xref: /netbsd/sys/dev/pci/if_ste.c (revision bf9ec67e)
1 /*	$NetBSD: if_ste.c,v 1.7 2001/11/13 07:48:44 lukem Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. ST-201 10/100
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.7 2001/11/13 07:48:44 lukem Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stereg.h>
84 
85 /*
86  * Transmit descriptor list size.
87  */
88 #define	STE_NTXDESC		256
89 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
90 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
91 
92 /*
93  * Receive descriptor list size.
94  */
95 #define	STE_NRXDESC		128
96 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
97 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
98 
99 /*
100  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct ste_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct ste_tfd scd_txdescs[STE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115 
116 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
117 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
118 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct ste_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct ste_softc {
132 	struct device sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	void *sc_sdhook;		/* shutdown hook */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	struct callout sc_tick_ch;	/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct ste_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 	int	sc_txpending;		/* number of Tx requests pending */
162 	int	sc_txdirty;		/* first dirty Tx descriptor */
163 	int	sc_txlast;		/* last used Tx descriptor */
164 
165 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
166 
167 	int	sc_txthresh;		/* Tx threshold */
168 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
169 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
170 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
171 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
172 };
173 
174 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
176 
177 #define	STE_CDTXSYNC(sc, x, ops)					\
178 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
179 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180 
181 #define	STE_CDRXSYNC(sc, x, ops)					\
182 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
183 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184 
185 #define	STE_INIT_RXDESC(sc, x)						\
186 do {									\
187 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
188 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
189 	struct mbuf *__m = __ds->ds_mbuf;				\
190 									\
191 	/*								\
192 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
193 	 * so that the payload after the Ethernet header is aligned	\
194 	 * to a 4-byte boundary.					\
195 	 */								\
196 	__m->m_data = __m->m_ext.ext_buf + 2;				\
197 	__rfd->rfd_frag.frag_addr =					\
198 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
199 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
200 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
201 	__rfd->rfd_status = 0;						\
202 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204 
205 #define STE_TIMEOUT 1000
206 
207 void	ste_start(struct ifnet *);
208 void	ste_watchdog(struct ifnet *);
209 int	ste_ioctl(struct ifnet *, u_long, caddr_t);
210 int	ste_init(struct ifnet *);
211 void	ste_stop(struct ifnet *, int);
212 
213 void	ste_shutdown(void *);
214 
215 void	ste_reset(struct ste_softc *);
216 void	ste_rxdrain(struct ste_softc *);
217 int	ste_add_rxbuf(struct ste_softc *, int);
218 void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
219 void	ste_tick(void *);
220 
221 void	ste_stats_update(struct ste_softc *);
222 
223 void	ste_set_filter(struct ste_softc *);
224 
225 int	ste_intr(void *);
226 void	ste_txintr(struct ste_softc *);
227 void	ste_rxintr(struct ste_softc *);
228 
229 int	ste_mii_readreg(struct device *, int, int);
230 void	ste_mii_writereg(struct device *, int, int, int);
231 void	ste_mii_statchg(struct device *);
232 
233 int	ste_mediachange(struct ifnet *);
234 void	ste_mediastatus(struct ifnet *, struct ifmediareq *);
235 
236 int	ste_match(struct device *, struct cfdata *, void *);
237 void	ste_attach(struct device *, struct device *, void *);
238 
239 int	ste_copy_small = 0;
240 
241 struct cfattach ste_ca = {
242 	sizeof(struct ste_softc), ste_match, ste_attach,
243 };
244 
245 uint32_t ste_mii_bitbang_read(struct device *);
246 void	ste_mii_bitbang_write(struct device *, uint32_t);
247 
248 const struct mii_bitbang_ops ste_mii_bitbang_ops = {
249 	ste_mii_bitbang_read,
250 	ste_mii_bitbang_write,
251 	{
252 		PC_MgmtData,		/* MII_BIT_MDO */
253 		PC_MgmtData,		/* MII_BIT_MDI */
254 		PC_MgmtClk,		/* MII_BIT_MDC */
255 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
256 		0,			/* MII_BIT_DIR_PHY_HOST */
257 	}
258 };
259 
260 /*
261  * Devices supported by this driver.
262  */
263 const struct ste_product {
264 	pci_vendor_id_t		ste_vendor;
265 	pci_product_id_t	ste_product;
266 	const char		*ste_name;
267 } ste_products[] = {
268 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
269 	  "Sundance ST-201 10/100 Ethernet" },
270 
271 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
272 	  "D-Link DL-1002 10/100 Ethernet" },
273 
274 	{ 0,				0,
275 	  NULL },
276 };
277 
278 static const struct ste_product *
279 ste_lookup(const struct pci_attach_args *pa)
280 {
281 	const struct ste_product *sp;
282 
283 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
284 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
285 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
286 			return (sp);
287 	}
288 	return (NULL);
289 }
290 
291 int
292 ste_match(struct device *parent, struct cfdata *cf, void *aux)
293 {
294 	struct pci_attach_args *pa = aux;
295 
296 	if (ste_lookup(pa) != NULL)
297 		return (1);
298 
299 	return (0);
300 }
301 
302 void
303 ste_attach(struct device *parent, struct device *self, void *aux)
304 {
305 	struct ste_softc *sc = (struct ste_softc *) self;
306 	struct pci_attach_args *pa = aux;
307 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
308 	pci_chipset_tag_t pc = pa->pa_pc;
309 	pci_intr_handle_t ih;
310 	const char *intrstr = NULL;
311 	bus_space_tag_t iot, memt;
312 	bus_space_handle_t ioh, memh;
313 	bus_dma_segment_t seg;
314 	int ioh_valid, memh_valid;
315 	int i, rseg, error;
316 	const struct ste_product *sp;
317 	pcireg_t pmode;
318 	uint8_t enaddr[ETHER_ADDR_LEN];
319 	uint16_t myea[ETHER_ADDR_LEN / 2];
320 	int pmreg;
321 
322 	callout_init(&sc->sc_tick_ch);
323 
324 	sp = ste_lookup(pa);
325 	if (sp == NULL) {
326 		printf("\n");
327 		panic("ste_attach: impossible");
328 	}
329 
330 	printf(": %s\n", sp->ste_name);
331 
332 	/*
333 	 * Map the device.
334 	 */
335 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
336 	    PCI_MAPREG_TYPE_IO, 0,
337 	    &iot, &ioh, NULL, NULL) == 0);
338 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
339 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
340 	    &memt, &memh, NULL, NULL) == 0);
341 
342 	if (memh_valid) {
343 		sc->sc_st = memt;
344 		sc->sc_sh = memh;
345 	} else if (ioh_valid) {
346 		sc->sc_st = iot;
347 		sc->sc_sh = ioh;
348 	} else {
349 		printf("%s: unable to map device registers\n",
350 		    sc->sc_dev.dv_xname);
351 		return;
352 	}
353 
354 	sc->sc_dmat = pa->pa_dmat;
355 
356 	/* Enable bus mastering. */
357 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
358 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
359 	    PCI_COMMAND_MASTER_ENABLE);
360 
361 	/* Get it out of power save mode if needed. */
362 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
363 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
364 		if (pmode == 3) {
365 			/*
366 			 * The card has lost all configuration data in
367 			 * this state, so punt.
368 			 */
369 			printf("%s: unable to wake up from power state D3\n",
370 			    sc->sc_dev.dv_xname);
371 			return;
372 		}
373 		if (pmode != 0) {
374 			printf("%s: waking up from power state D%d\n",
375 			    sc->sc_dev.dv_xname, pmode);
376 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
377 		}
378 	}
379 
380 	/*
381 	 * Map and establish our interrupt.
382 	 */
383 	if (pci_intr_map(pa, &ih)) {
384 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
385 		return;
386 	}
387 	intrstr = pci_intr_string(pc, ih);
388 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
389 	if (sc->sc_ih == NULL) {
390 		printf("%s: unable to establish interrupt",
391 		    sc->sc_dev.dv_xname);
392 		if (intrstr != NULL)
393 			printf(" at %s", intrstr);
394 		printf("\n");
395 		return;
396 	}
397 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
398 
399 	/*
400 	 * Allocate the control data structures, and create and load the
401 	 * DMA map for it.
402 	 */
403 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
404 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
405 	    0)) != 0) {
406 		printf("%s: unable to allocate control data, error = %d\n",
407 		    sc->sc_dev.dv_xname, error);
408 		goto fail_0;
409 	}
410 
411 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
412 	    sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
413 	    BUS_DMA_COHERENT)) != 0) {
414 		printf("%s: unable to map control data, error = %d\n",
415 		    sc->sc_dev.dv_xname, error);
416 		goto fail_1;
417 	}
418 
419 	if ((error = bus_dmamap_create(sc->sc_dmat,
420 	    sizeof(struct ste_control_data), 1,
421 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
422 		printf("%s: unable to create control data DMA map, "
423 		    "error = %d\n", sc->sc_dev.dv_xname, error);
424 		goto fail_2;
425 	}
426 
427 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
428 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
429 	    0)) != 0) {
430 		printf("%s: unable to load control data DMA map, error = %d\n",
431 		    sc->sc_dev.dv_xname, error);
432 		goto fail_3;
433 	}
434 
435 	/*
436 	 * Create the transmit buffer DMA maps.
437 	 */
438 	for (i = 0; i < STE_NTXDESC; i++) {
439 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
440 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
441 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
442 			printf("%s: unable to create tx DMA map %d, "
443 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
444 			goto fail_4;
445 		}
446 	}
447 
448 	/*
449 	 * Create the receive buffer DMA maps.
450 	 */
451 	for (i = 0; i < STE_NRXDESC; i++) {
452 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
453 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
454 			printf("%s: unable to create rx DMA map %d, "
455 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
456 			goto fail_5;
457 		}
458 		sc->sc_rxsoft[i].ds_mbuf = NULL;
459 	}
460 
461 	/*
462 	 * Reset the chip to a known state.
463 	 */
464 	ste_reset(sc);
465 
466 	/*
467 	 * Read the Ethernet address from the EEPROM.
468 	 */
469 	for (i = 0; i < 3; i++) {
470 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
471 		myea[i] = le16toh(myea[i]);
472 	}
473 	memcpy(enaddr, myea, sizeof(enaddr));
474 
475 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
476 	    ether_sprintf(enaddr));
477 
478 	/*
479 	 * Initialize our media structures and probe the MII.
480 	 */
481 	sc->sc_mii.mii_ifp = ifp;
482 	sc->sc_mii.mii_readreg = ste_mii_readreg;
483 	sc->sc_mii.mii_writereg = ste_mii_writereg;
484 	sc->sc_mii.mii_statchg = ste_mii_statchg;
485 	ifmedia_init(&sc->sc_mii.mii_media, 0, ste_mediachange,
486 	    ste_mediastatus);
487 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
488 	    MII_OFFSET_ANY, 0);
489 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
490 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
491 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
492 	} else
493 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
494 
495 	ifp = &sc->sc_ethercom.ec_if;
496 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
497 	ifp->if_softc = sc;
498 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
499 	ifp->if_ioctl = ste_ioctl;
500 	ifp->if_start = ste_start;
501 	ifp->if_watchdog = ste_watchdog;
502 	ifp->if_init = ste_init;
503 	ifp->if_stop = ste_stop;
504 	IFQ_SET_READY(&ifp->if_snd);
505 
506 	/*
507 	 * Default the transmit threshold to 128 bytes.
508 	 */
509 	sc->sc_txthresh = 128;
510 
511 	/*
512 	 * Disable MWI if the PCI layer tells us to.
513 	 */
514 	sc->sc_DMACtrl = 0;
515 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
516 		sc->sc_DMACtrl |= DC_MWIDisable;
517 
518 	/*
519 	 * We can support 802.1Q VLAN-sized frames.
520 	 */
521 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
522 
523 	/*
524 	 * Attach the interface.
525 	 */
526 	if_attach(ifp);
527 	ether_ifattach(ifp, enaddr);
528 
529 	/*
530 	 * Make sure the interface is shutdown during reboot.
531 	 */
532 	sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
533 	if (sc->sc_sdhook == NULL)
534 		printf("%s: WARNING: unable to establish shutdown hook\n",
535 		    sc->sc_dev.dv_xname);
536 	return;
537 
538 	/*
539 	 * Free any resources we've allocated during the failed attach
540 	 * attempt.  Do this in reverse order and fall through.
541 	 */
542  fail_5:
543 	for (i = 0; i < STE_NRXDESC; i++) {
544 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
545 			bus_dmamap_destroy(sc->sc_dmat,
546 			    sc->sc_rxsoft[i].ds_dmamap);
547 	}
548  fail_4:
549 	for (i = 0; i < STE_NTXDESC; i++) {
550 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
551 			bus_dmamap_destroy(sc->sc_dmat,
552 			    sc->sc_txsoft[i].ds_dmamap);
553 	}
554 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
555  fail_3:
556 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
557  fail_2:
558 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
559 	    sizeof(struct ste_control_data));
560  fail_1:
561 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
562  fail_0:
563 	return;
564 }
565 
566 /*
567  * ste_shutdown:
568  *
569  *	Make sure the interface is stopped at reboot time.
570  */
571 void
572 ste_shutdown(void *arg)
573 {
574 	struct ste_softc *sc = arg;
575 
576 	ste_stop(&sc->sc_ethercom.ec_if, 1);
577 }
578 
579 static void
580 ste_dmahalt_wait(struct ste_softc *sc)
581 {
582 	int i;
583 
584 	for (i = 0; i < STE_TIMEOUT; i++) {
585 		delay(2);
586 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
587 		     DC_DMAHaltBusy) == 0)
588 			break;
589 	}
590 
591 	if (i == STE_TIMEOUT)
592 		printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
593 }
594 
595 /*
596  * ste_start:		[ifnet interface function]
597  *
598  *	Start packet transmission on the interface.
599  */
600 void
601 ste_start(struct ifnet *ifp)
602 {
603 	struct ste_softc *sc = ifp->if_softc;
604 	struct mbuf *m0, *m;
605 	struct ste_descsoft *ds;
606 	struct ste_tfd *tfd;
607 	bus_dmamap_t dmamap;
608 	int error, olasttx, nexttx, opending, seg, totlen;
609 
610 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
611 		return;
612 
613 	/*
614 	 * Remember the previous number of pending transmissions
615 	 * and the current last descriptor in the list.
616 	 */
617 	opending = sc->sc_txpending;
618 	olasttx = sc->sc_txlast;
619 
620 	/*
621 	 * Loop through the send queue, setting up transmit descriptors
622 	 * until we drain the queue, or use up all available transmit
623 	 * descriptors.
624 	 */
625 	while (sc->sc_txpending < STE_NTXDESC) {
626 		/*
627 		 * Grab a packet off the queue.
628 		 */
629 		IFQ_POLL(&ifp->if_snd, m0);
630 		if (m0 == NULL)
631 			break;
632 		m = NULL;
633 
634 		/*
635 		 * Get the last and next available transmit descriptor.
636 		 */
637 		nexttx = STE_NEXTTX(sc->sc_txlast);
638 		tfd = &sc->sc_txdescs[nexttx];
639 		ds = &sc->sc_txsoft[nexttx];
640 
641 		dmamap = ds->ds_dmamap;
642 
643 		/*
644 		 * Load the DMA map.  If this fails, the packet either
645 		 * didn't fit in the alloted number of segments, or we
646 		 * were short on resources.  In this case, we'll copy
647 		 * and try again.
648 		 */
649 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
650 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
651 			MGETHDR(m, M_DONTWAIT, MT_DATA);
652 			if (m == NULL) {
653 				printf("%s: unable to allocate Tx mbuf\n",
654 				    sc->sc_dev.dv_xname);
655 				break;
656 			}
657 			if (m0->m_pkthdr.len > MHLEN) {
658 				MCLGET(m, M_DONTWAIT);
659 				if ((m->m_flags & M_EXT) == 0) {
660 					printf("%s: unable to allocate Tx "
661 					    "cluster\n", sc->sc_dev.dv_xname);
662 					m_freem(m);
663 					break;
664 				}
665 			}
666 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
667 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
668 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
669 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
670 			if (error) {
671 				printf("%s: unable to load Tx buffer, "
672 				    "error = %d\n", sc->sc_dev.dv_xname, error);
673 				break;
674 			}
675 		}
676 
677 		IFQ_DEQUEUE(&ifp->if_snd, m0);
678 		if (m != NULL) {
679 			m_freem(m0);
680 			m0 = m;
681 		}
682 
683 		/*
684 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
685 		 */
686 
687 		/* Sync the DMA map. */
688 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
689 		    BUS_DMASYNC_PREWRITE);
690 
691 		/* Initialize the fragment list. */
692 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
693 			tfd->tfd_frags[seg].frag_addr =
694 			    htole32(dmamap->dm_segs[seg].ds_addr);
695 			tfd->tfd_frags[seg].frag_len =
696 			    htole32(dmamap->dm_segs[seg].ds_len);
697 			totlen += dmamap->dm_segs[seg].ds_len;
698 		}
699 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
700 
701 		/* Initialize the descriptor. */
702 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
703 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
704 
705 		/* Sync the descriptor. */
706 		STE_CDTXSYNC(sc, nexttx,
707 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
708 
709 		/*
710 		 * Store a pointer to the packet so we can free it later,
711 		 * and remember what txdirty will be once the packet is
712 		 * done.
713 		 */
714 		ds->ds_mbuf = m0;
715 
716 		/* Advance the tx pointer. */
717 		sc->sc_txpending++;
718 		sc->sc_txlast = nexttx;
719 
720 #if NBPFILTER > 0
721 		/*
722 		 * Pass the packet to any BPF listeners.
723 		 */
724 		if (ifp->if_bpf)
725 			bpf_mtap(ifp->if_bpf, m0);
726 #endif /* NBPFILTER > 0 */
727 	}
728 
729 	if (sc->sc_txpending == STE_NTXDESC) {
730 		/* No more slots left; notify upper layer. */
731 		ifp->if_flags |= IFF_OACTIVE;
732 	}
733 
734 	if (sc->sc_txpending != opending) {
735 		/*
736 		 * We enqueued packets.  If the transmitter was idle,
737 		 * reset the txdirty pointer.
738 		 */
739 		if (opending == 0)
740 			sc->sc_txdirty = STE_NEXTTX(olasttx);
741 
742 		/*
743 		 * Cause a descriptor interrupt to happen on the
744 		 * last packet we enqueued, and also cause the
745 		 * DMA engine to wait after is has finished processing
746 		 * it.
747 		 */
748 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
749 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
750 		    htole32(TFD_TxDMAIndicate);
751 		STE_CDTXSYNC(sc, sc->sc_txlast,
752 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
753 
754 		/*
755 		 * Link up the new chain of descriptors to the
756 		 * last.
757 		 */
758 		sc->sc_txdescs[olasttx].tfd_next =
759 		    STE_CDTXADDR(sc, STE_NEXTTX(olasttx));
760 		STE_CDTXSYNC(sc, olasttx,
761 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
762 
763 		/*
764 		 * Kick the transmit DMA logic.  Note that since we're
765 		 * using auto-polling, reading the Tx desc pointer will
766 		 * give it the nudge it needs to get going.
767 		 */
768 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
769 		    STE_TxDMAListPtr) == 0) {
770 			bus_space_write_4(sc->sc_st, sc->sc_sh,
771 			    STE_DMACtrl, DC_TxDMAHalt);
772 			ste_dmahalt_wait(sc);
773 			bus_space_write_4(sc->sc_st, sc->sc_sh,
774 			    STE_TxDMAListPtr,
775 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
776 			bus_space_write_4(sc->sc_st, sc->sc_sh,
777 			    STE_DMACtrl, DC_TxDMAResume);
778 		}
779 
780 		/* Set a watchdog timer in case the chip flakes out. */
781 		ifp->if_timer = 5;
782 	}
783 }
784 
785 /*
786  * ste_watchdog:	[ifnet interface function]
787  *
788  *	Watchdog timer handler.
789  */
790 void
791 ste_watchdog(struct ifnet *ifp)
792 {
793 	struct ste_softc *sc = ifp->if_softc;
794 
795 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
796 	ifp->if_oerrors++;
797 
798 	(void) ste_init(ifp);
799 
800 	/* Try to get more packets going. */
801 	ste_start(ifp);
802 }
803 
804 /*
805  * ste_ioctl:		[ifnet interface function]
806  *
807  *	Handle control requests from the operator.
808  */
809 int
810 ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
811 {
812 	struct ste_softc *sc = ifp->if_softc;
813 	struct ifreq *ifr = (struct ifreq *)data;
814 	int s, error;
815 
816 	s = splnet();
817 
818 	switch (cmd) {
819 	case SIOCSIFMEDIA:
820 	case SIOCGIFMEDIA:
821 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
822 		break;
823 
824 	default:
825 		error = ether_ioctl(ifp, cmd, data);
826 		if (error == ENETRESET) {
827 			/*
828 			 * Multicast list has changed; set the hardware filter
829 			 * accordingly.
830 			 */
831 			ste_set_filter(sc);
832 			error = 0;
833 		}
834 		break;
835 	}
836 
837 	/* Try to get more packets going. */
838 	ste_start(ifp);
839 
840 	splx(s);
841 	return (error);
842 }
843 
844 /*
845  * ste_intr:
846  *
847  *	Interrupt service routine.
848  */
849 int
850 ste_intr(void *arg)
851 {
852 	struct ste_softc *sc = arg;
853 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
854 	uint16_t isr;
855 	uint8_t txstat;
856 	int wantinit;
857 
858 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
859 	     IS_InterruptStatus) == 0)
860 		return (0);
861 
862 	for (wantinit = 0; wantinit == 0;) {
863 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
864 		if ((isr & sc->sc_IntEnable) == 0)
865 			break;
866 
867 		/* Receive interrupts. */
868 		if (isr & IE_RxDMAComplete)
869 			ste_rxintr(sc);
870 
871 		/* Transmit interrupts. */
872 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
873 			ste_txintr(sc);
874 
875 		/* Statistics overflow. */
876 		if (isr & IE_UpdateStats)
877 			ste_stats_update(sc);
878 
879 		/* Transmission errors. */
880 		if (isr & IE_TxComplete) {
881 			for (;;) {
882 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
883 				    STE_TxStatus);
884 				if ((txstat & TS_TxComplete) == 0)
885 					break;
886 				if (txstat & TS_TxUnderrun) {
887 					sc->sc_txthresh += 32;
888 					if (sc->sc_txthresh > 0x1ffc)
889 						sc->sc_txthresh = 0x1ffc;
890 					printf("%s: transmit underrun, new "
891 					    "threshold: %d bytes\n",
892 					    sc->sc_dev.dv_xname,
893 					    sc->sc_txthresh);
894 				}
895 				if (txstat & TS_TxReleaseError)
896 					printf("%s: Tx FIFO release error\n",
897 					    sc->sc_dev.dv_xname);
898 				if (txstat & TS_MaxCollisions)
899 					printf("%s: excessive collisions\n",
900 					    sc->sc_dev.dv_xname);
901 				bus_space_write_2(sc->sc_st, sc->sc_sh,
902 				    STE_TxStatus, 0);
903 			}
904 			wantinit = 1;
905 		}
906 
907 		/* Host interface errors. */
908 		if (isr & IE_HostError) {
909 			printf("%s: Host interface error\n",
910 			    sc->sc_dev.dv_xname);
911 			wantinit = 1;
912 		}
913 	}
914 
915 	if (wantinit)
916 		ste_init(ifp);
917 
918 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
919 	    sc->sc_IntEnable);
920 
921 	/* Try to get more packets going. */
922 	ste_start(ifp);
923 
924 	return (1);
925 }
926 
927 /*
928  * ste_txintr:
929  *
930  *	Helper; handle transmit interrupts.
931  */
932 void
933 ste_txintr(struct ste_softc *sc)
934 {
935 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
936 	struct ste_descsoft *ds;
937 	uint32_t control;
938 	int i;
939 
940 	ifp->if_flags &= ~IFF_OACTIVE;
941 
942 	/*
943 	 * Go through our Tx list and free mbufs for those
944 	 * frames which have been transmitted.
945 	 */
946 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
947 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
948 		ds = &sc->sc_txsoft[i];
949 
950 		STE_CDTXSYNC(sc, i,
951 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
952 
953 		control = le32toh(sc->sc_txdescs[i].tfd_control);
954 		if ((control & TFD_TxDMAComplete) == 0)
955 			break;
956 
957 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
958 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
959 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
960 		m_freem(ds->ds_mbuf);
961 		ds->ds_mbuf = NULL;
962 	}
963 
964 	/* Update the dirty transmit buffer pointer. */
965 	sc->sc_txdirty = i;
966 
967 	/*
968 	 * If there are no more pending transmissions, cancel the watchdog
969 	 * timer.
970 	 */
971 	if (sc->sc_txpending == 0)
972 		ifp->if_timer = 0;
973 }
974 
975 /*
976  * ste_rxintr:
977  *
978  *	Helper; handle receive interrupts.
979  */
980 void
981 ste_rxintr(struct ste_softc *sc)
982 {
983 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
984 	struct ste_descsoft *ds;
985 	struct mbuf *m;
986 	uint32_t status;
987 	int i, len;
988 
989 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
990 		ds = &sc->sc_rxsoft[i];
991 
992 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
993 
994 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
995 
996 		if ((status & RFD_RxDMAComplete) == 0)
997 			break;
998 
999 		/*
1000 		 * If the packet had an error, simply recycle the
1001 		 * buffer.  Note, we count the error later in the
1002 		 * periodic stats update.
1003 		 */
1004 		if (status & RFD_RxFrameError) {
1005 			STE_INIT_RXDESC(sc, i);
1006 			continue;
1007 		}
1008 
1009 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1010 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1011 
1012 		/*
1013 		 * No errors; receive the packet.  Note, we have
1014 		 * configured the chip to not include the CRC at
1015 		 * the end of the packet.
1016 		 */
1017 		len = RFD_RxDMAFrameLen(status);
1018 
1019 		/*
1020 		 * If the packet is small enough to fit in a
1021 		 * single header mbuf, allocate one and copy
1022 		 * the data into it.  This greatly reduces
1023 		 * memory consumption when we receive lots
1024 		 * of small packets.
1025 		 *
1026 		 * Otherwise, we add a new buffer to the receive
1027 		 * chain.  If this fails, we drop the packet and
1028 		 * recycle the old buffer.
1029 		 */
1030 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1031 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1032 			if (m == NULL)
1033 				goto dropit;
1034 			m->m_data += 2;
1035 			memcpy(mtod(m, caddr_t),
1036 			    mtod(ds->ds_mbuf, caddr_t), len);
1037 			STE_INIT_RXDESC(sc, i);
1038 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1039 			    ds->ds_dmamap->dm_mapsize,
1040 			    BUS_DMASYNC_PREREAD);
1041 		} else {
1042 			m = ds->ds_mbuf;
1043 			if (ste_add_rxbuf(sc, i) != 0) {
1044  dropit:
1045 				ifp->if_ierrors++;
1046 				STE_INIT_RXDESC(sc, i);
1047 				bus_dmamap_sync(sc->sc_dmat,
1048 				    ds->ds_dmamap, 0,
1049 				    ds->ds_dmamap->dm_mapsize,
1050 				    BUS_DMASYNC_PREREAD);
1051 				continue;
1052 			}
1053 		}
1054 
1055 		m->m_pkthdr.rcvif = ifp;
1056 		m->m_pkthdr.len = m->m_len = len;
1057 
1058 #if NBPFILTER > 0
1059 		/*
1060 		 * Pass this up to any BPF listeners, but only
1061 		 * pass if up the stack if it's for us.
1062 		 */
1063 		if (ifp->if_bpf)
1064 			bpf_mtap(ifp->if_bpf, m);
1065 #endif /* NBPFILTER > 0 */
1066 
1067 		/* Pass it on. */
1068 		(*ifp->if_input)(ifp, m);
1069 	}
1070 
1071 	/* Update the receive pointer. */
1072 	sc->sc_rxptr = i;
1073 }
1074 
1075 /*
1076  * ste_tick:
1077  *
1078  *	One second timer, used to tick the MII.
1079  */
1080 void
1081 ste_tick(void *arg)
1082 {
1083 	struct ste_softc *sc = arg;
1084 	int s;
1085 
1086 	s = splnet();
1087 	mii_tick(&sc->sc_mii);
1088 	ste_stats_update(sc);
1089 	splx(s);
1090 
1091 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1092 }
1093 
1094 /*
1095  * ste_stats_update:
1096  *
1097  *	Read the ST-201 statistics counters.
1098  */
1099 void
1100 ste_stats_update(struct ste_softc *sc)
1101 {
1102 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1103 	bus_space_tag_t st = sc->sc_st;
1104 	bus_space_handle_t sh = sc->sc_sh;
1105 
1106 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1107 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1108 
1109 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1110 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1111 
1112 	ifp->if_opackets +=
1113 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1114 	ifp->if_ipackets +=
1115 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1116 
1117 	(void) bus_space_read_2(st, sh, STE_CarrierSenseErrors);
1118 
1119 	ifp->if_collisions +=
1120 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1121 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1122 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1123 
1124 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1125 
1126 	ifp->if_ierrors +=
1127 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1128 
1129 	ifp->if_oerrors +=
1130 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1131 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls);
1132 
1133 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1134 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1135 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1136 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1137 }
1138 
1139 /*
1140  * ste_reset:
1141  *
1142  *	Perform a soft reset on the ST-201.
1143  */
1144 void
1145 ste_reset(struct ste_softc *sc)
1146 {
1147 	uint32_t ac;
1148 	int i;
1149 
1150 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1151 
1152 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl,
1153 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1154 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1155 	    AC_RstOut);
1156 
1157 	delay(50000);
1158 
1159 	for (i = 0; i < STE_TIMEOUT; i++) {
1160 		delay(1000);
1161 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1162 		     AC_ResetBusy) == 0)
1163 			break;
1164 	}
1165 
1166 	if (i == STE_TIMEOUT)
1167 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1168 
1169 	delay(1000);
1170 }
1171 
1172 /*
1173  * ste_init:		[ ifnet interface function ]
1174  *
1175  *	Initialize the interface.  Must be called at splnet().
1176  */
1177 int
1178 ste_init(struct ifnet *ifp)
1179 {
1180 	struct ste_softc *sc = ifp->if_softc;
1181 	bus_space_tag_t st = sc->sc_st;
1182 	bus_space_handle_t sh = sc->sc_sh;
1183 	struct ste_descsoft *ds;
1184 	int i, error = 0;
1185 
1186 	/*
1187 	 * Cancel any pending I/O.
1188 	 */
1189 	ste_stop(ifp, 0);
1190 
1191 	/*
1192 	 * Reset the chip to a known state.
1193 	 */
1194 	ste_reset(sc);
1195 
1196 	/*
1197 	 * Initialize the transmit descriptor ring.
1198 	 */
1199 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1200 	sc->sc_txpending = 0;
1201 	sc->sc_txdirty = 0;
1202 	sc->sc_txlast = STE_NTXDESC - 1;
1203 
1204 	/*
1205 	 * Initialize the receive descriptor and receive job
1206 	 * descriptor rings.
1207 	 */
1208 	for (i = 0; i < STE_NRXDESC; i++) {
1209 		ds = &sc->sc_rxsoft[i];
1210 		if (ds->ds_mbuf == NULL) {
1211 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1212 				printf("%s: unable to allocate or map rx "
1213 				    "buffer %d, error = %d\n",
1214 				    sc->sc_dev.dv_xname, i, error);
1215 				/*
1216 				 * XXX Should attempt to run with fewer receive
1217 				 * XXX buffers instead of just failing.
1218 				 */
1219 				ste_rxdrain(sc);
1220 				goto out;
1221 			}
1222 		} else
1223 			STE_INIT_RXDESC(sc, i);
1224 	}
1225 	sc->sc_rxptr = 0;
1226 
1227 	/* Set the station address. */
1228 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1229 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1230 		    LLADDR(ifp->if_sadl)[i]);
1231 
1232 	/* Set up the receive filter. */
1233 	ste_set_filter(sc);
1234 
1235 	/*
1236 	 * Give the receive ring to the chip.
1237 	 */
1238 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1239 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1240 
1241 	/*
1242 	 * We defer giving the transmit ring to the chip until we
1243 	 * transmit the first packet.
1244 	 */
1245 
1246 	/*
1247 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1248 	 * large (127 is the max) -- we explicitly kick the transmit engine
1249 	 * when there's actually a packet.  We are using auto-polling only
1250 	 * to make the interface to the transmit engine not suck.
1251 	 */
1252 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1253 
1254 	/* ..and the Rx auto-poll period. */
1255 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1256 
1257 	/* Initialize the Tx start threshold. */
1258 	bus_space_write_2(st, sh, STE_TxStartThresh, sc->sc_txthresh);
1259 
1260 	/* Set the FIFO release threshold to 512 bytes. */
1261 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1262 
1263 	/*
1264 	 * Initialize the interrupt mask.
1265 	 */
1266 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1267 	    IE_TxDMAComplete | IE_RxDMAComplete;
1268 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1269 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1270 
1271 	/*
1272 	 * Start the receive DMA engine.
1273 	 */
1274 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1275 
1276 	/*
1277 	 * Initialize MacCtrl0 -- do it before setting the media,
1278 	 * as setting the media will actually program the register.
1279 	 */
1280 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1281 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1282 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1283 
1284 	/*
1285 	 * Set the current media.
1286 	 */
1287 	mii_mediachg(&sc->sc_mii);
1288 
1289 	/*
1290 	 * Start the MAC.
1291 	 */
1292 	bus_space_write_2(st, sh, STE_MacCtrl1,
1293 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1294 
1295 	/*
1296 	 * Start the one second MII clock.
1297 	 */
1298 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1299 
1300 	/*
1301 	 * ...all done!
1302 	 */
1303 	ifp->if_flags |= IFF_RUNNING;
1304 	ifp->if_flags &= ~IFF_OACTIVE;
1305 
1306  out:
1307 	if (error)
1308 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1309 	return (error);
1310 }
1311 
1312 /*
1313  * ste_drain:
1314  *
1315  *	Drain the receive queue.
1316  */
1317 void
1318 ste_rxdrain(struct ste_softc *sc)
1319 {
1320 	struct ste_descsoft *ds;
1321 	int i;
1322 
1323 	for (i = 0; i < STE_NRXDESC; i++) {
1324 		ds = &sc->sc_rxsoft[i];
1325 		if (ds->ds_mbuf != NULL) {
1326 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1327 			m_freem(ds->ds_mbuf);
1328 			ds->ds_mbuf = NULL;
1329 		}
1330 	}
1331 }
1332 
1333 /*
1334  * ste_stop:		[ ifnet interface function ]
1335  *
1336  *	Stop transmission on the interface.
1337  */
1338 void
1339 ste_stop(struct ifnet *ifp, int disable)
1340 {
1341 	struct ste_softc *sc = ifp->if_softc;
1342 	struct ste_descsoft *ds;
1343 	int i;
1344 
1345 	/*
1346 	 * Stop the one second clock.
1347 	 */
1348 	callout_stop(&sc->sc_tick_ch);
1349 
1350 	/* Down the MII. */
1351 	mii_down(&sc->sc_mii);
1352 
1353 	/*
1354 	 * Disable interrupts.
1355 	 */
1356 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1357 
1358 	/*
1359 	 * Stop receiver, transmitter, and stats update.
1360 	 */
1361 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1362 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1363 
1364 	/*
1365 	 * Stop the transmit and receive DMA.
1366 	 */
1367 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1368 	    DC_RxDMAHalt | DC_TxDMAHalt);
1369 	ste_dmahalt_wait(sc);
1370 
1371 	/*
1372 	 * Release any queued transmit buffers.
1373 	 */
1374 	for (i = 0; i < STE_NTXDESC; i++) {
1375 		ds = &sc->sc_txsoft[i];
1376 		if (ds->ds_mbuf != NULL) {
1377 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1378 			m_freem(ds->ds_mbuf);
1379 			ds->ds_mbuf = NULL;
1380 		}
1381 	}
1382 
1383 	if (disable)
1384 		ste_rxdrain(sc);
1385 
1386 	/*
1387 	 * Mark the interface down and cancel the watchdog timer.
1388 	 */
1389 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1390 	ifp->if_timer = 0;
1391 }
1392 
1393 static int
1394 ste_eeprom_wait(struct ste_softc *sc)
1395 {
1396 	int i;
1397 
1398 	for (i = 0; i < STE_TIMEOUT; i++) {
1399 		delay(1000);
1400 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1401 		     EC_EepromBusy) == 0)
1402 			return (0);
1403 	}
1404 	return (1);
1405 }
1406 
1407 /*
1408  * ste_read_eeprom:
1409  *
1410  *	Read data from the serial EEPROM.
1411  */
1412 void
1413 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1414 {
1415 
1416 	if (ste_eeprom_wait(sc))
1417 		printf("%s: EEPROM failed to come ready\n",
1418 		    sc->sc_dev.dv_xname);
1419 
1420 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1421 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1422 	if (ste_eeprom_wait(sc))
1423 		printf("%s: EEPROM read timed out\n",
1424 		    sc->sc_dev.dv_xname);
1425 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1426 }
1427 
1428 /*
1429  * ste_add_rxbuf:
1430  *
1431  *	Add a receive buffer to the indicated descriptor.
1432  */
1433 int
1434 ste_add_rxbuf(struct ste_softc *sc, int idx)
1435 {
1436 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1437 	struct mbuf *m;
1438 	int error;
1439 
1440 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1441 	if (m == NULL)
1442 		return (ENOBUFS);
1443 
1444 	MCLGET(m, M_DONTWAIT);
1445 	if ((m->m_flags & M_EXT) == 0) {
1446 		m_freem(m);
1447 		return (ENOBUFS);
1448 	}
1449 
1450 	if (ds->ds_mbuf != NULL)
1451 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1452 
1453 	ds->ds_mbuf = m;
1454 
1455 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1456 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1457 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1458 	if (error) {
1459 		printf("%s: can't load rx DMA map %d, error = %d\n",
1460 		    sc->sc_dev.dv_xname, idx, error);
1461 		panic("ste_add_rxbuf");		/* XXX */
1462 	}
1463 
1464 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1465 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1466 
1467 	STE_INIT_RXDESC(sc, idx);
1468 
1469 	return (0);
1470 }
1471 
1472 /*
1473  * ste_set_filter:
1474  *
1475  *	Set up the receive filter.
1476  */
1477 void
1478 ste_set_filter(struct ste_softc *sc)
1479 {
1480 	struct ethercom *ec = &sc->sc_ethercom;
1481 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1482 	struct ether_multi *enm;
1483 	struct ether_multistep step;
1484 	uint32_t crc;
1485 	uint16_t mchash[4];
1486 
1487 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1488 	if (ifp->if_flags & IFF_BROADCAST)
1489 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1490 
1491 	if (ifp->if_flags & IFF_PROMISC) {
1492 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1493 		goto allmulti;
1494 	}
1495 
1496 	/*
1497 	 * Set up the multicast address filter by passing all multicast
1498 	 * addresses through a CRC generator, and then using the low-order
1499 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1500 	 * high order bits select the register, while the rest of the bits
1501 	 * select the bit within the register.
1502 	 */
1503 
1504 	memset(mchash, 0, sizeof(mchash));
1505 
1506 	ETHER_FIRST_MULTI(step, ec, enm);
1507 	if (enm == NULL)
1508 		goto done;
1509 
1510 	while (enm != NULL) {
1511 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1512 			/*
1513 			 * We must listen to a range of multicast addresses.
1514 			 * For now, just accept all multicasts, rather than
1515 			 * trying to set only those filter bits needed to match
1516 			 * the range.  (At this time, the only use of address
1517 			 * ranges is for IP multicast routing, for which the
1518 			 * range is big enough to require all bits set.)
1519 			 */
1520 			goto allmulti;
1521 		}
1522 
1523 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1524 
1525 		/* Just want the 6 least significant bits. */
1526 		crc &= 0x3f;
1527 
1528 		/* Set the corresponding bit in the hash table. */
1529 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1530 
1531 		ETHER_NEXT_MULTI(step, enm);
1532 	}
1533 
1534 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1535 
1536 	ifp->if_flags &= ~IFF_ALLMULTI;
1537 	goto done;
1538 
1539  allmulti:
1540 	ifp->if_flags |= IFF_ALLMULTI;
1541 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1542 
1543  done:
1544 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1545 		/*
1546 		 * Program the multicast hash table.
1547 		 */
1548 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1549 		    mchash[0]);
1550 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1551 		    mchash[1]);
1552 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1553 		    mchash[2]);
1554 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1555 		    mchash[3]);
1556 	}
1557 
1558 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1559 	    sc->sc_ReceiveMode);
1560 }
1561 
1562 /*
1563  * ste_mii_readreg:	[mii interface function]
1564  *
1565  *	Read a PHY register on the MII of the ST-201.
1566  */
1567 int
1568 ste_mii_readreg(struct device *self, int phy, int reg)
1569 {
1570 
1571 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1572 }
1573 
1574 /*
1575  * ste_mii_writereg:	[mii interface function]
1576  *
1577  *	Write a PHY register on the MII of the ST-201.
1578  */
1579 void
1580 ste_mii_writereg(struct device *self, int phy, int reg, int val)
1581 {
1582 
1583 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1584 }
1585 
1586 /*
1587  * ste_mii_statchg:	[mii interface function]
1588  *
1589  *	Callback from MII layer when media changes.
1590  */
1591 void
1592 ste_mii_statchg(struct device *self)
1593 {
1594 	struct ste_softc *sc = (struct ste_softc *) self;
1595 
1596 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1597 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1598 	else
1599 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1600 
1601 	/* XXX 802.1x flow-control? */
1602 
1603 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1604 }
1605 
1606 /*
1607  * ste_mii_bitbang_read: [mii bit-bang interface function]
1608  *
1609  *	Read the MII serial port for the MII bit-bang module.
1610  */
1611 uint32_t
1612 ste_mii_bitbang_read(struct device *self)
1613 {
1614 	struct ste_softc *sc = (void *) self;
1615 
1616 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1617 }
1618 
1619 /*
1620  * ste_mii_bitbang_write: [mii big-bang interface function]
1621  *
1622  *	Write the MII serial port for the MII bit-bang module.
1623  */
1624 void
1625 ste_mii_bitbang_write(struct device *self, uint32_t val)
1626 {
1627 	struct ste_softc *sc = (void *) self;
1628 
1629 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1630 }
1631 
1632 /*
1633  * ste_mediastatus:	[ifmedia interface function]
1634  *
1635  *	Get the current interface media status.
1636  */
1637 void
1638 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1639 {
1640 	struct ste_softc *sc = ifp->if_softc;
1641 
1642 	mii_pollstat(&sc->sc_mii);
1643 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1644 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1645 }
1646 
1647 /*
1648  * ste_mediachange:	[ifmedia interface function]
1649  *
1650  *	Set hardware to newly-selected media.
1651  */
1652 int
1653 ste_mediachange(struct ifnet *ifp)
1654 {
1655 	struct ste_softc *sc = ifp->if_softc;
1656 
1657 	if (ifp->if_flags & IFF_UP)
1658 		mii_mediachg(&sc->sc_mii);
1659 	return (0);
1660 }
1661