xref: /netbsd/sys/dev/pci/if_pcn.c (revision c4a72b64)
1 /*	$NetBSD: if_pcn.c,v 1.17 2002/10/23 01:50:12 perry Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Device driver for the AMD PCnet-PCI series of Ethernet
40  * chips:
41  *
42  *	* Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43  *	  Local Bus
44  *
45  *	* Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46  *	  for PCI Local Bus
47  *
48  *	* Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49  *	  Ethernet Controller for PCI Local Bus
50  *
51  *	* Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52  *	  with OnNow Support
53  *
54  *	* Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55  *	  Ethernet Controller with Integrated PHY
56  *
57  * This also supports the virtual PCnet-PCI Ethernet interface found
58  * in VMware.
59  *
60  * TODO:
61  *
62  *	* Split this into bus-specific and bus-independent portions.
63  *	  The core could also be used for the ILACC (Am79900) 32-bit
64  *	  Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65  */
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.17 2002/10/23 01:50:12 perry Exp $");
69 
70 #include "bpfilter.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 #include <sys/ioctl.h>
80 #include <sys/errno.h>
81 #include <sys/device.h>
82 #include <sys/queue.h>
83 
84 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
85 
86 #include <net/if.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_ether.h>
90 
91 #if NBPFILTER > 0
92 #include <net/bpf.h>
93 #endif
94 
95 #include <machine/bus.h>
96 #include <machine/intr.h>
97 #include <machine/endian.h>
98 
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101 
102 #include <dev/ic/am79900reg.h>
103 #include <dev/ic/lancereg.h>
104 
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108 
109 #include <dev/pci/if_pcnreg.h>
110 
111 /*
112  * Transmit descriptor list size.  This is arbitrary, but allocate
113  * enough descriptors for 128 pending transmissions, and 4 segments
114  * per packet.  This MUST work out to a power of 2.
115  *
116  * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
117  *
118  * So we play a little trick here.  We give each packet up to 16
119  * DMA segments, but only allocate the max of 512 descriptors.  The
120  * transmit logic can deal with this, we just are hoping to sneak by.
121  */
122 #define	PCN_NTXSEGS		16
123 
124 #define	PCN_TXQUEUELEN		128
125 #define	PCN_TXQUEUELEN_MASK	(PCN_TXQUEUELEN - 1)
126 #define	PCN_NTXDESC		512
127 #define	PCN_NTXDESC_MASK	(PCN_NTXDESC - 1)
128 #define	PCN_NEXTTX(x)		(((x) + 1) & PCN_NTXDESC_MASK)
129 #define	PCN_NEXTTXS(x)		(((x) + 1) & PCN_TXQUEUELEN_MASK)
130 
131 /* Tx interrupt every N + 1 packets. */
132 #define	PCN_TXINTR_MASK		7
133 
134 /*
135  * Receive descriptor list size.  We have one Rx buffer per incoming
136  * packet, so this logic is a little simpler.
137  */
138 #define	PCN_NRXDESC		128
139 #define	PCN_NRXDESC_MASK	(PCN_NRXDESC - 1)
140 #define	PCN_NEXTRX(x)		(((x) + 1) & PCN_NRXDESC_MASK)
141 
142 /*
143  * Control structures are DMA'd to the PCnet chip.  We allocate them in
144  * a single clump that maps to a single DMA segment to make several things
145  * easier.
146  */
147 struct pcn_control_data {
148 	/* The transmit descriptors. */
149 	struct letmd pcd_txdescs[PCN_NTXDESC];
150 
151 	/* The receive descriptors. */
152 	struct lermd pcd_rxdescs[PCN_NRXDESC];
153 
154 	/* The init block. */
155 	struct leinit pcd_initblock;
156 };
157 
158 #define	PCN_CDOFF(x)	offsetof(struct pcn_control_data, x)
159 #define	PCN_CDTXOFF(x)	PCN_CDOFF(pcd_txdescs[(x)])
160 #define	PCN_CDRXOFF(x)	PCN_CDOFF(pcd_rxdescs[(x)])
161 #define	PCN_CDINITOFF	PCN_CDOFF(pcd_initblock)
162 
163 /*
164  * Software state for transmit jobs.
165  */
166 struct pcn_txsoft {
167 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
168 	bus_dmamap_t txs_dmamap;	/* our DMA map */
169 	int txs_firstdesc;		/* first descriptor in packet */
170 	int txs_lastdesc;		/* last descriptor in packet */
171 };
172 
173 /*
174  * Software state for receive jobs.
175  */
176 struct pcn_rxsoft {
177 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
178 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
179 };
180 
181 /*
182  * Description of Rx FIFO watermarks for various revisions.
183  */
184 const char *pcn_79c970_rcvfw[] = {
185 	"16 bytes",
186 	"64 bytes",
187 	"128 bytes",
188 	NULL,
189 };
190 
191 const char *pcn_79c971_rcvfw[] = {
192 	"16 bytes",
193 	"64 bytes",
194 	"112 bytes",
195 	NULL,
196 };
197 
198 /*
199  * Description of Tx start points for various revisions.
200  */
201 const char *pcn_79c970_xmtsp[] = {
202 	"8 bytes",
203 	"64 bytes",
204 	"128 bytes",
205 	"248 bytes",
206 };
207 
208 const char *pcn_79c971_xmtsp[] = {
209 	"20 bytes",
210 	"64 bytes",
211 	"128 bytes",
212 	"248 bytes",
213 };
214 
215 const char *pcn_79c971_xmtsp_sram[] = {
216 	"44 bytes",
217 	"64 bytes",
218 	"128 bytes",
219 	"store-and-forward",
220 };
221 
222 /*
223  * Description of Tx FIFO watermarks for various revisions.
224  */
225 const char *pcn_79c970_xmtfw[] = {
226 	"16 bytes",
227 	"64 bytes",
228 	"128 bytes",
229 	NULL,
230 };
231 
232 const char *pcn_79c971_xmtfw[] = {
233 	"16 bytes",
234 	"64 bytes",
235 	"108 bytes",
236 	NULL,
237 };
238 
239 /*
240  * Software state per device.
241  */
242 struct pcn_softc {
243 	struct device sc_dev;		/* generic device information */
244 	bus_space_tag_t sc_st;		/* bus space tag */
245 	bus_space_handle_t sc_sh;	/* bus space handle */
246 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
247 	struct ethercom sc_ethercom;	/* Ethernet common data */
248 	void *sc_sdhook;		/* shutdown hook */
249 
250 	/* Points to our media routines, etc. */
251 	const struct pcn_variant *sc_variant;
252 
253 	void *sc_ih;			/* interrupt cookie */
254 
255 	struct mii_data sc_mii;		/* MII/media information */
256 
257 	struct callout sc_tick_ch;	/* tick callout */
258 
259 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
260 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
261 
262 	/* Software state for transmit and receive descriptors. */
263 	struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
264 	struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
265 
266 	/* Control data structures */
267 	struct pcn_control_data *sc_control_data;
268 #define	sc_txdescs	sc_control_data->pcd_txdescs
269 #define	sc_rxdescs	sc_control_data->pcd_rxdescs
270 #define	sc_initblock	sc_control_data->pcd_initblock
271 
272 #ifdef PCN_EVENT_COUNTERS
273 	/* Event counters. */
274 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
275 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
276 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
277 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
278 	struct evcnt sc_ev_babl;	/* BABL in pcn_intr() */
279 	struct evcnt sc_ev_miss;	/* MISS in pcn_intr() */
280 	struct evcnt sc_ev_merr;	/* MERR in pcn_intr() */
281 
282 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
283 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
284 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
285 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
286 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
287 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
288 	struct evcnt sc_ev_txcopy;	/* Tx copies required */
289 #endif /* PCN_EVENT_COUNTERS */
290 
291 	const char **sc_rcvfw_desc;	/* Rx FIFO watermark info */
292 	int sc_rcvfw;
293 
294 	const char **sc_xmtsp_desc;	/* Tx start point info */
295 	int sc_xmtsp;
296 
297 	const char **sc_xmtfw_desc;	/* Tx FIFO watermark info */
298 	int sc_xmtfw;
299 
300 	int sc_flags;			/* misc. flags; see below */
301 	int sc_swstyle;			/* the software style in use */
302 
303 	int sc_txfree;			/* number of free Tx descriptors */
304 	int sc_txnext;			/* next ready Tx descriptor */
305 
306 	int sc_txsfree;			/* number of free Tx jobs */
307 	int sc_txsnext;			/* next free Tx job */
308 	int sc_txsdirty;		/* dirty Tx jobs */
309 
310 	int sc_rxptr;			/* next ready Rx descriptor/job */
311 
312 	uint32_t sc_csr5;		/* prototype CSR5 register */
313 	uint32_t sc_mode;		/* prototype MODE register */
314 	int sc_phyaddr;			/* PHY address */
315 };
316 
317 /* sc_flags */
318 #define	PCN_F_HAS_MII		0x0001	/* has MII */
319 
320 #ifdef PCN_EVENT_COUNTERS
321 #define	PCN_EVCNT_INCR(ev)	(ev)->ev_count++
322 #else
323 #define	PCN_EVCNT_INCR(ev)	/* nothing */
324 #endif
325 
326 #define	PCN_CDTXADDR(sc, x)	((sc)->sc_cddma + PCN_CDTXOFF((x)))
327 #define	PCN_CDRXADDR(sc, x)	((sc)->sc_cddma + PCN_CDRXOFF((x)))
328 #define	PCN_CDINITADDR(sc)	((sc)->sc_cddma + PCN_CDINITOFF)
329 
330 #define	PCN_CDTXSYNC(sc, x, n, ops)					\
331 do {									\
332 	int __x, __n;							\
333 									\
334 	__x = (x);							\
335 	__n = (n);							\
336 									\
337 	/* If it will wrap around, sync to the end of the ring. */	\
338 	if ((__x + __n) > PCN_NTXDESC) {				\
339 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
340 		    PCN_CDTXOFF(__x), sizeof(struct letmd) *		\
341 		    (PCN_NTXDESC - __x), (ops));			\
342 		__n -= (PCN_NTXDESC - __x);				\
343 		__x = 0;						\
344 	}								\
345 									\
346 	/* Now sync whatever is left. */				\
347 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
348 	    PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops));	\
349 } while (/*CONSTCOND*/0)
350 
351 #define	PCN_CDRXSYNC(sc, x, ops)					\
352 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
353 	    PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
354 
355 #define	PCN_CDINITSYNC(sc, ops)						\
356 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
357 	    PCN_CDINITOFF, sizeof(struct leinit), (ops))
358 
359 #define	PCN_INIT_RXDESC(sc, x)						\
360 do {									\
361 	struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
362 	struct lermd *__rmd = &(sc)->sc_rxdescs[(x)];			\
363 	struct mbuf *__m = __rxs->rxs_mbuf;				\
364 									\
365 	/*								\
366 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
367 	 * so that the payload after the Ethernet header is aligned	\
368 	 * to a 4-byte boundary.					\
369 	 */								\
370 	__m->m_data = __m->m_ext.ext_buf + 2;				\
371 									\
372 	if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {		\
373 		__rmd->rmd2 =						\
374 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
375 		__rmd->rmd0 = 0;					\
376 	} else {							\
377 		__rmd->rmd2 = 0;					\
378 		__rmd->rmd0 =						\
379 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
380 	}								\
381 	__rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| 			\
382 	    (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK));			\
383 	PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
384 } while(/*CONSTCOND*/0)
385 
386 void	pcn_start(struct ifnet *);
387 void	pcn_watchdog(struct ifnet *);
388 int	pcn_ioctl(struct ifnet *, u_long, caddr_t);
389 int	pcn_init(struct ifnet *);
390 void	pcn_stop(struct ifnet *, int);
391 
392 void	pcn_shutdown(void *);
393 
394 void	pcn_reset(struct pcn_softc *);
395 void	pcn_rxdrain(struct pcn_softc *);
396 int	pcn_add_rxbuf(struct pcn_softc *, int);
397 void	pcn_tick(void *);
398 
399 void	pcn_spnd(struct pcn_softc *);
400 
401 void	pcn_set_filter(struct pcn_softc *);
402 
403 int	pcn_intr(void *);
404 void	pcn_txintr(struct pcn_softc *);
405 int	pcn_rxintr(struct pcn_softc *);
406 
407 int	pcn_mii_readreg(struct device *, int, int);
408 void	pcn_mii_writereg(struct device *, int, int, int);
409 void	pcn_mii_statchg(struct device *);
410 
411 void	pcn_79c970_mediainit(struct pcn_softc *);
412 int	pcn_79c970_mediachange(struct ifnet *);
413 void	pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
414 
415 void	pcn_79c971_mediainit(struct pcn_softc *);
416 int	pcn_79c971_mediachange(struct ifnet *);
417 void	pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
418 
419 /*
420  * Description of a PCnet-PCI variant.  Used to select media access
421  * method, mostly, and to print a nice description of the chip.
422  */
423 const struct pcn_variant {
424 	const char *pcv_desc;
425 	void (*pcv_mediainit)(struct pcn_softc *);
426 	uint16_t pcv_chipid;
427 } pcn_variants[] = {
428 	{ "Am79c970 PCnet-PCI",
429 	  pcn_79c970_mediainit,
430 	  PARTID_Am79c970 },
431 
432 	{ "Am79c970A PCnet-PCI II",
433 	  pcn_79c970_mediainit,
434 	  PARTID_Am79c970A },
435 
436 	{ "Am79c971 PCnet-FAST",
437 	  pcn_79c971_mediainit,
438 	  PARTID_Am79c971 },
439 
440 	{ "Am79c972 PCnet-FAST+",
441 	  pcn_79c971_mediainit,
442 	  PARTID_Am79c972 },
443 
444 	{ "Am79c973 PCnet-FAST III",
445 	  pcn_79c971_mediainit,
446 	  PARTID_Am79c973 },
447 
448 	{ "Am79c975 PCnet-FAST III",
449 	  pcn_79c971_mediainit,
450 	  PARTID_Am79c975 },
451 
452 	{ "Unknown PCnet-PCI variant",
453 	  pcn_79c971_mediainit,
454 	  0 },
455 };
456 
457 int	pcn_copy_small = 0;
458 
459 int	pcn_match(struct device *, struct cfdata *, void *);
460 void	pcn_attach(struct device *, struct device *, void *);
461 
462 CFATTACH_DECL(pcn, sizeof(struct pcn_softc),
463     pcn_match, pcn_attach, NULL, NULL);
464 
465 /*
466  * Routines to read and write the PCnet-PCI CSR/BCR space.
467  */
468 
469 static __inline uint32_t
470 pcn_csr_read(struct pcn_softc *sc, int reg)
471 {
472 
473 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
474 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
475 }
476 
477 static __inline void
478 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
479 {
480 
481 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
482 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
483 }
484 
485 static __inline uint32_t
486 pcn_bcr_read(struct pcn_softc *sc, int reg)
487 {
488 
489 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
490 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
491 }
492 
493 static __inline void
494 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
495 {
496 
497 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
498 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
499 }
500 
501 static const struct pcn_variant *
502 pcn_lookup_variant(uint16_t chipid)
503 {
504 	const struct pcn_variant *pcv;
505 
506 	for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
507 		if (chipid == pcv->pcv_chipid)
508 			return (pcv);
509 	}
510 
511 	/*
512 	 * This covers unknown chips, which we simply treat like
513 	 * a generic PCnet-FAST.
514 	 */
515 	return (pcv);
516 }
517 
518 int
519 pcn_match(struct device *parent, struct cfdata *cf, void *aux)
520 {
521 	struct pci_attach_args *pa = aux;
522 
523 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
524 		return (0);
525 
526 	switch (PCI_PRODUCT(pa->pa_id)) {
527 	case PCI_PRODUCT_AMD_PCNET_PCI:
528 		/* Beat if_le_pci.c */
529 		return (10);
530 	}
531 
532 	return (0);
533 }
534 
535 void
536 pcn_attach(struct device *parent, struct device *self, void *aux)
537 {
538 	struct pcn_softc *sc = (struct pcn_softc *) self;
539 	struct pci_attach_args *pa = aux;
540 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
541 	pci_chipset_tag_t pc = pa->pa_pc;
542 	pci_intr_handle_t ih;
543 	const char *intrstr = NULL;
544 	bus_space_tag_t iot, memt;
545 	bus_space_handle_t ioh, memh;
546 	bus_dma_segment_t seg;
547 	int ioh_valid, memh_valid;
548 	int i, rseg, error;
549 	pcireg_t pmode;
550 	uint32_t chipid, reg;
551 	uint8_t enaddr[ETHER_ADDR_LEN];
552 	int pmreg;
553 
554 	callout_init(&sc->sc_tick_ch);
555 
556 	printf(": AMD PCnet-PCI Ethernet\n");
557 
558 	/*
559 	 * Map the device.
560 	 */
561 	ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
562 	    &iot, &ioh, NULL, NULL) == 0);
563 	memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
564 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
565 	    &memt, &memh, NULL, NULL) == 0);
566 
567 	if (memh_valid) {
568 		sc->sc_st = memt;
569 		sc->sc_sh = memh;
570 	} else if (ioh_valid) {
571 		sc->sc_st = iot;
572 		sc->sc_sh = ioh;
573 	} else {
574 		printf("%s: unable to map device registers\n",
575 		    sc->sc_dev.dv_xname);
576 		return;
577 	}
578 
579 	sc->sc_dmat = pa->pa_dmat;
580 
581 	/* Make sure bus mastering is enabled. */
582 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
583 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
584 	    PCI_COMMAND_MASTER_ENABLE);
585 
586 	/* Get it out of power save mode, if needed. */
587 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
588 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
589 		if (pmode == 3) {
590 			/*
591 			 * The card has lost all configuration data in
592 			 * this state, so punt.
593 			 */
594 			printf("%s: unable to wake from power state D3\n",
595 			    sc->sc_dev.dv_xname);
596 			return;
597 		}
598 		if (pmode != 0) {
599 			printf("%s: waking up from power date D%d\n",
600 			    sc->sc_dev.dv_xname, pmode);
601 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
602 		}
603 	}
604 
605 	/*
606 	 * Reset the chip to a known state.  This also puts the
607 	 * chip into 32-bit mode.
608 	 */
609 	pcn_reset(sc);
610 
611 	/*
612 	 * Read the Ethernet address from the EEPROM.
613 	 */
614 	for (i = 0; i < ETHER_ADDR_LEN; i++)
615 		enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
616 		    PCN32_APROM + i);
617 
618 	/*
619 	 * Now that the device is mapped, attempt to figure out what
620 	 * kind of chip we have.  Note that IDL has all 32 bits of
621 	 * the chip ID when we're in 32-bit mode.
622 	 */
623 	chipid = pcn_csr_read(sc, LE_CSR88);
624 	sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
625 
626 	printf("%s: %s rev %d, Ethernet address %s\n",
627 	    sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
628 	    ether_sprintf(enaddr));
629 
630 	/*
631 	 * Map and establish our interrupt.
632 	 */
633 	if (pci_intr_map(pa, &ih)) {
634 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
635 		return;
636 	}
637 	intrstr = pci_intr_string(pc, ih);
638 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
639 	if (sc->sc_ih == NULL) {
640 		printf("%s: unable to establish interrupt",
641 		    sc->sc_dev.dv_xname);
642 		if (intrstr != NULL)
643 			printf(" at %s", intrstr);
644 		printf("\n");
645 		return;
646 	}
647 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
648 
649 	/*
650 	 * Allocate the control data structures, and create and load the
651 	 * DMA map for it.
652 	 */
653 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
654 	     sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
655 	     0)) != 0) {
656 		printf("%s: unable to allocate control data, error = %d\n",
657 		    sc->sc_dev.dv_xname, error);
658 		goto fail_0;
659 	}
660 
661 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
662 	     sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
663 	     BUS_DMA_COHERENT)) != 0) {
664 		printf("%s: unable to map control data, error = %d\n",
665 		    sc->sc_dev.dv_xname, error);
666 		goto fail_1;
667 	}
668 
669 	if ((error = bus_dmamap_create(sc->sc_dmat,
670 	     sizeof(struct pcn_control_data), 1,
671 	     sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
672 		printf("%s: unable to create control data DMA map, "
673 		    "error = %d\n", sc->sc_dev.dv_xname, error);
674 		goto fail_2;
675 	}
676 
677 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
678 	     sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
679 	     0)) != 0) {
680 		printf("%s: unable to load control data DMA map, error = %d\n",
681 		    sc->sc_dev.dv_xname, error);
682 		goto fail_3;
683 	}
684 
685 	/* Create the transmit buffer DMA maps. */
686 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
687 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
688 		     PCN_NTXSEGS, MCLBYTES, 0, 0,
689 		     &sc->sc_txsoft[i].txs_dmamap)) != 0) {
690 			printf("%s: unable to create tx DMA map %d, "
691 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
692 			goto fail_4;
693 		}
694 	}
695 
696 	/* Create the receive buffer DMA maps. */
697 	for (i = 0; i < PCN_NRXDESC; i++) {
698 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
699 		     MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
700 			printf("%s: unable to create rx DMA map %d, "
701 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
702 			goto fail_5;
703 		}
704 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
705 	}
706 
707 	/* Initialize our media structures. */
708 	(*sc->sc_variant->pcv_mediainit)(sc);
709 
710 	/*
711 	 * Initialize FIFO watermark info.
712 	 */
713 	switch (sc->sc_variant->pcv_chipid) {
714 	case PARTID_Am79c970:
715 	case PARTID_Am79c970A:
716 		sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
717 		sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
718 		sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
719 		break;
720 
721 	default:
722 		sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
723 		/*
724 		 * Read BCR25 to determine how much SRAM is
725 		 * on the board.  If > 0, then we the chip
726 		 * uses different Start Point thresholds.
727 		 *
728 		 * Note BCR25 and BCR26 are loaded from the
729 		 * EEPROM on RST, and unaffected by S_RESET,
730 		 * so we don't really have to worry about
731 		 * them except for this.
732 		 */
733 		reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
734 		if (reg != 0)
735 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
736 		else
737 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
738 		sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
739 		break;
740 	}
741 
742 	/*
743 	 * Set up defaults -- see the tables above for what these
744 	 * values mean.
745 	 *
746 	 * XXX How should we tune RCVFW and XMTFW?
747 	 */
748 	sc->sc_rcvfw = 1;	/* minimum for full-duplex */
749 	sc->sc_xmtsp = 1;
750 	sc->sc_xmtfw = 0;
751 
752 	ifp = &sc->sc_ethercom.ec_if;
753 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
754 	ifp->if_softc = sc;
755 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
756 	ifp->if_ioctl = pcn_ioctl;
757 	ifp->if_start = pcn_start;
758 	ifp->if_watchdog = pcn_watchdog;
759 	ifp->if_init = pcn_init;
760 	ifp->if_stop = pcn_stop;
761 	IFQ_SET_READY(&ifp->if_snd);
762 
763 	/* Attach the interface. */
764 	if_attach(ifp);
765 	ether_ifattach(ifp, enaddr);
766 
767 #ifdef PCN_EVENT_COUNTERS
768 	/* Attach event counters. */
769 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
770 	    NULL, sc->sc_dev.dv_xname, "txsstall");
771 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
772 	    NULL, sc->sc_dev.dv_xname, "txdstall");
773 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
774 	    NULL, sc->sc_dev.dv_xname, "txintr");
775 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
776 	    NULL, sc->sc_dev.dv_xname, "rxintr");
777 	evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
778 	    NULL, sc->sc_dev.dv_xname, "babl");
779 	evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
780 	    NULL, sc->sc_dev.dv_xname, "miss");
781 	evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
782 	    NULL, sc->sc_dev.dv_xname, "merr");
783 
784 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
785 	    NULL, sc->sc_dev.dv_xname, "txseg1");
786 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
787 	    NULL, sc->sc_dev.dv_xname, "txseg2");
788 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
789 	    NULL, sc->sc_dev.dv_xname, "txseg3");
790 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
791 	    NULL, sc->sc_dev.dv_xname, "txseg4");
792 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
793 	    NULL, sc->sc_dev.dv_xname, "txseg5");
794 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
795 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
796 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
797 	    NULL, sc->sc_dev.dv_xname, "txcopy");
798 #endif /* PCN_EVENT_COUNTERS */
799 
800 	/* Make sure the interface is shutdown during reboot. */
801 	sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
802 	if (sc->sc_sdhook == NULL)
803 		printf("%s: WARNING: unable to establish shutdown hook\n",
804 		    sc->sc_dev.dv_xname);
805 	return;
806 
807 	/*
808 	 * Free any resources we've allocated during the failed attach
809 	 * attempt.  Do this in reverse order and fall through.
810 	 */
811  fail_5:
812 	for (i = 0; i < PCN_NRXDESC; i++) {
813 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
814 			bus_dmamap_destroy(sc->sc_dmat,
815 			    sc->sc_rxsoft[i].rxs_dmamap);
816 	}
817  fail_4:
818 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
819 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
820 			bus_dmamap_destroy(sc->sc_dmat,
821 			    sc->sc_txsoft[i].txs_dmamap);
822 	}
823 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
824  fail_3:
825 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
826  fail_2:
827 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
828 	    sizeof(struct pcn_control_data));
829  fail_1:
830 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
831  fail_0:
832 	return;
833 }
834 
835 /*
836  * pcn_shutdown:
837  *
838  *	Make sure the interface is stopped at reboot time.
839  */
840 void
841 pcn_shutdown(void *arg)
842 {
843 	struct pcn_softc *sc = arg;
844 
845 	pcn_stop(&sc->sc_ethercom.ec_if, 1);
846 }
847 
848 /*
849  * pcn_start:		[ifnet interface function]
850  *
851  *	Start packet transmission on the interface.
852  */
853 void
854 pcn_start(struct ifnet *ifp)
855 {
856 	struct pcn_softc *sc = ifp->if_softc;
857 	struct mbuf *m0, *m;
858 	struct pcn_txsoft *txs;
859 	bus_dmamap_t dmamap;
860 	int error, nexttx, lasttx, ofree, seg;
861 
862 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
863 		return;
864 
865 	/*
866 	 * Remember the previous number of free descriptors and
867 	 * the first descriptor we'll use.
868 	 */
869 	ofree = sc->sc_txfree;
870 
871 	/*
872 	 * Loop through the send queue, setting up transmit descriptors
873 	 * until we drain the queue, or use up all available transmit
874 	 * descriptors.
875 	 */
876 	for (;;) {
877 		/* Grab a packet off the queue. */
878 		IFQ_POLL(&ifp->if_snd, m0);
879 		if (m0 == NULL)
880 			break;
881 		m = NULL;
882 
883 		/* Get a work queue entry. */
884 		if (sc->sc_txsfree == 0) {
885 			PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
886 			break;
887 		}
888 
889 		txs = &sc->sc_txsoft[sc->sc_txsnext];
890 		dmamap = txs->txs_dmamap;
891 
892 		/*
893 		 * Load the DMA map.  If this fails, the packet either
894 		 * didn't fit in the alloted number of segments, or we
895 		 * were short on resources.  In this case, we'll copy
896 		 * and try again.
897 		 */
898 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
899 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
900 			PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
901 			MGETHDR(m, M_DONTWAIT, MT_DATA);
902 			if (m == NULL) {
903 				printf("%s: unable to allocate Tx mbuf\n",
904 				    sc->sc_dev.dv_xname);
905 				break;
906 			}
907 			if (m0->m_pkthdr.len > MHLEN) {
908 				MCLGET(m, M_DONTWAIT);
909 				if ((m->m_flags & M_EXT) == 0) {
910 					printf("%s: unable to allocate Tx "
911 					    "cluster\n", sc->sc_dev.dv_xname);
912 					m_freem(m);
913 					break;
914 				}
915 			}
916 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
917 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
918 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
919 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
920 			if (error) {
921 				printf("%s: unable to load Tx buffer, "
922 				    "error = %d\n", sc->sc_dev.dv_xname, error);
923 				break;
924 			}
925 		}
926 
927 		/*
928 		 * Ensure we have enough descriptors free to describe
929 		 * the packet.  Note, we always reserve one descriptor
930 		 * at the end of the ring as a termination point, to
931 		 * prevent wrap-around.
932 		 */
933 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
934 			/*
935 			 * Not enough free descriptors to transmit this
936 			 * packet.  We haven't committed anything yet,
937 			 * so just unload the DMA map, put the packet
938 			 * back on the queue, and punt.  Notify the upper
939 			 * layer that there are not more slots left.
940 			 *
941 			 * XXX We could allocate an mbuf and copy, but
942 			 * XXX is it worth it?
943 			 */
944 			ifp->if_flags |= IFF_OACTIVE;
945 			bus_dmamap_unload(sc->sc_dmat, dmamap);
946 			if (m != NULL)
947 				m_freem(m);
948 			PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
949 			break;
950 		}
951 
952 		IFQ_DEQUEUE(&ifp->if_snd, m0);
953 		if (m != NULL) {
954 			m_freem(m0);
955 			m0 = m;
956 		}
957 
958 		/*
959 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
960 		 */
961 
962 		/* Sync the DMA map. */
963 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
964 		    BUS_DMASYNC_PREWRITE);
965 
966 #ifdef PCN_EVENT_COUNTERS
967 		switch (dmamap->dm_nsegs) {
968 		case 1:
969 			PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
970 			break;
971 		case 2:
972 			PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
973 			break;
974 		case 3:
975 			PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
976 			break;
977 		case 4:
978 			PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
979 			break;
980 		case 5:
981 			PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
982 			break;
983 		default:
984 			PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
985 			break;
986 		}
987 #endif /* PCN_EVENT_COUNTERS */
988 
989 		/*
990 		 * Initialize the transmit descriptors.
991 		 */
992 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
993 			for (nexttx = sc->sc_txnext, seg = 0;
994 			     seg < dmamap->dm_nsegs;
995 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
996 				/*
997 				 * If this is the first descriptor we're
998 				 * enqueueing, don't set the OWN bit just
999 				 * yet.  That could cause a race condition.
1000 				 * We'll do it below.
1001 				 */
1002 				sc->sc_txdescs[nexttx].tmd0 = 0;
1003 				sc->sc_txdescs[nexttx].tmd2 =
1004 				    htole32(dmamap->dm_segs[seg].ds_addr);
1005 				sc->sc_txdescs[nexttx].tmd1 =
1006 				    htole32(LE_T1_ONES |
1007 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1008 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1009 				     LE_T1_BCNT_MASK));
1010 				lasttx = nexttx;
1011 			}
1012 		} else {
1013 			for (nexttx = sc->sc_txnext, seg = 0;
1014 			     seg < dmamap->dm_nsegs;
1015 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
1016 				/*
1017 				 * If this is the first descriptor we're
1018 				 * enqueueing, don't set the OWN bit just
1019 				 * yet.  That could cause a race condition.
1020 				 * We'll do it below.
1021 				 */
1022 				sc->sc_txdescs[nexttx].tmd0 =
1023 				    htole32(dmamap->dm_segs[seg].ds_addr);
1024 				sc->sc_txdescs[nexttx].tmd2 = 0;
1025 				sc->sc_txdescs[nexttx].tmd1 =
1026 				    htole32(LE_T1_ONES |
1027 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1028 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1029 				     LE_T1_BCNT_MASK));
1030 				lasttx = nexttx;
1031 			}
1032 		}
1033 
1034 		/* Interrupt on the packet, if appropriate. */
1035 		if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1036 			sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1037 
1038 		/* Set `start of packet' and `end of packet' appropriately. */
1039 		sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1040 		sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1041 		    htole32(LE_T1_OWN|LE_T1_STP);
1042 
1043 		/* Sync the descriptors we're using. */
1044 		PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1045 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1046 
1047 		/* Kick the transmitter. */
1048 		pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1049 
1050 		/*
1051 		 * Store a pointer to the packet so we can free it later,
1052 		 * and remember what txdirty will be once the packet is
1053 		 * done.
1054 		 */
1055 		txs->txs_mbuf = m0;
1056 		txs->txs_firstdesc = sc->sc_txnext;
1057 		txs->txs_lastdesc = lasttx;
1058 
1059 		/* Advance the tx pointer. */
1060 		sc->sc_txfree -= dmamap->dm_nsegs;
1061 		sc->sc_txnext = nexttx;
1062 
1063 		sc->sc_txsfree--;
1064 		sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1065 
1066 #if NBPFILTER > 0
1067 		/* Pass the packet to any BPF listeners. */
1068 		if (ifp->if_bpf)
1069 			bpf_mtap(ifp->if_bpf, m0);
1070 #endif /* NBPFILTER > 0 */
1071 	}
1072 
1073 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1074 		/* No more slots left; notify upper layer. */
1075 		ifp->if_flags |= IFF_OACTIVE;
1076 	}
1077 
1078 	if (sc->sc_txfree != ofree) {
1079 		/* Set a watchdog timer in case the chip flakes out. */
1080 		ifp->if_timer = 5;
1081 	}
1082 }
1083 
1084 /*
1085  * pcn_watchdog:	[ifnet interface function]
1086  *
1087  *	Watchdog timer handler.
1088  */
1089 void
1090 pcn_watchdog(struct ifnet *ifp)
1091 {
1092 	struct pcn_softc *sc = ifp->if_softc;
1093 
1094 	/*
1095 	 * Since we're not interrupting every packet, sweep
1096 	 * up before we report an error.
1097 	 */
1098 	pcn_txintr(sc);
1099 
1100 	if (sc->sc_txfree != PCN_NTXDESC) {
1101 		printf("%s: device timeout (txfree %d txsfree %d)\n",
1102 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1103 		ifp->if_oerrors++;
1104 
1105 		/* Reset the interface. */
1106 		(void) pcn_init(ifp);
1107 	}
1108 
1109 	/* Try to get more packets going. */
1110 	pcn_start(ifp);
1111 }
1112 
1113 /*
1114  * pcn_ioctl:		[ifnet interface function]
1115  *
1116  *	Handle control requests from the operator.
1117  */
1118 int
1119 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1120 {
1121 	struct pcn_softc *sc = ifp->if_softc;
1122 	struct ifreq *ifr = (struct ifreq *) data;
1123 	int s, error;
1124 
1125 	s = splnet();
1126 
1127 	switch (cmd) {
1128 	case SIOCSIFMEDIA:
1129 	case SIOCGIFMEDIA:
1130 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1131 		break;
1132 
1133 	default:
1134 		error = ether_ioctl(ifp, cmd, data);
1135 		if (error == ENETRESET) {
1136 			/*
1137 			 * Multicast list has changed; set the hardware filter
1138 			 * accordingly.
1139 			 */
1140 			error = pcn_init(ifp);
1141 		}
1142 		break;
1143 	}
1144 
1145 	/* Try to get more packets going. */
1146 	pcn_start(ifp);
1147 
1148 	splx(s);
1149 	return (error);
1150 }
1151 
1152 /*
1153  * pcn_intr:
1154  *
1155  *	Interrupt service routine.
1156  */
1157 int
1158 pcn_intr(void *arg)
1159 {
1160 	struct pcn_softc *sc = arg;
1161 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1162 	uint32_t csr0;
1163 	int wantinit, handled = 0;
1164 
1165 	for (wantinit = 0; wantinit == 0;) {
1166 		csr0 = pcn_csr_read(sc, LE_CSR0);
1167 		if ((csr0 & LE_C0_INTR) == 0)
1168 			break;
1169 
1170 		/* ACK the bits and re-enable interrupts. */
1171 		pcn_csr_write(sc, LE_CSR0, csr0 &
1172 		    (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1173 		     LE_C0_TINT|LE_C0_IDON));
1174 
1175 		handled = 1;
1176 
1177 		if (csr0 & LE_C0_RINT) {
1178 			PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1179 			wantinit = pcn_rxintr(sc);
1180 		}
1181 
1182 		if (csr0 & LE_C0_TINT) {
1183 			PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1184 			pcn_txintr(sc);
1185 		}
1186 
1187 		if (csr0 & LE_C0_ERR) {
1188 			if (csr0 & LE_C0_BABL) {
1189 				PCN_EVCNT_INCR(&sc->sc_ev_babl);
1190 				ifp->if_oerrors++;
1191 			}
1192 			if (csr0 & LE_C0_MISS) {
1193 				PCN_EVCNT_INCR(&sc->sc_ev_miss);
1194 				ifp->if_ierrors++;
1195 			}
1196 			if (csr0 & LE_C0_MERR) {
1197 				PCN_EVCNT_INCR(&sc->sc_ev_merr);
1198 				printf("%s: memory error\n",
1199 				    sc->sc_dev.dv_xname);
1200 				wantinit = 1;
1201 				break;
1202 			}
1203 		}
1204 
1205 		if ((csr0 & LE_C0_RXON) == 0) {
1206 			printf("%s: receiver disabled\n",
1207 			    sc->sc_dev.dv_xname);
1208 			ifp->if_ierrors++;
1209 			wantinit = 1;
1210 		}
1211 
1212 		if ((csr0 & LE_C0_TXON) == 0) {
1213 			printf("%s: transmitter disabled\n",
1214 			    sc->sc_dev.dv_xname);
1215 			ifp->if_oerrors++;
1216 			wantinit = 1;
1217 		}
1218 	}
1219 
1220 	if (handled) {
1221 		if (wantinit)
1222 			pcn_init(ifp);
1223 
1224 		/* Try to get more packets going. */
1225 		pcn_start(ifp);
1226 	}
1227 
1228 	return (handled);
1229 }
1230 
1231 /*
1232  * pcn_spnd:
1233  *
1234  *	Suspend the chip.
1235  */
1236 void
1237 pcn_spnd(struct pcn_softc *sc)
1238 {
1239 	int i;
1240 
1241 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1242 
1243 	for (i = 0; i < 10000; i++) {
1244 		if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1245 			return;
1246 		delay(5);
1247 	}
1248 
1249 	printf("%s: WARNING: chip failed to enter suspended state\n",
1250 	    sc->sc_dev.dv_xname);
1251 }
1252 
1253 /*
1254  * pcn_txintr:
1255  *
1256  *	Helper; handle transmit interrupts.
1257  */
1258 void
1259 pcn_txintr(struct pcn_softc *sc)
1260 {
1261 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1262 	struct pcn_txsoft *txs;
1263 	uint32_t tmd1, tmd2, tmd;
1264 	int i, j;
1265 
1266 	ifp->if_flags &= ~IFF_OACTIVE;
1267 
1268 	/*
1269 	 * Go through our Tx list and free mbufs for those
1270 	 * frames which have been transmitted.
1271 	 */
1272 	for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1273 	     i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1274 		txs = &sc->sc_txsoft[i];
1275 
1276 		PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1277 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1278 
1279 		tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1280 		if (tmd1 & LE_T1_OWN)
1281 			break;
1282 
1283 		/*
1284 		 * Slightly annoying -- we have to loop through the
1285 		 * descriptors we've used looking for ERR, since it
1286 		 * can appear on any descriptor in the chain.
1287 		 */
1288 		for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1289 			tmd = le32toh(sc->sc_txdescs[j].tmd1);
1290 			if (tmd & LE_T1_ERR) {
1291 				ifp->if_oerrors++;
1292 				if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1293 					tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1294 				else
1295 					tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1296 				if (tmd2 & LE_T2_UFLO) {
1297 					if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1298 						sc->sc_xmtsp++;
1299 						printf("%s: transmit "
1300 						    "underrun; new threshold: "
1301 						    "%s\n",
1302 						    sc->sc_dev.dv_xname,
1303 						    sc->sc_xmtsp_desc[
1304 						    sc->sc_xmtsp]);
1305 						pcn_spnd(sc);
1306 						pcn_csr_write(sc, LE_CSR80,
1307 						    LE_C80_RCVFW(sc->sc_rcvfw) |
1308 						    LE_C80_XMTSP(sc->sc_xmtsp) |
1309 						    LE_C80_XMTFW(sc->sc_xmtfw));
1310 						pcn_csr_write(sc, LE_CSR5,
1311 						    sc->sc_csr5);
1312 					} else {
1313 						printf("%s: transmit "
1314 						    "underrun\n",
1315 						    sc->sc_dev.dv_xname);
1316 					}
1317 				} else if (tmd2 & LE_T2_BUFF) {
1318 					printf("%s: transmit buffer error\n",
1319 					    sc->sc_dev.dv_xname);
1320 				}
1321 				if (tmd2 & LE_T2_LCOL)
1322 					ifp->if_collisions++;
1323 				if (tmd2 & LE_T2_RTRY)
1324 					ifp->if_collisions += 16;
1325 				goto next_packet;
1326 			}
1327 			if (j == txs->txs_lastdesc)
1328 				break;
1329 		}
1330 		if (tmd1 & LE_T1_ONE)
1331 			ifp->if_collisions++;
1332 		else if (tmd & LE_T1_MORE) {
1333 			/* Real number is unknown. */
1334 			ifp->if_collisions += 2;
1335 		}
1336 		ifp->if_opackets++;
1337  next_packet:
1338 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1339 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1340 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1341 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1342 		m_freem(txs->txs_mbuf);
1343 		txs->txs_mbuf = NULL;
1344 	}
1345 
1346 	/* Update the dirty transmit buffer pointer. */
1347 	sc->sc_txsdirty = i;
1348 
1349 	/*
1350 	 * If there are no more pending transmissions, cancel the watchdog
1351 	 * timer.
1352 	 */
1353 	if (sc->sc_txsfree == PCN_TXQUEUELEN)
1354 		ifp->if_timer = 0;
1355 }
1356 
1357 /*
1358  * pcn_rxintr:
1359  *
1360  *	Helper; handle receive interrupts.
1361  */
1362 int
1363 pcn_rxintr(struct pcn_softc *sc)
1364 {
1365 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1366 	struct pcn_rxsoft *rxs;
1367 	struct mbuf *m;
1368 	uint32_t rmd1;
1369 	int i, len;
1370 
1371 	for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1372 		rxs = &sc->sc_rxsoft[i];
1373 
1374 		PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1375 
1376 		rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1377 
1378 		if (rmd1 & LE_R1_OWN)
1379 			break;
1380 
1381 		/*
1382 		 * Check for errors and make sure the packet fit into
1383 		 * a single buffer.  We have structured this block of
1384 		 * code the way it is in order to compress it into
1385 		 * one test in the common case (no error).
1386 		 */
1387 		if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1388 		    (LE_R1_STP|LE_R1_ENP))) {
1389 			/* Make sure the packet is in a single buffer. */
1390 			if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1391 			    (LE_R1_STP|LE_R1_ENP)) {
1392 				printf("%s: packet spilled into next buffer\n",
1393 				    sc->sc_dev.dv_xname);
1394 				return (1);	/* pcn_intr() will re-init */
1395 			}
1396 
1397 			/*
1398 			 * If the packet had an error, simple recycle the
1399 			 * buffer.
1400 			 */
1401 			if (rmd1 & LE_R1_ERR) {
1402 				ifp->if_ierrors++;
1403 				/*
1404 				 * If we got an overflow error, chances
1405 				 * are there will be a CRC error.  In
1406 				 * this case, just print the overflow
1407 				 * error, and skip the others.
1408 				 */
1409 				if (rmd1 & LE_R1_OFLO)
1410 					printf("%s: overflow error\n",
1411 					    sc->sc_dev.dv_xname);
1412 				else {
1413 #define	PRINTIT(x, str)							\
1414 					if (rmd1 & (x))			\
1415 						printf("%s: %s\n",	\
1416 						    sc->sc_dev.dv_xname, str);
1417 					PRINTIT(LE_R1_FRAM, "framing error");
1418 					PRINTIT(LE_R1_CRC, "CRC error");
1419 					PRINTIT(LE_R1_BUFF, "buffer error");
1420 				}
1421 #undef PRINTIT
1422 				PCN_INIT_RXDESC(sc, i);
1423 				continue;
1424 			}
1425 		}
1426 
1427 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1428 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1429 
1430 		/*
1431 		 * No errors; receive the packet.
1432 		 */
1433 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1434 			len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1435 		else
1436 			len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1437 
1438 		/*
1439 		 * The LANCE family includes the CRC with every packet;
1440 		 * trim it off here.
1441 		 */
1442 		len -= ETHER_CRC_LEN;
1443 
1444 		/*
1445 		 * If the packet is small enough to fit in a
1446 		 * single header mbuf, allocate one and copy
1447 		 * the data into it.  This greatly reduces
1448 		 * memory consumption when we receive lots
1449 		 * of small packets.
1450 		 *
1451 		 * Otherwise, we add a new buffer to the receive
1452 		 * chain.  If this fails, we drop the packet and
1453 		 * recycle the old buffer.
1454 		 */
1455 		if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1456 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1457 			if (m == NULL)
1458 				goto dropit;
1459 			m->m_data += 2;
1460 			memcpy(mtod(m, caddr_t),
1461 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1462 			PCN_INIT_RXDESC(sc, i);
1463 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1464 			    rxs->rxs_dmamap->dm_mapsize,
1465 			    BUS_DMASYNC_PREREAD);
1466 		} else {
1467 			m = rxs->rxs_mbuf;
1468 			if (pcn_add_rxbuf(sc, i) != 0) {
1469  dropit:
1470 				ifp->if_ierrors++;
1471 				PCN_INIT_RXDESC(sc, i);
1472 				bus_dmamap_sync(sc->sc_dmat,
1473 				    rxs->rxs_dmamap, 0,
1474 				    rxs->rxs_dmamap->dm_mapsize,
1475 				    BUS_DMASYNC_PREREAD);
1476 				continue;
1477 			}
1478 		}
1479 
1480 		m->m_pkthdr.rcvif = ifp;
1481 		m->m_pkthdr.len = m->m_len = len;
1482 
1483 #if NBPFILTER > 0
1484 		/* Pass this up to any BPF listeners. */
1485 		if (ifp->if_bpf)
1486 			bpf_mtap(ifp->if_bpf, m);
1487 #endif /* NBPFILTER > 0 */
1488 
1489 		/* Pass it on. */
1490 		(*ifp->if_input)(ifp, m);
1491 		ifp->if_ipackets++;
1492 	}
1493 
1494 	/* Update the receive pointer. */
1495 	sc->sc_rxptr = i;
1496 	return (0);
1497 }
1498 
1499 /*
1500  * pcn_tick:
1501  *
1502  *	One second timer, used to tick the MII.
1503  */
1504 void
1505 pcn_tick(void *arg)
1506 {
1507 	struct pcn_softc *sc = arg;
1508 	int s;
1509 
1510 	s = splnet();
1511 	mii_tick(&sc->sc_mii);
1512 	splx(s);
1513 
1514 	callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1515 }
1516 
1517 /*
1518  * pcn_reset:
1519  *
1520  *	Perform a soft reset on the PCnet-PCI.
1521  */
1522 void
1523 pcn_reset(struct pcn_softc *sc)
1524 {
1525 
1526 	/*
1527 	 * The PCnet-PCI chip is reset by reading from the
1528 	 * RESET register.  Note that while the NE2100 LANCE
1529 	 * boards require a write after the read, the PCnet-PCI
1530 	 * chips do not require this.
1531 	 *
1532 	 * Since we don't know if we're in 16-bit or 32-bit
1533 	 * mode right now, issue both (it's safe) in the
1534 	 * hopes that one will succeed.
1535 	 */
1536 	(void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1537 	(void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1538 
1539 	/* Wait 1ms for it to finish. */
1540 	delay(1000);
1541 
1542 	/*
1543 	 * Select 32-bit I/O mode by issuing a 32-bit write to the
1544 	 * RDP.  Since the RAP is 0 after a reset, writing a 0
1545 	 * to RDP is safe (since it simply clears CSR0).
1546 	 */
1547 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1548 }
1549 
1550 /*
1551  * pcn_init:		[ifnet interface function]
1552  *
1553  *	Initialize the interface.  Must be called at splnet().
1554  */
1555 int
1556 pcn_init(struct ifnet *ifp)
1557 {
1558 	struct pcn_softc *sc = ifp->if_softc;
1559 	struct pcn_rxsoft *rxs;
1560 	uint8_t *enaddr = LLADDR(ifp->if_sadl);
1561 	int i, error = 0;
1562 	uint32_t reg;
1563 
1564 	/* Cancel any pending I/O. */
1565 	pcn_stop(ifp, 0);
1566 
1567 	/* Reset the chip to a known state. */
1568 	pcn_reset(sc);
1569 
1570 	/*
1571 	 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1572 	 * else.
1573 	 *
1574 	 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1575 	 * because the structure layout is compatible with ILACC,
1576 	 * but the burst mode is only available in SSTYLE 3, and
1577 	 * burst mode should provide some performance enhancement.
1578 	 */
1579 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1580 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1581 	else
1582 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1583 	pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1584 
1585 	/* Initialize the transmit descriptor ring. */
1586 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1587 	PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1588 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1589 	sc->sc_txfree = PCN_NTXDESC;
1590 	sc->sc_txnext = 0;
1591 
1592 	/* Initialize the transmit job descriptors. */
1593 	for (i = 0; i < PCN_TXQUEUELEN; i++)
1594 		sc->sc_txsoft[i].txs_mbuf = NULL;
1595 	sc->sc_txsfree = PCN_TXQUEUELEN;
1596 	sc->sc_txsnext = 0;
1597 	sc->sc_txsdirty = 0;
1598 
1599 	/*
1600 	 * Initialize the receive descriptor and receive job
1601 	 * descriptor rings.
1602 	 */
1603 	for (i = 0; i < PCN_NRXDESC; i++) {
1604 		rxs = &sc->sc_rxsoft[i];
1605 		if (rxs->rxs_mbuf == NULL) {
1606 			if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1607 				printf("%s: unable to allocate or map rx "
1608 				    "buffer %d, error = %d\n",
1609 				    sc->sc_dev.dv_xname, i, error);
1610 				/*
1611 				 * XXX Should attempt to run with fewer receive
1612 				 * XXX buffers instead of just failing.
1613 				 */
1614 				pcn_rxdrain(sc);
1615 				goto out;
1616 			}
1617 		} else
1618 			PCN_INIT_RXDESC(sc, i);
1619 	}
1620 	sc->sc_rxptr = 0;
1621 
1622 	/* Initialize MODE for the initialization block. */
1623 	sc->sc_mode = 0;
1624 	if (ifp->if_flags & IFF_PROMISC)
1625 		sc->sc_mode |= LE_C15_PROM;
1626 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
1627 		sc->sc_mode |= LE_C15_DRCVBC;
1628 
1629 	/*
1630 	 * If we have MII, simply select MII in the MODE register,
1631 	 * and clear ASEL.  Otherwise, let ASEL stand (for now),
1632 	 * and leave PORTSEL alone (it is ignored with ASEL is set).
1633 	 */
1634 	if (sc->sc_flags & PCN_F_HAS_MII) {
1635 		pcn_bcr_write(sc, LE_BCR2,
1636 		    pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1637 		sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1638 
1639 		/*
1640 		 * Disable MII auto-negotiation.  We handle that in
1641 		 * our own MII layer.
1642 		 */
1643 		pcn_bcr_write(sc, LE_BCR32,
1644 		    pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1645 	}
1646 
1647 	/*
1648 	 * Set the Tx and Rx descriptor ring addresses in the init
1649 	 * block, the TLEN and RLEN other fields of the init block
1650 	 * MODE register.
1651 	 */
1652 	sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1653 	sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1654 	sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1655 	    ((ffs(PCN_NTXDESC) - 1) << 28) |
1656 	    ((ffs(PCN_NRXDESC) - 1) << 20));
1657 
1658 	/* Set the station address in the init block. */
1659 	sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1660 	    (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1661 	sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1662 	    (enaddr[5] << 8));
1663 
1664 	/* Set the multicast filter in the init block. */
1665 	pcn_set_filter(sc);
1666 
1667 	/* Initialize CSR3. */
1668 	pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1669 
1670 	/* Initialize CSR4. */
1671 	pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1672 	    LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1673 
1674 	/* Initialize CSR5. */
1675 	sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1676 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1677 
1678 	/*
1679 	 * If we have an Am79c971 or greater, initialize CSR7.
1680 	 *
1681 	 * XXX Might be nice to use the MII auto-poll interrupt someday.
1682 	 */
1683 	switch (sc->sc_variant->pcv_chipid) {
1684 	case PARTID_Am79c970:
1685 	case PARTID_Am79c970A:
1686 		/* Not available on these chips. */
1687 		break;
1688 
1689 	default:
1690 		pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1691 		break;
1692 	}
1693 
1694 	/*
1695 	 * On the Am79c970A and greater, initialize BCR18 to
1696 	 * enable burst mode.
1697 	 *
1698 	 * Also enable the "no underflow" option on the Am79c971 and
1699 	 * higher, which prevents the chip from generating transmit
1700 	 * underflows, yet sill provides decent performance.  Note if
1701 	 * chip is not connected to external SRAM, then we still have
1702 	 * to handle underflow errors (the NOUFLO bit is ignored in
1703 	 * that case).
1704 	 */
1705 	reg = pcn_bcr_read(sc, LE_BCR18);
1706 	switch (sc->sc_variant->pcv_chipid) {
1707 	case PARTID_Am79c970:
1708 		break;
1709 
1710 	case PARTID_Am79c970A:
1711 		reg |= LE_B18_BREADE|LE_B18_BWRITE;
1712 		break;
1713 
1714 	default:
1715 		reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1716 		break;
1717 	}
1718 	pcn_bcr_write(sc, LE_BCR18, reg);
1719 
1720 	/*
1721 	 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1722 	 */
1723 	pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1724 	    LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1725 
1726 	/*
1727 	 * Send the init block to the chip, and wait for it
1728 	 * to be processed.
1729 	 */
1730 	PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1731 	pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1732 	pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1733 	pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1734 	delay(100);
1735 	for (i = 0; i < 10000; i++) {
1736 		if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1737 			break;
1738 		delay(10);
1739 	}
1740 	PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1741 	if (i == 10000) {
1742 		printf("%s: timeout processing init block\n",
1743 		    sc->sc_dev.dv_xname);
1744 		error = EIO;
1745 		goto out;
1746 	}
1747 
1748 	/* Set the media. */
1749 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1750 
1751 	/* Enable interrupts and external activity (and ACK IDON). */
1752 	pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1753 
1754 	if (sc->sc_flags & PCN_F_HAS_MII) {
1755 		/* Start the one second MII clock. */
1756 		callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1757 	}
1758 
1759 	/* ...all done! */
1760 	ifp->if_flags |= IFF_RUNNING;
1761 	ifp->if_flags &= ~IFF_OACTIVE;
1762 
1763  out:
1764 	if (error)
1765 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1766 	return (error);
1767 }
1768 
1769 /*
1770  * pcn_rxdrain:
1771  *
1772  *	Drain the receive queue.
1773  */
1774 void
1775 pcn_rxdrain(struct pcn_softc *sc)
1776 {
1777 	struct pcn_rxsoft *rxs;
1778 	int i;
1779 
1780 	for (i = 0; i < PCN_NRXDESC; i++) {
1781 		rxs = &sc->sc_rxsoft[i];
1782 		if (rxs->rxs_mbuf != NULL) {
1783 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1784 			m_freem(rxs->rxs_mbuf);
1785 			rxs->rxs_mbuf = NULL;
1786 		}
1787 	}
1788 }
1789 
1790 /*
1791  * pcn_stop:		[ifnet interface function]
1792  *
1793  *	Stop transmission on the interface.
1794  */
1795 void
1796 pcn_stop(struct ifnet *ifp, int disable)
1797 {
1798 	struct pcn_softc *sc = ifp->if_softc;
1799 	struct pcn_txsoft *txs;
1800 	int i;
1801 
1802 	if (sc->sc_flags & PCN_F_HAS_MII) {
1803 		/* Stop the one second clock. */
1804 		callout_stop(&sc->sc_tick_ch);
1805 
1806 		/* Down the MII. */
1807 		mii_down(&sc->sc_mii);
1808 	}
1809 
1810 	/* Stop the chip. */
1811 	pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1812 
1813 	/* Release any queued transmit buffers. */
1814 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
1815 		txs = &sc->sc_txsoft[i];
1816 		if (txs->txs_mbuf != NULL) {
1817 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1818 			m_freem(txs->txs_mbuf);
1819 			txs->txs_mbuf = NULL;
1820 		}
1821 	}
1822 
1823 	if (disable)
1824 		pcn_rxdrain(sc);
1825 
1826 	/* Mark the interface as down and cancel the watchdog timer. */
1827 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1828 	ifp->if_timer = 0;
1829 }
1830 
1831 /*
1832  * pcn_add_rxbuf:
1833  *
1834  *	Add a receive buffer to the indicated descriptor.
1835  */
1836 int
1837 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1838 {
1839 	struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1840 	struct mbuf *m;
1841 	int error;
1842 
1843 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1844 	if (m == NULL)
1845 		return (ENOBUFS);
1846 
1847 	MCLGET(m, M_DONTWAIT);
1848 	if ((m->m_flags & M_EXT) == 0) {
1849 		m_freem(m);
1850 		return (ENOBUFS);
1851 	}
1852 
1853 	if (rxs->rxs_mbuf != NULL)
1854 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1855 
1856 	rxs->rxs_mbuf = m;
1857 
1858 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1859 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1860 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1861 	if (error) {
1862 		printf("%s: can't load rx DMA map %d, error = %d\n",
1863 		    sc->sc_dev.dv_xname, idx, error);
1864 		panic("pcn_add_rxbuf");
1865 	}
1866 
1867 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1868 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1869 
1870 	PCN_INIT_RXDESC(sc, idx);
1871 
1872 	return (0);
1873 }
1874 
1875 /*
1876  * pcn_set_filter:
1877  *
1878  *	Set up the receive filter.
1879  */
1880 void
1881 pcn_set_filter(struct pcn_softc *sc)
1882 {
1883 	struct ethercom *ec = &sc->sc_ethercom;
1884 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1885 	struct ether_multi *enm;
1886 	struct ether_multistep step;
1887 	uint32_t crc;
1888 
1889 	/*
1890 	 * Set up the multicast address filter by passing all multicast
1891 	 * addresses through a CRC generator, and then using the high
1892 	 * order 6 bits as an index into the 64-bit logical address
1893 	 * filter.  The high order bits select the word, while the rest
1894 	 * of the bits select the bit within the word.
1895 	 */
1896 
1897 	if (ifp->if_flags & IFF_PROMISC)
1898 		goto allmulti;
1899 
1900 	sc->sc_initblock.init_ladrf[0] =
1901 	    sc->sc_initblock.init_ladrf[1] =
1902 	    sc->sc_initblock.init_ladrf[2] =
1903 	    sc->sc_initblock.init_ladrf[3] = 0;
1904 
1905 	ETHER_FIRST_MULTI(step, ec, enm);
1906 	while (enm != NULL) {
1907 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1908 			/*
1909 			 * We must listen to a range of multicast addresses.
1910 			 * For now, just accept all multicasts, rather than
1911 			 * trying to set only those filter bits needed to match
1912 			 * the range.  (At this time, the only use of address
1913 			 * ranges is for IP multicast routing, for which the
1914 			 * range is big enough to require all bits set.)
1915 			 */
1916 			goto allmulti;
1917 		}
1918 
1919 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1920 
1921 		/* Just want the 6 most significant bits. */
1922 		crc >>= 26;
1923 
1924 		/* Set the corresponding bit in the filter. */
1925 		sc->sc_initblock.init_ladrf[crc >> 4] |=
1926 		    htole16(1 << (crc & 0xf));
1927 
1928 		ETHER_NEXT_MULTI(step, enm);
1929 	}
1930 
1931 	ifp->if_flags &= ~IFF_ALLMULTI;
1932 	return;
1933 
1934  allmulti:
1935 	ifp->if_flags |= IFF_ALLMULTI;
1936 	sc->sc_initblock.init_ladrf[0] =
1937 	    sc->sc_initblock.init_ladrf[1] =
1938 	    sc->sc_initblock.init_ladrf[2] =
1939 	    sc->sc_initblock.init_ladrf[3] = 0xffff;
1940 }
1941 
1942 /*
1943  * pcn_79c970_mediainit:
1944  *
1945  *	Initialize media for the Am79c970.
1946  */
1947 void
1948 pcn_79c970_mediainit(struct pcn_softc *sc)
1949 {
1950 	const char *sep = "";
1951 
1952 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
1953 	    pcn_79c970_mediastatus);
1954 
1955 #define	ADD(str, m, d)							\
1956 do {									\
1957 	printf("%s%s", sep, str);					\
1958 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL);	\
1959 	sep = ", ";							\
1960 } while (/*CONSTCOND*/0)
1961 
1962 	printf("%s: ", sc->sc_dev.dv_xname);
1963 	ADD("10base5", IFM_10_5, PORTSEL_AUI);
1964 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1965 		ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
1966 	ADD("10baseT", IFM_10_T, PORTSEL_10T);
1967 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1968 		ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
1969 	ADD("auto", IFM_AUTO, 0);
1970 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1971 		ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
1972 	printf("\n");
1973 
1974 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1975 }
1976 
1977 /*
1978  * pcn_79c970_mediastatus:	[ifmedia interface function]
1979  *
1980  *	Get the current interface media status (Am79c970 version).
1981  */
1982 void
1983 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1984 {
1985 	struct pcn_softc *sc = ifp->if_softc;
1986 
1987 	/*
1988 	 * The currently selected media is always the active media.
1989 	 * Note: We have no way to determine what media the AUTO
1990 	 * process picked.
1991 	 */
1992 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
1993 }
1994 
1995 /*
1996  * pcn_79c970_mediachange:	[ifmedia interface function]
1997  *
1998  *	Set hardware to newly-selected media (Am79c970 version).
1999  */
2000 int
2001 pcn_79c970_mediachange(struct ifnet *ifp)
2002 {
2003 	struct pcn_softc *sc = ifp->if_softc;
2004 	uint32_t reg;
2005 
2006 	if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2007 		/*
2008 		 * CSR15:PORTSEL doesn't matter.  Just set BCR2:ASEL.
2009 		 */
2010 		reg = pcn_bcr_read(sc, LE_BCR2);
2011 		reg |= LE_B2_ASEL;
2012 		pcn_bcr_write(sc, LE_BCR2, reg);
2013 	} else {
2014 		/*
2015 		 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2016 		 */
2017 		reg = pcn_bcr_read(sc, LE_BCR2);
2018 		reg &= ~LE_B2_ASEL;
2019 		pcn_bcr_write(sc, LE_BCR2, reg);
2020 
2021 		reg = pcn_csr_read(sc, LE_CSR15);
2022 		reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2023 		    LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2024 		pcn_csr_write(sc, LE_CSR15, reg);
2025 	}
2026 
2027 	if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2028 		reg = LE_B9_FDEN;
2029 		if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2030 			reg |= LE_B9_AUIFD;
2031 		pcn_bcr_write(sc, LE_BCR9, reg);
2032 	} else
2033 		pcn_bcr_write(sc, LE_BCR9, 0);
2034 
2035 	return (0);
2036 }
2037 
2038 /*
2039  * pcn_79c971_mediainit:
2040  *
2041  *	Initialize media for the Am79c971.
2042  */
2043 void
2044 pcn_79c971_mediainit(struct pcn_softc *sc)
2045 {
2046 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2047 
2048 	/* We have MII. */
2049 	sc->sc_flags |= PCN_F_HAS_MII;
2050 
2051 	/*
2052 	 * The built-in 10BASE-T interface is mapped to the MII
2053 	 * on the PCNet-FAST.  Unfortunately, there's no EEPROM
2054 	 * word that tells us which PHY to use.  Since the 10BASE-T
2055 	 * interface is always at PHY 31, we make a note of the
2056 	 * first PHY that responds, and disallow any PHYs after
2057 	 * it.  This is all handled in the MII read routine.
2058 	 */
2059 	sc->sc_phyaddr = -1;
2060 
2061 	/* Initialize our media structures and probe the MII. */
2062 	sc->sc_mii.mii_ifp = ifp;
2063 	sc->sc_mii.mii_readreg = pcn_mii_readreg;
2064 	sc->sc_mii.mii_writereg = pcn_mii_writereg;
2065 	sc->sc_mii.mii_statchg = pcn_mii_statchg;
2066 	ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2067 	    pcn_79c971_mediastatus);
2068 
2069 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2070 	    MII_OFFSET_ANY, 0);
2071 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2072 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2073 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2074 	} else
2075 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2076 }
2077 
2078 /*
2079  * pcn_79c971_mediastatus:	[ifmedia interface function]
2080  *
2081  *	Get the current interface media status (Am79c971 version).
2082  */
2083 void
2084 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2085 {
2086 	struct pcn_softc *sc = ifp->if_softc;
2087 
2088 	mii_pollstat(&sc->sc_mii);
2089 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2090 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2091 }
2092 
2093 /*
2094  * pcn_79c971_mediachange:	[ifmedia interface function]
2095  *
2096  *	Set hardware to newly-selected media (Am79c971 version).
2097  */
2098 int
2099 pcn_79c971_mediachange(struct ifnet *ifp)
2100 {
2101 	struct pcn_softc *sc = ifp->if_softc;
2102 
2103 	if (ifp->if_flags & IFF_UP)
2104 		mii_mediachg(&sc->sc_mii);
2105 	return (0);
2106 }
2107 
2108 /*
2109  * pcn_mii_readreg:	[mii interface function]
2110  *
2111  *	Read a PHY register on the MII.
2112  */
2113 int
2114 pcn_mii_readreg(struct device *self, int phy, int reg)
2115 {
2116 	struct pcn_softc *sc = (void *) self;
2117 	uint32_t rv;
2118 
2119 	if (sc->sc_phyaddr != -1 && phy != sc->sc_phyaddr)
2120 		return (0);
2121 
2122 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2123 	rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2124 	if (rv == 0xffff)
2125 		return (0);
2126 
2127 	if (sc->sc_phyaddr == -1)
2128 		sc->sc_phyaddr = phy;
2129 
2130 	return (rv);
2131 }
2132 
2133 /*
2134  * pcn_mii_writereg:	[mii interface function]
2135  *
2136  *	Write a PHY register on the MII.
2137  */
2138 void
2139 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2140 {
2141 	struct pcn_softc *sc = (void *) self;
2142 
2143 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2144 	pcn_bcr_write(sc, LE_BCR34, val);
2145 }
2146 
2147 /*
2148  * pcn_mii_statchg:	[mii interface function]
2149  *
2150  *	Callback from MII layer when media changes.
2151  */
2152 void
2153 pcn_mii_statchg(struct device *self)
2154 {
2155 	struct pcn_softc *sc = (void *) self;
2156 
2157 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2158 		pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2159 	else
2160 		pcn_bcr_write(sc, LE_BCR9, 0);
2161 }
2162