xref: /netbsd/sys/dev/pci/if_sip.c (revision bf9ec67e)
1 /*	$NetBSD: if_sip.c,v 1.53 2002/05/28 20:20:49 tron Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Support the 10-bit interface on the DP83820 (for fiber).
80  *
81  *	- Reduce the interrupt load.
82  */
83 
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.53 2002/05/28 20:20:49 tron Exp $");
86 
87 #include "bpfilter.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100 
101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
102 
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107 
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111 
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125 
126 #include <dev/pci/if_sipreg.h>
127 
128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
130 #else			/* SiS900 and DP83815 */
131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
132 #endif
133 
134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
135 
136 /*
137  * Transmit descriptor list size.  This is arbitrary, but allocate
138  * enough descriptors for 128 pending transmissions, and 8 segments
139  * per packet.  This MUST work out to a power of 2.
140  */
141 #define	SIP_NTXSEGS		16
142 #define	SIP_NTXSEGS_ALLOC	8
143 
144 #define	SIP_TXQUEUELEN		256
145 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
146 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
147 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
148 
149 #if defined(DP83020)
150 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
151 #else
152 #define	TX_DMAMAP_SIZE		MCLBYTES
153 #endif
154 
155 /*
156  * Receive descriptor list size.  We have one Rx buffer per incoming
157  * packet, so this logic is a little simpler.
158  *
159  * Actually, on the DP83820, we allow the packet to consume more than
160  * one buffer, in order to support jumbo Ethernet frames.  In that
161  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
162  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
163  * so we'd better be quick about handling receive interrupts.
164  */
165 #if defined(DP83820)
166 #define	SIP_NRXDESC		256
167 #else
168 #define	SIP_NRXDESC		128
169 #endif /* DP83820 */
170 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
171 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
172 
173 /*
174  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
175  * a single clump that maps to a single DMA segment to make several things
176  * easier.
177  */
178 struct sip_control_data {
179 	/*
180 	 * The transmit descriptors.
181 	 */
182 	struct sip_desc scd_txdescs[SIP_NTXDESC];
183 
184 	/*
185 	 * The receive descriptors.
186 	 */
187 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
188 };
189 
190 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
191 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
192 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
193 
194 /*
195  * Software state for transmit jobs.
196  */
197 struct sip_txsoft {
198 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
199 	bus_dmamap_t txs_dmamap;	/* our DMA map */
200 	int txs_firstdesc;		/* first descriptor in packet */
201 	int txs_lastdesc;		/* last descriptor in packet */
202 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
203 };
204 
205 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
206 
207 /*
208  * Software state for receive jobs.
209  */
210 struct sip_rxsoft {
211 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
212 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
213 };
214 
215 /*
216  * Software state per device.
217  */
218 struct sip_softc {
219 	struct device sc_dev;		/* generic device information */
220 	bus_space_tag_t sc_st;		/* bus space tag */
221 	bus_space_handle_t sc_sh;	/* bus space handle */
222 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
223 	struct ethercom sc_ethercom;	/* ethernet common data */
224 	void *sc_sdhook;		/* shutdown hook */
225 
226 	const struct sip_product *sc_model; /* which model are we? */
227 	int sc_rev;			/* chip revision */
228 
229 	void *sc_ih;			/* interrupt cookie */
230 
231 	struct mii_data sc_mii;		/* MII/media information */
232 
233 	struct callout sc_tick_ch;	/* tick callout */
234 
235 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
236 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
237 
238 	/*
239 	 * Software state for transmit and receive descriptors.
240 	 */
241 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
243 
244 	/*
245 	 * Control data structures.
246 	 */
247 	struct sip_control_data *sc_control_data;
248 #define	sc_txdescs	sc_control_data->scd_txdescs
249 #define	sc_rxdescs	sc_control_data->scd_rxdescs
250 
251 #ifdef SIP_EVENT_COUNTERS
252 	/*
253 	 * Event counters.
254 	 */
255 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
256 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
257 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
258 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
259 #ifdef DP83820
260 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
261 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
262 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
263 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
264 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
265 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
266 #endif /* DP83820 */
267 #endif /* SIP_EVENT_COUNTERS */
268 
269 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
270 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
271 	u_int32_t sc_imr;		/* prototype IMR register */
272 	u_int32_t sc_rfcr;		/* prototype RFCR register */
273 
274 	u_int32_t sc_cfg;		/* prototype CFG register */
275 
276 #ifdef DP83820
277 	u_int32_t sc_gpior;		/* prototype GPIOR register */
278 #endif /* DP83820 */
279 
280 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
281 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
282 
283 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
284 
285 	int	sc_flags;		/* misc. flags; see below */
286 
287 	int	sc_txfree;		/* number of free Tx descriptors */
288 	int	sc_txnext;		/* next ready Tx descriptor */
289 
290 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
291 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
292 
293 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
294 #if defined(DP83820)
295 	int	sc_rxdiscard;
296 	int	sc_rxlen;
297 	struct mbuf *sc_rxhead;
298 	struct mbuf *sc_rxtail;
299 	struct mbuf **sc_rxtailp;
300 #endif /* DP83820 */
301 };
302 
303 /* sc_flags */
304 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
305 
306 #ifdef DP83820
307 #define	SIP_RXCHAIN_RESET(sc)						\
308 do {									\
309 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
310 	*(sc)->sc_rxtailp = NULL;					\
311 	(sc)->sc_rxlen = 0;						\
312 } while (/*CONSTCOND*/0)
313 
314 #define	SIP_RXCHAIN_LINK(sc, m)						\
315 do {									\
316 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
317 	(sc)->sc_rxtailp = &(m)->m_next;				\
318 } while (/*CONSTCOND*/0)
319 #endif /* DP83820 */
320 
321 #ifdef SIP_EVENT_COUNTERS
322 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
323 #else
324 #define	SIP_EVCNT_INCR(ev)	/* nothing */
325 #endif
326 
327 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
328 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
329 
330 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
331 do {									\
332 	int __x, __n;							\
333 									\
334 	__x = (x);							\
335 	__n = (n);							\
336 									\
337 	/* If it will wrap around, sync to the end of the ring. */	\
338 	if ((__x + __n) > SIP_NTXDESC) {				\
339 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
340 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
341 		    (SIP_NTXDESC - __x), (ops));			\
342 		__n -= (SIP_NTXDESC - __x);				\
343 		__x = 0;						\
344 	}								\
345 									\
346 	/* Now sync whatever is left. */				\
347 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
348 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
349 } while (0)
350 
351 #define	SIP_CDRXSYNC(sc, x, ops)					\
352 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
353 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
354 
355 #ifdef DP83820
356 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
357 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
358 #else
359 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
360 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
361 #endif
362 #define	SIP_INIT_RXDESC(sc, x)						\
363 do {									\
364 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
365 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
366 									\
367 	__sipd->sipd_link =						\
368 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
369 	__sipd->sipd_bufptr =						\
370 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
371 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
372 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
373 	SIP_INIT_RXDESC_EXTSTS						\
374 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
375 } while (0)
376 
377 #define	SIP_CHIP_VERS(sc, v, p, r)					\
378 	((sc)->sc_model->sip_vendor == (v) &&				\
379 	 (sc)->sc_model->sip_product == (p) &&				\
380 	 (sc)->sc_rev == (r))
381 
382 #define	SIP_CHIP_MODEL(sc, v, p)					\
383 	((sc)->sc_model->sip_vendor == (v) &&				\
384 	 (sc)->sc_model->sip_product == (p))
385 
386 #if !defined(DP83820)
387 #define	SIP_SIS900_REV(sc, rev)						\
388 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
389 #endif
390 
391 #define SIP_TIMEOUT 1000
392 
393 void	SIP_DECL(start)(struct ifnet *);
394 void	SIP_DECL(watchdog)(struct ifnet *);
395 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
396 int	SIP_DECL(init)(struct ifnet *);
397 void	SIP_DECL(stop)(struct ifnet *, int);
398 
399 void	SIP_DECL(shutdown)(void *);
400 
401 void	SIP_DECL(reset)(struct sip_softc *);
402 void	SIP_DECL(rxdrain)(struct sip_softc *);
403 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
404 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
405 void	SIP_DECL(tick)(void *);
406 
407 #if !defined(DP83820)
408 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
409 #endif /* ! DP83820 */
410 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
411 
412 #if defined(DP83820)
413 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
414 	    const struct pci_attach_args *, u_int8_t *);
415 #else
416 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
417 	    const struct pci_attach_args *, u_int8_t *);
418 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
419 	    const struct pci_attach_args *, u_int8_t *);
420 #endif /* DP83820 */
421 
422 int	SIP_DECL(intr)(void *);
423 void	SIP_DECL(txintr)(struct sip_softc *);
424 void	SIP_DECL(rxintr)(struct sip_softc *);
425 
426 #if defined(DP83820)
427 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
428 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
429 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
430 #else
431 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
432 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
433 void	SIP_DECL(sis900_mii_statchg)(struct device *);
434 
435 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
436 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
437 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
438 #endif /* DP83820 */
439 
440 int	SIP_DECL(mediachange)(struct ifnet *);
441 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
442 
443 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
444 void	SIP_DECL(attach)(struct device *, struct device *, void *);
445 
446 int	SIP_DECL(copy_small) = 0;
447 
448 struct cfattach SIP_DECL(ca) = {
449 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
450 };
451 
452 /*
453  * Descriptions of the variants of the SiS900.
454  */
455 struct sip_variant {
456 	int	(*sipv_mii_readreg)(struct device *, int, int);
457 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
458 	void	(*sipv_mii_statchg)(struct device *);
459 	void	(*sipv_set_filter)(struct sip_softc *);
460 	void	(*sipv_read_macaddr)(struct sip_softc *,
461 		    const struct pci_attach_args *, u_int8_t *);
462 };
463 
464 #if defined(DP83820)
465 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
466 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
467 
468 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
469 	SIP_DECL(dp83820_mii_bitbang_read),
470 	SIP_DECL(dp83820_mii_bitbang_write),
471 	{
472 		EROMAR_MDIO,		/* MII_BIT_MDO */
473 		EROMAR_MDIO,		/* MII_BIT_MDI */
474 		EROMAR_MDC,		/* MII_BIT_MDC */
475 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
476 		0,			/* MII_BIT_DIR_PHY_HOST */
477 	}
478 };
479 #endif /* DP83820 */
480 
481 #if defined(DP83820)
482 const struct sip_variant SIP_DECL(variant_dp83820) = {
483 	SIP_DECL(dp83820_mii_readreg),
484 	SIP_DECL(dp83820_mii_writereg),
485 	SIP_DECL(dp83820_mii_statchg),
486 	SIP_DECL(dp83815_set_filter),
487 	SIP_DECL(dp83820_read_macaddr),
488 };
489 #else
490 const struct sip_variant SIP_DECL(variant_sis900) = {
491 	SIP_DECL(sis900_mii_readreg),
492 	SIP_DECL(sis900_mii_writereg),
493 	SIP_DECL(sis900_mii_statchg),
494 	SIP_DECL(sis900_set_filter),
495 	SIP_DECL(sis900_read_macaddr),
496 };
497 
498 const struct sip_variant SIP_DECL(variant_dp83815) = {
499 	SIP_DECL(dp83815_mii_readreg),
500 	SIP_DECL(dp83815_mii_writereg),
501 	SIP_DECL(dp83815_mii_statchg),
502 	SIP_DECL(dp83815_set_filter),
503 	SIP_DECL(dp83815_read_macaddr),
504 };
505 #endif /* DP83820 */
506 
507 /*
508  * Devices supported by this driver.
509  */
510 const struct sip_product {
511 	pci_vendor_id_t		sip_vendor;
512 	pci_product_id_t	sip_product;
513 	const char		*sip_name;
514 	const struct sip_variant *sip_variant;
515 } SIP_DECL(products)[] = {
516 #if defined(DP83820)
517 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
518 	  "NatSemi DP83820 Gigabit Ethernet",
519 	  &SIP_DECL(variant_dp83820) },
520 #else
521 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
522 	  "SiS 900 10/100 Ethernet",
523 	  &SIP_DECL(variant_sis900) },
524 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
525 	  "SiS 7016 10/100 Ethernet",
526 	  &SIP_DECL(variant_sis900) },
527 
528 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
529 	  "NatSemi DP83815 10/100 Ethernet",
530 	  &SIP_DECL(variant_dp83815) },
531 #endif /* DP83820 */
532 
533 	{ 0,			0,
534 	  NULL,
535 	  NULL },
536 };
537 
538 static const struct sip_product *
539 SIP_DECL(lookup)(const struct pci_attach_args *pa)
540 {
541 	const struct sip_product *sip;
542 
543 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
544 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
545 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
546 			return (sip);
547 	}
548 	return (NULL);
549 }
550 
551 int
552 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
553 {
554 	struct pci_attach_args *pa = aux;
555 
556 	if (SIP_DECL(lookup)(pa) != NULL)
557 		return (1);
558 
559 	return (0);
560 }
561 
562 void
563 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
564 {
565 	struct sip_softc *sc = (struct sip_softc *) self;
566 	struct pci_attach_args *pa = aux;
567 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
568 	pci_chipset_tag_t pc = pa->pa_pc;
569 	pci_intr_handle_t ih;
570 	const char *intrstr = NULL;
571 	bus_space_tag_t iot, memt;
572 	bus_space_handle_t ioh, memh;
573 	bus_dma_segment_t seg;
574 	int ioh_valid, memh_valid;
575 	int i, rseg, error;
576 	const struct sip_product *sip;
577 	pcireg_t pmode;
578 	u_int8_t enaddr[ETHER_ADDR_LEN];
579 	int pmreg;
580 #ifdef DP83820
581 	pcireg_t memtype;
582 	u_int32_t reg;
583 #endif /* DP83820 */
584 
585 	callout_init(&sc->sc_tick_ch);
586 
587 	sip = SIP_DECL(lookup)(pa);
588 	if (sip == NULL) {
589 		printf("\n");
590 		panic(SIP_STR(attach) ": impossible");
591 	}
592 	sc->sc_rev = PCI_REVISION(pa->pa_class);
593 
594 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
595 
596 	sc->sc_model = sip;
597 
598 	/*
599 	 * XXX Work-around broken PXE firmware on some boards.
600 	 *
601 	 * The DP83815 shares an address decoder with the MEM BAR
602 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
603 	 * so that memory mapped access works.
604 	 */
605 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
606 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
607 	    ~PCI_MAPREG_ROM_ENABLE);
608 
609 	/*
610 	 * Map the device.
611 	 */
612 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
613 	    PCI_MAPREG_TYPE_IO, 0,
614 	    &iot, &ioh, NULL, NULL) == 0);
615 #ifdef DP83820
616 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
617 	switch (memtype) {
618 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
619 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
620 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
621 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
622 		break;
623 	default:
624 		memh_valid = 0;
625 	}
626 #else
627 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
628 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
629 	    &memt, &memh, NULL, NULL) == 0);
630 #endif /* DP83820 */
631 
632 	if (memh_valid) {
633 		sc->sc_st = memt;
634 		sc->sc_sh = memh;
635 	} else if (ioh_valid) {
636 		sc->sc_st = iot;
637 		sc->sc_sh = ioh;
638 	} else {
639 		printf("%s: unable to map device registers\n",
640 		    sc->sc_dev.dv_xname);
641 		return;
642 	}
643 
644 	sc->sc_dmat = pa->pa_dmat;
645 
646 	/*
647 	 * Make sure bus mastering is enabled.  Also make sure
648 	 * Write/Invalidate is enabled if we're allowed to use it.
649 	 */
650 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
651 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
652 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
653 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
654 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
655 
656 	/* Get it out of power save mode if needed. */
657 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
658 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
659 		if (pmode == 3) {
660 			/*
661 			 * The card has lost all configuration data in
662 			 * this state, so punt.
663 			 */
664 			printf("%s: unable to wake up from power state D3\n",
665 			    sc->sc_dev.dv_xname);
666 			return;
667 		}
668 		if (pmode != 0) {
669 			printf("%s: waking up from power state D%d\n",
670 			    sc->sc_dev.dv_xname, pmode);
671 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
672 		}
673 	}
674 
675 	/*
676 	 * Map and establish our interrupt.
677 	 */
678 	if (pci_intr_map(pa, &ih)) {
679 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
680 		return;
681 	}
682 	intrstr = pci_intr_string(pc, ih);
683 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
684 	if (sc->sc_ih == NULL) {
685 		printf("%s: unable to establish interrupt",
686 		    sc->sc_dev.dv_xname);
687 		if (intrstr != NULL)
688 			printf(" at %s", intrstr);
689 		printf("\n");
690 		return;
691 	}
692 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
693 
694 	SIMPLEQ_INIT(&sc->sc_txfreeq);
695 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
696 
697 	/*
698 	 * Allocate the control data structures, and create and load the
699 	 * DMA map for it.
700 	 */
701 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
702 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
703 	    0)) != 0) {
704 		printf("%s: unable to allocate control data, error = %d\n",
705 		    sc->sc_dev.dv_xname, error);
706 		goto fail_0;
707 	}
708 
709 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
710 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
711 	    BUS_DMA_COHERENT)) != 0) {
712 		printf("%s: unable to map control data, error = %d\n",
713 		    sc->sc_dev.dv_xname, error);
714 		goto fail_1;
715 	}
716 
717 	if ((error = bus_dmamap_create(sc->sc_dmat,
718 	    sizeof(struct sip_control_data), 1,
719 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
720 		printf("%s: unable to create control data DMA map, "
721 		    "error = %d\n", sc->sc_dev.dv_xname, error);
722 		goto fail_2;
723 	}
724 
725 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
726 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
727 	    0)) != 0) {
728 		printf("%s: unable to load control data DMA map, error = %d\n",
729 		    sc->sc_dev.dv_xname, error);
730 		goto fail_3;
731 	}
732 
733 	/*
734 	 * Create the transmit buffer DMA maps.
735 	 */
736 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
737 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
738 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
739 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
740 			printf("%s: unable to create tx DMA map %d, "
741 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
742 			goto fail_4;
743 		}
744 	}
745 
746 	/*
747 	 * Create the receive buffer DMA maps.
748 	 */
749 	for (i = 0; i < SIP_NRXDESC; i++) {
750 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
751 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
752 			printf("%s: unable to create rx DMA map %d, "
753 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
754 			goto fail_5;
755 		}
756 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
757 	}
758 
759 	/*
760 	 * Reset the chip to a known state.
761 	 */
762 	SIP_DECL(reset)(sc);
763 
764 	/*
765 	 * Read the Ethernet address from the EEPROM.  This might
766 	 * also fetch other stuff from the EEPROM and stash it
767 	 * in the softc.
768 	 */
769 	sc->sc_cfg = 0;
770 #if !defined(DP83820)
771 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
772 	    SIP_SIS900_REV(sc,SIS_REV_900B))
773 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
774 #endif
775 
776 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
777 
778 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
779 	    ether_sprintf(enaddr));
780 
781 	/*
782 	 * Initialize the configuration register: aggressive PCI
783 	 * bus request algorithm, default backoff, default OW timer,
784 	 * default parity error detection.
785 	 *
786 	 * NOTE: "Big endian mode" is useless on the SiS900 and
787 	 * friends -- it affects packet data, not descriptors.
788 	 */
789 #ifdef DP83820
790 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
791 	if (reg & CFG_PCI64_DET) {
792 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
793 		/*
794 		 * XXX Need some PCI flags indicating support for
795 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
796 		 * XXX data path.
797 		 */
798 	}
799 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
800 		const char *sep = "";
801 		printf("%s: using ", sc->sc_dev.dv_xname);
802 		if (sc->sc_cfg & CFG_EXT_125) {
803 			printf("%s125MHz clock", sep);
804 			sep = ", ";
805 		}
806 		if (sc->sc_cfg & CFG_TBI_EN) {
807 			printf("%sten-bit interface", sep);
808 			sep = ", ";
809 		}
810 		printf("\n");
811 	}
812 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
813 		sc->sc_cfg |= CFG_MRM_DIS;
814 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
815 		sc->sc_cfg |= CFG_MWI_DIS;
816 
817 	/*
818 	 * Use the extended descriptor format on the DP83820.  This
819 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
820 	 * checksumming.
821 	 */
822 	sc->sc_cfg |= CFG_EXTSTS_EN;
823 #endif /* DP83820 */
824 
825 	/*
826 	 * Initialize our media structures and probe the MII.
827 	 */
828 	sc->sc_mii.mii_ifp = ifp;
829 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
830 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
831 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
832 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
833 	    SIP_DECL(mediastatus));
834 #ifdef DP83820
835 	if (sc->sc_cfg & CFG_TBI_EN) {
836 		/* Using ten-bit interface. */
837 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
838 	} else {
839 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
840 		    MII_OFFSET_ANY, 0);
841 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
842 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
843 			    0, NULL);
844 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
845 		} else
846 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
847 	}
848 #else
849 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
850 	    MII_OFFSET_ANY, 0);
851 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
852 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
853 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
854 	} else
855 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
856 #endif /* DP83820 */
857 
858 	ifp = &sc->sc_ethercom.ec_if;
859 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
860 	ifp->if_softc = sc;
861 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
862 	ifp->if_ioctl = SIP_DECL(ioctl);
863 	ifp->if_start = SIP_DECL(start);
864 	ifp->if_watchdog = SIP_DECL(watchdog);
865 	ifp->if_init = SIP_DECL(init);
866 	ifp->if_stop = SIP_DECL(stop);
867 	IFQ_SET_READY(&ifp->if_snd);
868 
869 	/*
870 	 * We can support 802.1Q VLAN-sized frames.
871 	 */
872 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
873 
874 #ifdef DP83820
875 	/*
876 	 * And the DP83820 can do VLAN tagging in hardware, and
877 	 * support the jumbo Ethernet MTU.
878 	 */
879 	sc->sc_ethercom.ec_capabilities |=
880 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
881 
882 	/*
883 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
884 	 * in hardware.
885 	 */
886 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
887 	    IFCAP_CSUM_UDPv4;
888 #endif /* DP83820 */
889 
890 	/*
891 	 * Attach the interface.
892 	 */
893 	if_attach(ifp);
894 	ether_ifattach(ifp, enaddr);
895 
896 	/*
897 	 * The number of bytes that must be available in
898 	 * the Tx FIFO before the bus master can DMA more
899 	 * data into the FIFO.
900 	 */
901 	sc->sc_tx_fill_thresh = 64 / 32;
902 
903 	/*
904 	 * Start at a drain threshold of 512 bytes.  We will
905 	 * increase it if a DMA underrun occurs.
906 	 *
907 	 * XXX The minimum value of this variable should be
908 	 * tuned.  We may be able to improve performance
909 	 * by starting with a lower value.  That, however,
910 	 * may trash the first few outgoing packets if the
911 	 * PCI bus is saturated.
912 	 */
913 	sc->sc_tx_drain_thresh = 1504 / 32;
914 
915 	/*
916 	 * Initialize the Rx FIFO drain threshold.
917 	 *
918 	 * This is in units of 8 bytes.
919 	 *
920 	 * We should never set this value lower than 2; 14 bytes are
921 	 * required to filter the packet.
922 	 */
923 	sc->sc_rx_drain_thresh = 128 / 8;
924 
925 #ifdef SIP_EVENT_COUNTERS
926 	/*
927 	 * Attach event counters.
928 	 */
929 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
930 	    NULL, sc->sc_dev.dv_xname, "txsstall");
931 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
932 	    NULL, sc->sc_dev.dv_xname, "txdstall");
933 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
934 	    NULL, sc->sc_dev.dv_xname, "txintr");
935 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
936 	    NULL, sc->sc_dev.dv_xname, "rxintr");
937 #ifdef DP83820
938 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
939 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
940 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
941 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
942 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
943 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
944 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
945 	    NULL, sc->sc_dev.dv_xname, "txipsum");
946 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
947 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
948 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
949 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
950 #endif /* DP83820 */
951 #endif /* SIP_EVENT_COUNTERS */
952 
953 	/*
954 	 * Make sure the interface is shutdown during reboot.
955 	 */
956 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
957 	if (sc->sc_sdhook == NULL)
958 		printf("%s: WARNING: unable to establish shutdown hook\n",
959 		    sc->sc_dev.dv_xname);
960 	return;
961 
962 	/*
963 	 * Free any resources we've allocated during the failed attach
964 	 * attempt.  Do this in reverse order and fall through.
965 	 */
966  fail_5:
967 	for (i = 0; i < SIP_NRXDESC; i++) {
968 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
969 			bus_dmamap_destroy(sc->sc_dmat,
970 			    sc->sc_rxsoft[i].rxs_dmamap);
971 	}
972  fail_4:
973 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
974 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
975 			bus_dmamap_destroy(sc->sc_dmat,
976 			    sc->sc_txsoft[i].txs_dmamap);
977 	}
978 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
979  fail_3:
980 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
981  fail_2:
982 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
983 	    sizeof(struct sip_control_data));
984  fail_1:
985 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
986  fail_0:
987 	return;
988 }
989 
990 /*
991  * sip_shutdown:
992  *
993  *	Make sure the interface is stopped at reboot time.
994  */
995 void
996 SIP_DECL(shutdown)(void *arg)
997 {
998 	struct sip_softc *sc = arg;
999 
1000 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1001 }
1002 
1003 /*
1004  * sip_start:		[ifnet interface function]
1005  *
1006  *	Start packet transmission on the interface.
1007  */
1008 void
1009 SIP_DECL(start)(struct ifnet *ifp)
1010 {
1011 	struct sip_softc *sc = ifp->if_softc;
1012 	struct mbuf *m0, *m;
1013 	struct sip_txsoft *txs;
1014 	bus_dmamap_t dmamap;
1015 	int error, firsttx, nexttx, lasttx, ofree, seg;
1016 #ifdef DP83820
1017 	u_int32_t extsts;
1018 #endif
1019 
1020 	/*
1021 	 * If we've been told to pause, don't transmit any more packets.
1022 	 */
1023 	if (sc->sc_flags & SIPF_PAUSED)
1024 		ifp->if_flags |= IFF_OACTIVE;
1025 
1026 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1027 		return;
1028 
1029 	/*
1030 	 * Remember the previous number of free descriptors and
1031 	 * the first descriptor we'll use.
1032 	 */
1033 	ofree = sc->sc_txfree;
1034 	firsttx = sc->sc_txnext;
1035 
1036 	/*
1037 	 * Loop through the send queue, setting up transmit descriptors
1038 	 * until we drain the queue, or use up all available transmit
1039 	 * descriptors.
1040 	 */
1041 	for (;;) {
1042 		/* Get a work queue entry. */
1043 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1044 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1045 			break;
1046 		}
1047 
1048 		/*
1049 		 * Grab a packet off the queue.
1050 		 */
1051 		IFQ_POLL(&ifp->if_snd, m0);
1052 		if (m0 == NULL)
1053 			break;
1054 #ifndef DP83820
1055 		m = NULL;
1056 #endif
1057 
1058 		dmamap = txs->txs_dmamap;
1059 
1060 #ifdef DP83820
1061 		/*
1062 		 * Load the DMA map.  If this fails, the packet either
1063 		 * didn't fit in the allotted number of segments, or we
1064 		 * were short on resources.  For the too-many-segments
1065 		 * case, we simply report an error and drop the packet,
1066 		 * since we can't sanely copy a jumbo packet to a single
1067 		 * buffer.
1068 		 */
1069 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1070 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1071 		if (error) {
1072 			if (error == EFBIG) {
1073 				printf("%s: Tx packet consumes too many "
1074 				    "DMA segments, dropping...\n",
1075 				    sc->sc_dev.dv_xname);
1076 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1077 				m_freem(m0);
1078 				continue;
1079 			}
1080 			/*
1081 			 * Short on resources, just stop for now.
1082 			 */
1083 			break;
1084 		}
1085 #else /* DP83820 */
1086 		/*
1087 		 * Load the DMA map.  If this fails, the packet either
1088 		 * didn't fit in the alloted number of segments, or we
1089 		 * were short on resources.  In this case, we'll copy
1090 		 * and try again.
1091 		 */
1092 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1093 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1094 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1095 			if (m == NULL) {
1096 				printf("%s: unable to allocate Tx mbuf\n",
1097 				    sc->sc_dev.dv_xname);
1098 				break;
1099 			}
1100 			if (m0->m_pkthdr.len > MHLEN) {
1101 				MCLGET(m, M_DONTWAIT);
1102 				if ((m->m_flags & M_EXT) == 0) {
1103 					printf("%s: unable to allocate Tx "
1104 					    "cluster\n", sc->sc_dev.dv_xname);
1105 					m_freem(m);
1106 					break;
1107 				}
1108 			}
1109 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1110 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1111 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1112 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1113 			if (error) {
1114 				printf("%s: unable to load Tx buffer, "
1115 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1116 				break;
1117 			}
1118 		}
1119 #endif /* DP83820 */
1120 
1121 		/*
1122 		 * Ensure we have enough descriptors free to describe
1123 		 * the packet.  Note, we always reserve one descriptor
1124 		 * at the end of the ring as a termination point, to
1125 		 * prevent wrap-around.
1126 		 */
1127 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1128 			/*
1129 			 * Not enough free descriptors to transmit this
1130 			 * packet.  We haven't committed anything yet,
1131 			 * so just unload the DMA map, put the packet
1132 			 * back on the queue, and punt.  Notify the upper
1133 			 * layer that there are not more slots left.
1134 			 *
1135 			 * XXX We could allocate an mbuf and copy, but
1136 			 * XXX is it worth it?
1137 			 */
1138 			ifp->if_flags |= IFF_OACTIVE;
1139 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1140 #ifndef DP83820
1141 			if (m != NULL)
1142 				m_freem(m);
1143 #endif
1144 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1145 			break;
1146 		}
1147 
1148 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1149 #ifndef DP83820
1150 		if (m != NULL) {
1151 			m_freem(m0);
1152 			m0 = m;
1153 		}
1154 #endif
1155 
1156 		/*
1157 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1158 		 */
1159 
1160 		/* Sync the DMA map. */
1161 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1162 		    BUS_DMASYNC_PREWRITE);
1163 
1164 		/*
1165 		 * Initialize the transmit descriptors.
1166 		 */
1167 		for (nexttx = sc->sc_txnext, seg = 0;
1168 		     seg < dmamap->dm_nsegs;
1169 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1170 			/*
1171 			 * If this is the first descriptor we're
1172 			 * enqueueing, don't set the OWN bit just
1173 			 * yet.  That could cause a race condition.
1174 			 * We'll do it below.
1175 			 */
1176 			sc->sc_txdescs[nexttx].sipd_bufptr =
1177 			    htole32(dmamap->dm_segs[seg].ds_addr);
1178 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1179 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1180 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1181 #ifdef DP83820
1182 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1183 #endif /* DP83820 */
1184 			lasttx = nexttx;
1185 		}
1186 
1187 		/* Clear the MORE bit on the last segment. */
1188 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1189 
1190 #ifdef DP83820
1191 		/*
1192 		 * If VLANs are enabled and the packet has a VLAN tag, set
1193 		 * up the descriptor to encapsulate the packet for us.
1194 		 *
1195 		 * This apparently has to be on the last descriptor of
1196 		 * the packet.
1197 		 */
1198 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1199 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1200 			sc->sc_txdescs[lasttx].sipd_extsts |=
1201 			    htole32(EXTSTS_VPKT |
1202 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
1203 		}
1204 
1205 		/*
1206 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1207 		 * checksumming, set up the descriptor to do this work
1208 		 * for us.
1209 		 *
1210 		 * This apparently has to be on the first descriptor of
1211 		 * the packet.
1212 		 *
1213 		 * Byte-swap constants so the compiler can optimize.
1214 		 */
1215 		extsts = 0;
1216 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1217 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1218 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1219 			extsts |= htole32(EXTSTS_IPPKT);
1220 		}
1221 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1222 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1223 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1224 			extsts |= htole32(EXTSTS_TCPPKT);
1225 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1226 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1227 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1228 			extsts |= htole32(EXTSTS_UDPPKT);
1229 		}
1230 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1231 #endif /* DP83820 */
1232 
1233 		/* Sync the descriptors we're using. */
1234 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1235 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1236 
1237 		/*
1238 		 * Store a pointer to the packet so we can free it later,
1239 		 * and remember what txdirty will be once the packet is
1240 		 * done.
1241 		 */
1242 		txs->txs_mbuf = m0;
1243 		txs->txs_firstdesc = sc->sc_txnext;
1244 		txs->txs_lastdesc = lasttx;
1245 
1246 		/* Advance the tx pointer. */
1247 		sc->sc_txfree -= dmamap->dm_nsegs;
1248 		sc->sc_txnext = nexttx;
1249 
1250 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1251 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1252 
1253 #if NBPFILTER > 0
1254 		/*
1255 		 * Pass the packet to any BPF listeners.
1256 		 */
1257 		if (ifp->if_bpf)
1258 			bpf_mtap(ifp->if_bpf, m0);
1259 #endif /* NBPFILTER > 0 */
1260 	}
1261 
1262 	if (txs == NULL || sc->sc_txfree == 0) {
1263 		/* No more slots left; notify upper layer. */
1264 		ifp->if_flags |= IFF_OACTIVE;
1265 	}
1266 
1267 	if (sc->sc_txfree != ofree) {
1268 		/*
1269 		 * Cause a descriptor interrupt to happen on the
1270 		 * last packet we enqueued.
1271 		 */
1272 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1273 		SIP_CDTXSYNC(sc, lasttx, 1,
1274 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1275 
1276 		/*
1277 		 * The entire packet chain is set up.  Give the
1278 		 * first descrptor to the chip now.
1279 		 */
1280 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1281 		SIP_CDTXSYNC(sc, firsttx, 1,
1282 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1283 
1284 		/*
1285 		 * Start the transmit process.  Note, the manual says
1286 		 * that if there are no pending transmissions in the
1287 		 * chip's internal queue (indicated by TXE being clear),
1288 		 * then the driver software must set the TXDP to the
1289 		 * first descriptor to be transmitted.  However, if we
1290 		 * do this, it causes serious performance degredation on
1291 		 * the DP83820 under load, not setting TXDP doesn't seem
1292 		 * to adversely affect the SiS 900 or DP83815.
1293 		 *
1294 		 * Well, I guess it wouldn't be the first time a manual
1295 		 * has lied -- and they could be speaking of the NULL-
1296 		 * terminated descriptor list case, rather than OWN-
1297 		 * terminated rings.
1298 		 */
1299 #if 0
1300 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1301 		     CR_TXE) == 0) {
1302 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1303 			    SIP_CDTXADDR(sc, firsttx));
1304 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1305 		}
1306 #else
1307 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1308 #endif
1309 
1310 		/* Set a watchdog timer in case the chip flakes out. */
1311 		ifp->if_timer = 5;
1312 	}
1313 }
1314 
1315 /*
1316  * sip_watchdog:	[ifnet interface function]
1317  *
1318  *	Watchdog timer handler.
1319  */
1320 void
1321 SIP_DECL(watchdog)(struct ifnet *ifp)
1322 {
1323 	struct sip_softc *sc = ifp->if_softc;
1324 
1325 	/*
1326 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1327 	 * If we get a timeout, try and sweep up transmit descriptors.
1328 	 * If we manage to sweep them all up, ignore the lack of
1329 	 * interrupt.
1330 	 */
1331 	SIP_DECL(txintr)(sc);
1332 
1333 	if (sc->sc_txfree != SIP_NTXDESC) {
1334 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1335 		ifp->if_oerrors++;
1336 
1337 		/* Reset the interface. */
1338 		(void) SIP_DECL(init)(ifp);
1339 	} else if (ifp->if_flags & IFF_DEBUG)
1340 		printf("%s: recovered from device timeout\n",
1341 		    sc->sc_dev.dv_xname);
1342 
1343 	/* Try to get more packets going. */
1344 	SIP_DECL(start)(ifp);
1345 }
1346 
1347 /*
1348  * sip_ioctl:		[ifnet interface function]
1349  *
1350  *	Handle control requests from the operator.
1351  */
1352 int
1353 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1354 {
1355 	struct sip_softc *sc = ifp->if_softc;
1356 	struct ifreq *ifr = (struct ifreq *)data;
1357 	int s, error;
1358 
1359 	s = splnet();
1360 
1361 	switch (cmd) {
1362 	case SIOCSIFMEDIA:
1363 	case SIOCGIFMEDIA:
1364 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1365 		break;
1366 
1367 	default:
1368 		error = ether_ioctl(ifp, cmd, data);
1369 		if (error == ENETRESET) {
1370 			/*
1371 			 * Multicast list has changed; set the hardware filter
1372 			 * accordingly.
1373 			 */
1374 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1375 			error = 0;
1376 		}
1377 		break;
1378 	}
1379 
1380 	/* Try to get more packets going. */
1381 	SIP_DECL(start)(ifp);
1382 
1383 	splx(s);
1384 	return (error);
1385 }
1386 
1387 /*
1388  * sip_intr:
1389  *
1390  *	Interrupt service routine.
1391  */
1392 int
1393 SIP_DECL(intr)(void *arg)
1394 {
1395 	struct sip_softc *sc = arg;
1396 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1397 	u_int32_t isr;
1398 	int handled = 0;
1399 
1400 	for (;;) {
1401 		/* Reading clears interrupt. */
1402 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1403 		if ((isr & sc->sc_imr) == 0)
1404 			break;
1405 
1406 		handled = 1;
1407 
1408 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1409 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1410 
1411 			/* Grab any new packets. */
1412 			SIP_DECL(rxintr)(sc);
1413 
1414 			if (isr & ISR_RXORN) {
1415 				printf("%s: receive FIFO overrun\n",
1416 				    sc->sc_dev.dv_xname);
1417 
1418 				/* XXX adjust rx_drain_thresh? */
1419 			}
1420 
1421 			if (isr & ISR_RXIDLE) {
1422 				printf("%s: receive ring overrun\n",
1423 				    sc->sc_dev.dv_xname);
1424 
1425 				/* Get the receive process going again. */
1426 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1427 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1428 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1429 				    SIP_CR, CR_RXE);
1430 			}
1431 		}
1432 
1433 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
1434 			SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1435 
1436 			/* Sweep up transmit descriptors. */
1437 			SIP_DECL(txintr)(sc);
1438 
1439 			if (isr & ISR_TXURN) {
1440 				u_int32_t thresh;
1441 
1442 				printf("%s: transmit FIFO underrun",
1443 				    sc->sc_dev.dv_xname);
1444 
1445 				thresh = sc->sc_tx_drain_thresh + 1;
1446 				if (thresh <= TXCFG_DRTH &&
1447 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1448 				     (sc->sc_tx_fill_thresh * 32))) {
1449 					printf("; increasing Tx drain "
1450 					    "threshold to %u bytes\n",
1451 					    thresh * 32);
1452 					sc->sc_tx_drain_thresh = thresh;
1453 					(void) SIP_DECL(init)(ifp);
1454 				} else {
1455 					(void) SIP_DECL(init)(ifp);
1456 					printf("\n");
1457 				}
1458 			}
1459 		}
1460 
1461 #if !defined(DP83820)
1462 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1463 			if (isr & ISR_PAUSE_ST) {
1464 				sc->sc_flags |= SIPF_PAUSED;
1465 				ifp->if_flags |= IFF_OACTIVE;
1466 			}
1467 			if (isr & ISR_PAUSE_END) {
1468 				sc->sc_flags &= ~SIPF_PAUSED;
1469 				ifp->if_flags &= ~IFF_OACTIVE;
1470 			}
1471 		}
1472 #endif /* ! DP83820 */
1473 
1474 		if (isr & ISR_HIBERR) {
1475 #define	PRINTERR(bit, str)						\
1476 			if (isr & (bit))				\
1477 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1478 			PRINTERR(ISR_DPERR, "parity error");
1479 			PRINTERR(ISR_SSERR, "system error");
1480 			PRINTERR(ISR_RMABT, "master abort");
1481 			PRINTERR(ISR_RTABT, "target abort");
1482 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1483 			(void) SIP_DECL(init)(ifp);
1484 #undef PRINTERR
1485 		}
1486 	}
1487 
1488 	/* Try to get more packets going. */
1489 	SIP_DECL(start)(ifp);
1490 
1491 	return (handled);
1492 }
1493 
1494 /*
1495  * sip_txintr:
1496  *
1497  *	Helper; handle transmit interrupts.
1498  */
1499 void
1500 SIP_DECL(txintr)(struct sip_softc *sc)
1501 {
1502 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1503 	struct sip_txsoft *txs;
1504 	u_int32_t cmdsts;
1505 
1506 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1507 		ifp->if_flags &= ~IFF_OACTIVE;
1508 
1509 	/*
1510 	 * Go through our Tx list and free mbufs for those
1511 	 * frames which have been transmitted.
1512 	 */
1513 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1514 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1515 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1516 
1517 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1518 		if (cmdsts & CMDSTS_OWN)
1519 			break;
1520 
1521 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1522 
1523 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1524 
1525 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1526 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1527 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1528 		m_freem(txs->txs_mbuf);
1529 		txs->txs_mbuf = NULL;
1530 
1531 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1532 
1533 		/*
1534 		 * Check for errors and collisions.
1535 		 */
1536 		if (cmdsts &
1537 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1538 			ifp->if_oerrors++;
1539 			if (cmdsts & CMDSTS_Tx_EC)
1540 				ifp->if_collisions += 16;
1541 			if (ifp->if_flags & IFF_DEBUG) {
1542 				if (cmdsts & CMDSTS_Tx_ED)
1543 					printf("%s: excessive deferral\n",
1544 					    sc->sc_dev.dv_xname);
1545 				if (cmdsts & CMDSTS_Tx_EC)
1546 					printf("%s: excessive collisions\n",
1547 					    sc->sc_dev.dv_xname);
1548 			}
1549 		} else {
1550 			/* Packet was transmitted successfully. */
1551 			ifp->if_opackets++;
1552 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1553 		}
1554 	}
1555 
1556 	/*
1557 	 * If there are no more pending transmissions, cancel the watchdog
1558 	 * timer.
1559 	 */
1560 	if (txs == NULL)
1561 		ifp->if_timer = 0;
1562 }
1563 
1564 #if defined(DP83820)
1565 /*
1566  * sip_rxintr:
1567  *
1568  *	Helper; handle receive interrupts.
1569  */
1570 void
1571 SIP_DECL(rxintr)(struct sip_softc *sc)
1572 {
1573 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1574 	struct sip_rxsoft *rxs;
1575 	struct mbuf *m, *tailm;
1576 	u_int32_t cmdsts, extsts;
1577 	int i, len;
1578 
1579 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1580 		rxs = &sc->sc_rxsoft[i];
1581 
1582 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1583 
1584 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1585 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1586 
1587 		/*
1588 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1589 		 * consumer of the receive ring, so if the bit is clear,
1590 		 * we have processed all of the packets.
1591 		 */
1592 		if ((cmdsts & CMDSTS_OWN) == 0) {
1593 			/*
1594 			 * We have processed all of the receive buffers.
1595 			 */
1596 			break;
1597 		}
1598 
1599 		if (__predict_false(sc->sc_rxdiscard)) {
1600 			SIP_INIT_RXDESC(sc, i);
1601 			if ((cmdsts & CMDSTS_MORE) == 0) {
1602 				/* Reset our state. */
1603 				sc->sc_rxdiscard = 0;
1604 			}
1605 			continue;
1606 		}
1607 
1608 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1609 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1610 
1611 		m = rxs->rxs_mbuf;
1612 
1613 		/*
1614 		 * Add a new receive buffer to the ring.
1615 		 */
1616 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1617 			/*
1618 			 * Failed, throw away what we've done so
1619 			 * far, and discard the rest of the packet.
1620 			 */
1621 			ifp->if_ierrors++;
1622 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1623 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1624 			SIP_INIT_RXDESC(sc, i);
1625 			if (cmdsts & CMDSTS_MORE)
1626 				sc->sc_rxdiscard = 1;
1627 			if (sc->sc_rxhead != NULL)
1628 				m_freem(sc->sc_rxhead);
1629 			SIP_RXCHAIN_RESET(sc);
1630 			continue;
1631 		}
1632 
1633 		SIP_RXCHAIN_LINK(sc, m);
1634 
1635 		/*
1636 		 * If this is not the end of the packet, keep
1637 		 * looking.
1638 		 */
1639 		if (cmdsts & CMDSTS_MORE) {
1640 			sc->sc_rxlen += m->m_len;
1641 			continue;
1642 		}
1643 
1644 		/*
1645 		 * Okay, we have the entire packet now...
1646 		 */
1647 		*sc->sc_rxtailp = NULL;
1648 		m = sc->sc_rxhead;
1649 		tailm = sc->sc_rxtail;
1650 
1651 		SIP_RXCHAIN_RESET(sc);
1652 
1653 		/*
1654 		 * If an error occurred, update stats and drop the packet.
1655 		 */
1656 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1657 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1658 			ifp->if_ierrors++;
1659 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1660 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1661 				/* Receive overrun handled elsewhere. */
1662 				printf("%s: receive descriptor error\n",
1663 				    sc->sc_dev.dv_xname);
1664 			}
1665 #define	PRINTERR(bit, str)						\
1666 			if (cmdsts & (bit))				\
1667 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1668 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1669 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1670 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1671 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1672 #undef PRINTERR
1673 			m_freem(m);
1674 			continue;
1675 		}
1676 
1677 		/*
1678 		 * No errors.
1679 		 *
1680 		 * Note, the DP83820 includes the CRC with
1681 		 * every packet.
1682 		 */
1683 		len = CMDSTS_SIZE(cmdsts);
1684 		tailm->m_len = len - sc->sc_rxlen;
1685 
1686 		/*
1687 		 * If the packet is small enough to fit in a
1688 		 * single header mbuf, allocate one and copy
1689 		 * the data into it.  This greatly reduces
1690 		 * memory consumption when we receive lots
1691 		 * of small packets.
1692 		 */
1693 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1694 			struct mbuf *nm;
1695 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1696 			if (nm == NULL) {
1697 				ifp->if_ierrors++;
1698 				m_freem(m);
1699 				continue;
1700 			}
1701 			nm->m_data += 2;
1702 			nm->m_pkthdr.len = nm->m_len = len;
1703 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1704 			m_freem(m);
1705 			m = nm;
1706 		}
1707 #ifndef __NO_STRICT_ALIGNMENT
1708 		else {
1709 			/*
1710 			 * The DP83820's receive buffers must be 4-byte
1711 			 * aligned.  But this means that the data after
1712 			 * the Ethernet header is misaligned.  To compensate,
1713 			 * we have artificially shortened the buffer size
1714 			 * in the descriptor, and we do an overlapping copy
1715 			 * of the data two bytes further in (in the first
1716 			 * buffer of the chain only).
1717 			 */
1718 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1719 			    m->m_len);
1720 			m->m_data += 2;
1721 		}
1722 #endif /* ! __NO_STRICT_ALIGNMENT */
1723 
1724 		/*
1725 		 * If VLANs are enabled, VLAN packets have been unwrapped
1726 		 * for us.  Associate the tag with the packet.
1727 		 */
1728 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1729 		    (extsts & EXTSTS_VPKT) != 0) {
1730 			struct mbuf *vtag;
1731 
1732 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1733 			if (vtag == NULL) {
1734 				ifp->if_ierrors++;
1735 				printf("%s: unable to allocate VLAN tag\n",
1736 				    sc->sc_dev.dv_xname);
1737 				m_freem(m);
1738 				continue;
1739 			}
1740 
1741 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1742 			vtag->m_len = sizeof(int);
1743 		}
1744 
1745 		/*
1746 		 * Set the incoming checksum information for the
1747 		 * packet.
1748 		 */
1749 		if ((extsts & EXTSTS_IPPKT) != 0) {
1750 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1751 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1752 			if (extsts & EXTSTS_Rx_IPERR)
1753 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1754 			if (extsts & EXTSTS_TCPPKT) {
1755 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1756 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1757 				if (extsts & EXTSTS_Rx_TCPERR)
1758 					m->m_pkthdr.csum_flags |=
1759 					    M_CSUM_TCP_UDP_BAD;
1760 			} else if (extsts & EXTSTS_UDPPKT) {
1761 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1762 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1763 				if (extsts & EXTSTS_Rx_UDPERR)
1764 					m->m_pkthdr.csum_flags |=
1765 					    M_CSUM_TCP_UDP_BAD;
1766 			}
1767 		}
1768 
1769 		ifp->if_ipackets++;
1770 		m->m_flags |= M_HASFCS;
1771 		m->m_pkthdr.rcvif = ifp;
1772 		m->m_pkthdr.len = len;
1773 
1774 #if NBPFILTER > 0
1775 		/*
1776 		 * Pass this up to any BPF listeners, but only
1777 		 * pass if up the stack if it's for us.
1778 		 */
1779 		if (ifp->if_bpf)
1780 			bpf_mtap(ifp->if_bpf, m);
1781 #endif /* NBPFILTER > 0 */
1782 
1783 		/* Pass it on. */
1784 		(*ifp->if_input)(ifp, m);
1785 	}
1786 
1787 	/* Update the receive pointer. */
1788 	sc->sc_rxptr = i;
1789 }
1790 #else /* ! DP83820 */
1791 /*
1792  * sip_rxintr:
1793  *
1794  *	Helper; handle receive interrupts.
1795  */
1796 void
1797 SIP_DECL(rxintr)(struct sip_softc *sc)
1798 {
1799 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1800 	struct sip_rxsoft *rxs;
1801 	struct mbuf *m;
1802 	u_int32_t cmdsts;
1803 	int i, len;
1804 
1805 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1806 		rxs = &sc->sc_rxsoft[i];
1807 
1808 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1809 
1810 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1811 
1812 		/*
1813 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1814 		 * consumer of the receive ring, so if the bit is clear,
1815 		 * we have processed all of the packets.
1816 		 */
1817 		if ((cmdsts & CMDSTS_OWN) == 0) {
1818 			/*
1819 			 * We have processed all of the receive buffers.
1820 			 */
1821 			break;
1822 		}
1823 
1824 		/*
1825 		 * If any collisions were seen on the wire, count one.
1826 		 */
1827 		if (cmdsts & CMDSTS_Rx_COL)
1828 			ifp->if_collisions++;
1829 
1830 		/*
1831 		 * If an error occurred, update stats, clear the status
1832 		 * word, and leave the packet buffer in place.  It will
1833 		 * simply be reused the next time the ring comes around.
1834 		 */
1835 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1836 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1837 			ifp->if_ierrors++;
1838 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1839 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1840 				/* Receive overrun handled elsewhere. */
1841 				printf("%s: receive descriptor error\n",
1842 				    sc->sc_dev.dv_xname);
1843 			}
1844 #define	PRINTERR(bit, str)						\
1845 			if (cmdsts & (bit))				\
1846 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1847 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1848 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1849 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1850 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1851 #undef PRINTERR
1852 			SIP_INIT_RXDESC(sc, i);
1853 			continue;
1854 		}
1855 
1856 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1857 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1858 
1859 		/*
1860 		 * No errors; receive the packet.  Note, the SiS 900
1861 		 * includes the CRC with every packet.
1862 		 */
1863 		len = CMDSTS_SIZE(cmdsts);
1864 
1865 #ifdef __NO_STRICT_ALIGNMENT
1866 		/*
1867 		 * If the packet is small enough to fit in a
1868 		 * single header mbuf, allocate one and copy
1869 		 * the data into it.  This greatly reduces
1870 		 * memory consumption when we receive lots
1871 		 * of small packets.
1872 		 *
1873 		 * Otherwise, we add a new buffer to the receive
1874 		 * chain.  If this fails, we drop the packet and
1875 		 * recycle the old buffer.
1876 		 */
1877 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1878 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1879 			if (m == NULL)
1880 				goto dropit;
1881 			memcpy(mtod(m, caddr_t),
1882 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1883 			SIP_INIT_RXDESC(sc, i);
1884 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1885 			    rxs->rxs_dmamap->dm_mapsize,
1886 			    BUS_DMASYNC_PREREAD);
1887 		} else {
1888 			m = rxs->rxs_mbuf;
1889 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1890  dropit:
1891 				ifp->if_ierrors++;
1892 				SIP_INIT_RXDESC(sc, i);
1893 				bus_dmamap_sync(sc->sc_dmat,
1894 				    rxs->rxs_dmamap, 0,
1895 				    rxs->rxs_dmamap->dm_mapsize,
1896 				    BUS_DMASYNC_PREREAD);
1897 				continue;
1898 			}
1899 		}
1900 #else
1901 		/*
1902 		 * The SiS 900's receive buffers must be 4-byte aligned.
1903 		 * But this means that the data after the Ethernet header
1904 		 * is misaligned.  We must allocate a new buffer and
1905 		 * copy the data, shifted forward 2 bytes.
1906 		 */
1907 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1908 		if (m == NULL) {
1909  dropit:
1910 			ifp->if_ierrors++;
1911 			SIP_INIT_RXDESC(sc, i);
1912 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1913 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1914 			continue;
1915 		}
1916 		if (len > (MHLEN - 2)) {
1917 			MCLGET(m, M_DONTWAIT);
1918 			if ((m->m_flags & M_EXT) == 0) {
1919 				m_freem(m);
1920 				goto dropit;
1921 			}
1922 		}
1923 		m->m_data += 2;
1924 
1925 		/*
1926 		 * Note that we use clusters for incoming frames, so the
1927 		 * buffer is virtually contiguous.
1928 		 */
1929 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1930 
1931 		/* Allow the receive descriptor to continue using its mbuf. */
1932 		SIP_INIT_RXDESC(sc, i);
1933 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1934 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1935 #endif /* __NO_STRICT_ALIGNMENT */
1936 
1937 		ifp->if_ipackets++;
1938 		m->m_flags |= M_HASFCS;
1939 		m->m_pkthdr.rcvif = ifp;
1940 		m->m_pkthdr.len = m->m_len = len;
1941 
1942 #if NBPFILTER > 0
1943 		/*
1944 		 * Pass this up to any BPF listeners, but only
1945 		 * pass if up the stack if it's for us.
1946 		 */
1947 		if (ifp->if_bpf)
1948 			bpf_mtap(ifp->if_bpf, m);
1949 #endif /* NBPFILTER > 0 */
1950 
1951 		/* Pass it on. */
1952 		(*ifp->if_input)(ifp, m);
1953 	}
1954 
1955 	/* Update the receive pointer. */
1956 	sc->sc_rxptr = i;
1957 }
1958 #endif /* DP83820 */
1959 
1960 /*
1961  * sip_tick:
1962  *
1963  *	One second timer, used to tick the MII.
1964  */
1965 void
1966 SIP_DECL(tick)(void *arg)
1967 {
1968 	struct sip_softc *sc = arg;
1969 	int s;
1970 
1971 	s = splnet();
1972 	mii_tick(&sc->sc_mii);
1973 	splx(s);
1974 
1975 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1976 }
1977 
1978 /*
1979  * sip_reset:
1980  *
1981  *	Perform a soft reset on the SiS 900.
1982  */
1983 void
1984 SIP_DECL(reset)(struct sip_softc *sc)
1985 {
1986 	bus_space_tag_t st = sc->sc_st;
1987 	bus_space_handle_t sh = sc->sc_sh;
1988 	int i;
1989 
1990 	bus_space_write_4(st, sh, SIP_IER, 0);
1991 	bus_space_write_4(st, sh, SIP_IMR, 0);
1992 	bus_space_write_4(st, sh, SIP_RFCR, 0);
1993 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1994 
1995 	for (i = 0; i < SIP_TIMEOUT; i++) {
1996 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1997 			break;
1998 		delay(2);
1999 	}
2000 
2001 	if (i == SIP_TIMEOUT)
2002 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2003 
2004 	delay(1000);
2005 
2006 #ifdef DP83820
2007 	/*
2008 	 * Set the general purpose I/O bits.  Do it here in case we
2009 	 * need to have GPIO set up to talk to the media interface.
2010 	 */
2011 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2012 	delay(1000);
2013 #endif /* DP83820 */
2014 }
2015 
2016 /*
2017  * sip_init:		[ ifnet interface function ]
2018  *
2019  *	Initialize the interface.  Must be called at splnet().
2020  */
2021 int
2022 SIP_DECL(init)(struct ifnet *ifp)
2023 {
2024 	struct sip_softc *sc = ifp->if_softc;
2025 	bus_space_tag_t st = sc->sc_st;
2026 	bus_space_handle_t sh = sc->sc_sh;
2027 	struct sip_txsoft *txs;
2028 	struct sip_rxsoft *rxs;
2029 	struct sip_desc *sipd;
2030 	u_int32_t reg;
2031 	int i, error = 0;
2032 
2033 	/*
2034 	 * Cancel any pending I/O.
2035 	 */
2036 	SIP_DECL(stop)(ifp, 0);
2037 
2038 	/*
2039 	 * Reset the chip to a known state.
2040 	 */
2041 	SIP_DECL(reset)(sc);
2042 
2043 #if !defined(DP83820)
2044 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2045 		/*
2046 		 * DP83815 manual, page 78:
2047 		 *    4.4 Recommended Registers Configuration
2048 		 *    For optimum performance of the DP83815, version noted
2049 		 *    as DP83815CVNG (SRR = 203h), the listed register
2050 		 *    modifications must be followed in sequence...
2051 		 *
2052 		 * It's not clear if this should be 302h or 203h because that
2053 		 * chip name is listed as SRR 302h in the description of the
2054 		 * SRR register.  However, my revision 302h DP83815 on the
2055 		 * Netgear FA311 purchased in 02/2001 needs these settings
2056 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2057 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2058 		 * this set or not.  [briggs -- 09 March 2001]
2059 		 *
2060 		 * Note that only the low-order 12 bits of 0xe4 are documented
2061 		 * and that this sets reserved bits in that register.
2062 		 */
2063 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2064 		if (reg == 0x302) {
2065 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
2066 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
2067 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
2068 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
2069 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
2070 		}
2071 	}
2072 #endif /* ! DP83820 */
2073 
2074 	/*
2075 	 * Initialize the transmit descriptor ring.
2076 	 */
2077 	for (i = 0; i < SIP_NTXDESC; i++) {
2078 		sipd = &sc->sc_txdescs[i];
2079 		memset(sipd, 0, sizeof(struct sip_desc));
2080 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2081 	}
2082 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2083 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2084 	sc->sc_txfree = SIP_NTXDESC;
2085 	sc->sc_txnext = 0;
2086 
2087 	/*
2088 	 * Initialize the transmit job descriptors.
2089 	 */
2090 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2091 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2092 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2093 		txs = &sc->sc_txsoft[i];
2094 		txs->txs_mbuf = NULL;
2095 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2096 	}
2097 
2098 	/*
2099 	 * Initialize the receive descriptor and receive job
2100 	 * descriptor rings.
2101 	 */
2102 	for (i = 0; i < SIP_NRXDESC; i++) {
2103 		rxs = &sc->sc_rxsoft[i];
2104 		if (rxs->rxs_mbuf == NULL) {
2105 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2106 				printf("%s: unable to allocate or map rx "
2107 				    "buffer %d, error = %d\n",
2108 				    sc->sc_dev.dv_xname, i, error);
2109 				/*
2110 				 * XXX Should attempt to run with fewer receive
2111 				 * XXX buffers instead of just failing.
2112 				 */
2113 				SIP_DECL(rxdrain)(sc);
2114 				goto out;
2115 			}
2116 		} else
2117 			SIP_INIT_RXDESC(sc, i);
2118 	}
2119 	sc->sc_rxptr = 0;
2120 #ifdef DP83820
2121 	sc->sc_rxdiscard = 0;
2122 	SIP_RXCHAIN_RESET(sc);
2123 #endif /* DP83820 */
2124 
2125 	/*
2126 	 * Set the configuration register; it's already initialized
2127 	 * in sip_attach().
2128 	 */
2129 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2130 
2131 	/*
2132 	 * Initialize the prototype TXCFG register.
2133 	 */
2134 #if defined(DP83820)
2135 	sc->sc_txcfg = TXCFG_MXDMA_512;
2136 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2137 #else
2138 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2139 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2140 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2141 		sc->sc_txcfg = TXCFG_MXDMA_64;
2142 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2143 	} else {
2144 		sc->sc_txcfg = TXCFG_MXDMA_512;
2145 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2146 	}
2147 #endif /* DP83820 */
2148 
2149 	sc->sc_txcfg |= TXCFG_ATP |
2150 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2151 	    sc->sc_tx_drain_thresh;
2152 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2153 
2154 	/*
2155 	 * Initialize the receive drain threshold if we have never
2156 	 * done so.
2157 	 */
2158 	if (sc->sc_rx_drain_thresh == 0) {
2159 		/*
2160 		 * XXX This value should be tuned.  This is set to the
2161 		 * maximum of 248 bytes, and we may be able to improve
2162 		 * performance by decreasing it (although we should never
2163 		 * set this value lower than 2; 14 bytes are required to
2164 		 * filter the packet).
2165 		 */
2166 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2167 	}
2168 
2169 	/*
2170 	 * Initialize the prototype RXCFG register.
2171 	 */
2172 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2173 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2174 
2175 #ifdef DP83820
2176 	/*
2177 	 * Initialize the VLAN/IP receive control register.
2178 	 * We enable checksum computation on all incoming
2179 	 * packets, and do not reject packets w/ bad checksums.
2180 	 */
2181 	reg = 0;
2182 	if (ifp->if_capenable &
2183 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2184 		reg |= VRCR_IPEN;
2185 	if (sc->sc_ethercom.ec_nvlans != 0)
2186 		reg |= VRCR_VTDEN|VRCR_VTREN;
2187 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2188 
2189 	/*
2190 	 * Initialize the VLAN/IP transmit control register.
2191 	 * We enable outgoing checksum computation on a
2192 	 * per-packet basis.
2193 	 */
2194 	reg = 0;
2195 	if (ifp->if_capenable &
2196 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2197 		reg |= VTCR_PPCHK;
2198 	if (sc->sc_ethercom.ec_nvlans != 0)
2199 		reg |= VTCR_VPPTI;
2200 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2201 
2202 	/*
2203 	 * If we're using VLANs, initialize the VLAN data register.
2204 	 * To understand why we bswap the VLAN Ethertype, see section
2205 	 * 4.2.36 of the DP83820 manual.
2206 	 */
2207 	if (sc->sc_ethercom.ec_nvlans != 0)
2208 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2209 #endif /* DP83820 */
2210 
2211 	/*
2212 	 * Give the transmit and receive rings to the chip.
2213 	 */
2214 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2215 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2216 
2217 	/*
2218 	 * Initialize the interrupt mask.
2219 	 */
2220 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2221 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2222 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2223 
2224 	/* Set up the receive filter. */
2225 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2226 
2227 	/*
2228 	 * Set the current media.  Do this after initializing the prototype
2229 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2230 	 * control.
2231 	 */
2232 	mii_mediachg(&sc->sc_mii);
2233 
2234 	/*
2235 	 * Enable interrupts.
2236 	 */
2237 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2238 
2239 	/*
2240 	 * Start the transmit and receive processes.
2241 	 */
2242 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2243 
2244 	/*
2245 	 * Start the one second MII clock.
2246 	 */
2247 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2248 
2249 	/*
2250 	 * ...all done!
2251 	 */
2252 	ifp->if_flags |= IFF_RUNNING;
2253 	ifp->if_flags &= ~IFF_OACTIVE;
2254 
2255  out:
2256 	if (error)
2257 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2258 	return (error);
2259 }
2260 
2261 /*
2262  * sip_drain:
2263  *
2264  *	Drain the receive queue.
2265  */
2266 void
2267 SIP_DECL(rxdrain)(struct sip_softc *sc)
2268 {
2269 	struct sip_rxsoft *rxs;
2270 	int i;
2271 
2272 	for (i = 0; i < SIP_NRXDESC; i++) {
2273 		rxs = &sc->sc_rxsoft[i];
2274 		if (rxs->rxs_mbuf != NULL) {
2275 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2276 			m_freem(rxs->rxs_mbuf);
2277 			rxs->rxs_mbuf = NULL;
2278 		}
2279 	}
2280 }
2281 
2282 /*
2283  * sip_stop:		[ ifnet interface function ]
2284  *
2285  *	Stop transmission on the interface.
2286  */
2287 void
2288 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2289 {
2290 	struct sip_softc *sc = ifp->if_softc;
2291 	bus_space_tag_t st = sc->sc_st;
2292 	bus_space_handle_t sh = sc->sc_sh;
2293 	struct sip_txsoft *txs;
2294 	u_int32_t cmdsts = 0;		/* DEBUG */
2295 
2296 	/*
2297 	 * Stop the one second clock.
2298 	 */
2299 	callout_stop(&sc->sc_tick_ch);
2300 
2301 	/* Down the MII. */
2302 	mii_down(&sc->sc_mii);
2303 
2304 	/*
2305 	 * Disable interrupts.
2306 	 */
2307 	bus_space_write_4(st, sh, SIP_IER, 0);
2308 
2309 	/*
2310 	 * Stop receiver and transmitter.
2311 	 */
2312 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2313 
2314 	/*
2315 	 * Release any queued transmit buffers.
2316 	 */
2317 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2318 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2319 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2320 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2321 		     CMDSTS_INTR) == 0)
2322 			printf("%s: sip_stop: last descriptor does not "
2323 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2324 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2325 #ifdef DIAGNOSTIC
2326 		if (txs->txs_mbuf == NULL) {
2327 			printf("%s: dirty txsoft with no mbuf chain\n",
2328 			    sc->sc_dev.dv_xname);
2329 			panic("sip_stop");
2330 		}
2331 #endif
2332 		cmdsts |=		/* DEBUG */
2333 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2334 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2335 		m_freem(txs->txs_mbuf);
2336 		txs->txs_mbuf = NULL;
2337 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2338 	}
2339 
2340 	if (disable)
2341 		SIP_DECL(rxdrain)(sc);
2342 
2343 	/*
2344 	 * Mark the interface down and cancel the watchdog timer.
2345 	 */
2346 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2347 	ifp->if_timer = 0;
2348 
2349 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2350 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2351 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2352 		    "descriptors\n", sc->sc_dev.dv_xname);
2353 }
2354 
2355 /*
2356  * sip_read_eeprom:
2357  *
2358  *	Read data from the serial EEPROM.
2359  */
2360 void
2361 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2362     u_int16_t *data)
2363 {
2364 	bus_space_tag_t st = sc->sc_st;
2365 	bus_space_handle_t sh = sc->sc_sh;
2366 	u_int16_t reg;
2367 	int i, x;
2368 
2369 	for (i = 0; i < wordcnt; i++) {
2370 		/* Send CHIP SELECT. */
2371 		reg = EROMAR_EECS;
2372 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2373 
2374 		/* Shift in the READ opcode. */
2375 		for (x = 3; x > 0; x--) {
2376 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2377 				reg |= EROMAR_EEDI;
2378 			else
2379 				reg &= ~EROMAR_EEDI;
2380 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2381 			bus_space_write_4(st, sh, SIP_EROMAR,
2382 			    reg | EROMAR_EESK);
2383 			delay(4);
2384 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2385 			delay(4);
2386 		}
2387 
2388 		/* Shift in address. */
2389 		for (x = 6; x > 0; x--) {
2390 			if ((word + i) & (1 << (x - 1)))
2391 				reg |= EROMAR_EEDI;
2392 			else
2393 				reg &= ~EROMAR_EEDI;
2394 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2395 			bus_space_write_4(st, sh, SIP_EROMAR,
2396 			    reg | EROMAR_EESK);
2397 			delay(4);
2398 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2399 			delay(4);
2400 		}
2401 
2402 		/* Shift out data. */
2403 		reg = EROMAR_EECS;
2404 		data[i] = 0;
2405 		for (x = 16; x > 0; x--) {
2406 			bus_space_write_4(st, sh, SIP_EROMAR,
2407 			    reg | EROMAR_EESK);
2408 			delay(4);
2409 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2410 				data[i] |= (1 << (x - 1));
2411 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2412 			delay(4);
2413 		}
2414 
2415 		/* Clear CHIP SELECT. */
2416 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2417 		delay(4);
2418 	}
2419 }
2420 
2421 /*
2422  * sip_add_rxbuf:
2423  *
2424  *	Add a receive buffer to the indicated descriptor.
2425  */
2426 int
2427 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2428 {
2429 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2430 	struct mbuf *m;
2431 	int error;
2432 
2433 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2434 	if (m == NULL)
2435 		return (ENOBUFS);
2436 
2437 	MCLGET(m, M_DONTWAIT);
2438 	if ((m->m_flags & M_EXT) == 0) {
2439 		m_freem(m);
2440 		return (ENOBUFS);
2441 	}
2442 
2443 #if defined(DP83820)
2444 	m->m_len = SIP_RXBUF_LEN;
2445 #endif /* DP83820 */
2446 
2447 	if (rxs->rxs_mbuf != NULL)
2448 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2449 
2450 	rxs->rxs_mbuf = m;
2451 
2452 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2453 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2454 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2455 	if (error) {
2456 		printf("%s: can't load rx DMA map %d, error = %d\n",
2457 		    sc->sc_dev.dv_xname, idx, error);
2458 		panic("sip_add_rxbuf");		/* XXX */
2459 	}
2460 
2461 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2462 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2463 
2464 	SIP_INIT_RXDESC(sc, idx);
2465 
2466 	return (0);
2467 }
2468 
2469 #if !defined(DP83820)
2470 /*
2471  * sip_sis900_set_filter:
2472  *
2473  *	Set up the receive filter.
2474  */
2475 void
2476 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2477 {
2478 	bus_space_tag_t st = sc->sc_st;
2479 	bus_space_handle_t sh = sc->sc_sh;
2480 	struct ethercom *ec = &sc->sc_ethercom;
2481 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2482 	struct ether_multi *enm;
2483 	u_int8_t *cp;
2484 	struct ether_multistep step;
2485 	u_int32_t crc, mchash[16];
2486 
2487 	/*
2488 	 * Initialize the prototype RFCR.
2489 	 */
2490 	sc->sc_rfcr = RFCR_RFEN;
2491 	if (ifp->if_flags & IFF_BROADCAST)
2492 		sc->sc_rfcr |= RFCR_AAB;
2493 	if (ifp->if_flags & IFF_PROMISC) {
2494 		sc->sc_rfcr |= RFCR_AAP;
2495 		goto allmulti;
2496 	}
2497 
2498 	/*
2499 	 * Set up the multicast address filter by passing all multicast
2500 	 * addresses through a CRC generator, and then using the high-order
2501 	 * 6 bits as an index into the 128 bit multicast hash table (only
2502 	 * the lower 16 bits of each 32 bit multicast hash register are
2503 	 * valid).  The high order bits select the register, while the
2504 	 * rest of the bits select the bit within the register.
2505 	 */
2506 
2507 	memset(mchash, 0, sizeof(mchash));
2508 
2509 	ETHER_FIRST_MULTI(step, ec, enm);
2510 	while (enm != NULL) {
2511 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2512 			/*
2513 			 * We must listen to a range of multicast addresses.
2514 			 * For now, just accept all multicasts, rather than
2515 			 * trying to set only those filter bits needed to match
2516 			 * the range.  (At this time, the only use of address
2517 			 * ranges is for IP multicast routing, for which the
2518 			 * range is big enough to require all bits set.)
2519 			 */
2520 			goto allmulti;
2521 		}
2522 
2523 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2524 
2525 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2526 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2527 			/* Just want the 8 most significant bits. */
2528 			crc >>= 24;
2529 		} else {
2530 			/* Just want the 7 most significant bits. */
2531 			crc >>= 25;
2532 		}
2533 
2534 		/* Set the corresponding bit in the hash table. */
2535 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2536 
2537 		ETHER_NEXT_MULTI(step, enm);
2538 	}
2539 
2540 	ifp->if_flags &= ~IFF_ALLMULTI;
2541 	goto setit;
2542 
2543  allmulti:
2544 	ifp->if_flags |= IFF_ALLMULTI;
2545 	sc->sc_rfcr |= RFCR_AAM;
2546 
2547  setit:
2548 #define	FILTER_EMIT(addr, data)						\
2549 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2550 	delay(1);							\
2551 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2552 	delay(1)
2553 
2554 	/*
2555 	 * Disable receive filter, and program the node address.
2556 	 */
2557 	cp = LLADDR(ifp->if_sadl);
2558 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2559 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2560 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2561 
2562 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2563 		/*
2564 		 * Program the multicast hash table.
2565 		 */
2566 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2567 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2568 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2569 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2570 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2571 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2572 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2573 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2574 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2575 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2576 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2577 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2578 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2579 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2580 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2581 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2582 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2583 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2584 		}
2585 	}
2586 #undef FILTER_EMIT
2587 
2588 	/*
2589 	 * Re-enable the receiver filter.
2590 	 */
2591 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2592 }
2593 #endif /* ! DP83820 */
2594 
2595 /*
2596  * sip_dp83815_set_filter:
2597  *
2598  *	Set up the receive filter.
2599  */
2600 void
2601 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2602 {
2603 	bus_space_tag_t st = sc->sc_st;
2604 	bus_space_handle_t sh = sc->sc_sh;
2605 	struct ethercom *ec = &sc->sc_ethercom;
2606 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2607 	struct ether_multi *enm;
2608 	u_int8_t *cp;
2609 	struct ether_multistep step;
2610 	u_int32_t crc, hash, slot, bit;
2611 #ifdef DP83820
2612 #define	MCHASH_NWORDS	128
2613 #else
2614 #define	MCHASH_NWORDS	32
2615 #endif /* DP83820 */
2616 	u_int16_t mchash[MCHASH_NWORDS];
2617 	int i;
2618 
2619 	/*
2620 	 * Initialize the prototype RFCR.
2621 	 * Enable the receive filter, and accept on
2622 	 *    Perfect (destination address) Match
2623 	 * If IFF_BROADCAST, also accept all broadcast packets.
2624 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2625 	 *    IFF_ALLMULTI and accept all multicast, too).
2626 	 */
2627 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2628 	if (ifp->if_flags & IFF_BROADCAST)
2629 		sc->sc_rfcr |= RFCR_AAB;
2630 	if (ifp->if_flags & IFF_PROMISC) {
2631 		sc->sc_rfcr |= RFCR_AAP;
2632 		goto allmulti;
2633 	}
2634 
2635 #ifdef DP83820
2636 	/*
2637 	 * Set up the DP83820 multicast address filter by passing all multicast
2638 	 * addresses through a CRC generator, and then using the high-order
2639 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2640 	 * high-order 7 bits select the slot, while the low-order 4 bits
2641 	 * select the bit within the slot.  Note that only the low 16-bits
2642 	 * of each filter word are used, and there are 128 filter words.
2643 	 */
2644 #else
2645 	/*
2646 	 * Set up the DP83815 multicast address filter by passing all multicast
2647 	 * addresses through a CRC generator, and then using the high-order
2648 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2649 	 * high-order 5 bits select the slot, while the low-order 4 bits
2650 	 * select the bit within the slot.  Note that only the low 16-bits
2651 	 * of each filter word are used, and there are 32 filter words.
2652 	 */
2653 #endif /* DP83820 */
2654 
2655 	memset(mchash, 0, sizeof(mchash));
2656 
2657 	ifp->if_flags &= ~IFF_ALLMULTI;
2658 	ETHER_FIRST_MULTI(step, ec, enm);
2659 	if (enm == NULL)
2660 		goto setit;
2661 	while (enm != NULL) {
2662 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2663 			/*
2664 			 * We must listen to a range of multicast addresses.
2665 			 * For now, just accept all multicasts, rather than
2666 			 * trying to set only those filter bits needed to match
2667 			 * the range.  (At this time, the only use of address
2668 			 * ranges is for IP multicast routing, for which the
2669 			 * range is big enough to require all bits set.)
2670 			 */
2671 			goto allmulti;
2672 		}
2673 
2674 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2675 
2676 #ifdef DP83820
2677 		/* Just want the 11 most significant bits. */
2678 		hash = crc >> 21;
2679 #else
2680 		/* Just want the 9 most significant bits. */
2681 		hash = crc >> 23;
2682 #endif /* DP83820 */
2683 
2684 		slot = hash >> 4;
2685 		bit = hash & 0xf;
2686 
2687 		/* Set the corresponding bit in the hash table. */
2688 		mchash[slot] |= 1 << bit;
2689 
2690 		ETHER_NEXT_MULTI(step, enm);
2691 	}
2692 	sc->sc_rfcr |= RFCR_MHEN;
2693 	goto setit;
2694 
2695  allmulti:
2696 	ifp->if_flags |= IFF_ALLMULTI;
2697 	sc->sc_rfcr |= RFCR_AAM;
2698 
2699  setit:
2700 #define	FILTER_EMIT(addr, data)						\
2701 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2702 	delay(1);							\
2703 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2704 	delay(1)
2705 
2706 	/*
2707 	 * Disable receive filter, and program the node address.
2708 	 */
2709 	cp = LLADDR(ifp->if_sadl);
2710 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2711 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2712 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2713 
2714 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2715 		/*
2716 		 * Program the multicast hash table.
2717 		 */
2718 		for (i = 0; i < MCHASH_NWORDS; i++) {
2719 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2720 			    mchash[i]);
2721 		}
2722 	}
2723 #undef FILTER_EMIT
2724 #undef MCHASH_NWORDS
2725 
2726 	/*
2727 	 * Re-enable the receiver filter.
2728 	 */
2729 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2730 }
2731 
2732 #if defined(DP83820)
2733 /*
2734  * sip_dp83820_mii_readreg:	[mii interface function]
2735  *
2736  *	Read a PHY register on the MII of the DP83820.
2737  */
2738 int
2739 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2740 {
2741 
2742 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2743 	    phy, reg));
2744 }
2745 
2746 /*
2747  * sip_dp83820_mii_writereg:	[mii interface function]
2748  *
2749  *	Write a PHY register on the MII of the DP83820.
2750  */
2751 void
2752 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2753 {
2754 
2755 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2756 	    phy, reg, val);
2757 }
2758 
2759 /*
2760  * sip_dp83815_mii_statchg:	[mii interface function]
2761  *
2762  *	Callback from MII layer when media changes.
2763  */
2764 void
2765 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2766 {
2767 	struct sip_softc *sc = (struct sip_softc *) self;
2768 	u_int32_t cfg;
2769 
2770 	/*
2771 	 * Update TXCFG for full-duplex operation.
2772 	 */
2773 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2774 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2775 	else
2776 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2777 
2778 	/*
2779 	 * Update RXCFG for full-duplex or loopback.
2780 	 */
2781 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2782 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2783 		sc->sc_rxcfg |= RXCFG_ATX;
2784 	else
2785 		sc->sc_rxcfg &= ~RXCFG_ATX;
2786 
2787 	/*
2788 	 * Update CFG for MII/GMII.
2789 	 */
2790 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2791 		cfg = sc->sc_cfg | CFG_MODE_1000;
2792 	else
2793 		cfg = sc->sc_cfg;
2794 
2795 	/*
2796 	 * XXX 802.3x flow control.
2797 	 */
2798 
2799 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2800 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2801 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2802 }
2803 
2804 /*
2805  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2806  *
2807  *	Read the MII serial port for the MII bit-bang module.
2808  */
2809 u_int32_t
2810 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2811 {
2812 	struct sip_softc *sc = (void *) self;
2813 
2814 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2815 }
2816 
2817 /*
2818  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2819  *
2820  *	Write the MII serial port for the MII bit-bang module.
2821  */
2822 void
2823 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2824 {
2825 	struct sip_softc *sc = (void *) self;
2826 
2827 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2828 }
2829 #else /* ! DP83820 */
2830 /*
2831  * sip_sis900_mii_readreg:	[mii interface function]
2832  *
2833  *	Read a PHY register on the MII.
2834  */
2835 int
2836 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2837 {
2838 	struct sip_softc *sc = (struct sip_softc *) self;
2839 	u_int32_t enphy;
2840 
2841 	/*
2842 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2843 	 * MII address 0.
2844 	 */
2845 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2846 	    sc->sc_rev < SIS_REV_635 && phy != 0)
2847 		return (0);
2848 
2849 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2850 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2851 	    ENPHY_RWCMD | ENPHY_ACCESS);
2852 	do {
2853 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2854 	} while (enphy & ENPHY_ACCESS);
2855 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2856 }
2857 
2858 /*
2859  * sip_sis900_mii_writereg:	[mii interface function]
2860  *
2861  *	Write a PHY register on the MII.
2862  */
2863 void
2864 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2865 {
2866 	struct sip_softc *sc = (struct sip_softc *) self;
2867 	u_int32_t enphy;
2868 
2869 	/*
2870 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2871 	 * MII address 0.
2872 	 */
2873 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2874 	    sc->sc_rev < SIS_REV_635 && phy != 0)
2875 		return;
2876 
2877 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2878 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2879 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2880 	do {
2881 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2882 	} while (enphy & ENPHY_ACCESS);
2883 }
2884 
2885 /*
2886  * sip_sis900_mii_statchg:	[mii interface function]
2887  *
2888  *	Callback from MII layer when media changes.
2889  */
2890 void
2891 SIP_DECL(sis900_mii_statchg)(struct device *self)
2892 {
2893 	struct sip_softc *sc = (struct sip_softc *) self;
2894 	u_int32_t flowctl;
2895 
2896 	/*
2897 	 * Update TXCFG for full-duplex operation.
2898 	 */
2899 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2900 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2901 	else
2902 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2903 
2904 	/*
2905 	 * Update RXCFG for full-duplex or loopback.
2906 	 */
2907 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2908 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2909 		sc->sc_rxcfg |= RXCFG_ATX;
2910 	else
2911 		sc->sc_rxcfg &= ~RXCFG_ATX;
2912 
2913 	/*
2914 	 * Update IMR for use of 802.3x flow control.
2915 	 */
2916 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2917 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2918 		flowctl = FLOWCTL_FLOWEN;
2919 	} else {
2920 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2921 		flowctl = 0;
2922 	}
2923 
2924 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2925 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2926 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2927 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2928 }
2929 
2930 /*
2931  * sip_dp83815_mii_readreg:	[mii interface function]
2932  *
2933  *	Read a PHY register on the MII.
2934  */
2935 int
2936 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2937 {
2938 	struct sip_softc *sc = (struct sip_softc *) self;
2939 	u_int32_t val;
2940 
2941 	/*
2942 	 * The DP83815 only has an internal PHY.  Only allow
2943 	 * MII address 0.
2944 	 */
2945 	if (phy != 0)
2946 		return (0);
2947 
2948 	/*
2949 	 * Apparently, after a reset, the DP83815 can take a while
2950 	 * to respond.  During this recovery period, the BMSR returns
2951 	 * a value of 0.  Catch this -- it's not supposed to happen
2952 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2953 	 * PHY to come back to life.
2954 	 *
2955 	 * This works out because the BMSR is the first register
2956 	 * read during the PHY probe process.
2957 	 */
2958 	do {
2959 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2960 	} while (reg == MII_BMSR && val == 0);
2961 
2962 	return (val & 0xffff);
2963 }
2964 
2965 /*
2966  * sip_dp83815_mii_writereg:	[mii interface function]
2967  *
2968  *	Write a PHY register to the MII.
2969  */
2970 void
2971 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2972 {
2973 	struct sip_softc *sc = (struct sip_softc *) self;
2974 
2975 	/*
2976 	 * The DP83815 only has an internal PHY.  Only allow
2977 	 * MII address 0.
2978 	 */
2979 	if (phy != 0)
2980 		return;
2981 
2982 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2983 }
2984 
2985 /*
2986  * sip_dp83815_mii_statchg:	[mii interface function]
2987  *
2988  *	Callback from MII layer when media changes.
2989  */
2990 void
2991 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2992 {
2993 	struct sip_softc *sc = (struct sip_softc *) self;
2994 
2995 	/*
2996 	 * Update TXCFG for full-duplex operation.
2997 	 */
2998 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2999 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3000 	else
3001 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3002 
3003 	/*
3004 	 * Update RXCFG for full-duplex or loopback.
3005 	 */
3006 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3007 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3008 		sc->sc_rxcfg |= RXCFG_ATX;
3009 	else
3010 		sc->sc_rxcfg &= ~RXCFG_ATX;
3011 
3012 	/*
3013 	 * XXX 802.3x flow control.
3014 	 */
3015 
3016 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3017 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3018 }
3019 #endif /* DP83820 */
3020 
3021 #if defined(DP83820)
3022 void
3023 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3024     const struct pci_attach_args *pa, u_int8_t *enaddr)
3025 {
3026 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3027 	u_int8_t cksum, *e, match;
3028 	int i;
3029 
3030 	/*
3031 	 * EEPROM data format for the DP83820 can be found in
3032 	 * the DP83820 manual, section 4.2.4.
3033 	 */
3034 
3035 	SIP_DECL(read_eeprom)(sc, 0,
3036 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3037 
3038 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3039 	match = ~(match - 1);
3040 
3041 	cksum = 0x55;
3042 	e = (u_int8_t *) eeprom_data;
3043 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3044 		cksum += *e++;
3045 
3046 	if (cksum != match)
3047 		printf("%s: Checksum (%x) mismatch (%x)",
3048 		    sc->sc_dev.dv_xname, cksum, match);
3049 
3050 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3051 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3052 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3053 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3054 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3055 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3056 
3057 	/* Get the GPIOR bits. */
3058 	sc->sc_gpior = eeprom_data[0x04];
3059 
3060 	/* Get various CFG related bits. */
3061 	if ((eeprom_data[0x05] >> 0) & 1)
3062 		sc->sc_cfg |= CFG_EXT_125;
3063 	if ((eeprom_data[0x05] >> 9) & 1)
3064 		sc->sc_cfg |= CFG_TBI_EN;
3065 }
3066 #else /* ! DP83820 */
3067 void
3068 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3069     const struct pci_attach_args *pa, u_int8_t *enaddr)
3070 {
3071 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3072 
3073 	switch (sc->sc_rev) {
3074 	case SIS_REV_630S:
3075 	case SIS_REV_630E:
3076 	case SIS_REV_630EA1:
3077 	case SIS_REV_630ET:
3078 	case SIS_REV_635:
3079 		/*
3080 		 * The MAC address for the on-board Ethernet of
3081 		 * the SiS 630 chipset is in the NVRAM.  Kick
3082 		 * the chip into re-loading it from NVRAM, and
3083 		 * read the MAC address out of the filter registers.
3084 		 */
3085 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3086 
3087 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3088 		    RFCR_RFADDR_NODE0);
3089 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3090 		    0xffff;
3091 
3092 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3093 		    RFCR_RFADDR_NODE2);
3094 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3095 		    0xffff;
3096 
3097 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3098 		    RFCR_RFADDR_NODE4);
3099 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3100 		    0xffff;
3101 		break;
3102 
3103 	default:
3104 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3105 		    sizeof(myea) / sizeof(myea[0]), myea);
3106 	}
3107 
3108 	enaddr[0] = myea[0] & 0xff;
3109 	enaddr[1] = myea[0] >> 8;
3110 	enaddr[2] = myea[1] & 0xff;
3111 	enaddr[3] = myea[1] >> 8;
3112 	enaddr[4] = myea[2] & 0xff;
3113 	enaddr[5] = myea[2] >> 8;
3114 }
3115 
3116 /* Table and macro to bit-reverse an octet. */
3117 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3118 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3119 
3120 void
3121 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3122     const struct pci_attach_args *pa, u_int8_t *enaddr)
3123 {
3124 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3125 	u_int8_t cksum, *e, match;
3126 	int i;
3127 
3128 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3129 	    sizeof(eeprom_data[0]), eeprom_data);
3130 
3131 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3132 	match = ~(match - 1);
3133 
3134 	cksum = 0x55;
3135 	e = (u_int8_t *) eeprom_data;
3136 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3137 		cksum += *e++;
3138 	}
3139 	if (cksum != match) {
3140 		printf("%s: Checksum (%x) mismatch (%x)",
3141 		    sc->sc_dev.dv_xname, cksum, match);
3142 	}
3143 
3144 	/*
3145 	 * Unrolled because it makes slightly more sense this way.
3146 	 * The DP83815 stores the MAC address in bit 0 of word 6
3147 	 * through bit 15 of word 8.
3148 	 */
3149 	ea = &eeprom_data[6];
3150 	enaddr[0] = ((*ea & 0x1) << 7);
3151 	ea++;
3152 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3153 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3154 	enaddr[2] = ((*ea & 0x1) << 7);
3155 	ea++;
3156 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3157 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3158 	enaddr[4] = ((*ea & 0x1) << 7);
3159 	ea++;
3160 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3161 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3162 
3163 	/*
3164 	 * In case that's not weird enough, we also need to reverse
3165 	 * the bits in each byte.  This all actually makes more sense
3166 	 * if you think about the EEPROM storage as an array of bits
3167 	 * being shifted into bytes, but that's not how we're looking
3168 	 * at it here...
3169 	 */
3170 	for (i = 0; i < 6 ;i++)
3171 		enaddr[i] = bbr(enaddr[i]);
3172 }
3173 #endif /* DP83820 */
3174 
3175 /*
3176  * sip_mediastatus:	[ifmedia interface function]
3177  *
3178  *	Get the current interface media status.
3179  */
3180 void
3181 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3182 {
3183 	struct sip_softc *sc = ifp->if_softc;
3184 
3185 	mii_pollstat(&sc->sc_mii);
3186 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3187 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
3188 }
3189 
3190 /*
3191  * sip_mediachange:	[ifmedia interface function]
3192  *
3193  *	Set hardware to newly-selected media.
3194  */
3195 int
3196 SIP_DECL(mediachange)(struct ifnet *ifp)
3197 {
3198 	struct sip_softc *sc = ifp->if_softc;
3199 
3200 	if (ifp->if_flags & IFF_UP)
3201 		mii_mediachg(&sc->sc_mii);
3202 	return (0);
3203 }
3204