + i);
612 
613 	/*
614 	 * Now that the device is mapped, attempt to figure out what
615 	 * kind of chip we have.  Note that IDL has all 32 bits of
616 	 * the chip ID when we're in 32-bit mode.
617 	 */
618 	chipid = pcn_csr_read(sc, LE_CSR88);
619 	sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
620 
621 	printf("%s: %s rev %d, Ethernet address %s\n",
622 	    sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
623 	    ether_sprintf(enaddr));
624 
625 	/*
626 	 * Map and establish our interrupt.
627 	 */
628 	if (pci_intr_map(pa, &ih)) {
629 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
630 		return;
631 	}
632 	intrstr = pci_intr_string(pc, ih);
633 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
634 	if (sc->sc_ih == NULL) {
635 		printf("%s: unable to establish interrupt",
636 		    sc->sc_dev.dv_xname);
637 		if (intrstr != NULL)
638 			printf(" at %s", intrstr);
639 		printf("\n");
640 		return;
641 	}
642 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
643 
644 	/*
645 	 * Allocate the control data structures, and create and load the
646 	 * DMA map for it.
647 	 */
648 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
649 	     sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
650 	     0)) != 0) {
651 		printf("%s: unable to allocate control data, error = %d\n",
652 		    sc->sc_dev.dv_xname, error);
653 		goto fail_0;
654 	}
655 
656 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
657 	     sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
658 	     BUS_DMA_COHERENT)) != 0) {
659 		printf("%s: unable to map control data, error = %d\n",
660 		    sc->sc_dev.dv_xname, error);
661 		goto fail_1;
662 	}
663 
664 	if ((error = bus_dmamap_create(sc->sc_dmat,
665 	     sizeof(struct pcn_control_data), 1,
666 	     sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
667 		printf("%s: unable to create control data DMA map, "
668 		    "error = %d\n", sc->sc_dev.dv_xname, error);
669 		goto fail_2;
670 	}
671 
672 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
673 	     sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
674 	     0)) != 0) {
675 		printf("%s: unable to load control data DMA map, error = %d\n",
676 		    sc->sc_dev.dv_xname, error);
677 		goto fail_3;
678 	}
679 
680 	/* Create the transmit buffer DMA maps. */
681 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
682 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
683 		     PCN_NTXSEGS, MCLBYTES, 0, 0,
684 		     &sc->sc_txsoft[i].txs_dmamap)) != 0) {
685 			printf("%s: unable to create tx DMA map %d, "
686 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
687 			goto fail_4;
688 		}
689 	}
690 
691 	/* Create the receive buffer DMA maps. */
692 	for (i = 0; i < PCN_NRXDESC; i++) {
693 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
694 		     MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
695 			printf("%s: unable to create rx DMA map %d, "
696 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
697 			goto fail_5;
698 		}
699 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
700 	}
701 
702 	/* Initialize our media structures. */
703 	(*sc->sc_variant->pcv_mediainit)(sc);
704 
705 	/*
706 	 * Initialize FIFO watermark info.
707 	 */
708 	switch (sc->sc_variant->pcv_chipid) {
709 	case PARTID_Am79c970:
710 	case PARTID_Am79c970A:
711 		sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
712 		sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
713 		sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
714 		break;
715 
716 	default:
717 		sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
718 		/*
719 		 * Read BCR25 to determine how much SRAM is
720 		 * on the board.  If > 0, then we the chip
721 		 * uses different Start Point thresholds.
722 		 *
723 		 * Note BCR25 and BCR26 are loaded from the
724 		 * EEPROM on RST, and unaffected by S_RESET,
725 		 * so we don't really have to worry about
726 		 * them except for this.
727 		 */
728 		reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
729 		if (reg != 0)
730 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
731 		else
732 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
733 		sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
734 		break;
735 	}
736 
737 	/*
738 	 * Set up defaults -- see the tables above for what these
739 	 * values mean.
740 	 *
741 	 * XXX How should we tune RCVFW and XMTFW?
742 	 */
743 	sc->sc_rcvfw = 1;	/* minimum for full-duplex */
744 	sc->sc_xmtsp = 1;
745 	sc->sc_xmtfw = 0;
746 
747 	ifp = &sc->sc_ethercom.ec_if;
748 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
749 	ifp->if_softc = sc;
750 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
751 	ifp->if_ioctl = pcn_ioctl;
752 	ifp->if_start = pcn_start;
753 	ifp->if_watchdog = pcn_watchdog;
754 	ifp->if_init = pcn_init;
755 	ifp->if_stop = pcn_stop;
756 	IFQ_SET_READY(&ifp->if_snd);
757 
758 	/* Attach the interface. */
759 	if_attach(ifp);
760 	ether_ifattach(ifp, enaddr);
761 
762 #ifdef PCN_EVENT_COUNTERS
763 	/* Attach event counters. */
764 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
765 	    NULL, sc->sc_dev.dv_xname, "txsstall");
766 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
767 	    NULL, sc->sc_dev.dv_xname, "txdstall");
768 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
769 	    NULL, sc->sc_dev.dv_xname, "txintr");
770 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
771 	    NULL, sc->sc_dev.dv_xname, "rxintr");
772 	evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
773 	    NULL, sc->sc_dev.dv_xname, "babl");
774 	evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
775 	    NULL, sc->sc_dev.dv_xname, "miss");
776 	evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
777 	    NULL, sc->sc_dev.dv_xname, "merr");
778 
779 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
780 	    NULL, sc->sc_dev.dv_xname, "txseg1");
781 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
782 	    NULL, sc->sc_dev.dv_xname, "txseg2");
783 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
784 	    NULL, sc->sc_dev.dv_xname, "txseg3");
785 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
786 	    NULL, sc->sc_dev.dv_xname, "txseg4");
787 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
788 	    NULL, sc->sc_dev.dv_xname, "txseg5");
789 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
790 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
791 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
792 	    NULL, sc->sc_dev.dv_xname, "txcopy");
793 #endif /* PCN_EVENT_COUNTERS */
794 
795 	/* Make sure the interface is shutdown during reboot. */
796 	sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
797 	if (sc->sc_sdhook == NULL)
798 		printf("%s: WARNING: unable to establish shutdown hook\n",
799 		    sc->sc_dev.dv_xname);
800 	return;
801 
802 	/*
803 	 * Free any resources we've allocated during the failed attach
804 	 * attempt.  Do this in reverse order and fall through.
805 	 */
806  fail_5:
807 	for (i = 0; i < PCN_NRXDESC; i++) {
808 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
809 			bus_dmamap_destroy(sc->sc_dmat,
810 			    sc->sc_rxsoft[i].rxs_dmamap);
811 	}
812  fail_4:
813 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
814 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
815 			bus_dmamap_destroy(sc->sc_dmat,
816 			    sc->sc_txsoft[i].txs_dmamap);
817 	}
818 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
819  fail_3:
820 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
821  fail_2:
822 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
823 	    sizeof(struct pcn_control_data));
824  fail_1:
825 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
826  fail_0:
827 	return;
828 }
829 
830 /*
831  * pcn_shutdown:
832  *
833  *	Make sure the interface is stopped at reboot time.
834  */
835 void
836 pcn_shutdown(void *arg)
837 {
838 	struct pcn_softc *sc = arg;
839 
840 	pcn_stop(&sc->sc_ethercom.ec_if, 1);
841 }
842 
843 /*
844  * pcn_start:		[ifnet interface function]
845  *
846  *	Start packet transmission on the interface.
847  */
848 void
849 pcn_start(struct ifnet *ifp)
850 {
851 	struct pcn_softc *sc = ifp->if_softc;
852 	struct mbuf *m0, *m;
853 	struct pcn_txsoft *txs;
854 	bus_dmamap_t dmamap;
855 	int error, nexttx, lasttx, ofree, seg;
856 
857 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
858 		return;
859 
860 	/*
861 	 * Remember the previous number of free descriptors and
862 	 * the first descriptor we'll use.
863 	 */
864 	ofree = sc->sc_txfree;
865 
866 	/*
867 	 * Loop through the send queue, setting up transmit descriptors
868 	 * until we drain the queue, or use up all available transmit
869 	 * descriptors.
870 	 */
871 	for (;;) {
872 		/* Grab a packet off the queue. */
873 		IFQ_POLL(&ifp->if_snd, m0);
874 		if (m0 == NULL)
875 			break;
876 		m = NULL;
877 
878 		/* Get a work queue entry. */
879 		if (sc->sc_txsfree == 0) {
880 			PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
881 			break;
882 		}
883 
884 		txs = &sc->sc_txsoft[sc->sc_txsnext];
885 		dmamap = txs->txs_dmamap;
886 
887 		/*
888 		 * Load the DMA map.  If this fails, the packet either
889 		 * didn't fit in the alloted number of segments, or we
890 		 * were short on resources.  In this case, we'll copy
891 		 * and try again.
892 		 */
893 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
894 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
895 			PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
896 			MGETHDR(m, M_DONTWAIT, MT_DATA);
897 			if (m == NULL) {
898 				printf("%s: unable to allocate Tx mbuf\n",
899 				    sc->sc_dev.dv_xname);
900 				break;
901 			}
902 			if (m0->m_pkthdr.len > MHLEN) {
903 				MCLGET(m, M_DONTWAIT);
904 				if ((m->m_flags & M_EXT) == 0) {
905 					printf("%s: unable to allocate Tx "
906 					    "cluster\n", sc->sc_dev.dv_xname);
907 					m_freem(m);
908 					break;
909 				}
910 			}
911 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
912 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
913 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
914 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
915 			if (error) {
916 				printf("%s: unable to load Tx buffer, "
917 				    "error = %d\n", sc->sc_dev.dv_xname, error);
918 				break;
919 			}
920 		}
921 
922 		/*
923 		 * Ensure we have enough descriptors free to describe
924 		 * the packet.  Note, we always reserve one descriptor
925 		 * at the end of the ring as a termination point, to
926 		 * prevent wrap-around.
927 		 */
928 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
929 			/*
930 			 * Not enough free descriptors to transmit this
931 			 * packet.  We haven't committed anything yet,
932 			 * so just unload the DMA map, put the packet
933 			 * back on the queue, and punt.  Notify the upper
934 			 * layer that there are not more slots left.
935 			 *
936 			 * XXX We could allocate an mbuf and copy, but
937 			 * XXX is it worth it?
938 			 */
939 			ifp->if_flags |= IFF_OACTIVE;
940 			bus_dmamap_unload(sc->sc_dmat, dmamap);
941 			if (m != NULL)
942 				m_freem(m);
943 			PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
944 			break;
945 		}
946 
947 		IFQ_DEQUEUE(&ifp->if_snd, m0);
948 		if (m != NULL) {
949 			m_freem(m0);
950 			m0 = m;
951 		}
952 
953 		/*
954 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
955 		 */
956 
957 		/* Sync the DMA map. */
958 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
959 		    BUS_DMASYNC_PREWRITE);
960 
961 #ifdef PCN_EVENT_COUNTERS
962 		switch (dmamap->dm_nsegs) {
963 		case 1:
964 			PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
965 			break;
966 		case 2:
967 			PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
968 			break;
969 		case 3:
970 			PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
971 			break;
972 		case 4:
973 			PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
974 			break;
975 		case 5:
976 			PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
977 			break;
978 		default:
979 			PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
980 			break;
981 		}
982 #endif /* PCN_EVENT_COUNTERS */
983 
984 		/*
985 		 * Initialize the transmit descriptors.
986 		 */
987 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
988 			for (nexttx = sc->sc_txnext, seg = 0;
989 			     seg < dmamap->dm_nsegs;
990 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
991 				/*
992 				 * If this is the first descriptor we're
993 				 * enqueueing, don't set the OWN bit just
994 				 * yet.  That could cause a race condition.
995 				 * We'll do it below.
996 				 */
997 				sc->sc_txdescs[nexttx].tmd0 = 0;
998 				sc->sc_txdescs[nexttx].tmd2 =
999 				    htole32(dmamap->dm_segs[seg].ds_addr);
1000 				sc->sc_txdescs[nexttx].tmd1 =
1001 				    htole32(LE_T1_ONES |
1002 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1003 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1004 				     LE_T1_BCNT_MASK));
1005 				lasttx = nexttx;
1006 			}
1007 		} else {
1008 			for (nexttx = sc->sc_txnext, seg = 0;
1009 			     seg < dmamap->dm_nsegs;
1010 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
1011 				/*
1012 				 * If this is the first descriptor we're
1013 				 * enqueueing, don't set the OWN bit just
1014 				 * yet.  That could cause a race condition.
1015 				 * We'll do it below.
1016 				 */
1017 				sc->sc_txdescs[nexttx].tmd0 =
1018 				    htole32(dmamap->dm_segs[seg].ds_addr);
1019 				sc->sc_txdescs[nexttx].tmd2 = 0;
1020 				sc->sc_txdescs[nexttx].tmd1 =
1021 				    htole32(LE_T1_ONES |
1022 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1023 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1024 				     LE_T1_BCNT_MASK));
1025 				lasttx = nexttx;
1026 			}
1027 		}
1028 
1029 		/* Interrupt on the packet, if appropriate. */
1030 		if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1031 			sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1032 
1033 		/* Set `start of packet' and `end of packet' appropriately. */
1034 		sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1035 		sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1036 		    htole32(LE_T1_OWN|LE_T1_STP);
1037 
1038 		/* Sync the descriptors we're using. */
1039 		PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1040 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1041 
1042 		/* Kick the transmitter. */
1043 		pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1044 
1045 		/*
1046 		 * Store a pointer to the packet so we can free it later,
1047 		 * and remember what txdirty will be once the packet is
1048 		 * done.
1049 		 */
1050 		txs->txs_mbuf = m0;
1051 		txs->txs_firstdesc = sc->sc_txnext;
1052 		txs->txs_lastdesc = lasttx;
1053 
1054 		/* Advance the tx pointer. */
1055 		sc->sc_txfree -= dmamap->dm_nsegs;
1056 		sc->sc_txnext = nexttx;
1057 
1058 		sc->sc_txsfree--;
1059 		sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1060 
1061 #if NBPFILTER > 0
1062 		/* Pass the packet to any BPF listeners. */
1063 		if (ifp->if_bpf)
1064 			bpf_mtap(ifp->if_bpf, m0);
1065 #endif /* NBPFILTER > 0 */
1066 	}
1067 
1068 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1069 		/* No more slots left; notify upper layer. */
1070 		ifp->if_flags |= IFF_OACTIVE;
1071 	}
1072 
1073 	if (sc->sc_txfree != ofree) {
1074 		/* Set a watchdog timer in case the chip flakes out. */
1075 		ifp->if_timer = 5;
1076 	}
1077 }
1078 
1079 /*
1080  * pcn_watchdog:	[ifnet interface function]
1081  *
1082  *	Watchdog timer handler.
1083  */
1084 void
1085 pcn_watchdog(struct ifnet *ifp)
1086 {
1087 	struct pcn_softc *sc = ifp->if_softc;
1088 
1089 	/*
1090 	 * Since we're not interrupting every packet, sweep
1091 	 * up before we report an error.
1092 	 */
1093 	pcn_txintr(sc);
1094 
1095 	if (sc->sc_txfree != PCN_NTXDESC) {
1096 		printf("%s: device timeout (txfree %d txsfree %d)\n",
1097 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1098 		ifp->if_oerrors++;
1099 
1100 		/* Reset the interface. */
1101 		(void) pcn_init(ifp);
1102 	}
1103 
1104 	/* Try to get more packets going. */
1105 	pcn_start(ifp);
1106 }
1107 
1108 /*
1109  * pcn_ioctl:		[ifnet interface function]
1110  *
1111  *	Handle control requests from the operator.
1112  */
1113 int
1114 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1115 {
1116 	struct pcn_softc *sc = ifp->if_softc;
1117 	struct ifreq *ifr = (struct ifreq *) data;
1118 	int s, error;
1119 
1120 	s = splnet();
1121 
1122 	switch (cmd) {
1123 	case SIOCSIFMEDIA:
1124 	case SIOCGIFMEDIA:
1125 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1126 		break;
1127 
1128 	default:
1129 		error = ether_ioctl(ifp, cmd, data);
1130 		if (error == ENETRESET) {
1131 			/*
1132 			 * Multicast list has changed; set the hardware filter
1133 			 * accordingly.
1134 			 */
1135 			error = pcn_init(ifp);
1136 		}
1137 		break;
1138 	}
1139 
1140 	/* Try to get more packets going. */
1141 	pcn_start(ifp);
1142 
1143 	splx(s);
1144 	return (error);
1145 }
1146 
1147 /*
1148  * pcn_intr:
1149  *
1150  *	Interrupt service routine.
1151  */
1152 int
1153 pcn_intr(void *arg)
1154 {
1155 	struct pcn_softc *sc = arg;
1156 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1157 	uint32_t csr0;
1158 	int wantinit, handled = 0;
1159 
1160 	for (wantinit = 0; wantinit == 0;) {
1161 		csr0 = pcn_csr_read(sc, LE_CSR0);
1162 		if ((csr0 & LE_C0_INTR) == 0)
1163 			break;
1164 
1165 		/* ACK the bits and re-enable interrupts. */
1166 		pcn_csr_write(sc, LE_CSR0, csr0 &
1167 		    (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1168 		     LE_C0_TINT|LE_C0_IDON));
1169 
1170 		handled = 1;
1171 
1172 		if (csr0 & LE_C0_RINT) {
1173 			PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1174 			wantinit = pcn_rxintr(sc);
1175 		}
1176 
1177 		if (csr0 & LE_C0_TINT) {
1178 			PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1179 			pcn_txintr(sc);
1180 		}
1181 
1182 		if (csr0 & LE_C0_ERR) {
1183 			if (csr0 & LE_C0_BABL) {
1184 				PCN_EVCNT_INCR(&sc->sc_ev_babl);
1185 				ifp->if_oerrors++;
1186 			}
1187 			if (csr0 & LE_C0_MISS) {
1188 				PCN_EVCNT_INCR(&sc->sc_ev_miss);
1189 				ifp->if_ierrors++;
1190 			}
1191 			if (csr0 & LE_C0_MERR) {
1192 				PCN_EVCNT_INCR(&sc->sc_ev_merr);
1193 				printf("%s: memory error\n",
1194 				    sc->sc_dev.dv_xname);
1195 				wantinit = 1;
1196 				break;
1197 			}
1198 		}
1199 
1200 		if ((csr0 & LE_C0_RXON) == 0) {
1201 			printf("%s: receiver disabled\n",
1202 			    sc->sc_dev.dv_xname);
1203 			ifp->if_ierrors++;
1204 			wantinit = 1;
1205 		}
1206 
1207 		if ((csr0 & LE_C0_TXON) == 0) {
1208 			printf("%s: transmitter disabled\n",
1209 			    sc->sc_dev.dv_xname);
1210 			ifp->if_oerrors++;
1211 			wantinit = 1;
1212 		}
1213 	}
1214 
1215 	if (handled) {
1216 		if (wantinit)
1217 			pcn_init(ifp);
1218 
1219 		/* Try to get more packets going. */
1220 		pcn_start(ifp);
1221 	}
1222 
1223 	return (handled);
1224 }
1225 
1226 /*
1227  * pcn_spnd:
1228  *
1229  *	Suspend the chip.
1230  */
1231 void
1232 pcn_spnd(struct pcn_softc *sc)
1233 {
1234 	int i;
1235 
1236 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1237 
1238 	for (i = 0; i < 10000; i++) {
1239 		if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1240 			return;
1241 		delay(5);
1242 	}
1243 
1244 	printf("%s: WARNING: chip failed to enter suspended state\n",
1245 	    sc->sc_dev.dv_xname);
1246 }
1247 
1248 /*
1249  * pcn_txintr:
1250  *
1251  *	Helper; handle transmit interrupts.
1252  */
1253 void
1254 pcn_txintr(struct pcn_softc *sc)
1255 {
1256 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1257 	struct pcn_txsoft *txs;
1258 	uint32_t tmd1, tmd2, tmd;
1259 	int i, j;
1260 
1261 	ifp->if_flags &= ~IFF_OACTIVE;
1262 
1263 	/*
1264 	 * Go through our Tx list and free mbufs for those
1265 	 * frames which have been transmitted.
1266 	 */
1267 	for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1268 	     i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1269 		txs = &sc->sc_txsoft[i];
1270 
1271 		PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1272 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1273 
1274 		tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1275 		if (tmd1 & LE_T1_OWN)
1276 			break;
1277 
1278 		/*
1279 		 * Slightly annoying -- we have to loop through the
1280 		 * descriptors we've used looking for ERR, since it
1281 		 * can appear on any descriptor in the chain.
1282 		 */
1283 		for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1284 			tmd = le32toh(sc->sc_txdescs[j].tmd1);
1285 			if (tmd & LE_T1_ERR) {
1286 				ifp->if_oerrors++;
1287 				if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1288 					tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1289 				else
1290 					tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1291 				if (tmd2 & LE_T2_UFLO) {
1292 					if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1293 						sc->sc_xmtsp++;
1294 						printf("%s: transmit "
1295 						    "underrun; new threshold: "
1296 						    "%s\n",
1297 						    sc->sc_dev.dv_xname,
1298 						    sc->sc_xmtsp_desc[
1299 						    sc->sc_xmtsp]);
1300 						pcn_spnd(sc);
1301 						pcn_csr_write(sc, LE_CSR80,
1302 						    LE_C80_RCVFW(sc->sc_rcvfw) |
1303 						    LE_C80_XMTSP(sc->sc_xmtsp) |
1304 						    LE_C80_XMTFW(sc->sc_xmtfw));
1305 						pcn_csr_write(sc, LE_CSR5,
1306 						    sc->sc_csr5);
1307 					} else {
1308 						printf("%s: transmit "
1309 						    "underrun\n",
1310 						    sc->sc_dev.dv_xname);
1311 					}
1312 				} else if (tmd2 & LE_T2_BUFF) {
1313 					printf("%s: transmit buffer error\n",
1314 					    sc->sc_dev.dv_xname);
1315 				}
1316 				if (tmd2 & LE_T2_LCOL)
1317 					ifp->if_collisions++;
1318 				if (tmd2 & LE_T2_RTRY)
1319 					ifp->if_collisions += 16;
1320 				goto next_packet;
1321 			}
1322 			if (j == txs->txs_lastdesc)
1323 				break;
1324 		}
1325 		if (tmd1 & LE_T1_ONE)
1326 			ifp->if_collisions++;
1327 		else if (tmd & LE_T1_MORE) {
1328 			/* Real number is unknown. */
1329 			ifp->if_collisions += 2;
1330 		}
1331 		ifp->if_opackets++;
1332  next_packet:
1333 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1334 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1335 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1336 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1337 		m_freem(txs->txs_mbuf);
1338 		txs->txs_mbuf = NULL;
1339 	}
1340 
1341 	/* Update the dirty transmit buffer pointer. */
1342 	sc->sc_txsdirty = i;
1343 
1344 	/*
1345 	 * If there are no more pending transmissions, cancel the watchdog
1346 	 * timer.
1347 	 */
1348 	if (sc->sc_txsfree == PCN_TXQUEUELEN)
1349 		ifp->if_timer = 0;
1350 }
1351 
1352 /*
1353  * pcn_rxintr:
1354  *
1355  *	Helper; handle receive interrupts.
1356  */
1357 int
1358 pcn_rxintr(struct pcn_softc *sc)
1359 {
1360 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1361 	struct pcn_rxsoft *rxs;
1362 	struct mbuf *m;
1363 	uint32_t rmd1;
1364 	int i, len;
1365 
1366 	for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1367 		rxs = &sc->sc_rxsoft[i];
1368 
1369 		PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1370 
1371 		rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1372 
1373 		if (rmd1 & LE_R1_OWN)
1374 			break;
1375 
1376 		/*
1377 		 * Check for errors and make sure the packet fit into
1378 		 * a single buffer.  We have structured this block of
1379 		 * code the way it is in order to compress it into
1380 		 * one test in the common case (no error).
1381 		 */
1382 		if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1383 		    (LE_R1_STP|LE_R1_ENP))) {
1384 			/* Make sure the packet is in a single buffer. */
1385 			if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1386 			    (LE_R1_STP|LE_R1_ENP)) {
1387 				printf("%s: packet spilled into next buffer\n",
1388 				    sc->sc_dev.dv_xname);
1389 				return (1);	/* pcn_intr() will re-init */
1390 			}
1391 
1392 			/*
1393 			 * If the packet had an error, simple recycle the
1394 			 * buffer.
1395 			 */
1396 			if (rmd1 & LE_R1_ERR) {
1397 				ifp->if_ierrors++;
1398 				/*
1399 				 * If we got an overflow error, chances
1400 				 * are there will be a CRC error.  In
1401 				 * this case, just print the overflow
1402 				 * error, and skip the others.
1403 				 */
1404 				if (rmd1 & LE_R1_OFLO)
1405 					printf("%s: overflow error\n",
1406 					    sc->sc_dev.dv_xname);
1407 				else {
1408 #define	PRINTIT(x, s)							\
1409 					if (rmd1 & (x))			\
1410 						printf("%s: %s\n",	\
1411 						    sc->sc_dev.dv_xname, s);
1412 					PRINTIT(LE_R1_FRAM, "framing error");
1413 					PRINTIT(LE_R1_CRC, "CRC error");
1414 					PRINTIT(LE_R1_BUFF, "buffer error");
1415 				}
1416 #undef PRINTIT
1417 				PCN_INIT_RXDESC(sc, i);
1418 				continue;
1419 			}
1420 		}
1421 
1422 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1423 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1424 
1425 		/*
1426 		 * No errors; receive the packet.
1427 		 */
1428 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1429 			len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1430 		else
1431 			len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1432 
1433 		/*
1434 		 * The LANCE family includes the CRC with every packet;
1435 		 * trim it off here.
1436 		 */
1437 		len -= ETHER_CRC_LEN;
1438 
1439 		/*
1440 		 * If the packet is small enough to fit in a
1441 		 * single header mbuf, allocate one and copy
1442 		 * the data into it.  This greatly reduces
1443 		 * memory consumption when we receive lots
1444 		 * of small packets.
1445 		 *
1446 		 * Otherwise, we add a new buffer to the receive
1447 		 * chain.  If this fails, we drop the packet and
1448 		 * recycle the old buffer.
1449 		 */
1450 		if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1451 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1452 			if (m == NULL)
1453 				goto dropit;
1454 			m->m_data += 2;
1455 			memcpy(mtod(m, caddr_t),
1456 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1457 			PCN_INIT_RXDESC(sc, i);
1458 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1459 			    rxs->rxs_dmamap->dm_mapsize,
1460 			    BUS_DMASYNC_PREREAD);
1461 		} else {
1462 			m = rxs->rxs_mbuf;
1463 			if (pcn_add_rxbuf(sc, i) != 0) {
1464  dropit:
1465 				ifp->if_ierrors++;
1466 				PCN_INIT_RXDESC(sc, i);
1467 				bus_dmamap_sync(sc->sc_dmat,
1468 				    rxs->rxs_dmamap, 0,
1469 				    rxs->rxs_dmamap->dm_mapsize,
1470 				    BUS_DMASYNC_PREREAD);
1471 				continue;
1472 			}
1473 		}
1474 
1475 		m->m_pkthdr.rcvif = ifp;
1476 		m->m_pkthdr.len = m->m_len = len;
1477 
1478 #if NBPFILTER > 0
1479 		/* Pass this up to any BPF listeners. */
1480 		if (ifp->if_bpf)
1481 			bpf_mtap(ifp->if_bpf, m);
1482 #endif /* NBPFILTER > 0 */
1483 
1484 		/* Pass it on. */
1485 		(*ifp->if_input)(ifp, m);
1486 		ifp->if_ipackets++;
1487 	}
1488 
1489 	/* Update the receive pointer. */
1490 	sc->sc_rxptr = i;
1491 	return (0);
1492 }
1493 
1494 /*
1495  * pcn_tick:
1496  *
1497  *	One second timer, used to tick the MII.
1498  */
1499 void
1500 pcn_tick(void *arg)
1501 {
1502 	struct pcn_softc *sc = arg;
1503 	int s;
1504 
1505 	s = splnet();
1506 	mii_tick(&sc->sc_mii);
1507 	splx(s);
1508 
1509 	callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1510 }
1511 
1512 /*
1513  * pcn_reset:
1514  *
1515  *	Perform a soft reset on the PCnet-PCI.
1516  */
1517 void
1518 pcn_reset(struct pcn_softc *sc)
1519 {
1520 
1521 	/*
1522 	 * The PCnet-PCI chip is reset by reading from the
1523 	 * RESET register.  Note that while the NE2100 LANCE
1524 	 * boards require a write after the read, the PCnet-PCI
1525 	 * chips do not require this.
1526 	 *
1527 	 * Since we don't know if we're in 16-bit or 32-bit
1528 	 * mode right now, issue both (it's safe) in the
1529 	 * hopes that one will succeed.
1530 	 */
1531 	(void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1532 	(void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1533 
1534 	/* Wait 1ms for it to finish. */
1535 	delay(1000);
1536 
1537 	/*
1538 	 * Select 32-bit I/O mode by issuing a 32-bit write to the
1539 	 * RDP.  Since the RAP is 0 after a reset, writing a 0
1540 	 * to RDP is safe (since it simply clears CSR0).
1541 	 */
1542 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1543 }
1544 
1545 /*
1546  * pcn_init:		[ifnet interface function]
1547  *
1548  *	Initialize the interface.  Must be called at splnet().
1549  */
1550 int
1551 pcn_init(struct ifnet *ifp)
1552 {
1553 	struct pcn_softc *sc = ifp->if_softc;
1554 	struct pcn_rxsoft *rxs;
1555 	uint8_t *enaddr = LLADDR(ifp->if_sadl);
1556 	int i, error = 0;
1557 	uint32_t reg;
1558 
1559 	/* Cancel any pending I/O. */
1560 	pcn_stop(ifp, 0);
1561 
1562 	/* Reset the chip to a known state. */
1563 	pcn_reset(sc);
1564 
1565 	/*
1566 	 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1567 	 * else.
1568 	 *
1569 	 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1570 	 * because the structure layout is compatible with ILACC,
1571 	 * but the burst mode is only available in SSTYLE 3, and
1572 	 * burst mode should provide some performance enhancement.
1573 	 */
1574 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1575 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1576 	else
1577 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1578 	pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1579 
1580 	/* Initialize the transmit descriptor ring. */
1581 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1582 	PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1583 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1584 	sc->sc_txfree = PCN_NTXDESC;
1585 	sc->sc_txnext = 0;
1586 
1587 	/* Initialize the transmit job descriptors. */
1588 	for (i = 0; i < PCN_TXQUEUELEN; i++)
1589 		sc->sc_txsoft[i].txs_mbuf = NULL;
1590 	sc->sc_txsfree = PCN_TXQUEUELEN;
1591 	sc->sc_txsnext = 0;
1592 	sc->sc_txsdirty = 0;
1593 
1594 	/*
1595 	 * Initialize the receive descriptor and receive job
1596 	 * descriptor rings.
1597 	 */
1598 	for (i = 0; i < PCN_NRXDESC; i++) {
1599 		rxs = &sc->sc_rxsoft[i];
1600 		if (rxs->rxs_mbuf == NULL) {
1601 			if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1602 				printf("%s: unable to allocate or map rx "
1603 				    "buffer %d, error = %d\n",
1604 				    sc->sc_dev.dv_xname, i, error);
1605 				/*
1606 				 * XXX Should attempt to run with fewer receive
1607 				 * XXX buffers instead of just failing.
1608 				 */
1609 				pcn_rxdrain(sc);
1610 				goto out;
1611 			}
1612 		} else
1613 			PCN_INIT_RXDESC(sc, i);
1614 	}
1615 	sc->sc_rxptr = 0;
1616 
1617 	/* Initialize MODE for the initialization block. */
1618 	sc->sc_mode = 0;
1619 	if (ifp->if_flags & IFF_PROMISC)
1620 		sc->sc_mode |= LE_C15_PROM;
1621 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
1622 		sc->sc_mode |= LE_C15_DRCVBC;
1623 
1624 	/*
1625 	 * If we have MII, simply select MII in the MODE register,
1626 	 * and clear ASEL.  Otherwise, let ASEL stand (for now),
1627 	 * and leave PORTSEL alone (it is ignored with ASEL is set).
1628 	 */
1629 	if (sc->sc_flags & PCN_F_HAS_MII) {
1630 		pcn_bcr_write(sc, LE_BCR2,
1631 		    pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1632 		sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1633 
1634 		/*
1635 		 * Disable MII auto-negotiation.  We handle that in
1636 		 * our own MII layer.
1637 		 */
1638 		pcn_bcr_write(sc, LE_BCR32,
1639 		    pcn_csr_read(sc, LE_BCR32) | LE_B32_DANAS);
1640 	}
1641 
1642 	/*
1643 	 * Set the Tx and Rx descriptor ring addresses in the init
1644 	 * block, the TLEN and RLEN other fields of the init block
1645 	 * MODE register.
1646 	 */
1647 	sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1648 	sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1649 	sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1650 	    ((ffs(PCN_NTXDESC) - 1) << 28) |
1651 	    ((ffs(PCN_NRXDESC) - 1) << 20));
1652 
1653 	/* Set the station address in the init block. */
1654 	sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1655 	    (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1656 	sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1657 	    (enaddr[5] << 8));
1658 
1659 	/* Set the multicast filter in the init block. */
1660 	pcn_set_filter(sc);
1661 
1662 	/* Initialize CSR3. */
1663 	pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1664 
1665 	/* Initialize CSR4. */
1666 	pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1667 	    LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1668 
1669 	/* Initialize CSR5. */
1670 	sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1671 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1672 
1673 	/*
1674 	 * If we have an Am79c971 or greater, initialize CSR7.
1675 	 *
1676 	 * XXX Might be nice to use the MII auto-poll interrupt someday.
1677 	 */
1678 	switch (sc->sc_variant->pcv_chipid) {
1679 	case PARTID_Am79c970:
1680 	case PARTID_Am79c970A:
1681 		/* Not available on these chips. */
1682 		break;
1683 
1684 	default:
1685 		pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1686 		break;
1687 	}
1688 
1689 	/*
1690 	 * On the Am79c970A and greater, initialize BCR18 to
1691 	 * enable burst mode.
1692 	 *
1693 	 * Also enable the "no underflow" option on the Am79c971 and
1694 	 * higher, which prevents the chip from generating transmit
1695 	 * underflows, yet sill provides decent performance.  Note if
1696 	 * chip is not connected to external SRAM, then we still have
1697 	 * to handle underflow errors (the NOUFLO bit is ignored in
1698 	 * that case).
1699 	 */
1700 	reg = pcn_bcr_read(sc, LE_BCR18);
1701 	switch (sc->sc_variant->pcv_chipid) {
1702 	case PARTID_Am79c970:
1703 		break;
1704 
1705 	case PARTID_Am79c970A:
1706 		reg |= LE_B18_BREADE|LE_B18_BWRITE;
1707 		break;
1708 
1709 	default:
1710 		reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1711 		break;
1712 	}
1713 	pcn_bcr_write(sc, LE_BCR18, reg);
1714 
1715 	/*
1716 	 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1717 	 */
1718 	pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1719 	    LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1720 
1721 	/*
1722 	 * Send the init block to the chip, and wait for it
1723 	 * to be processed.
1724 	 */
1725 	PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1726 	pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1727 	pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1728 	pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1729 	delay(100);
1730 	for (i = 0; i < 10000; i++) {
1731 		if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1732 			break;
1733 		delay(10);
1734 	}
1735 	PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1736 	if (i == 10000) {
1737 		printf("%s: timeout processing init block\n",
1738 		    sc->sc_dev.dv_xname);
1739 		error = EIO;
1740 		goto out;
1741 	}
1742 
1743 	/* Set the media. */
1744 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1745 
1746 	/* Enable interrupts and external activity (and ACK IDON). */
1747 	pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1748 
1749 	if (sc->sc_flags & PCN_F_HAS_MII) {
1750 		/* Start the one second MII clock. */
1751 		callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1752 	}
1753 
1754 	/* ...all done! */
1755 	ifp->if_flags |= IFF_RUNNING;
1756 	ifp->if_flags &= ~IFF_OACTIVE;
1757 
1758  out:
1759 	if (error)
1760 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1761 	return (error);
1762 }
1763 
1764 /*
1765  * pcn_rxdrain:
1766  *
1767  *	Drain the receive queue.
1768  */
1769 void
1770 pcn_rxdrain(struct pcn_softc *sc)
1771 {
1772 	struct pcn_rxsoft *rxs;
1773 	int i;
1774 
1775 	for (i = 0; i < PCN_NRXDESC; i++) {
1776 		rxs = &sc->sc_rxsoft[i];
1777 		if (rxs->rxs_mbuf != NULL) {
1778 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1779 			m_freem(rxs->rxs_mbuf);
1780 			rxs->rxs_mbuf = NULL;
1781 		}
1782 	}
1783 }
1784 
1785 /*
1786  * pcn_stop:		[ifnet interface function]
1787  *
1788  *	Stop transmission on the interface.
1789  */
1790 void
1791 pcn_stop(struct ifnet *ifp, int disable)
1792 {
1793 	struct pcn_softc *sc = ifp->if_softc;
1794 	struct pcn_txsoft *txs;
1795 	int i;
1796 
1797 	if (sc->sc_flags & PCN_F_HAS_MII) {
1798 		/* Stop the one second clock. */
1799 		callout_stop(&sc->sc_tick_ch);
1800 
1801 		/* Down the MII. */
1802 		mii_down(&sc->sc_mii);
1803 	}
1804 
1805 	/* Stop the chip. */
1806 	pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1807 
1808 	/* Release any queued transmit buffers. */
1809 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
1810 		txs = &sc->sc_txsoft[i];
1811 		if (txs->txs_mbuf != NULL) {
1812 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1813 			m_freem(txs->txs_mbuf);
1814 			txs->txs_mbuf = NULL;
1815 		}
1816 	}
1817 
1818 	if (disable)
1819 		pcn_rxdrain(sc);
1820 
1821 	/* Mark the interface as down and cancel the watchdog timer. */
1822 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1823 	ifp->if_timer = 0;
1824 }
1825 
1826 /*
1827  * pcn_add_rxbuf:
1828  *
1829  *	Add a receive buffer to the indicated descriptor.
1830  */
1831 int
1832 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1833 {
1834 	struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1835 	struct mbuf *m;
1836 	int error;
1837 
1838 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1839 	if (m == NULL)
1840 		return (ENOBUFS);
1841 
1842 	MCLGET(m, M_DONTWAIT);
1843 	if ((m->m_flags & M_EXT) == 0) {
1844 		m_freem(m);
1845 		return (ENOBUFS);
1846 	}
1847 
1848 	if (rxs->rxs_mbuf != NULL)
1849 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1850 
1851 	rxs->rxs_mbuf = m;
1852 
1853 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1854 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1855 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1856 	if (error) {
1857 		printf("%s: can't load rx DMA map %d, error = %d\n",
1858 		    sc->sc_dev.dv_xname, idx, error);
1859 		panic("pcn_add_rxbuf");
1860 	}
1861 
1862 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1863 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1864 
1865 	PCN_INIT_RXDESC(sc, idx);
1866 
1867 	return (0);
1868 }
1869 
1870 /*
1871  * pcn_set_filter:
1872  *
1873  *	Set up the receive filter.
1874  */
1875 void
1876 pcn_set_filter(struct pcn_softc *sc)
1877 {
1878 	struct ethercom *ec = &sc->sc_ethercom;
1879 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1880 	struct ether_multi *enm;
1881 	struct ether_multistep step;
1882 	uint32_t crc;
1883 
1884 	/*
1885 	 * Set up the multicast address filter by passing all multicast
1886 	 * addresses through a CRC generator, and then using the high
1887 	 * order 6 bits as an index into the 64-bit logical address
1888 	 * filter.  The high order bits select the word, while the rest
1889 	 * of the bits select the bit within the word.
1890 	 */
1891 
1892 	if (ifp->if_flags & IFF_PROMISC)
1893 		goto allmulti;
1894 
1895 	sc->sc_initblock.init_ladrf[0] =
1896 	    sc->sc_initblock.init_ladrf[1] =
1897 	    sc->sc_initblock.init_ladrf[2] =
1898 	    sc->sc_initblock.init_ladrf[3] = 0;
1899 
1900 	ETHER_FIRST_MULTI(step, ec, enm);
1901 	while (enm != NULL) {
1902 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1903 			/*
1904 			 * We must listen to a range of multicast addresses.
1905 			 * For now, just accept all multicasts, rather than
1906 			 * trying to set only those filter bits needed to match
1907 			 * the range.  (At this time, the only use of address
1908 			 * ranges is for IP multicast routing, for which the
1909 			 * range is big enough to require all bits set.)
1910 			 */
1911 			goto allmulti;
1912 		}
1913 
1914 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1915 
1916 		/* Just want the 6 most significant bits. */
1917 		crc >>= 26;
1918 
1919 		/* Set the corresponding bit in the filter. */
1920 		sc->sc_initblock.init_ladrf[crc >> 4] |=
1921 		    htole16(1 << (crc & 0xf));
1922 
1923 		ETHER_NEXT_MULTI(step, enm);
1924 	}
1925 
1926 	ifp->if_flags &= ~IFF_ALLMULTI;
1927 	return;
1928 
1929  allmulti:
1930 	ifp->if_flags |= IFF_ALLMULTI;
1931 	sc->sc_initblock.init_ladrf[0] =
1932 	    sc->sc_initblock.init_ladrf[1] =
1933 	    sc->sc_initblock.init_ladrf[2] =
1934 	    sc->sc_initblock.init_ladrf[3] = 0xffff;
1935 }
1936 
1937 /*
1938  * pcn_79c970_mediainit:
1939  *
1940  *	Initialize media for the Am79c970.
1941  */
1942 void
1943 pcn_79c970_mediainit(struct pcn_softc *sc)
1944 {
1945 	const char *sep = "";
1946 
1947 	ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c970_mediachange,
1948 	    pcn_79c970_mediastatus);
1949 
1950 #define	ADD(s, m, d)							\
1951 do {									\
1952 	printf("%s%s", sep, s);						\
1953 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL);	\
1954 	sep = ", ";							\
1955 } while (/*CONSTCOND*/0)
1956 
1957 	printf("%s: ", sc->sc_dev.dv_xname);
1958 	ADD("10base5", IFM_10_5, PORTSEL_AUI);
1959 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1960 		ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
1961 	ADD("10baseT", IFM_10_T, PORTSEL_10T);
1962 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1963 		ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
1964 	ADD("auto", IFM_AUTO, 0);
1965 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1966 		ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
1967 	printf("\n");
1968 
1969 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1970 }
1971 
1972 /*
1973  * pcn_79c970_mediastatus:	[ifmedia interface function]
1974  *
1975  *	Get the current interface media status (Am79c970 version).
1976  */
1977 void
1978 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1979 {
1980 	struct pcn_softc *sc = ifp->if_softc;
1981 
1982 	/*
1983 	 * The currently selected media is always the active media.
1984 	 * Note: We have no way to determine what media the AUTO
1985 	 * process picked.
1986 	 */
1987 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
1988 }
1989 
1990 /*
1991  * pcn_79c970_mediachange:	[ifmedia interface function]
1992  *
1993  *	Set hardware to newly-selected media (Am79c970 version).
1994  */
1995 int
1996 pcn_79c970_mediachange(struct ifnet *ifp)
1997 {
1998 	struct pcn_softc *sc = ifp->if_softc;
1999 	uint32_t reg;
2000 
2001 	if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2002 		/*
2003 		 * CSR15:PORTSEL doesn't matter.  Just set BCR2:ASEL.
2004 		 */
2005 		reg = pcn_bcr_read(sc, LE_BCR2);
2006 		reg |= LE_B2_ASEL;
2007 		pcn_bcr_write(sc, LE_BCR2, reg);
2008 	} else {
2009 		/*
2010 		 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2011 		 */
2012 		reg = pcn_bcr_read(sc, LE_BCR2);
2013 		reg &= ~LE_B2_ASEL;
2014 		pcn_bcr_write(sc, LE_BCR2, reg);
2015 
2016 		reg = pcn_csr_read(sc, LE_CSR15);
2017 		reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2018 		    LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2019 		pcn_csr_write(sc, LE_CSR15, reg);
2020 	}
2021 
2022 	if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2023 		reg = LE_B9_FDEN;
2024 		if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2025 			reg |= LE_B9_AUIFD;
2026 		pcn_bcr_write(sc, LE_BCR9, reg);
2027 	} else
2028 		pcn_bcr_write(sc, LE_BCR0, 0);
2029 
2030 	return (0);
2031 }
2032 
2033 /*
2034  * pcn_79c971_mediainit:
2035  *
2036  *	Initialize media for the Am79c971.
2037  */
2038 void
2039 pcn_79c971_mediainit(struct pcn_softc *sc)
2040 {
2041 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2042 
2043 	/* We have MII. */
2044 	sc->sc_flags |= PCN_F_HAS_MII;
2045 
2046 	/*
2047 	 * The built-in 10BASE-T interface is mapped to the MII
2048 	 * on the PCNet-FAST.  Unfortunately, there's no EEPROM
2049 	 * word that tells us which PHY to use.  Since the 10BASE-T
2050 	 * interface is always at PHY 31, we make a note of the
2051 	 * first PHY that responds, and disallow any PHYs after
2052 	 * it.  This is all handled in the MII read routine.
2053 	 */
2054 	sc->sc_phyaddr = -1;
2055 
2056 	/* Initialize our media structures and probe the MII. */
2057 	sc->sc_mii.mii_ifp = ifp;
2058 	sc->sc_mii.mii_readreg = pcn_mii_readreg;
2059 	sc->sc_mii.mii_writereg = pcn_mii_writereg;
2060 	sc->sc_mii.mii_statchg = pcn_mii_statchg;
2061 	ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2062 	    pcn_79c971_mediastatus);
2063 
2064 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2065 	    MII_OFFSET_ANY, 0);
2066 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2067 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2068 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2069 	} else
2070 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2071 }
2072 
2073 /*
2074  * pcn_79c971_mediastatus:	[ifmedia interface function]
2075  *
2076  *	Get the current interface media status (Am79c971 version).
2077  */
2078 void
2079 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2080 {
2081 	struct pcn_softc *sc = ifp->if_softc;
2082 
2083 	mii_pollstat(&sc->sc_mii);
2084 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2085 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2086 }
2087 
2088 /*
2089  * pcn_79c971_mediachange:	[ifmedia interface function]
2090  *
2091  *	Set hardware to newly-selected media (Am79c971 version).
2092  */
2093 int
2094 pcn_79c971_mediachange(struct ifnet *ifp)
2095 {
2096 	struct pcn_softc *sc = ifp->if_softc;
2097 
2098 	if (ifp->if_flags & IFF_UP)
2099 		mii_mediachg(&sc->sc_mii);
2100 	return (0);
2101 }
2102 
2103 /*
2104  * pcn_mii_readreg:	[mii interface function]
2105  *
2106  *	Read a PHY register on the MII.
2107  */
2108 int
2109 pcn_mii_readreg(struct device *self, int phy, int reg)
2110 {
2111 	struct pcn_softc *sc = (void *) self;
2112 	uint32_t rv;
2113 
2114 	if (sc->sc_phyaddr != -1 && phy != sc->sc_phyaddr)
2115 		return (0);
2116 
2117 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2118 	rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2119 	if (rv == 0xffff)
2120 		return (0);
2121 
2122 	if (sc->sc_phyaddr == -1)
2123 		sc->sc_phyaddr = phy;
2124 
2125 	return (rv);
2126 }
2127 
2128 /*
2129  * pcn_mii_writereg:	[mii interface function]
2130  *
2131  *	Write a PHY register on the MII.
2132  */
2133 void
2134 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2135 {
2136 	struct pcn_softc *sc = (void *) self;
2137 
2138 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2139 	pcn_bcr_write(sc, LE_BCR34, val);
2140 }
2141 
2142 /*
2143  * pcn_mii_statchg:	[mii interface function]
2144  *
2145  *	Callback from MII layer when media changes.
2146  */
2147 void
2148 pcn_mii_statchg(struct device *self)
2149 {
2150 	struct pcn_softc *sc = (void *) self;
2151 
2152 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2153 		pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2154 	else
2155 		pcn_bcr_write(sc, LE_BCR0, 0);
2156 }
2157