xref: /netbsd/sys/dev/pci/if_ste.c (revision c4a72b64)
1 /*	$NetBSD: if_ste.c,v 1.15 2002/10/21 23:38:11 fair Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. ST-201 10/100
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.15 2002/10/21 23:38:11 fair Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stereg.h>
84 
85 /*
86  * Transmit descriptor list size.
87  */
88 #define	STE_NTXDESC		256
89 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
90 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
91 
92 /*
93  * Receive descriptor list size.
94  */
95 #define	STE_NRXDESC		128
96 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
97 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
98 
99 /*
100  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
101  * a single clump that maps to a single DMA segment to make several things
102  * easier.
103  */
104 struct ste_control_data {
105 	/*
106 	 * The transmit descriptors.
107 	 */
108 	struct ste_tfd scd_txdescs[STE_NTXDESC];
109 
110 	/*
111 	 * The receive descriptors.
112 	 */
113 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115 
116 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
117 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
118 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
119 
120 /*
121  * Software state for transmit and receive jobs.
122  */
123 struct ste_descsoft {
124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
126 };
127 
128 /*
129  * Software state per device.
130  */
131 struct ste_softc {
132 	struct device sc_dev;		/* generic device information */
133 	bus_space_tag_t sc_st;		/* bus space tag */
134 	bus_space_handle_t sc_sh;	/* bus space handle */
135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
136 	struct ethercom sc_ethercom;	/* ethernet common data */
137 	void *sc_sdhook;		/* shutdown hook */
138 
139 	void *sc_ih;			/* interrupt cookie */
140 
141 	struct mii_data sc_mii;		/* MII/media information */
142 
143 	struct callout sc_tick_ch;	/* tick callout */
144 
145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
147 
148 	/*
149 	 * Software state for transmit and receive descriptors.
150 	 */
151 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153 
154 	/*
155 	 * Control data structures.
156 	 */
157 	struct ste_control_data *sc_control_data;
158 #define	sc_txdescs	sc_control_data->scd_txdescs
159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
160 
161 	int	sc_txpending;		/* number of Tx requests pending */
162 	int	sc_txdirty;		/* first dirty Tx descriptor */
163 	int	sc_txlast;		/* last used Tx descriptor */
164 
165 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
166 
167 	int	sc_txthresh;		/* Tx threshold */
168 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
169 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
170 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
171 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
172 };
173 
174 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
176 
177 #define	STE_CDTXSYNC(sc, x, ops)					\
178 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
179 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180 
181 #define	STE_CDRXSYNC(sc, x, ops)					\
182 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
183 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184 
185 #define	STE_INIT_RXDESC(sc, x)						\
186 do {									\
187 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
188 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
189 	struct mbuf *__m = __ds->ds_mbuf;				\
190 									\
191 	/*								\
192 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
193 	 * so that the payload after the Ethernet header is aligned	\
194 	 * to a 4-byte boundary.					\
195 	 */								\
196 	__m->m_data = __m->m_ext.ext_buf + 2;				\
197 	__rfd->rfd_frag.frag_addr =					\
198 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
199 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
200 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
201 	__rfd->rfd_status = 0;						\
202 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204 
205 #define STE_TIMEOUT 1000
206 
207 void	ste_start(struct ifnet *);
208 void	ste_watchdog(struct ifnet *);
209 int	ste_ioctl(struct ifnet *, u_long, caddr_t);
210 int	ste_init(struct ifnet *);
211 void	ste_stop(struct ifnet *, int);
212 
213 void	ste_shutdown(void *);
214 
215 void	ste_reset(struct ste_softc *, u_int32_t);
216 void	ste_setthresh(struct ste_softc *);
217 void	ste_txrestart(struct ste_softc *, u_int8_t);
218 void	ste_rxdrain(struct ste_softc *);
219 int	ste_add_rxbuf(struct ste_softc *, int);
220 void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
221 void	ste_tick(void *);
222 
223 void	ste_stats_update(struct ste_softc *);
224 
225 void	ste_set_filter(struct ste_softc *);
226 
227 int	ste_intr(void *);
228 void	ste_txintr(struct ste_softc *);
229 void	ste_rxintr(struct ste_softc *);
230 
231 int	ste_mii_readreg(struct device *, int, int);
232 void	ste_mii_writereg(struct device *, int, int, int);
233 void	ste_mii_statchg(struct device *);
234 
235 int	ste_mediachange(struct ifnet *);
236 void	ste_mediastatus(struct ifnet *, struct ifmediareq *);
237 
238 int	ste_match(struct device *, struct cfdata *, void *);
239 void	ste_attach(struct device *, struct device *, void *);
240 
241 int	ste_copy_small = 0;
242 
243 CFATTACH_DECL(ste, sizeof(struct ste_softc),
244     ste_match, ste_attach, NULL, NULL);
245 
246 uint32_t ste_mii_bitbang_read(struct device *);
247 void	ste_mii_bitbang_write(struct device *, uint32_t);
248 
249 const struct mii_bitbang_ops ste_mii_bitbang_ops = {
250 	ste_mii_bitbang_read,
251 	ste_mii_bitbang_write,
252 	{
253 		PC_MgmtData,		/* MII_BIT_MDO */
254 		PC_MgmtData,		/* MII_BIT_MDI */
255 		PC_MgmtClk,		/* MII_BIT_MDC */
256 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
257 		0,			/* MII_BIT_DIR_PHY_HOST */
258 	}
259 };
260 
261 /*
262  * Devices supported by this driver.
263  */
264 const struct ste_product {
265 	pci_vendor_id_t		ste_vendor;
266 	pci_product_id_t	ste_product;
267 	const char		*ste_name;
268 } ste_products[] = {
269 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
270 	  "Sundance ST-201 10/100 Ethernet" },
271 
272 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
273 	  "D-Link DL-1002 10/100 Ethernet" },
274 
275 	{ 0,				0,
276 	  NULL },
277 };
278 
279 static const struct ste_product *
280 ste_lookup(const struct pci_attach_args *pa)
281 {
282 	const struct ste_product *sp;
283 
284 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
285 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
286 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
287 			return (sp);
288 	}
289 	return (NULL);
290 }
291 
292 int
293 ste_match(struct device *parent, struct cfdata *cf, void *aux)
294 {
295 	struct pci_attach_args *pa = aux;
296 
297 	if (ste_lookup(pa) != NULL)
298 		return (1);
299 
300 	return (0);
301 }
302 
303 void
304 ste_attach(struct device *parent, struct device *self, void *aux)
305 {
306 	struct ste_softc *sc = (struct ste_softc *) self;
307 	struct pci_attach_args *pa = aux;
308 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
309 	pci_chipset_tag_t pc = pa->pa_pc;
310 	pci_intr_handle_t ih;
311 	const char *intrstr = NULL;
312 	bus_space_tag_t iot, memt;
313 	bus_space_handle_t ioh, memh;
314 	bus_dma_segment_t seg;
315 	int ioh_valid, memh_valid;
316 	int i, rseg, error;
317 	const struct ste_product *sp;
318 	pcireg_t pmode;
319 	uint8_t enaddr[ETHER_ADDR_LEN];
320 	uint16_t myea[ETHER_ADDR_LEN / 2];
321 	int pmreg;
322 
323 	callout_init(&sc->sc_tick_ch);
324 
325 	sp = ste_lookup(pa);
326 	if (sp == NULL) {
327 		printf("\n");
328 		panic("ste_attach: impossible");
329 	}
330 
331 	printf(": %s\n", sp->ste_name);
332 
333 	/*
334 	 * Map the device.
335 	 */
336 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
337 	    PCI_MAPREG_TYPE_IO, 0,
338 	    &iot, &ioh, NULL, NULL) == 0);
339 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
340 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
341 	    &memt, &memh, NULL, NULL) == 0);
342 
343 	if (memh_valid) {
344 		sc->sc_st = memt;
345 		sc->sc_sh = memh;
346 	} else if (ioh_valid) {
347 		sc->sc_st = iot;
348 		sc->sc_sh = ioh;
349 	} else {
350 		printf("%s: unable to map device registers\n",
351 		    sc->sc_dev.dv_xname);
352 		return;
353 	}
354 
355 	sc->sc_dmat = pa->pa_dmat;
356 
357 	/* Enable bus mastering. */
358 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
359 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
360 	    PCI_COMMAND_MASTER_ENABLE);
361 
362 	/* Get it out of power save mode if needed. */
363 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
364 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
365 		if (pmode == 3) {
366 			/*
367 			 * The card has lost all configuration data in
368 			 * this state, so punt.
369 			 */
370 			printf("%s: unable to wake up from power state D3\n",
371 			    sc->sc_dev.dv_xname);
372 			return;
373 		}
374 		if (pmode != 0) {
375 			printf("%s: waking up from power state D%d\n",
376 			    sc->sc_dev.dv_xname, pmode);
377 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
378 		}
379 	}
380 
381 	/*
382 	 * Map and establish our interrupt.
383 	 */
384 	if (pci_intr_map(pa, &ih)) {
385 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
386 		return;
387 	}
388 	intrstr = pci_intr_string(pc, ih);
389 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
390 	if (sc->sc_ih == NULL) {
391 		printf("%s: unable to establish interrupt",
392 		    sc->sc_dev.dv_xname);
393 		if (intrstr != NULL)
394 			printf(" at %s", intrstr);
395 		printf("\n");
396 		return;
397 	}
398 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
399 
400 	/*
401 	 * Allocate the control data structures, and create and load the
402 	 * DMA map for it.
403 	 */
404 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
405 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
406 	    0)) != 0) {
407 		printf("%s: unable to allocate control data, error = %d\n",
408 		    sc->sc_dev.dv_xname, error);
409 		goto fail_0;
410 	}
411 
412 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
413 	    sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
414 	    BUS_DMA_COHERENT)) != 0) {
415 		printf("%s: unable to map control data, error = %d\n",
416 		    sc->sc_dev.dv_xname, error);
417 		goto fail_1;
418 	}
419 
420 	if ((error = bus_dmamap_create(sc->sc_dmat,
421 	    sizeof(struct ste_control_data), 1,
422 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
423 		printf("%s: unable to create control data DMA map, "
424 		    "error = %d\n", sc->sc_dev.dv_xname, error);
425 		goto fail_2;
426 	}
427 
428 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
429 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
430 	    0)) != 0) {
431 		printf("%s: unable to load control data DMA map, error = %d\n",
432 		    sc->sc_dev.dv_xname, error);
433 		goto fail_3;
434 	}
435 
436 	/*
437 	 * Create the transmit buffer DMA maps.
438 	 */
439 	for (i = 0; i < STE_NTXDESC; i++) {
440 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
441 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
442 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
443 			printf("%s: unable to create tx DMA map %d, "
444 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
445 			goto fail_4;
446 		}
447 	}
448 
449 	/*
450 	 * Create the receive buffer DMA maps.
451 	 */
452 	for (i = 0; i < STE_NRXDESC; i++) {
453 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
454 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
455 			printf("%s: unable to create rx DMA map %d, "
456 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
457 			goto fail_5;
458 		}
459 		sc->sc_rxsoft[i].ds_mbuf = NULL;
460 	}
461 
462 	/*
463 	 * Reset the chip to a known state.
464 	 */
465 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
466 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
467 
468 	/*
469 	 * Read the Ethernet address from the EEPROM.
470 	 */
471 	for (i = 0; i < 3; i++) {
472 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
473 		myea[i] = le16toh(myea[i]);
474 	}
475 	memcpy(enaddr, myea, sizeof(enaddr));
476 
477 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
478 	    ether_sprintf(enaddr));
479 
480 	/*
481 	 * Initialize our media structures and probe the MII.
482 	 */
483 	sc->sc_mii.mii_ifp = ifp;
484 	sc->sc_mii.mii_readreg = ste_mii_readreg;
485 	sc->sc_mii.mii_writereg = ste_mii_writereg;
486 	sc->sc_mii.mii_statchg = ste_mii_statchg;
487 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ste_mediachange,
488 	    ste_mediastatus);
489 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
490 	    MII_OFFSET_ANY, 0);
491 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
492 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
493 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
494 	} else
495 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
496 
497 	ifp = &sc->sc_ethercom.ec_if;
498 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
499 	ifp->if_softc = sc;
500 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
501 	ifp->if_ioctl = ste_ioctl;
502 	ifp->if_start = ste_start;
503 	ifp->if_watchdog = ste_watchdog;
504 	ifp->if_init = ste_init;
505 	ifp->if_stop = ste_stop;
506 	IFQ_SET_READY(&ifp->if_snd);
507 
508 	/*
509 	 * Default the transmit threshold to 128 bytes.
510 	 */
511 	sc->sc_txthresh = 128;
512 
513 	/*
514 	 * Disable MWI if the PCI layer tells us to.
515 	 */
516 	sc->sc_DMACtrl = 0;
517 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
518 		sc->sc_DMACtrl |= DC_MWIDisable;
519 
520 	/*
521 	 * We can support 802.1Q VLAN-sized frames.
522 	 */
523 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
524 
525 	/*
526 	 * Attach the interface.
527 	 */
528 	if_attach(ifp);
529 	ether_ifattach(ifp, enaddr);
530 
531 	/*
532 	 * Make sure the interface is shutdown during reboot.
533 	 */
534 	sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
535 	if (sc->sc_sdhook == NULL)
536 		printf("%s: WARNING: unable to establish shutdown hook\n",
537 		    sc->sc_dev.dv_xname);
538 	return;
539 
540 	/*
541 	 * Free any resources we've allocated during the failed attach
542 	 * attempt.  Do this in reverse order and fall through.
543 	 */
544  fail_5:
545 	for (i = 0; i < STE_NRXDESC; i++) {
546 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
547 			bus_dmamap_destroy(sc->sc_dmat,
548 			    sc->sc_rxsoft[i].ds_dmamap);
549 	}
550  fail_4:
551 	for (i = 0; i < STE_NTXDESC; i++) {
552 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
553 			bus_dmamap_destroy(sc->sc_dmat,
554 			    sc->sc_txsoft[i].ds_dmamap);
555 	}
556 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
557  fail_3:
558 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
559  fail_2:
560 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
561 	    sizeof(struct ste_control_data));
562  fail_1:
563 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
564  fail_0:
565 	return;
566 }
567 
568 /*
569  * ste_shutdown:
570  *
571  *	Make sure the interface is stopped at reboot time.
572  */
573 void
574 ste_shutdown(void *arg)
575 {
576 	struct ste_softc *sc = arg;
577 
578 	ste_stop(&sc->sc_ethercom.ec_if, 1);
579 }
580 
581 static void
582 ste_dmahalt_wait(struct ste_softc *sc)
583 {
584 	int i;
585 
586 	for (i = 0; i < STE_TIMEOUT; i++) {
587 		delay(2);
588 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
589 		     DC_DMAHaltBusy) == 0)
590 			break;
591 	}
592 
593 	if (i == STE_TIMEOUT)
594 		printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
595 }
596 
597 /*
598  * ste_start:		[ifnet interface function]
599  *
600  *	Start packet transmission on the interface.
601  */
602 void
603 ste_start(struct ifnet *ifp)
604 {
605 	struct ste_softc *sc = ifp->if_softc;
606 	struct mbuf *m0, *m;
607 	struct ste_descsoft *ds;
608 	struct ste_tfd *tfd;
609 	bus_dmamap_t dmamap;
610 	int error, olasttx, nexttx, opending, seg, totlen;
611 
612 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
613 		return;
614 
615 	/*
616 	 * Remember the previous number of pending transmissions
617 	 * and the current last descriptor in the list.
618 	 */
619 	opending = sc->sc_txpending;
620 	olasttx = sc->sc_txlast;
621 
622 	/*
623 	 * Loop through the send queue, setting up transmit descriptors
624 	 * until we drain the queue, or use up all available transmit
625 	 * descriptors.
626 	 */
627 	while (sc->sc_txpending < STE_NTXDESC) {
628 		/*
629 		 * Grab a packet off the queue.
630 		 */
631 		IFQ_POLL(&ifp->if_snd, m0);
632 		if (m0 == NULL)
633 			break;
634 		m = NULL;
635 
636 		/*
637 		 * Get the last and next available transmit descriptor.
638 		 */
639 		nexttx = STE_NEXTTX(sc->sc_txlast);
640 		tfd = &sc->sc_txdescs[nexttx];
641 		ds = &sc->sc_txsoft[nexttx];
642 
643 		dmamap = ds->ds_dmamap;
644 
645 		/*
646 		 * Load the DMA map.  If this fails, the packet either
647 		 * didn't fit in the alloted number of segments, or we
648 		 * were short on resources.  In this case, we'll copy
649 		 * and try again.
650 		 */
651 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
652 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
653 			MGETHDR(m, M_DONTWAIT, MT_DATA);
654 			if (m == NULL) {
655 				printf("%s: unable to allocate Tx mbuf\n",
656 				    sc->sc_dev.dv_xname);
657 				break;
658 			}
659 			if (m0->m_pkthdr.len > MHLEN) {
660 				MCLGET(m, M_DONTWAIT);
661 				if ((m->m_flags & M_EXT) == 0) {
662 					printf("%s: unable to allocate Tx "
663 					    "cluster\n", sc->sc_dev.dv_xname);
664 					m_freem(m);
665 					break;
666 				}
667 			}
668 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
669 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
670 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
671 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
672 			if (error) {
673 				printf("%s: unable to load Tx buffer, "
674 				    "error = %d\n", sc->sc_dev.dv_xname, error);
675 				break;
676 			}
677 		}
678 
679 		IFQ_DEQUEUE(&ifp->if_snd, m0);
680 		if (m != NULL) {
681 			m_freem(m0);
682 			m0 = m;
683 		}
684 
685 		/*
686 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
687 		 */
688 
689 		/* Sync the DMA map. */
690 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
691 		    BUS_DMASYNC_PREWRITE);
692 
693 		/* Initialize the fragment list. */
694 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
695 			tfd->tfd_frags[seg].frag_addr =
696 			    htole32(dmamap->dm_segs[seg].ds_addr);
697 			tfd->tfd_frags[seg].frag_len =
698 			    htole32(dmamap->dm_segs[seg].ds_len);
699 			totlen += dmamap->dm_segs[seg].ds_len;
700 		}
701 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
702 
703 		/* Initialize the descriptor. */
704 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
705 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
706 
707 		/* Sync the descriptor. */
708 		STE_CDTXSYNC(sc, nexttx,
709 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
710 
711 		/*
712 		 * Store a pointer to the packet so we can free it later,
713 		 * and remember what txdirty will be once the packet is
714 		 * done.
715 		 */
716 		ds->ds_mbuf = m0;
717 
718 		/* Advance the tx pointer. */
719 		sc->sc_txpending++;
720 		sc->sc_txlast = nexttx;
721 
722 #if NBPFILTER > 0
723 		/*
724 		 * Pass the packet to any BPF listeners.
725 		 */
726 		if (ifp->if_bpf)
727 			bpf_mtap(ifp->if_bpf, m0);
728 #endif /* NBPFILTER > 0 */
729 	}
730 
731 	if (sc->sc_txpending == STE_NTXDESC) {
732 		/* No more slots left; notify upper layer. */
733 		ifp->if_flags |= IFF_OACTIVE;
734 	}
735 
736 	if (sc->sc_txpending != opending) {
737 		/*
738 		 * We enqueued packets.  If the transmitter was idle,
739 		 * reset the txdirty pointer.
740 		 */
741 		if (opending == 0)
742 			sc->sc_txdirty = STE_NEXTTX(olasttx);
743 
744 		/*
745 		 * Cause a descriptor interrupt to happen on the
746 		 * last packet we enqueued, and also cause the
747 		 * DMA engine to wait after is has finished processing
748 		 * it.
749 		 */
750 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
751 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
752 		    htole32(TFD_TxDMAIndicate);
753 		STE_CDTXSYNC(sc, sc->sc_txlast,
754 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
755 
756 		/*
757 		 * Link up the new chain of descriptors to the
758 		 * last.
759 		 */
760 		sc->sc_txdescs[olasttx].tfd_next =
761 		    STE_CDTXADDR(sc, STE_NEXTTX(olasttx));
762 		STE_CDTXSYNC(sc, olasttx,
763 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
764 
765 		/*
766 		 * Kick the transmit DMA logic.  Note that since we're
767 		 * using auto-polling, reading the Tx desc pointer will
768 		 * give it the nudge it needs to get going.
769 		 */
770 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
771 		    STE_TxDMAListPtr) == 0) {
772 			bus_space_write_4(sc->sc_st, sc->sc_sh,
773 			    STE_DMACtrl, DC_TxDMAHalt);
774 			ste_dmahalt_wait(sc);
775 			bus_space_write_4(sc->sc_st, sc->sc_sh,
776 			    STE_TxDMAListPtr,
777 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
778 			bus_space_write_4(sc->sc_st, sc->sc_sh,
779 			    STE_DMACtrl, DC_TxDMAResume);
780 		}
781 
782 		/* Set a watchdog timer in case the chip flakes out. */
783 		ifp->if_timer = 5;
784 	}
785 }
786 
787 /*
788  * ste_watchdog:	[ifnet interface function]
789  *
790  *	Watchdog timer handler.
791  */
792 void
793 ste_watchdog(struct ifnet *ifp)
794 {
795 	struct ste_softc *sc = ifp->if_softc;
796 
797 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
798 	ifp->if_oerrors++;
799 
800 	(void) ste_init(ifp);
801 
802 	/* Try to get more packets going. */
803 	ste_start(ifp);
804 }
805 
806 /*
807  * ste_ioctl:		[ifnet interface function]
808  *
809  *	Handle control requests from the operator.
810  */
811 int
812 ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
813 {
814 	struct ste_softc *sc = ifp->if_softc;
815 	struct ifreq *ifr = (struct ifreq *)data;
816 	int s, error;
817 
818 	s = splnet();
819 
820 	switch (cmd) {
821 	case SIOCSIFMEDIA:
822 	case SIOCGIFMEDIA:
823 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
824 		break;
825 
826 	default:
827 		error = ether_ioctl(ifp, cmd, data);
828 		if (error == ENETRESET) {
829 			/*
830 			 * Multicast list has changed; set the hardware filter
831 			 * accordingly.
832 			 */
833 			ste_set_filter(sc);
834 			error = 0;
835 		}
836 		break;
837 	}
838 
839 	/* Try to get more packets going. */
840 	ste_start(ifp);
841 
842 	splx(s);
843 	return (error);
844 }
845 
846 /*
847  * ste_intr:
848  *
849  *	Interrupt service routine.
850  */
851 int
852 ste_intr(void *arg)
853 {
854 	struct ste_softc *sc = arg;
855 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
856 	uint16_t isr;
857 	uint8_t txstat;
858 	int wantinit;
859 
860 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
861 	     IS_InterruptStatus) == 0)
862 		return (0);
863 
864 	for (wantinit = 0; wantinit == 0;) {
865 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
866 		if ((isr & sc->sc_IntEnable) == 0)
867 			break;
868 
869 		/* Receive interrupts. */
870 		if (isr & IE_RxDMAComplete)
871 			ste_rxintr(sc);
872 
873 		/* Transmit interrupts. */
874 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
875 			ste_txintr(sc);
876 
877 		/* Statistics overflow. */
878 		if (isr & IE_UpdateStats)
879 			ste_stats_update(sc);
880 
881 		/* Transmission errors. */
882 		if (isr & IE_TxComplete) {
883 			for (;;) {
884 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
885 				    STE_TxStatus);
886 				if ((txstat & TS_TxComplete) == 0)
887 					break;
888 				if (txstat & TS_TxUnderrun) {
889 					sc->sc_txthresh += 32;
890 					if (sc->sc_txthresh > 0x1ffc)
891 						sc->sc_txthresh = 0x1ffc;
892 					printf("%s: transmit underrun, new "
893 					    "threshold: %d bytes\n",
894 					    sc->sc_dev.dv_xname,
895 					    sc->sc_txthresh);
896 					ste_reset(sc, AC_TxReset | AC_DMA |
897 					    AC_FIFO | AC_Network);
898 					ste_setthresh(sc);
899 					bus_space_write_1(sc->sc_st, sc->sc_sh,
900 					    STE_TxDMAPollPeriod, 127);
901 					ste_txrestart(sc,
902 					    bus_space_read_1(sc->sc_st,
903 						sc->sc_sh, STE_TxFrameId));
904 				}
905 				if (txstat & TS_TxReleaseError) {
906 					printf("%s: Tx FIFO release error\n",
907 					    sc->sc_dev.dv_xname);
908 					wantinit = 1;
909 				}
910 				if (txstat & TS_MaxCollisions) {
911 					printf("%s: excessive collisions\n",
912 					    sc->sc_dev.dv_xname);
913 					wantinit = 1;
914 				}
915 				if (txstat & TS_TxStatusOverflow) {
916 					printf("%s: status overflow\n",
917 					    sc->sc_dev.dv_xname);
918 					wantinit = 1;
919 				}
920 				bus_space_write_2(sc->sc_st, sc->sc_sh,
921 				    STE_TxStatus, 0);
922 			}
923 		}
924 
925 		/* Host interface errors. */
926 		if (isr & IE_HostError) {
927 			printf("%s: Host interface error\n",
928 			    sc->sc_dev.dv_xname);
929 			wantinit = 1;
930 		}
931 	}
932 
933 	if (wantinit)
934 		ste_init(ifp);
935 
936 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
937 	    sc->sc_IntEnable);
938 
939 	/* Try to get more packets going. */
940 	ste_start(ifp);
941 
942 	return (1);
943 }
944 
945 /*
946  * ste_txintr:
947  *
948  *	Helper; handle transmit interrupts.
949  */
950 void
951 ste_txintr(struct ste_softc *sc)
952 {
953 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
954 	struct ste_descsoft *ds;
955 	uint32_t control;
956 	int i;
957 
958 	ifp->if_flags &= ~IFF_OACTIVE;
959 
960 	/*
961 	 * Go through our Tx list and free mbufs for those
962 	 * frames which have been transmitted.
963 	 */
964 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
965 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
966 		ds = &sc->sc_txsoft[i];
967 
968 		STE_CDTXSYNC(sc, i,
969 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
970 
971 		control = le32toh(sc->sc_txdescs[i].tfd_control);
972 		if ((control & TFD_TxDMAComplete) == 0)
973 			break;
974 
975 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
976 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
977 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
978 		m_freem(ds->ds_mbuf);
979 		ds->ds_mbuf = NULL;
980 	}
981 
982 	/* Update the dirty transmit buffer pointer. */
983 	sc->sc_txdirty = i;
984 
985 	/*
986 	 * If there are no more pending transmissions, cancel the watchdog
987 	 * timer.
988 	 */
989 	if (sc->sc_txpending == 0)
990 		ifp->if_timer = 0;
991 }
992 
993 /*
994  * ste_rxintr:
995  *
996  *	Helper; handle receive interrupts.
997  */
998 void
999 ste_rxintr(struct ste_softc *sc)
1000 {
1001 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1002 	struct ste_descsoft *ds;
1003 	struct mbuf *m;
1004 	uint32_t status;
1005 	int i, len;
1006 
1007 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
1008 		ds = &sc->sc_rxsoft[i];
1009 
1010 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1011 
1012 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
1013 
1014 		if ((status & RFD_RxDMAComplete) == 0)
1015 			break;
1016 
1017 		/*
1018 		 * If the packet had an error, simply recycle the
1019 		 * buffer.  Note, we count the error later in the
1020 		 * periodic stats update.
1021 		 */
1022 		if (status & RFD_RxFrameError) {
1023 			STE_INIT_RXDESC(sc, i);
1024 			continue;
1025 		}
1026 
1027 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1028 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1029 
1030 		/*
1031 		 * No errors; receive the packet.  Note, we have
1032 		 * configured the chip to not include the CRC at
1033 		 * the end of the packet.
1034 		 */
1035 		len = RFD_RxDMAFrameLen(status);
1036 
1037 		/*
1038 		 * If the packet is small enough to fit in a
1039 		 * single header mbuf, allocate one and copy
1040 		 * the data into it.  This greatly reduces
1041 		 * memory consumption when we receive lots
1042 		 * of small packets.
1043 		 *
1044 		 * Otherwise, we add a new buffer to the receive
1045 		 * chain.  If this fails, we drop the packet and
1046 		 * recycle the old buffer.
1047 		 */
1048 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1049 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1050 			if (m == NULL)
1051 				goto dropit;
1052 			m->m_data += 2;
1053 			memcpy(mtod(m, caddr_t),
1054 			    mtod(ds->ds_mbuf, caddr_t), len);
1055 			STE_INIT_RXDESC(sc, i);
1056 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1057 			    ds->ds_dmamap->dm_mapsize,
1058 			    BUS_DMASYNC_PREREAD);
1059 		} else {
1060 			m = ds->ds_mbuf;
1061 			if (ste_add_rxbuf(sc, i) != 0) {
1062  dropit:
1063 				ifp->if_ierrors++;
1064 				STE_INIT_RXDESC(sc, i);
1065 				bus_dmamap_sync(sc->sc_dmat,
1066 				    ds->ds_dmamap, 0,
1067 				    ds->ds_dmamap->dm_mapsize,
1068 				    BUS_DMASYNC_PREREAD);
1069 				continue;
1070 			}
1071 		}
1072 
1073 		m->m_pkthdr.rcvif = ifp;
1074 		m->m_pkthdr.len = m->m_len = len;
1075 
1076 #if NBPFILTER > 0
1077 		/*
1078 		 * Pass this up to any BPF listeners, but only
1079 		 * pass if up the stack if it's for us.
1080 		 */
1081 		if (ifp->if_bpf)
1082 			bpf_mtap(ifp->if_bpf, m);
1083 #endif /* NBPFILTER > 0 */
1084 
1085 		/* Pass it on. */
1086 		(*ifp->if_input)(ifp, m);
1087 	}
1088 
1089 	/* Update the receive pointer. */
1090 	sc->sc_rxptr = i;
1091 }
1092 
1093 /*
1094  * ste_tick:
1095  *
1096  *	One second timer, used to tick the MII.
1097  */
1098 void
1099 ste_tick(void *arg)
1100 {
1101 	struct ste_softc *sc = arg;
1102 	int s;
1103 
1104 	s = splnet();
1105 	mii_tick(&sc->sc_mii);
1106 	ste_stats_update(sc);
1107 	splx(s);
1108 
1109 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1110 }
1111 
1112 /*
1113  * ste_stats_update:
1114  *
1115  *	Read the ST-201 statistics counters.
1116  */
1117 void
1118 ste_stats_update(struct ste_softc *sc)
1119 {
1120 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1121 	bus_space_tag_t st = sc->sc_st;
1122 	bus_space_handle_t sh = sc->sc_sh;
1123 
1124 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1125 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1126 
1127 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1128 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1129 
1130 	ifp->if_opackets +=
1131 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1132 	ifp->if_ipackets +=
1133 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1134 
1135 	ifp->if_collisions +=
1136 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1137 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1138 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1139 
1140 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1141 
1142 	ifp->if_ierrors +=
1143 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1144 
1145 	ifp->if_oerrors +=
1146 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1147 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1148 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1149 
1150 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1151 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1152 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1153 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1154 }
1155 
1156 /*
1157  * ste_reset:
1158  *
1159  *	Perform a soft reset on the ST-201.
1160  */
1161 void
1162 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1163 {
1164 	uint32_t ac;
1165 	int i;
1166 
1167 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1168 
1169 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1170 
1171 	delay(50000);
1172 
1173 	for (i = 0; i < STE_TIMEOUT; i++) {
1174 		delay(1000);
1175 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1176 		     AC_ResetBusy) == 0)
1177 			break;
1178 	}
1179 
1180 	if (i == STE_TIMEOUT)
1181 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1182 
1183 	delay(1000);
1184 }
1185 
1186 /*
1187  * ste_setthresh:
1188  *
1189  * 	set the various transmit threshold registers
1190  */
1191 void
1192 ste_setthresh(struct ste_softc *sc)
1193 {
1194 	/* set the TX threhold */
1195 	bus_space_write_2(sc->sc_st, sc->sc_sh,
1196 	    STE_TxStartThresh, sc->sc_txthresh);
1197 	/* Urgent threshold: set to sc_txthresh / 2 */
1198 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1199 	    sc->sc_txthresh >> 6);
1200 	/* Burst threshold: use default value (256 bytes) */
1201 }
1202 
1203 /*
1204  * restart TX at the given frame ID in the transmitter ring
1205  */
1206 
1207 void
1208 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1209 {
1210 	u_int32_t control;
1211 
1212 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1213 	control = le32toh(sc->sc_txdescs[id].tfd_control);
1214 	control &= ~TFD_TxDMAComplete;
1215 	sc->sc_txdescs[id].tfd_control = htole32(control);
1216 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1217 
1218 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1219 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1220 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1221 	ste_dmahalt_wait(sc);
1222 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1223 	    STE_CDTXADDR(sc, id));
1224 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1225 }
1226 
1227 /*
1228  * ste_init:		[ ifnet interface function ]
1229  *
1230  *	Initialize the interface.  Must be called at splnet().
1231  */
1232 int
1233 ste_init(struct ifnet *ifp)
1234 {
1235 	struct ste_softc *sc = ifp->if_softc;
1236 	bus_space_tag_t st = sc->sc_st;
1237 	bus_space_handle_t sh = sc->sc_sh;
1238 	struct ste_descsoft *ds;
1239 	int i, error = 0;
1240 
1241 	/*
1242 	 * Cancel any pending I/O.
1243 	 */
1244 	ste_stop(ifp, 0);
1245 
1246 	/*
1247 	 * Reset the chip to a known state.
1248 	 */
1249 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1250 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1251 
1252 	/*
1253 	 * Initialize the transmit descriptor ring.
1254 	 */
1255 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1256 	sc->sc_txpending = 0;
1257 	sc->sc_txdirty = 0;
1258 	sc->sc_txlast = STE_NTXDESC - 1;
1259 
1260 	/*
1261 	 * Initialize the receive descriptor and receive job
1262 	 * descriptor rings.
1263 	 */
1264 	for (i = 0; i < STE_NRXDESC; i++) {
1265 		ds = &sc->sc_rxsoft[i];
1266 		if (ds->ds_mbuf == NULL) {
1267 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1268 				printf("%s: unable to allocate or map rx "
1269 				    "buffer %d, error = %d\n",
1270 				    sc->sc_dev.dv_xname, i, error);
1271 				/*
1272 				 * XXX Should attempt to run with fewer receive
1273 				 * XXX buffers instead of just failing.
1274 				 */
1275 				ste_rxdrain(sc);
1276 				goto out;
1277 			}
1278 		} else
1279 			STE_INIT_RXDESC(sc, i);
1280 	}
1281 	sc->sc_rxptr = 0;
1282 
1283 	/* Set the station address. */
1284 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1285 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1286 		    LLADDR(ifp->if_sadl)[i]);
1287 
1288 	/* Set up the receive filter. */
1289 	ste_set_filter(sc);
1290 
1291 	/*
1292 	 * Give the receive ring to the chip.
1293 	 */
1294 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1295 	    STE_CDRXADDR(sc, sc->sc_rxptr));
1296 
1297 	/*
1298 	 * We defer giving the transmit ring to the chip until we
1299 	 * transmit the first packet.
1300 	 */
1301 
1302 	/*
1303 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1304 	 * large (127 is the max) -- we explicitly kick the transmit engine
1305 	 * when there's actually a packet.  We are using auto-polling only
1306 	 * to make the interface to the transmit engine not suck.
1307 	 */
1308 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1309 
1310 	/* ..and the Rx auto-poll period. */
1311 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1312 
1313 	/* Initialize the Tx start threshold. */
1314 	ste_setthresh(sc);
1315 
1316 	/* Set the FIFO release threshold to 512 bytes. */
1317 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1318 
1319 	/*
1320 	 * Initialize the interrupt mask.
1321 	 */
1322 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1323 	    IE_TxDMAComplete | IE_RxDMAComplete;
1324 
1325 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1326 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1327 
1328 	/*
1329 	 * Start the receive DMA engine.
1330 	 */
1331 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1332 
1333 	/*
1334 	 * Initialize MacCtrl0 -- do it before setting the media,
1335 	 * as setting the media will actually program the register.
1336 	 */
1337 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1338 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1339 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1340 
1341 	/*
1342 	 * Set the current media.
1343 	 */
1344 	mii_mediachg(&sc->sc_mii);
1345 
1346 	/*
1347 	 * Start the MAC.
1348 	 */
1349 	bus_space_write_2(st, sh, STE_MacCtrl1,
1350 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1351 
1352 	/*
1353 	 * Start the one second MII clock.
1354 	 */
1355 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1356 
1357 	/*
1358 	 * ...all done!
1359 	 */
1360 	ifp->if_flags |= IFF_RUNNING;
1361 	ifp->if_flags &= ~IFF_OACTIVE;
1362 
1363  out:
1364 	if (error)
1365 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1366 	return (error);
1367 }
1368 
1369 /*
1370  * ste_drain:
1371  *
1372  *	Drain the receive queue.
1373  */
1374 void
1375 ste_rxdrain(struct ste_softc *sc)
1376 {
1377 	struct ste_descsoft *ds;
1378 	int i;
1379 
1380 	for (i = 0; i < STE_NRXDESC; i++) {
1381 		ds = &sc->sc_rxsoft[i];
1382 		if (ds->ds_mbuf != NULL) {
1383 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1384 			m_freem(ds->ds_mbuf);
1385 			ds->ds_mbuf = NULL;
1386 		}
1387 	}
1388 }
1389 
1390 /*
1391  * ste_stop:		[ ifnet interface function ]
1392  *
1393  *	Stop transmission on the interface.
1394  */
1395 void
1396 ste_stop(struct ifnet *ifp, int disable)
1397 {
1398 	struct ste_softc *sc = ifp->if_softc;
1399 	struct ste_descsoft *ds;
1400 	int i;
1401 
1402 	/*
1403 	 * Stop the one second clock.
1404 	 */
1405 	callout_stop(&sc->sc_tick_ch);
1406 
1407 	/* Down the MII. */
1408 	mii_down(&sc->sc_mii);
1409 
1410 	/*
1411 	 * Disable interrupts.
1412 	 */
1413 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1414 
1415 	/*
1416 	 * Stop receiver, transmitter, and stats update.
1417 	 */
1418 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1419 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1420 
1421 	/*
1422 	 * Stop the transmit and receive DMA.
1423 	 */
1424 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1425 	    DC_RxDMAHalt | DC_TxDMAHalt);
1426 	ste_dmahalt_wait(sc);
1427 
1428 	/*
1429 	 * Release any queued transmit buffers.
1430 	 */
1431 	for (i = 0; i < STE_NTXDESC; i++) {
1432 		ds = &sc->sc_txsoft[i];
1433 		if (ds->ds_mbuf != NULL) {
1434 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1435 			m_freem(ds->ds_mbuf);
1436 			ds->ds_mbuf = NULL;
1437 		}
1438 	}
1439 
1440 	if (disable)
1441 		ste_rxdrain(sc);
1442 
1443 	/*
1444 	 * Mark the interface down and cancel the watchdog timer.
1445 	 */
1446 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1447 	ifp->if_timer = 0;
1448 }
1449 
1450 static int
1451 ste_eeprom_wait(struct ste_softc *sc)
1452 {
1453 	int i;
1454 
1455 	for (i = 0; i < STE_TIMEOUT; i++) {
1456 		delay(1000);
1457 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1458 		     EC_EepromBusy) == 0)
1459 			return (0);
1460 	}
1461 	return (1);
1462 }
1463 
1464 /*
1465  * ste_read_eeprom:
1466  *
1467  *	Read data from the serial EEPROM.
1468  */
1469 void
1470 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1471 {
1472 
1473 	if (ste_eeprom_wait(sc))
1474 		printf("%s: EEPROM failed to come ready\n",
1475 		    sc->sc_dev.dv_xname);
1476 
1477 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1478 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1479 	if (ste_eeprom_wait(sc))
1480 		printf("%s: EEPROM read timed out\n",
1481 		    sc->sc_dev.dv_xname);
1482 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1483 }
1484 
1485 /*
1486  * ste_add_rxbuf:
1487  *
1488  *	Add a receive buffer to the indicated descriptor.
1489  */
1490 int
1491 ste_add_rxbuf(struct ste_softc *sc, int idx)
1492 {
1493 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1494 	struct mbuf *m;
1495 	int error;
1496 
1497 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1498 	if (m == NULL)
1499 		return (ENOBUFS);
1500 
1501 	MCLGET(m, M_DONTWAIT);
1502 	if ((m->m_flags & M_EXT) == 0) {
1503 		m_freem(m);
1504 		return (ENOBUFS);
1505 	}
1506 
1507 	if (ds->ds_mbuf != NULL)
1508 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1509 
1510 	ds->ds_mbuf = m;
1511 
1512 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1513 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1514 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1515 	if (error) {
1516 		printf("%s: can't load rx DMA map %d, error = %d\n",
1517 		    sc->sc_dev.dv_xname, idx, error);
1518 		panic("ste_add_rxbuf");		/* XXX */
1519 	}
1520 
1521 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1522 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1523 
1524 	STE_INIT_RXDESC(sc, idx);
1525 
1526 	return (0);
1527 }
1528 
1529 /*
1530  * ste_set_filter:
1531  *
1532  *	Set up the receive filter.
1533  */
1534 void
1535 ste_set_filter(struct ste_softc *sc)
1536 {
1537 	struct ethercom *ec = &sc->sc_ethercom;
1538 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1539 	struct ether_multi *enm;
1540 	struct ether_multistep step;
1541 	uint32_t crc;
1542 	uint16_t mchash[4];
1543 
1544 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1545 	if (ifp->if_flags & IFF_BROADCAST)
1546 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1547 
1548 	if (ifp->if_flags & IFF_PROMISC) {
1549 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1550 		goto allmulti;
1551 	}
1552 
1553 	/*
1554 	 * Set up the multicast address filter by passing all multicast
1555 	 * addresses through a CRC generator, and then using the low-order
1556 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1557 	 * high order bits select the register, while the rest of the bits
1558 	 * select the bit within the register.
1559 	 */
1560 
1561 	memset(mchash, 0, sizeof(mchash));
1562 
1563 	ETHER_FIRST_MULTI(step, ec, enm);
1564 	if (enm == NULL)
1565 		goto done;
1566 
1567 	while (enm != NULL) {
1568 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1569 			/*
1570 			 * We must listen to a range of multicast addresses.
1571 			 * For now, just accept all multicasts, rather than
1572 			 * trying to set only those filter bits needed to match
1573 			 * the range.  (At this time, the only use of address
1574 			 * ranges is for IP multicast routing, for which the
1575 			 * range is big enough to require all bits set.)
1576 			 */
1577 			goto allmulti;
1578 		}
1579 
1580 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1581 
1582 		/* Just want the 6 least significant bits. */
1583 		crc &= 0x3f;
1584 
1585 		/* Set the corresponding bit in the hash table. */
1586 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1587 
1588 		ETHER_NEXT_MULTI(step, enm);
1589 	}
1590 
1591 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1592 
1593 	ifp->if_flags &= ~IFF_ALLMULTI;
1594 	goto done;
1595 
1596  allmulti:
1597 	ifp->if_flags |= IFF_ALLMULTI;
1598 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1599 
1600  done:
1601 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1602 		/*
1603 		 * Program the multicast hash table.
1604 		 */
1605 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1606 		    mchash[0]);
1607 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1608 		    mchash[1]);
1609 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1610 		    mchash[2]);
1611 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1612 		    mchash[3]);
1613 	}
1614 
1615 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1616 	    sc->sc_ReceiveMode);
1617 }
1618 
1619 /*
1620  * ste_mii_readreg:	[mii interface function]
1621  *
1622  *	Read a PHY register on the MII of the ST-201.
1623  */
1624 int
1625 ste_mii_readreg(struct device *self, int phy, int reg)
1626 {
1627 
1628 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1629 }
1630 
1631 /*
1632  * ste_mii_writereg:	[mii interface function]
1633  *
1634  *	Write a PHY register on the MII of the ST-201.
1635  */
1636 void
1637 ste_mii_writereg(struct device *self, int phy, int reg, int val)
1638 {
1639 
1640 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1641 }
1642 
1643 /*
1644  * ste_mii_statchg:	[mii interface function]
1645  *
1646  *	Callback from MII layer when media changes.
1647  */
1648 void
1649 ste_mii_statchg(struct device *self)
1650 {
1651 	struct ste_softc *sc = (struct ste_softc *) self;
1652 
1653 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1654 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1655 	else
1656 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1657 
1658 	/* XXX 802.1x flow-control? */
1659 
1660 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1661 }
1662 
1663 /*
1664  * ste_mii_bitbang_read: [mii bit-bang interface function]
1665  *
1666  *	Read the MII serial port for the MII bit-bang module.
1667  */
1668 uint32_t
1669 ste_mii_bitbang_read(struct device *self)
1670 {
1671 	struct ste_softc *sc = (void *) self;
1672 
1673 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1674 }
1675 
1676 /*
1677  * ste_mii_bitbang_write: [mii big-bang interface function]
1678  *
1679  *	Write the MII serial port for the MII bit-bang module.
1680  */
1681 void
1682 ste_mii_bitbang_write(struct device *self, uint32_t val)
1683 {
1684 	struct ste_softc *sc = (void *) self;
1685 
1686 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1687 }
1688 
1689 /*
1690  * ste_mediastatus:	[ifmedia interface function]
1691  *
1692  *	Get the current interface media status.
1693  */
1694 void
1695 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1696 {
1697 	struct ste_softc *sc = ifp->if_softc;
1698 
1699 	mii_pollstat(&sc->sc_mii);
1700 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1701 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1702 }
1703 
1704 /*
1705  * ste_mediachange:	[ifmedia interface function]
1706  *
1707  *	Set hardware to newly-selected media.
1708  */
1709 int
1710 ste_mediachange(struct ifnet *ifp)
1711 {
1712 	struct ste_softc *sc = ifp->if_softc;
1713 
1714 	if (ifp->if_flags & IFF_UP)
1715 		mii_mediachg(&sc->sc_mii);
1716 	return (0);
1717 }
1718