xref: /netbsd/sys/dev/pci/if_ste.c (revision 6550d01e)
1 /*	$NetBSD: if_ste.c,v 1.42 2010/11/13 13:52:07 uebayasi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. ST-201 10/100
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.42 2010/11/13 13:52:07 uebayasi Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_stereg.h>
72 
73 /*
74  * Transmit descriptor list size.
75  */
76 #define	STE_NTXDESC		256
77 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
78 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
79 
80 /*
81  * Receive descriptor list size.
82  */
83 #define	STE_NRXDESC		128
84 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
85 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
86 
87 /*
88  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
89  * a single clump that maps to a single DMA segment to make several things
90  * easier.
91  */
92 struct ste_control_data {
93 	/*
94 	 * The transmit descriptors.
95 	 */
96 	struct ste_tfd scd_txdescs[STE_NTXDESC];
97 
98 	/*
99 	 * The receive descriptors.
100 	 */
101 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
102 };
103 
104 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
105 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
106 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
107 
108 /*
109  * Software state for transmit and receive jobs.
110  */
111 struct ste_descsoft {
112 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
113 	bus_dmamap_t ds_dmamap;		/* our DMA map */
114 };
115 
116 /*
117  * Software state per device.
118  */
119 struct ste_softc {
120 	struct device sc_dev;		/* generic device information */
121 	bus_space_tag_t sc_st;		/* bus space tag */
122 	bus_space_handle_t sc_sh;	/* bus space handle */
123 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
124 	struct ethercom sc_ethercom;	/* ethernet common data */
125 
126 	void *sc_ih;			/* interrupt cookie */
127 
128 	struct mii_data sc_mii;		/* MII/media information */
129 
130 	callout_t sc_tick_ch;		/* tick callout */
131 
132 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
133 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
134 
135 	/*
136 	 * Software state for transmit and receive descriptors.
137 	 */
138 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
139 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
140 
141 	/*
142 	 * Control data structures.
143 	 */
144 	struct ste_control_data *sc_control_data;
145 #define	sc_txdescs	sc_control_data->scd_txdescs
146 #define	sc_rxdescs	sc_control_data->scd_rxdescs
147 
148 	int	sc_txpending;		/* number of Tx requests pending */
149 	int	sc_txdirty;		/* first dirty Tx descriptor */
150 	int	sc_txlast;		/* last used Tx descriptor */
151 
152 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
153 
154 	int	sc_txthresh;		/* Tx threshold */
155 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
156 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
157 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
158 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
159 };
160 
161 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
162 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
163 
164 #define	STE_CDTXSYNC(sc, x, ops)					\
165 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
166 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
167 
168 #define	STE_CDRXSYNC(sc, x, ops)					\
169 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
170 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
171 
172 #define	STE_INIT_RXDESC(sc, x)						\
173 do {									\
174 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
175 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
176 	struct mbuf *__m = __ds->ds_mbuf;				\
177 									\
178 	/*								\
179 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
180 	 * so that the payload after the Ethernet header is aligned	\
181 	 * to a 4-byte boundary.					\
182 	 */								\
183 	__m->m_data = __m->m_ext.ext_buf + 2;				\
184 	__rfd->rfd_frag.frag_addr =					\
185 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
186 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
187 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
188 	__rfd->rfd_status = 0;						\
189 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
190 } while (/*CONSTCOND*/0)
191 
192 #define STE_TIMEOUT 1000
193 
194 static void	ste_start(struct ifnet *);
195 static void	ste_watchdog(struct ifnet *);
196 static int	ste_ioctl(struct ifnet *, u_long, void *);
197 static int	ste_init(struct ifnet *);
198 static void	ste_stop(struct ifnet *, int);
199 
200 static bool	ste_shutdown(device_t, int);
201 
202 static void	ste_reset(struct ste_softc *, u_int32_t);
203 static void	ste_setthresh(struct ste_softc *);
204 static void	ste_txrestart(struct ste_softc *, u_int8_t);
205 static void	ste_rxdrain(struct ste_softc *);
206 static int	ste_add_rxbuf(struct ste_softc *, int);
207 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
208 static void	ste_tick(void *);
209 
210 static void	ste_stats_update(struct ste_softc *);
211 
212 static void	ste_set_filter(struct ste_softc *);
213 
214 static int	ste_intr(void *);
215 static void	ste_txintr(struct ste_softc *);
216 static void	ste_rxintr(struct ste_softc *);
217 
218 static int	ste_mii_readreg(device_t, int, int);
219 static void	ste_mii_writereg(device_t, int, int, int);
220 static void	ste_mii_statchg(device_t);
221 
222 static int	ste_match(device_t, cfdata_t, void *);
223 static void	ste_attach(device_t, device_t, void *);
224 
225 int	ste_copy_small = 0;
226 
227 CFATTACH_DECL(ste, sizeof(struct ste_softc),
228     ste_match, ste_attach, NULL, NULL);
229 
230 static uint32_t ste_mii_bitbang_read(device_t);
231 static void	ste_mii_bitbang_write(device_t, uint32_t);
232 
233 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
234 	ste_mii_bitbang_read,
235 	ste_mii_bitbang_write,
236 	{
237 		PC_MgmtData,		/* MII_BIT_MDO */
238 		PC_MgmtData,		/* MII_BIT_MDI */
239 		PC_MgmtClk,		/* MII_BIT_MDC */
240 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
241 		0,			/* MII_BIT_DIR_PHY_HOST */
242 	}
243 };
244 
245 /*
246  * Devices supported by this driver.
247  */
248 static const struct ste_product {
249 	pci_vendor_id_t		ste_vendor;
250 	pci_product_id_t	ste_product;
251 	const char		*ste_name;
252 } ste_products[] = {
253 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
254 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
255 
256 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
257 	  "Sundance ST-201 10/100 Ethernet" },
258 
259 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
260 	  "D-Link DL-1002 10/100 Ethernet" },
261 
262 	{ 0,				0,
263 	  NULL },
264 };
265 
266 static const struct ste_product *
267 ste_lookup(const struct pci_attach_args *pa)
268 {
269 	const struct ste_product *sp;
270 
271 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
272 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
273 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
274 			return (sp);
275 	}
276 	return (NULL);
277 }
278 
279 static int
280 ste_match(device_t parent, cfdata_t cf, void *aux)
281 {
282 	struct pci_attach_args *pa = aux;
283 
284 	if (ste_lookup(pa) != NULL)
285 		return (1);
286 
287 	return (0);
288 }
289 
290 static void
291 ste_attach(device_t parent, device_t self, void *aux)
292 {
293 	struct ste_softc *sc = device_private(self);
294 	struct pci_attach_args *pa = aux;
295 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
296 	pci_chipset_tag_t pc = pa->pa_pc;
297 	pci_intr_handle_t ih;
298 	const char *intrstr = NULL;
299 	bus_space_tag_t iot, memt;
300 	bus_space_handle_t ioh, memh;
301 	bus_dma_segment_t seg;
302 	int ioh_valid, memh_valid;
303 	int i, rseg, error;
304 	const struct ste_product *sp;
305 	uint8_t enaddr[ETHER_ADDR_LEN];
306 	uint16_t myea[ETHER_ADDR_LEN / 2];
307 
308 	callout_init(&sc->sc_tick_ch, 0);
309 
310 	sp = ste_lookup(pa);
311 	if (sp == NULL) {
312 		printf("\n");
313 		panic("ste_attach: impossible");
314 	}
315 
316 	printf(": %s\n", sp->ste_name);
317 
318 	/*
319 	 * Map the device.
320 	 */
321 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
322 	    PCI_MAPREG_TYPE_IO, 0,
323 	    &iot, &ioh, NULL, NULL) == 0);
324 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
325 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
326 	    &memt, &memh, NULL, NULL) == 0);
327 
328 	if (memh_valid) {
329 		sc->sc_st = memt;
330 		sc->sc_sh = memh;
331 	} else if (ioh_valid) {
332 		sc->sc_st = iot;
333 		sc->sc_sh = ioh;
334 	} else {
335 		aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
336 		return;
337 	}
338 
339 	sc->sc_dmat = pa->pa_dmat;
340 
341 	/* Enable bus mastering. */
342 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
343 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
344 	    PCI_COMMAND_MASTER_ENABLE);
345 
346 	/* power up chip */
347 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
348 	    NULL)) && error != EOPNOTSUPP) {
349 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
350 		    error);
351 		return;
352 	}
353 
354 	/*
355 	 * Map and establish our interrupt.
356 	 */
357 	if (pci_intr_map(pa, &ih)) {
358 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
359 		return;
360 	}
361 	intrstr = pci_intr_string(pc, ih);
362 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
363 	if (sc->sc_ih == NULL) {
364 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
365 		if (intrstr != NULL)
366 			aprint_error(" at %s", intrstr);
367 		aprint_error("\n");
368 		return;
369 	}
370 	aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
371 
372 	/*
373 	 * Allocate the control data structures, and create and load the
374 	 * DMA map for it.
375 	 */
376 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
377 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
378 	    0)) != 0) {
379 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
380 		    error);
381 		goto fail_0;
382 	}
383 
384 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
385 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
386 	    BUS_DMA_COHERENT)) != 0) {
387 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
388 		    error);
389 		goto fail_1;
390 	}
391 
392 	if ((error = bus_dmamap_create(sc->sc_dmat,
393 	    sizeof(struct ste_control_data), 1,
394 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
395 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
396 		    "error = %d\n", error);
397 		goto fail_2;
398 	}
399 
400 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
401 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
402 	    0)) != 0) {
403 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
404 		    error);
405 		goto fail_3;
406 	}
407 
408 	/*
409 	 * Create the transmit buffer DMA maps.
410 	 */
411 	for (i = 0; i < STE_NTXDESC; i++) {
412 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
413 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
414 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
415 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
416 			    "error = %d\n", i, error);
417 			goto fail_4;
418 		}
419 	}
420 
421 	/*
422 	 * Create the receive buffer DMA maps.
423 	 */
424 	for (i = 0; i < STE_NRXDESC; i++) {
425 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
426 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
427 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
428 			    "error = %d\n", i, error);
429 			goto fail_5;
430 		}
431 		sc->sc_rxsoft[i].ds_mbuf = NULL;
432 	}
433 
434 	/*
435 	 * Reset the chip to a known state.
436 	 */
437 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
438 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
439 
440 	/*
441 	 * Read the Ethernet address from the EEPROM.
442 	 */
443 	for (i = 0; i < 3; i++) {
444 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
445 		myea[i] = le16toh(myea[i]);
446 	}
447 	memcpy(enaddr, myea, sizeof(enaddr));
448 
449 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
450 	    ether_sprintf(enaddr));
451 
452 	/*
453 	 * Initialize our media structures and probe the MII.
454 	 */
455 	sc->sc_mii.mii_ifp = ifp;
456 	sc->sc_mii.mii_readreg = ste_mii_readreg;
457 	sc->sc_mii.mii_writereg = ste_mii_writereg;
458 	sc->sc_mii.mii_statchg = ste_mii_statchg;
459 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
460 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
461 	    ether_mediastatus);
462 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
463 	    MII_OFFSET_ANY, 0);
464 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
465 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
466 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
467 	} else
468 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
469 
470 	ifp = &sc->sc_ethercom.ec_if;
471 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
472 	ifp->if_softc = sc;
473 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
474 	ifp->if_ioctl = ste_ioctl;
475 	ifp->if_start = ste_start;
476 	ifp->if_watchdog = ste_watchdog;
477 	ifp->if_init = ste_init;
478 	ifp->if_stop = ste_stop;
479 	IFQ_SET_READY(&ifp->if_snd);
480 
481 	/*
482 	 * Default the transmit threshold to 128 bytes.
483 	 */
484 	sc->sc_txthresh = 128;
485 
486 	/*
487 	 * Disable MWI if the PCI layer tells us to.
488 	 */
489 	sc->sc_DMACtrl = 0;
490 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
491 		sc->sc_DMACtrl |= DC_MWIDisable;
492 
493 	/*
494 	 * We can support 802.1Q VLAN-sized frames.
495 	 */
496 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
497 
498 	/*
499 	 * Attach the interface.
500 	 */
501 	if_attach(ifp);
502 	ether_ifattach(ifp, enaddr);
503 
504 	/*
505 	 * Make sure the interface is shutdown during reboot.
506 	 */
507 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
508 		pmf_class_network_register(self, ifp);
509 	else
510 		aprint_error_dev(self, "couldn't establish power handler\n");
511 
512 	return;
513 
514 	/*
515 	 * Free any resources we've allocated during the failed attach
516 	 * attempt.  Do this in reverse order and fall through.
517 	 */
518  fail_5:
519 	for (i = 0; i < STE_NRXDESC; i++) {
520 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
521 			bus_dmamap_destroy(sc->sc_dmat,
522 			    sc->sc_rxsoft[i].ds_dmamap);
523 	}
524  fail_4:
525 	for (i = 0; i < STE_NTXDESC; i++) {
526 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
527 			bus_dmamap_destroy(sc->sc_dmat,
528 			    sc->sc_txsoft[i].ds_dmamap);
529 	}
530 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
531  fail_3:
532 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
533  fail_2:
534 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
535 	    sizeof(struct ste_control_data));
536  fail_1:
537 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
538  fail_0:
539 	return;
540 }
541 
542 /*
543  * ste_shutdown:
544  *
545  *	Make sure the interface is stopped at reboot time.
546  */
547 static bool
548 ste_shutdown(device_t self, int howto)
549 {
550 	struct ste_softc *sc;
551 
552 	sc = device_private(self);
553 	ste_stop(&sc->sc_ethercom.ec_if, 1);
554 
555 	return true;
556 }
557 
558 static void
559 ste_dmahalt_wait(struct ste_softc *sc)
560 {
561 	int i;
562 
563 	for (i = 0; i < STE_TIMEOUT; i++) {
564 		delay(2);
565 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
566 		     DC_DMAHaltBusy) == 0)
567 			break;
568 	}
569 
570 	if (i == STE_TIMEOUT)
571 		printf("%s: DMA halt timed out\n", device_xname(&sc->sc_dev));
572 }
573 
574 /*
575  * ste_start:		[ifnet interface function]
576  *
577  *	Start packet transmission on the interface.
578  */
579 static void
580 ste_start(struct ifnet *ifp)
581 {
582 	struct ste_softc *sc = ifp->if_softc;
583 	struct mbuf *m0, *m;
584 	struct ste_descsoft *ds;
585 	struct ste_tfd *tfd;
586 	bus_dmamap_t dmamap;
587 	int error, olasttx, nexttx, opending, seg, totlen;
588 
589 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
590 		return;
591 
592 	/*
593 	 * Remember the previous number of pending transmissions
594 	 * and the current last descriptor in the list.
595 	 */
596 	opending = sc->sc_txpending;
597 	olasttx = sc->sc_txlast;
598 
599 	/*
600 	 * Loop through the send queue, setting up transmit descriptors
601 	 * until we drain the queue, or use up all available transmit
602 	 * descriptors.
603 	 */
604 	while (sc->sc_txpending < STE_NTXDESC) {
605 		/*
606 		 * Grab a packet off the queue.
607 		 */
608 		IFQ_POLL(&ifp->if_snd, m0);
609 		if (m0 == NULL)
610 			break;
611 		m = NULL;
612 
613 		/*
614 		 * Get the last and next available transmit descriptor.
615 		 */
616 		nexttx = STE_NEXTTX(sc->sc_txlast);
617 		tfd = &sc->sc_txdescs[nexttx];
618 		ds = &sc->sc_txsoft[nexttx];
619 
620 		dmamap = ds->ds_dmamap;
621 
622 		/*
623 		 * Load the DMA map.  If this fails, the packet either
624 		 * didn't fit in the alloted number of segments, or we
625 		 * were short on resources.  In this case, we'll copy
626 		 * and try again.
627 		 */
628 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
629 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
630 			MGETHDR(m, M_DONTWAIT, MT_DATA);
631 			if (m == NULL) {
632 				printf("%s: unable to allocate Tx mbuf\n",
633 				    device_xname(&sc->sc_dev));
634 				break;
635 			}
636 			if (m0->m_pkthdr.len > MHLEN) {
637 				MCLGET(m, M_DONTWAIT);
638 				if ((m->m_flags & M_EXT) == 0) {
639 					printf("%s: unable to allocate Tx "
640 					    "cluster\n", device_xname(&sc->sc_dev));
641 					m_freem(m);
642 					break;
643 				}
644 			}
645 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
646 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
647 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
648 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
649 			if (error) {
650 				printf("%s: unable to load Tx buffer, "
651 				    "error = %d\n", device_xname(&sc->sc_dev), error);
652 				break;
653 			}
654 		}
655 
656 		IFQ_DEQUEUE(&ifp->if_snd, m0);
657 		if (m != NULL) {
658 			m_freem(m0);
659 			m0 = m;
660 		}
661 
662 		/*
663 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
664 		 */
665 
666 		/* Sync the DMA map. */
667 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
668 		    BUS_DMASYNC_PREWRITE);
669 
670 		/* Initialize the fragment list. */
671 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
672 			tfd->tfd_frags[seg].frag_addr =
673 			    htole32(dmamap->dm_segs[seg].ds_addr);
674 			tfd->tfd_frags[seg].frag_len =
675 			    htole32(dmamap->dm_segs[seg].ds_len);
676 			totlen += dmamap->dm_segs[seg].ds_len;
677 		}
678 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
679 
680 		/* Initialize the descriptor. */
681 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
682 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
683 
684 		/* Sync the descriptor. */
685 		STE_CDTXSYNC(sc, nexttx,
686 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
687 
688 		/*
689 		 * Store a pointer to the packet so we can free it later,
690 		 * and remember what txdirty will be once the packet is
691 		 * done.
692 		 */
693 		ds->ds_mbuf = m0;
694 
695 		/* Advance the tx pointer. */
696 		sc->sc_txpending++;
697 		sc->sc_txlast = nexttx;
698 
699 		/*
700 		 * Pass the packet to any BPF listeners.
701 		 */
702 		bpf_mtap(ifp, m0);
703 	}
704 
705 	if (sc->sc_txpending == STE_NTXDESC) {
706 		/* No more slots left; notify upper layer. */
707 		ifp->if_flags |= IFF_OACTIVE;
708 	}
709 
710 	if (sc->sc_txpending != opending) {
711 		/*
712 		 * We enqueued packets.  If the transmitter was idle,
713 		 * reset the txdirty pointer.
714 		 */
715 		if (opending == 0)
716 			sc->sc_txdirty = STE_NEXTTX(olasttx);
717 
718 		/*
719 		 * Cause a descriptor interrupt to happen on the
720 		 * last packet we enqueued, and also cause the
721 		 * DMA engine to wait after is has finished processing
722 		 * it.
723 		 */
724 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
725 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
726 		    htole32(TFD_TxDMAIndicate);
727 		STE_CDTXSYNC(sc, sc->sc_txlast,
728 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
729 
730 		/*
731 		 * Link up the new chain of descriptors to the
732 		 * last.
733 		 */
734 		sc->sc_txdescs[olasttx].tfd_next =
735 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
736 		STE_CDTXSYNC(sc, olasttx,
737 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
738 
739 		/*
740 		 * Kick the transmit DMA logic.  Note that since we're
741 		 * using auto-polling, reading the Tx desc pointer will
742 		 * give it the nudge it needs to get going.
743 		 */
744 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
745 		    STE_TxDMAListPtr) == 0) {
746 			bus_space_write_4(sc->sc_st, sc->sc_sh,
747 			    STE_DMACtrl, DC_TxDMAHalt);
748 			ste_dmahalt_wait(sc);
749 			bus_space_write_4(sc->sc_st, sc->sc_sh,
750 			    STE_TxDMAListPtr,
751 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
752 			bus_space_write_4(sc->sc_st, sc->sc_sh,
753 			    STE_DMACtrl, DC_TxDMAResume);
754 		}
755 
756 		/* Set a watchdog timer in case the chip flakes out. */
757 		ifp->if_timer = 5;
758 	}
759 }
760 
761 /*
762  * ste_watchdog:	[ifnet interface function]
763  *
764  *	Watchdog timer handler.
765  */
766 static void
767 ste_watchdog(struct ifnet *ifp)
768 {
769 	struct ste_softc *sc = ifp->if_softc;
770 
771 	printf("%s: device timeout\n", device_xname(&sc->sc_dev));
772 	ifp->if_oerrors++;
773 
774 	ste_txintr(sc);
775 	ste_rxintr(sc);
776 	(void) ste_init(ifp);
777 
778 	/* Try to get more packets going. */
779 	ste_start(ifp);
780 }
781 
782 /*
783  * ste_ioctl:		[ifnet interface function]
784  *
785  *	Handle control requests from the operator.
786  */
787 static int
788 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
789 {
790 	struct ste_softc *sc = ifp->if_softc;
791 	int s, error;
792 
793 	s = splnet();
794 
795 	error = ether_ioctl(ifp, cmd, data);
796 	if (error == ENETRESET) {
797 		/*
798 		 * Multicast list has changed; set the hardware filter
799 		 * accordingly.
800 		 */
801 		if (ifp->if_flags & IFF_RUNNING)
802 			ste_set_filter(sc);
803 		error = 0;
804 	}
805 
806 	/* Try to get more packets going. */
807 	ste_start(ifp);
808 
809 	splx(s);
810 	return (error);
811 }
812 
813 /*
814  * ste_intr:
815  *
816  *	Interrupt service routine.
817  */
818 static int
819 ste_intr(void *arg)
820 {
821 	struct ste_softc *sc = arg;
822 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
823 	uint16_t isr;
824 	uint8_t txstat;
825 	int wantinit;
826 
827 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
828 	     IS_InterruptStatus) == 0)
829 		return (0);
830 
831 	for (wantinit = 0; wantinit == 0;) {
832 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
833 		if ((isr & sc->sc_IntEnable) == 0)
834 			break;
835 
836 		/* Receive interrupts. */
837 		if (isr & IE_RxDMAComplete)
838 			ste_rxintr(sc);
839 
840 		/* Transmit interrupts. */
841 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
842 			ste_txintr(sc);
843 
844 		/* Statistics overflow. */
845 		if (isr & IE_UpdateStats)
846 			ste_stats_update(sc);
847 
848 		/* Transmission errors. */
849 		if (isr & IE_TxComplete) {
850 			for (;;) {
851 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
852 				    STE_TxStatus);
853 				if ((txstat & TS_TxComplete) == 0)
854 					break;
855 				if (txstat & TS_TxUnderrun) {
856 					sc->sc_txthresh += 32;
857 					if (sc->sc_txthresh > 0x1ffc)
858 						sc->sc_txthresh = 0x1ffc;
859 					printf("%s: transmit underrun, new "
860 					    "threshold: %d bytes\n",
861 					    device_xname(&sc->sc_dev),
862 					    sc->sc_txthresh);
863 					ste_reset(sc, AC_TxReset | AC_DMA |
864 					    AC_FIFO | AC_Network);
865 					ste_setthresh(sc);
866 					bus_space_write_1(sc->sc_st, sc->sc_sh,
867 					    STE_TxDMAPollPeriod, 127);
868 					ste_txrestart(sc,
869 					    bus_space_read_1(sc->sc_st,
870 						sc->sc_sh, STE_TxFrameId));
871 				}
872 				if (txstat & TS_TxReleaseError) {
873 					printf("%s: Tx FIFO release error\n",
874 					    device_xname(&sc->sc_dev));
875 					wantinit = 1;
876 				}
877 				if (txstat & TS_MaxCollisions) {
878 					printf("%s: excessive collisions\n",
879 					    device_xname(&sc->sc_dev));
880 					wantinit = 1;
881 				}
882 				if (txstat & TS_TxStatusOverflow) {
883 					printf("%s: status overflow\n",
884 					    device_xname(&sc->sc_dev));
885 					wantinit = 1;
886 				}
887 				bus_space_write_2(sc->sc_st, sc->sc_sh,
888 				    STE_TxStatus, 0);
889 			}
890 		}
891 
892 		/* Host interface errors. */
893 		if (isr & IE_HostError) {
894 			printf("%s: Host interface error\n",
895 			    device_xname(&sc->sc_dev));
896 			wantinit = 1;
897 		}
898 	}
899 
900 	if (wantinit)
901 		ste_init(ifp);
902 
903 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
904 	    sc->sc_IntEnable);
905 
906 	/* Try to get more packets going. */
907 	ste_start(ifp);
908 
909 	return (1);
910 }
911 
912 /*
913  * ste_txintr:
914  *
915  *	Helper; handle transmit interrupts.
916  */
917 static void
918 ste_txintr(struct ste_softc *sc)
919 {
920 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
921 	struct ste_descsoft *ds;
922 	uint32_t control;
923 	int i;
924 
925 	ifp->if_flags &= ~IFF_OACTIVE;
926 
927 	/*
928 	 * Go through our Tx list and free mbufs for those
929 	 * frames which have been transmitted.
930 	 */
931 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
932 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
933 		ds = &sc->sc_txsoft[i];
934 
935 		STE_CDTXSYNC(sc, i,
936 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
937 
938 		control = le32toh(sc->sc_txdescs[i].tfd_control);
939 		if ((control & TFD_TxDMAComplete) == 0)
940 			break;
941 
942 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
943 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
944 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
945 		m_freem(ds->ds_mbuf);
946 		ds->ds_mbuf = NULL;
947 	}
948 
949 	/* Update the dirty transmit buffer pointer. */
950 	sc->sc_txdirty = i;
951 
952 	/*
953 	 * If there are no more pending transmissions, cancel the watchdog
954 	 * timer.
955 	 */
956 	if (sc->sc_txpending == 0)
957 		ifp->if_timer = 0;
958 }
959 
960 /*
961  * ste_rxintr:
962  *
963  *	Helper; handle receive interrupts.
964  */
965 static void
966 ste_rxintr(struct ste_softc *sc)
967 {
968 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
969 	struct ste_descsoft *ds;
970 	struct mbuf *m;
971 	uint32_t status;
972 	int i, len;
973 
974 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
975 		ds = &sc->sc_rxsoft[i];
976 
977 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
978 
979 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
980 
981 		if ((status & RFD_RxDMAComplete) == 0)
982 			break;
983 
984 		/*
985 		 * If the packet had an error, simply recycle the
986 		 * buffer.  Note, we count the error later in the
987 		 * periodic stats update.
988 		 */
989 		if (status & RFD_RxFrameError) {
990 			STE_INIT_RXDESC(sc, i);
991 			continue;
992 		}
993 
994 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
995 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
996 
997 		/*
998 		 * No errors; receive the packet.  Note, we have
999 		 * configured the chip to not include the CRC at
1000 		 * the end of the packet.
1001 		 */
1002 		len = RFD_RxDMAFrameLen(status);
1003 
1004 		/*
1005 		 * If the packet is small enough to fit in a
1006 		 * single header mbuf, allocate one and copy
1007 		 * the data into it.  This greatly reduces
1008 		 * memory consumption when we receive lots
1009 		 * of small packets.
1010 		 *
1011 		 * Otherwise, we add a new buffer to the receive
1012 		 * chain.  If this fails, we drop the packet and
1013 		 * recycle the old buffer.
1014 		 */
1015 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1016 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1017 			if (m == NULL)
1018 				goto dropit;
1019 			m->m_data += 2;
1020 			memcpy(mtod(m, void *),
1021 			    mtod(ds->ds_mbuf, void *), len);
1022 			STE_INIT_RXDESC(sc, i);
1023 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1024 			    ds->ds_dmamap->dm_mapsize,
1025 			    BUS_DMASYNC_PREREAD);
1026 		} else {
1027 			m = ds->ds_mbuf;
1028 			if (ste_add_rxbuf(sc, i) != 0) {
1029  dropit:
1030 				ifp->if_ierrors++;
1031 				STE_INIT_RXDESC(sc, i);
1032 				bus_dmamap_sync(sc->sc_dmat,
1033 				    ds->ds_dmamap, 0,
1034 				    ds->ds_dmamap->dm_mapsize,
1035 				    BUS_DMASYNC_PREREAD);
1036 				continue;
1037 			}
1038 		}
1039 
1040 		m->m_pkthdr.rcvif = ifp;
1041 		m->m_pkthdr.len = m->m_len = len;
1042 
1043 		/*
1044 		 * Pass this up to any BPF listeners, but only
1045 		 * pass if up the stack if it's for us.
1046 		 */
1047 		bpf_mtap(ifp, m);
1048 
1049 		/* Pass it on. */
1050 		(*ifp->if_input)(ifp, m);
1051 	}
1052 
1053 	/* Update the receive pointer. */
1054 	sc->sc_rxptr = i;
1055 }
1056 
1057 /*
1058  * ste_tick:
1059  *
1060  *	One second timer, used to tick the MII.
1061  */
1062 static void
1063 ste_tick(void *arg)
1064 {
1065 	struct ste_softc *sc = arg;
1066 	int s;
1067 
1068 	s = splnet();
1069 	mii_tick(&sc->sc_mii);
1070 	ste_stats_update(sc);
1071 	splx(s);
1072 
1073 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1074 }
1075 
1076 /*
1077  * ste_stats_update:
1078  *
1079  *	Read the ST-201 statistics counters.
1080  */
1081 static void
1082 ste_stats_update(struct ste_softc *sc)
1083 {
1084 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1085 	bus_space_tag_t st = sc->sc_st;
1086 	bus_space_handle_t sh = sc->sc_sh;
1087 
1088 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1089 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1090 
1091 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1092 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1093 
1094 	ifp->if_opackets +=
1095 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1096 	ifp->if_ipackets +=
1097 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1098 
1099 	ifp->if_collisions +=
1100 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1101 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1102 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1103 
1104 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1105 
1106 	ifp->if_ierrors +=
1107 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1108 
1109 	ifp->if_oerrors +=
1110 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1111 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1112 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1113 
1114 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1115 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1116 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1117 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1118 }
1119 
1120 /*
1121  * ste_reset:
1122  *
1123  *	Perform a soft reset on the ST-201.
1124  */
1125 static void
1126 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1127 {
1128 	uint32_t ac;
1129 	int i;
1130 
1131 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1132 
1133 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1134 
1135 	delay(50000);
1136 
1137 	for (i = 0; i < STE_TIMEOUT; i++) {
1138 		delay(1000);
1139 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1140 		     AC_ResetBusy) == 0)
1141 			break;
1142 	}
1143 
1144 	if (i == STE_TIMEOUT)
1145 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
1146 
1147 	delay(1000);
1148 }
1149 
1150 /*
1151  * ste_setthresh:
1152  *
1153  * 	set the various transmit threshold registers
1154  */
1155 static void
1156 ste_setthresh(struct ste_softc *sc)
1157 {
1158 	/* set the TX threhold */
1159 	bus_space_write_2(sc->sc_st, sc->sc_sh,
1160 	    STE_TxStartThresh, sc->sc_txthresh);
1161 	/* Urgent threshold: set to sc_txthresh / 2 */
1162 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1163 	    sc->sc_txthresh >> 6);
1164 	/* Burst threshold: use default value (256 bytes) */
1165 }
1166 
1167 /*
1168  * restart TX at the given frame ID in the transmitter ring
1169  */
1170 static void
1171 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1172 {
1173 	u_int32_t control;
1174 
1175 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1176 	control = le32toh(sc->sc_txdescs[id].tfd_control);
1177 	control &= ~TFD_TxDMAComplete;
1178 	sc->sc_txdescs[id].tfd_control = htole32(control);
1179 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1180 
1181 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1182 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1183 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1184 	ste_dmahalt_wait(sc);
1185 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1186 	    STE_CDTXADDR(sc, id));
1187 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1188 }
1189 
1190 /*
1191  * ste_init:		[ ifnet interface function ]
1192  *
1193  *	Initialize the interface.  Must be called at splnet().
1194  */
1195 static int
1196 ste_init(struct ifnet *ifp)
1197 {
1198 	struct ste_softc *sc = ifp->if_softc;
1199 	bus_space_tag_t st = sc->sc_st;
1200 	bus_space_handle_t sh = sc->sc_sh;
1201 	struct ste_descsoft *ds;
1202 	int i, error = 0;
1203 
1204 	/*
1205 	 * Cancel any pending I/O.
1206 	 */
1207 	ste_stop(ifp, 0);
1208 
1209 	/*
1210 	 * Reset the chip to a known state.
1211 	 */
1212 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1213 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1214 
1215 	/*
1216 	 * Initialize the transmit descriptor ring.
1217 	 */
1218 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1219 	sc->sc_txpending = 0;
1220 	sc->sc_txdirty = 0;
1221 	sc->sc_txlast = STE_NTXDESC - 1;
1222 
1223 	/*
1224 	 * Initialize the receive descriptor and receive job
1225 	 * descriptor rings.
1226 	 */
1227 	for (i = 0; i < STE_NRXDESC; i++) {
1228 		ds = &sc->sc_rxsoft[i];
1229 		if (ds->ds_mbuf == NULL) {
1230 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1231 				printf("%s: unable to allocate or map rx "
1232 				    "buffer %d, error = %d\n",
1233 				    device_xname(&sc->sc_dev), i, error);
1234 				/*
1235 				 * XXX Should attempt to run with fewer receive
1236 				 * XXX buffers instead of just failing.
1237 				 */
1238 				ste_rxdrain(sc);
1239 				goto out;
1240 			}
1241 		} else
1242 			STE_INIT_RXDESC(sc, i);
1243 	}
1244 	sc->sc_rxptr = 0;
1245 
1246 	/* Set the station address. */
1247 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1248 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1249 		    CLLADDR(ifp->if_sadl)[i]);
1250 
1251 	/* Set up the receive filter. */
1252 	ste_set_filter(sc);
1253 
1254 	/*
1255 	 * Give the receive ring to the chip.
1256 	 */
1257 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1258 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1259 
1260 	/*
1261 	 * We defer giving the transmit ring to the chip until we
1262 	 * transmit the first packet.
1263 	 */
1264 
1265 	/*
1266 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1267 	 * large (127 is the max) -- we explicitly kick the transmit engine
1268 	 * when there's actually a packet.  We are using auto-polling only
1269 	 * to make the interface to the transmit engine not suck.
1270 	 */
1271 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1272 
1273 	/* ..and the Rx auto-poll period. */
1274 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1275 
1276 	/* Initialize the Tx start threshold. */
1277 	ste_setthresh(sc);
1278 
1279 	/* Set the FIFO release threshold to 512 bytes. */
1280 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1281 
1282 	/* Set maximum packet size for VLAN. */
1283 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1284 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1285 	else
1286 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1287 
1288 	/*
1289 	 * Initialize the interrupt mask.
1290 	 */
1291 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1292 	    IE_TxDMAComplete | IE_RxDMAComplete;
1293 
1294 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1295 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1296 
1297 	/*
1298 	 * Start the receive DMA engine.
1299 	 */
1300 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1301 
1302 	/*
1303 	 * Initialize MacCtrl0 -- do it before setting the media,
1304 	 * as setting the media will actually program the register.
1305 	 */
1306 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1307 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1308 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1309 
1310 	/*
1311 	 * Set the current media.
1312 	 */
1313 	if ((error = ether_mediachange(ifp)) != 0)
1314 		goto out;
1315 
1316 	/*
1317 	 * Start the MAC.
1318 	 */
1319 	bus_space_write_2(st, sh, STE_MacCtrl1,
1320 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1321 
1322 	/*
1323 	 * Start the one second MII clock.
1324 	 */
1325 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1326 
1327 	/*
1328 	 * ...all done!
1329 	 */
1330 	ifp->if_flags |= IFF_RUNNING;
1331 	ifp->if_flags &= ~IFF_OACTIVE;
1332 
1333  out:
1334 	if (error)
1335 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1336 	return (error);
1337 }
1338 
1339 /*
1340  * ste_drain:
1341  *
1342  *	Drain the receive queue.
1343  */
1344 static void
1345 ste_rxdrain(struct ste_softc *sc)
1346 {
1347 	struct ste_descsoft *ds;
1348 	int i;
1349 
1350 	for (i = 0; i < STE_NRXDESC; i++) {
1351 		ds = &sc->sc_rxsoft[i];
1352 		if (ds->ds_mbuf != NULL) {
1353 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1354 			m_freem(ds->ds_mbuf);
1355 			ds->ds_mbuf = NULL;
1356 		}
1357 	}
1358 }
1359 
1360 /*
1361  * ste_stop:		[ ifnet interface function ]
1362  *
1363  *	Stop transmission on the interface.
1364  */
1365 static void
1366 ste_stop(struct ifnet *ifp, int disable)
1367 {
1368 	struct ste_softc *sc = ifp->if_softc;
1369 	struct ste_descsoft *ds;
1370 	int i;
1371 
1372 	/*
1373 	 * Stop the one second clock.
1374 	 */
1375 	callout_stop(&sc->sc_tick_ch);
1376 
1377 	/* Down the MII. */
1378 	mii_down(&sc->sc_mii);
1379 
1380 	/*
1381 	 * Disable interrupts.
1382 	 */
1383 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1384 
1385 	/*
1386 	 * Stop receiver, transmitter, and stats update.
1387 	 */
1388 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1389 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1390 
1391 	/*
1392 	 * Stop the transmit and receive DMA.
1393 	 */
1394 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1395 	    DC_RxDMAHalt | DC_TxDMAHalt);
1396 	ste_dmahalt_wait(sc);
1397 
1398 	/*
1399 	 * Release any queued transmit buffers.
1400 	 */
1401 	for (i = 0; i < STE_NTXDESC; i++) {
1402 		ds = &sc->sc_txsoft[i];
1403 		if (ds->ds_mbuf != NULL) {
1404 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1405 			m_freem(ds->ds_mbuf);
1406 			ds->ds_mbuf = NULL;
1407 		}
1408 	}
1409 
1410 	/*
1411 	 * Mark the interface down and cancel the watchdog timer.
1412 	 */
1413 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1414 	ifp->if_timer = 0;
1415 
1416 	if (disable)
1417 		ste_rxdrain(sc);
1418 }
1419 
1420 static int
1421 ste_eeprom_wait(struct ste_softc *sc)
1422 {
1423 	int i;
1424 
1425 	for (i = 0; i < STE_TIMEOUT; i++) {
1426 		delay(1000);
1427 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1428 		     EC_EepromBusy) == 0)
1429 			return (0);
1430 	}
1431 	return (1);
1432 }
1433 
1434 /*
1435  * ste_read_eeprom:
1436  *
1437  *	Read data from the serial EEPROM.
1438  */
1439 static void
1440 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1441 {
1442 
1443 	if (ste_eeprom_wait(sc))
1444 		printf("%s: EEPROM failed to come ready\n",
1445 		    device_xname(&sc->sc_dev));
1446 
1447 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1448 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1449 	if (ste_eeprom_wait(sc))
1450 		printf("%s: EEPROM read timed out\n",
1451 		    device_xname(&sc->sc_dev));
1452 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1453 }
1454 
1455 /*
1456  * ste_add_rxbuf:
1457  *
1458  *	Add a receive buffer to the indicated descriptor.
1459  */
1460 static int
1461 ste_add_rxbuf(struct ste_softc *sc, int idx)
1462 {
1463 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1464 	struct mbuf *m;
1465 	int error;
1466 
1467 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1468 	if (m == NULL)
1469 		return (ENOBUFS);
1470 
1471 	MCLGET(m, M_DONTWAIT);
1472 	if ((m->m_flags & M_EXT) == 0) {
1473 		m_freem(m);
1474 		return (ENOBUFS);
1475 	}
1476 
1477 	if (ds->ds_mbuf != NULL)
1478 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1479 
1480 	ds->ds_mbuf = m;
1481 
1482 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1483 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1484 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1485 	if (error) {
1486 		printf("%s: can't load rx DMA map %d, error = %d\n",
1487 		    device_xname(&sc->sc_dev), idx, error);
1488 		panic("ste_add_rxbuf");		/* XXX */
1489 	}
1490 
1491 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1492 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1493 
1494 	STE_INIT_RXDESC(sc, idx);
1495 
1496 	return (0);
1497 }
1498 
1499 /*
1500  * ste_set_filter:
1501  *
1502  *	Set up the receive filter.
1503  */
1504 static void
1505 ste_set_filter(struct ste_softc *sc)
1506 {
1507 	struct ethercom *ec = &sc->sc_ethercom;
1508 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1509 	struct ether_multi *enm;
1510 	struct ether_multistep step;
1511 	uint32_t crc;
1512 	uint16_t mchash[4];
1513 
1514 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1515 	if (ifp->if_flags & IFF_BROADCAST)
1516 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1517 
1518 	if (ifp->if_flags & IFF_PROMISC) {
1519 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1520 		goto allmulti;
1521 	}
1522 
1523 	/*
1524 	 * Set up the multicast address filter by passing all multicast
1525 	 * addresses through a CRC generator, and then using the low-order
1526 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1527 	 * high order bits select the register, while the rest of the bits
1528 	 * select the bit within the register.
1529 	 */
1530 
1531 	memset(mchash, 0, sizeof(mchash));
1532 
1533 	ETHER_FIRST_MULTI(step, ec, enm);
1534 	if (enm == NULL)
1535 		goto done;
1536 
1537 	while (enm != NULL) {
1538 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1539 			/*
1540 			 * We must listen to a range of multicast addresses.
1541 			 * For now, just accept all multicasts, rather than
1542 			 * trying to set only those filter bits needed to match
1543 			 * the range.  (At this time, the only use of address
1544 			 * ranges is for IP multicast routing, for which the
1545 			 * range is big enough to require all bits set.)
1546 			 */
1547 			goto allmulti;
1548 		}
1549 
1550 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1551 
1552 		/* Just want the 6 least significant bits. */
1553 		crc &= 0x3f;
1554 
1555 		/* Set the corresponding bit in the hash table. */
1556 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1557 
1558 		ETHER_NEXT_MULTI(step, enm);
1559 	}
1560 
1561 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1562 
1563 	ifp->if_flags &= ~IFF_ALLMULTI;
1564 	goto done;
1565 
1566  allmulti:
1567 	ifp->if_flags |= IFF_ALLMULTI;
1568 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1569 
1570  done:
1571 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1572 		/*
1573 		 * Program the multicast hash table.
1574 		 */
1575 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1576 		    mchash[0]);
1577 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1578 		    mchash[1]);
1579 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1580 		    mchash[2]);
1581 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1582 		    mchash[3]);
1583 	}
1584 
1585 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1586 	    sc->sc_ReceiveMode);
1587 }
1588 
1589 /*
1590  * ste_mii_readreg:	[mii interface function]
1591  *
1592  *	Read a PHY register on the MII of the ST-201.
1593  */
1594 static int
1595 ste_mii_readreg(device_t self, int phy, int reg)
1596 {
1597 
1598 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1599 }
1600 
1601 /*
1602  * ste_mii_writereg:	[mii interface function]
1603  *
1604  *	Write a PHY register on the MII of the ST-201.
1605  */
1606 static void
1607 ste_mii_writereg(device_t self, int phy, int reg, int val)
1608 {
1609 
1610 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1611 }
1612 
1613 /*
1614  * ste_mii_statchg:	[mii interface function]
1615  *
1616  *	Callback from MII layer when media changes.
1617  */
1618 static void
1619 ste_mii_statchg(device_t self)
1620 {
1621 	struct ste_softc *sc = device_private(self);
1622 
1623 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1624 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1625 	else
1626 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1627 
1628 	/* XXX 802.1x flow-control? */
1629 
1630 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1631 }
1632 
1633 /*
1634  * ste_mii_bitbang_read: [mii bit-bang interface function]
1635  *
1636  *	Read the MII serial port for the MII bit-bang module.
1637  */
1638 static uint32_t
1639 ste_mii_bitbang_read(device_t self)
1640 {
1641 	struct ste_softc *sc = device_private(self);
1642 
1643 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1644 }
1645 
1646 /*
1647  * ste_mii_bitbang_write: [mii big-bang interface function]
1648  *
1649  *	Write the MII serial port for the MII bit-bang module.
1650  */
1651 static void
1652 ste_mii_bitbang_write(device_t self, uint32_t val)
1653 {
1654 	struct ste_softc *sc = device_private(self);
1655 
1656 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1657 }
1658