xref: /netbsd/sys/dev/pci/if_stge.c (revision bf9ec67e)
1 /*	$NetBSD: if_stge.c,v 1.9 2001/11/13 07:48:44 lukem Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. TC9021 10/100/1000
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.9 2001/11/13 07:48:44 lukem Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stgereg.h>
84 
85 /*
86  * Transmit descriptor list size.
87  */
88 #define	STGE_NTXDESC		256
89 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
90 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
91 
92 /*
93  * Receive descriptor list size.
94  */
95 #define	STGE_NRXDESC		256
96 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
97 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
98 
99 /*
100  * Only interrupt every N frames.  Must be a power-of-two.
101  */
102 #define	STGE_TXINTR_SPACING	16
103 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
104 
105 /*
106  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
107  * a single clump that maps to a single DMA segment to make several things
108  * easier.
109  */
110 struct stge_control_data {
111 	/*
112 	 * The transmit descriptors.
113 	 */
114 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
115 
116 	/*
117 	 * The receive descriptors.
118 	 */
119 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
120 };
121 
122 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
123 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
124 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
125 
126 /*
127  * Software state for transmit and receive jobs.
128  */
129 struct stge_descsoft {
130 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
131 	bus_dmamap_t ds_dmamap;		/* our DMA map */
132 };
133 
134 /*
135  * Software state per device.
136  */
137 struct stge_softc {
138 	struct device sc_dev;		/* generic device information */
139 	bus_space_tag_t sc_st;		/* bus space tag */
140 	bus_space_handle_t sc_sh;	/* bus space handle */
141 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
142 	struct ethercom sc_ethercom;	/* ethernet common data */
143 	void *sc_sdhook;		/* shutdown hook */
144 	int sc_rev;			/* silicon revision */
145 
146 	void *sc_ih;			/* interrupt cookie */
147 
148 	struct mii_data sc_mii;		/* MII/media information */
149 
150 	struct callout sc_tick_ch;	/* tick callout */
151 
152 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
153 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
154 
155 	/*
156 	 * Software state for transmit and receive descriptors.
157 	 */
158 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
159 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
160 
161 	/*
162 	 * Control data structures.
163 	 */
164 	struct stge_control_data *sc_control_data;
165 #define	sc_txdescs	sc_control_data->scd_txdescs
166 #define	sc_rxdescs	sc_control_data->scd_rxdescs
167 
168 #ifdef STGE_EVENT_COUNTERS
169 	/*
170 	 * Event counters.
171 	 */
172 	struct evcnt sc_ev_txstall;	/* Tx stalled */
173 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
174 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
175 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
176 
177 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
178 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
179 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
180 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
181 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
182 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
183 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
184 
185 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
186 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
187 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
188 
189 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
190 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
191 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
192 #endif /* STGE_EVENT_COUNTERS */
193 
194 	int	sc_txpending;		/* number of Tx requests pending */
195 	int	sc_txdirty;		/* first dirty Tx descriptor */
196 	int	sc_txlast;		/* last used Tx descriptor */
197 
198 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
199 	int	sc_rxdiscard;
200 	int	sc_rxlen;
201 	struct mbuf *sc_rxhead;
202 	struct mbuf *sc_rxtail;
203 	struct mbuf **sc_rxtailp;
204 
205 	int	sc_txthresh;		/* Tx threshold */
206 	int	sc_usefiber;		/* if we're fiber */
207 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
208 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
209 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
210 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
211 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
212 };
213 
214 #define	STGE_RXCHAIN_RESET(sc)						\
215 do {									\
216 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
217 	*(sc)->sc_rxtailp = NULL;					\
218 	(sc)->sc_rxlen = 0;						\
219 } while (/*CONSTCOND*/0)
220 
221 #define	STGE_RXCHAIN_LINK(sc, m)					\
222 do {									\
223 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
224 	(sc)->sc_rxtailp = &(m)->m_next;				\
225 } while (/*CONSTCOND*/0)
226 
227 #ifdef STGE_EVENT_COUNTERS
228 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
229 #else
230 #define	STGE_EVCNT_INCR(ev)	/* nothing */
231 #endif
232 
233 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
234 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
235 
236 #define	STGE_CDTXSYNC(sc, x, ops)					\
237 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
238 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
239 
240 #define	STGE_CDRXSYNC(sc, x, ops)					\
241 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
242 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
243 
244 #define	STGE_INIT_RXDESC(sc, x)						\
245 do {									\
246 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
247 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
248 									\
249 	/*								\
250 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
251 	 * so that the payload after the Ethernet header is aligned	\
252 	 * to a 4-byte boundary.					\
253 	 */								\
254 	__rfd->rfd_frag.frag_word0 =					\
255 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
256 	    FRAG_LEN(MCLBYTES - 2));					\
257 	__rfd->rfd_next =						\
258 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
259 	__rfd->rfd_status = 0;						\
260 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
261 } while (/*CONSTCOND*/0)
262 
263 #define STGE_TIMEOUT 1000
264 
265 void	stge_start(struct ifnet *);
266 void	stge_watchdog(struct ifnet *);
267 int	stge_ioctl(struct ifnet *, u_long, caddr_t);
268 int	stge_init(struct ifnet *);
269 void	stge_stop(struct ifnet *, int);
270 
271 void	stge_shutdown(void *);
272 
273 void	stge_reset(struct stge_softc *);
274 void	stge_rxdrain(struct stge_softc *);
275 int	stge_add_rxbuf(struct stge_softc *, int);
276 #if 0
277 void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
278 #endif
279 void	stge_tick(void *);
280 
281 void	stge_stats_update(struct stge_softc *);
282 
283 void	stge_set_filter(struct stge_softc *);
284 
285 int	stge_intr(void *);
286 void	stge_txintr(struct stge_softc *);
287 void	stge_rxintr(struct stge_softc *);
288 
289 int	stge_mii_readreg(struct device *, int, int);
290 void	stge_mii_writereg(struct device *, int, int, int);
291 void	stge_mii_statchg(struct device *);
292 
293 int	stge_mediachange(struct ifnet *);
294 void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
295 
296 int	stge_match(struct device *, struct cfdata *, void *);
297 void	stge_attach(struct device *, struct device *, void *);
298 
299 int	stge_copy_small = 0;
300 
301 struct cfattach stge_ca = {
302 	sizeof(struct stge_softc), stge_match, stge_attach,
303 };
304 
305 uint32_t stge_mii_bitbang_read(struct device *);
306 void	stge_mii_bitbang_write(struct device *, uint32_t);
307 
308 const struct mii_bitbang_ops stge_mii_bitbang_ops = {
309 	stge_mii_bitbang_read,
310 	stge_mii_bitbang_write,
311 	{
312 		PC_MgmtData,		/* MII_BIT_MDO */
313 		PC_MgmtData,		/* MII_BIT_MDI */
314 		PC_MgmtClk,		/* MII_BIT_MDC */
315 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
316 		0,			/* MII_BIT_DIR_PHY_HOST */
317 	}
318 };
319 
320 /*
321  * Devices supported by this driver.
322  */
323 const struct stge_product {
324 	pci_vendor_id_t		stge_vendor;
325 	pci_product_id_t	stge_product;
326 	const char		*stge_name;
327 } stge_products[] = {
328 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
329 	  "Sundance ST-2021 Gigabit Ethernet" },
330 
331 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
332 	  "Tamarack TC9021 Gigabit Ethernet" },
333 
334 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
335 	  "Tamarack TC9021 Gigabit Ethernet" },
336 
337 	/*
338 	 * The Sundance sample boards use the Sundance vendor ID,
339 	 * but the Tamarack product ID.
340 	 */
341 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
342 	  "Sundance TC9021 Gigabit Ethernet" },
343 
344 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
345 	  "Sundance TC9021 Gigabit Ethernet" },
346 
347 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
348 	  "D-Link DL-4000 Gigabit Ethernet" },
349 
350 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
351 	  "Antares Gigabit Ethernet" },
352 
353 	{ 0,				0,
354 	  NULL },
355 };
356 
357 static const struct stge_product *
358 stge_lookup(const struct pci_attach_args *pa)
359 {
360 	const struct stge_product *sp;
361 
362 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
363 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
364 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
365 			return (sp);
366 	}
367 	return (NULL);
368 }
369 
370 int
371 stge_match(struct device *parent, struct cfdata *cf, void *aux)
372 {
373 	struct pci_attach_args *pa = aux;
374 
375 	if (stge_lookup(pa) != NULL)
376 		return (1);
377 
378 	return (0);
379 }
380 
381 void
382 stge_attach(struct device *parent, struct device *self, void *aux)
383 {
384 	struct stge_softc *sc = (struct stge_softc *) self;
385 	struct pci_attach_args *pa = aux;
386 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
387 	pci_chipset_tag_t pc = pa->pa_pc;
388 	pci_intr_handle_t ih;
389 	const char *intrstr = NULL;
390 	bus_space_tag_t iot, memt;
391 	bus_space_handle_t ioh, memh;
392 	bus_dma_segment_t seg;
393 	int ioh_valid, memh_valid;
394 	int i, rseg, error;
395 	const struct stge_product *sp;
396 	pcireg_t pmode;
397 	uint8_t enaddr[ETHER_ADDR_LEN];
398 	int pmreg;
399 
400 	callout_init(&sc->sc_tick_ch);
401 
402 	sp = stge_lookup(pa);
403 	if (sp == NULL) {
404 		printf("\n");
405 		panic("ste_attach: impossible");
406 	}
407 
408 	sc->sc_rev = PCI_REVISION(pa->pa_class);
409 
410 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
411 
412 	/*
413 	 * Map the device.
414 	 */
415 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
416 	    PCI_MAPREG_TYPE_IO, 0,
417 	    &iot, &ioh, NULL, NULL) == 0);
418 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
419 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
420 	    &memt, &memh, NULL, NULL) == 0);
421 
422 	if (memh_valid) {
423 		sc->sc_st = memt;
424 		sc->sc_sh = memh;
425 	} else if (ioh_valid) {
426 		sc->sc_st = iot;
427 		sc->sc_sh = ioh;
428 	} else {
429 		printf("%s: unable to map device registers\n",
430 		    sc->sc_dev.dv_xname);
431 		return;
432 	}
433 
434 	sc->sc_dmat = pa->pa_dmat;
435 
436 	/* Enable bus mastering. */
437 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
438 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
439 	    PCI_COMMAND_MASTER_ENABLE);
440 
441 	/* Get it out of power save mode if needed. */
442 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
443 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
444 		if (pmode == 3) {
445 			/*
446 			 * The card has lost all configuration data in
447 			 * this state, so punt.
448 			 */
449 			printf("%s: unable to wake up from power state D3\n",
450 			    sc->sc_dev.dv_xname);
451 			return;
452 		}
453 		if (pmode != 0) {
454 			printf("%s: waking up from power state D%d\n",
455 			    sc->sc_dev.dv_xname, pmode);
456 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
457 		}
458 	}
459 
460 	/*
461 	 * Map and establish our interrupt.
462 	 */
463 	if (pci_intr_map(pa, &ih)) {
464 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
465 		return;
466 	}
467 	intrstr = pci_intr_string(pc, ih);
468 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
469 	if (sc->sc_ih == NULL) {
470 		printf("%s: unable to establish interrupt",
471 		    sc->sc_dev.dv_xname);
472 		if (intrstr != NULL)
473 			printf(" at %s", intrstr);
474 		printf("\n");
475 		return;
476 	}
477 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
478 
479 	/*
480 	 * Allocate the control data structures, and create and load the
481 	 * DMA map for it.
482 	 */
483 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
484 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
485 	    0)) != 0) {
486 		printf("%s: unable to allocate control data, error = %d\n",
487 		    sc->sc_dev.dv_xname, error);
488 		goto fail_0;
489 	}
490 
491 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
492 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
493 	    BUS_DMA_COHERENT)) != 0) {
494 		printf("%s: unable to map control data, error = %d\n",
495 		    sc->sc_dev.dv_xname, error);
496 		goto fail_1;
497 	}
498 
499 	if ((error = bus_dmamap_create(sc->sc_dmat,
500 	    sizeof(struct stge_control_data), 1,
501 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
502 		printf("%s: unable to create control data DMA map, "
503 		    "error = %d\n", sc->sc_dev.dv_xname, error);
504 		goto fail_2;
505 	}
506 
507 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
508 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
509 	    0)) != 0) {
510 		printf("%s: unable to load control data DMA map, error = %d\n",
511 		    sc->sc_dev.dv_xname, error);
512 		goto fail_3;
513 	}
514 
515 	/*
516 	 * Create the transmit buffer DMA maps.  Note that rev B.3
517 	 * and earlier seem to have a bug regarding multi-fragment
518 	 * packets.  We need to limit the number of Tx segments on
519 	 * such chips to 1.
520 	 */
521 	for (i = 0; i < STGE_NTXDESC; i++) {
522 		if ((error = bus_dmamap_create(sc->sc_dmat,
523 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
524 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
525 			printf("%s: unable to create tx DMA map %d, "
526 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
527 			goto fail_4;
528 		}
529 	}
530 
531 	/*
532 	 * Create the receive buffer DMA maps.
533 	 */
534 	for (i = 0; i < STGE_NRXDESC; i++) {
535 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
536 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
537 			printf("%s: unable to create rx DMA map %d, "
538 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
539 			goto fail_5;
540 		}
541 		sc->sc_rxsoft[i].ds_mbuf = NULL;
542 	}
543 
544 	/*
545 	 * Determine if we're copper or fiber.  It affects how we
546 	 * reset the card.
547 	 */
548 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
549 	    AC_PhyMedia)
550 		sc->sc_usefiber = 1;
551 	else
552 		sc->sc_usefiber = 0;
553 
554 	/*
555 	 * Reset the chip to a known state.
556 	 */
557 	stge_reset(sc);
558 
559 	/*
560 	 * Reading the station address from the EEPROM doesn't seem
561 	 * to work, at least on my sample boards.  Instread, since
562 	 * the reset sequence does AutoInit, read it from the station
563 	 * address registers.
564 	 */
565 	enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
566 	    STGE_StationAddress0) & 0xff;
567 	enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
568 	    STGE_StationAddress0) >> 8;
569 	enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
570 	    STGE_StationAddress1) & 0xff;
571 	enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
572 	    STGE_StationAddress1) >> 8;
573 	enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
574 	    STGE_StationAddress2) & 0xff;
575 	enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
576 	    STGE_StationAddress2) >> 8;
577 
578 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
579 	    ether_sprintf(enaddr));
580 
581 	/*
582 	 * Read some important bits from the PhyCtrl register.
583 	 */
584 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
585 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
586 
587 	/*
588 	 * Initialize our media structures and probe the MII.
589 	 */
590 	sc->sc_mii.mii_ifp = ifp;
591 	sc->sc_mii.mii_readreg = stge_mii_readreg;
592 	sc->sc_mii.mii_writereg = stge_mii_writereg;
593 	sc->sc_mii.mii_statchg = stge_mii_statchg;
594 	ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange,
595 	    stge_mediastatus);
596 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
597 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
598 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
599 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
600 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
601 	} else
602 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
603 
604 	ifp = &sc->sc_ethercom.ec_if;
605 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
606 	ifp->if_softc = sc;
607 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
608 	ifp->if_ioctl = stge_ioctl;
609 	ifp->if_start = stge_start;
610 	ifp->if_watchdog = stge_watchdog;
611 	ifp->if_init = stge_init;
612 	ifp->if_stop = stge_stop;
613 	IFQ_SET_READY(&ifp->if_snd);
614 
615 	/*
616 	 * The manual recommends disabling early transmit, so we
617 	 * do.  It's disabled anyway, if using IP checksumming,
618 	 * since the entire packet must be in the FIFO in order
619 	 * for the chip to perform the checksum.
620 	 */
621 	sc->sc_txthresh = 0x0fff;
622 
623 	/*
624 	 * Disable MWI if the PCI layer tells us to.
625 	 */
626 	sc->sc_DMACtrl = 0;
627 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
628 		sc->sc_DMACtrl |= DMAC_MWIDisable;
629 
630 	/*
631 	 * We can support 802.1Q VLAN-sized frames and jumbo
632 	 * Ethernet frames.
633 	 *
634 	 * XXX Figure out how to do hw-assisted VLAN tagging in
635 	 * XXX a reasonable way on this chip.
636 	 */
637 	sc->sc_ethercom.ec_capabilities |=
638 	    ETHERCAP_VLAN_MTU /* XXX | ETHERCAP_JUMBO_MTU */;
639 
640 	/*
641 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
642 	 */
643 	sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
644 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
645 
646 	/*
647 	 * Attach the interface.
648 	 */
649 	if_attach(ifp);
650 	ether_ifattach(ifp, enaddr);
651 
652 #ifdef STGE_EVENT_COUNTERS
653 	/*
654 	 * Attach event counters.
655 	 */
656 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
657 	    NULL, sc->sc_dev.dv_xname, "txstall");
658 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
659 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
660 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
661 	    NULL, sc->sc_dev.dv_xname, "txindintr");
662 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
663 	    NULL, sc->sc_dev.dv_xname, "rxintr");
664 
665 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
666 	    NULL, sc->sc_dev.dv_xname, "txseg1");
667 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
668 	    NULL, sc->sc_dev.dv_xname, "txseg2");
669 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
670 	    NULL, sc->sc_dev.dv_xname, "txseg3");
671 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
672 	    NULL, sc->sc_dev.dv_xname, "txseg4");
673 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
674 	    NULL, sc->sc_dev.dv_xname, "txseg5");
675 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
676 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
677 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
678 	    NULL, sc->sc_dev.dv_xname, "txcopy");
679 
680 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
681 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
682 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
683 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
684 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
685 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
686 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
687 	    NULL, sc->sc_dev.dv_xname, "txipsum");
688 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
689 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
690 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
691 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
692 #endif /* STGE_EVENT_COUNTERS */
693 
694 	/*
695 	 * Make sure the interface is shutdown during reboot.
696 	 */
697 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
698 	if (sc->sc_sdhook == NULL)
699 		printf("%s: WARNING: unable to establish shutdown hook\n",
700 		    sc->sc_dev.dv_xname);
701 	return;
702 
703 	/*
704 	 * Free any resources we've allocated during the failed attach
705 	 * attempt.  Do this in reverse order and fall through.
706 	 */
707  fail_5:
708 	for (i = 0; i < STGE_NRXDESC; i++) {
709 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
710 			bus_dmamap_destroy(sc->sc_dmat,
711 			    sc->sc_rxsoft[i].ds_dmamap);
712 	}
713  fail_4:
714 	for (i = 0; i < STGE_NTXDESC; i++) {
715 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
716 			bus_dmamap_destroy(sc->sc_dmat,
717 			    sc->sc_txsoft[i].ds_dmamap);
718 	}
719 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
720  fail_3:
721 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
722  fail_2:
723 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
724 	    sizeof(struct stge_control_data));
725  fail_1:
726 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
727  fail_0:
728 	return;
729 }
730 
731 /*
732  * stge_shutdown:
733  *
734  *	Make sure the interface is stopped at reboot time.
735  */
736 void
737 stge_shutdown(void *arg)
738 {
739 	struct stge_softc *sc = arg;
740 
741 	stge_stop(&sc->sc_ethercom.ec_if, 1);
742 }
743 
744 static void
745 stge_dma_wait(struct stge_softc *sc)
746 {
747 	int i;
748 
749 	for (i = 0; i < STGE_TIMEOUT; i++) {
750 		delay(2);
751 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
752 		     DMAC_TxDMAInProg) == 0)
753 			break;
754 	}
755 
756 	if (i == STGE_TIMEOUT)
757 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
758 }
759 
760 /*
761  * stge_start:		[ifnet interface function]
762  *
763  *	Start packet transmission on the interface.
764  */
765 void
766 stge_start(struct ifnet *ifp)
767 {
768 	struct stge_softc *sc = ifp->if_softc;
769 	struct mbuf *m0;
770 	struct stge_descsoft *ds;
771 	struct stge_tfd *tfd;
772 	bus_dmamap_t dmamap;
773 	int error, firsttx, nexttx, opending, seg, totlen;
774 	uint64_t csum_flags;
775 
776 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
777 		return;
778 
779 	/*
780 	 * Remember the previous number of pending transmissions
781 	 * and the first descriptor we will use.
782 	 */
783 	opending = sc->sc_txpending;
784 	firsttx = STGE_NEXTTX(sc->sc_txlast);
785 
786 	/*
787 	 * Loop through the send queue, setting up transmit descriptors
788 	 * until we drain the queue, or use up all available transmit
789 	 * descriptors.
790 	 */
791 	for (;;) {
792 		/*
793 		 * Grab a packet off the queue.
794 		 */
795 		IFQ_POLL(&ifp->if_snd, m0);
796 		if (m0 == NULL)
797 			break;
798 
799 		/*
800 		 * Leave one unused descriptor at the end of the
801 		 * list to prevent wrapping completely around.
802 		 */
803 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
804 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
805 			break;
806 		}
807 
808 		/*
809 		 * Get the last and next available transmit descriptor.
810 		 */
811 		nexttx = STGE_NEXTTX(sc->sc_txlast);
812 		tfd = &sc->sc_txdescs[nexttx];
813 		ds = &sc->sc_txsoft[nexttx];
814 
815 		dmamap = ds->ds_dmamap;
816 
817 		/*
818 		 * Load the DMA map.  If this fails, the packet either
819 		 * didn't fit in the alloted number of segments, or we
820 		 * were short on resources.  For the too-may-segments
821 		 * case, we simply report an error and drop the packet,
822 		 * since we can't sanely copy a jumbo packet to a single
823 		 * buffer.
824 		 */
825 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
826 		    BUS_DMA_NOWAIT);
827 		if (error) {
828 			if (error == EFBIG) {
829 				printf("%s: Tx packet consumes too many "
830 				    "DMA segments, dropping...\n",
831 				    sc->sc_dev.dv_xname);
832 				IFQ_DEQUEUE(&ifp->if_snd, m0);
833 				m_freem(m0);
834 				continue;
835 			}
836 			/*
837 			 * Short on resources, just stop for now.
838 			 */
839 			break;
840 		}
841 
842 		IFQ_DEQUEUE(&ifp->if_snd, m0);
843 
844 		/*
845 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
846 		 */
847 
848 		/* Sync the DMA map. */
849 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
850 		    BUS_DMASYNC_PREWRITE);
851 
852 		/* Initialize the fragment list. */
853 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
854 			tfd->tfd_frags[seg].frag_word0 =
855 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
856 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
857 			totlen += dmamap->dm_segs[seg].ds_len;
858 		}
859 
860 #ifdef STGE_EVENT_COUNTERS
861 		switch (dmamap->dm_nsegs) {
862 		case 1:
863 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
864 			break;
865 		case 2:
866 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
867 			break;
868 		case 3:
869 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
870 			break;
871 		case 4:
872 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
873 			break;
874 		case 5:
875 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
876 			break;
877 		default:
878 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
879 			break;
880 		}
881 #endif /* STGE_EVENT_COUNTERS */
882 
883 		/*
884 		 * Initialize checksumming flags in the descriptor.
885 		 * Byte-swap constants so the compiler can optimize.
886 		 */
887 		csum_flags = 0;
888 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
889 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
890 			csum_flags |= htole64(TFD_IPChecksumEnable);
891 		}
892 
893 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
894 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
895 			csum_flags |= htole64(TFD_TCPChecksumEnable);
896 		}
897 		else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
898 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
899 			csum_flags |= htole64(TFD_UDPChecksumEnable);
900 		}
901 
902 		/*
903 		 * Initialize the descriptor and give it to the chip.
904 		 */
905 		tfd->tfd_control = htole64(TFD_FrameId(nexttx) |
906 		    TFD_WordAlign(/*totlen & */3) |
907 		    TFD_FragCount(seg) | csum_flags |
908 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
909 		     TFD_TxDMAIndicate : 0));
910 
911 		/* Sync the descriptor. */
912 		STGE_CDTXSYNC(sc, nexttx,
913 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
914 
915 		/*
916 		 * Kick the transmit DMA logic.
917 		 */
918 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
919 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
920 
921 		/*
922 		 * Store a pointer to the packet so we can free it later.
923 		 */
924 		ds->ds_mbuf = m0;
925 
926 		/* Advance the tx pointer. */
927 		sc->sc_txpending++;
928 		sc->sc_txlast = nexttx;
929 
930 #if NBPFILTER > 0
931 		/*
932 		 * Pass the packet to any BPF listeners.
933 		 */
934 		if (ifp->if_bpf)
935 			bpf_mtap(ifp->if_bpf, m0);
936 #endif /* NBPFILTER > 0 */
937 	}
938 
939 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
940 		/* No more slots left; notify upper layer. */
941 		ifp->if_flags |= IFF_OACTIVE;
942 	}
943 
944 	if (sc->sc_txpending != opending) {
945 		/*
946 		 * We enqueued packets.  If the transmitter was idle,
947 		 * reset the txdirty pointer.
948 		 */
949 		if (opending == 0)
950 			sc->sc_txdirty = firsttx;
951 
952 		/* Set a watchdog timer in case the chip flakes out. */
953 		ifp->if_timer = 5;
954 	}
955 }
956 
957 /*
958  * stge_watchdog:	[ifnet interface function]
959  *
960  *	Watchdog timer handler.
961  */
962 void
963 stge_watchdog(struct ifnet *ifp)
964 {
965 	struct stge_softc *sc = ifp->if_softc;
966 
967 	/*
968 	 * Sweep up first, since we don't interrupt every frame.
969 	 */
970 	stge_txintr(sc);
971 	if (sc->sc_txpending != 0) {
972 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
973 		ifp->if_oerrors++;
974 
975 		(void) stge_init(ifp);
976 
977 		/* Try to get more packets going. */
978 		stge_start(ifp);
979 	}
980 }
981 
982 /*
983  * stge_ioctl:		[ifnet interface function]
984  *
985  *	Handle control requests from the operator.
986  */
987 int
988 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
989 {
990 	struct stge_softc *sc = ifp->if_softc;
991 	struct ifreq *ifr = (struct ifreq *)data;
992 	int s, error;
993 
994 	s = splnet();
995 
996 	switch (cmd) {
997 	case SIOCSIFMEDIA:
998 	case SIOCGIFMEDIA:
999 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1000 		break;
1001 
1002 	default:
1003 		error = ether_ioctl(ifp, cmd, data);
1004 		if (error == ENETRESET) {
1005 			/*
1006 			 * Multicast list has changed; set the hardware filter
1007 			 * accordingly.
1008 			 */
1009 			stge_set_filter(sc);
1010 			error = 0;
1011 		}
1012 		break;
1013 	}
1014 
1015 	/* Try to get more packets going. */
1016 	stge_start(ifp);
1017 
1018 	splx(s);
1019 	return (error);
1020 }
1021 
1022 /*
1023  * stge_intr:
1024  *
1025  *	Interrupt service routine.
1026  */
1027 int
1028 stge_intr(void *arg)
1029 {
1030 	struct stge_softc *sc = arg;
1031 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1032 	uint32_t txstat;
1033 	int wantinit;
1034 	uint16_t isr;
1035 
1036 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1037 	     IS_InterruptStatus) == 0)
1038 		return (0);
1039 
1040 	for (wantinit = 0; wantinit == 0;) {
1041 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1042 		if ((isr & sc->sc_IntEnable) == 0)
1043 			break;
1044 
1045 		/* Receive interrupts. */
1046 		if (isr & (IE_RxDMAComplete|IE_RFDListEnd)) {
1047 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1048 			stge_rxintr(sc);
1049 			if (isr & IE_RFDListEnd) {
1050 				printf("%s: receive ring overflow\n",
1051 				    sc->sc_dev.dv_xname);
1052 				/*
1053 				 * XXX Should try to recover from this
1054 				 * XXX more gracefully.
1055 				 */
1056 				wantinit = 1;
1057 			}
1058 		}
1059 
1060 		/* Transmit interrupts. */
1061 		if (isr & (IE_TxDMAComplete|IE_TxComplete)) {
1062 #ifdef STGE_EVENT_COUNTERS
1063 			if (isr & IE_TxDMAComplete)
1064 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1065 #endif
1066 			stge_txintr(sc);
1067 		}
1068 
1069 		/* Statistics overflow. */
1070 		if (isr & IE_UpdateStats)
1071 			stge_stats_update(sc);
1072 
1073 		/* Transmission errors. */
1074 		if (isr & IE_TxComplete) {
1075 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1076 			for (;;) {
1077 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1078 				    STGE_TxStatus);
1079 				if ((txstat & TS_TxComplete) == 0)
1080 					break;
1081 				if (txstat & TS_TxUnderrun) {
1082 					sc->sc_txthresh++;
1083 					if (sc->sc_txthresh > 0x0fff)
1084 						sc->sc_txthresh = 0x0fff;
1085 					printf("%s: transmit underrun, new "
1086 					    "threshold: %d bytes\n",
1087 					    sc->sc_dev.dv_xname,
1088 					    sc->sc_txthresh << 5);
1089 				}
1090 				if (txstat & TS_MaxCollisions)
1091 					printf("%s: excessive collisions\n",
1092 					    sc->sc_dev.dv_xname);
1093 			}
1094 			wantinit = 1;
1095 		}
1096 
1097 		/* Host interface errors. */
1098 		if (isr & IE_HostError) {
1099 			printf("%s: Host interface error\n",
1100 			    sc->sc_dev.dv_xname);
1101 			wantinit = 1;
1102 		}
1103 	}
1104 
1105 	if (wantinit)
1106 		stge_init(ifp);
1107 
1108 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1109 	    sc->sc_IntEnable);
1110 
1111 	/* Try to get more packets going. */
1112 	stge_start(ifp);
1113 
1114 	return (1);
1115 }
1116 
1117 /*
1118  * stge_txintr:
1119  *
1120  *	Helper; handle transmit interrupts.
1121  */
1122 void
1123 stge_txintr(struct stge_softc *sc)
1124 {
1125 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1126 	struct stge_descsoft *ds;
1127 	uint64_t control;
1128 	int i;
1129 
1130 	ifp->if_flags &= ~IFF_OACTIVE;
1131 
1132 	/*
1133 	 * Go through our Tx list and free mbufs for those
1134 	 * frames which have been transmitted.
1135 	 */
1136 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1137 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1138 		ds = &sc->sc_txsoft[i];
1139 
1140 		STGE_CDTXSYNC(sc, i,
1141 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1142 
1143 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1144 		if ((control & TFD_TFDDone) == 0)
1145 			break;
1146 
1147 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1148 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1149 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1150 		m_freem(ds->ds_mbuf);
1151 		ds->ds_mbuf = NULL;
1152 	}
1153 
1154 	/* Update the dirty transmit buffer pointer. */
1155 	sc->sc_txdirty = i;
1156 
1157 	/*
1158 	 * If there are no more pending transmissions, cancel the watchdog
1159 	 * timer.
1160 	 */
1161 	if (sc->sc_txpending == 0)
1162 		ifp->if_timer = 0;
1163 }
1164 
1165 /*
1166  * stge_rxintr:
1167  *
1168  *	Helper; handle receive interrupts.
1169  */
1170 void
1171 stge_rxintr(struct stge_softc *sc)
1172 {
1173 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1174 	struct stge_descsoft *ds;
1175 	struct mbuf *m, *tailm;
1176 	uint64_t status;
1177 	int i, len;
1178 
1179 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1180 		ds = &sc->sc_rxsoft[i];
1181 
1182 		STGE_CDRXSYNC(sc, i,
1183 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1184 
1185 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1186 
1187 		if ((status & RFD_RFDDone) == 0)
1188 			break;
1189 
1190 		if (__predict_false(sc->sc_rxdiscard)) {
1191 			STGE_INIT_RXDESC(sc, i);
1192 			if (status & RFD_FrameEnd) {
1193 				/* Reset our state. */
1194 				sc->sc_rxdiscard = 0;
1195 			}
1196 			continue;
1197 		}
1198 
1199 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1200 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1201 
1202 		m = ds->ds_mbuf;
1203 
1204 		/*
1205 		 * Add a new receive buffer to the ring.
1206 		 */
1207 		if (stge_add_rxbuf(sc, i) != 0) {
1208 			/*
1209 			 * Failed, throw away what we've done so
1210 			 * far, and discard the rest of the packet.
1211 			 */
1212 			ifp->if_ierrors++;
1213 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1214 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1215 			STGE_INIT_RXDESC(sc, i);
1216 			if ((status & RFD_FrameEnd) == 0)
1217 				sc->sc_rxdiscard = 1;
1218 			if (sc->sc_rxhead != NULL)
1219 				m_freem(sc->sc_rxhead);
1220 			STGE_RXCHAIN_RESET(sc);
1221 			continue;
1222 		}
1223 
1224 #ifdef DIAGNOSTIC
1225 		if (status & RFD_FrameStart) {
1226 			KASSERT(sc->sc_rxhead == NULL);
1227 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1228 		}
1229 #endif
1230 
1231 		STGE_RXCHAIN_LINK(sc, m);
1232 
1233 		/*
1234 		 * If this is not the end of the packet, keep
1235 		 * looking.
1236 		 */
1237 		if ((status & RFD_FrameEnd) == 0) {
1238 			sc->sc_rxlen += m->m_len;
1239 			continue;
1240 		}
1241 
1242 		/*
1243 		 * Okay, we have the entire packet now...
1244 		 */
1245 		*sc->sc_rxtailp = NULL;
1246 		m = sc->sc_rxhead;
1247 		tailm = sc->sc_rxtail;
1248 
1249 		STGE_RXCHAIN_RESET(sc);
1250 
1251 		/*
1252 		 * If the packet had an error, drop it.  Note we
1253 		 * count the error later in the periodic stats update.
1254 		 */
1255 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1256 			      RFD_RxAlignmentError | RFD_RxFCSError |
1257 			      RFD_RxLengthError)) {
1258 			m_freem(m);
1259 			continue;
1260 		}
1261 
1262 		/*
1263 		 * No errors.
1264 		 *
1265 		 * Note we have configured the chip to not include
1266 		 * the CRC at the end of the packet.
1267 		 */
1268 		len = RFD_RxDMAFrameLen(status);
1269 		tailm->m_len = len - sc->sc_rxlen;
1270 
1271 		/*
1272 		 * If the packet is small enough to fit in a
1273 		 * single header mbuf, allocate one and copy
1274 		 * the data into it.  This greatly reduces
1275 		 * memory consumption when we receive lots
1276 		 * of small packets.
1277 		 */
1278 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1279 			struct mbuf *nm;
1280 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1281 			if (nm == NULL) {
1282 				ifp->if_ierrors++;
1283 				m_freem(m);
1284 				continue;
1285 			}
1286 			nm->m_data += 2;
1287 			nm->m_pkthdr.len = nm->m_len = len;
1288 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1289 			m_freem(m);
1290 			m = nm;
1291 		}
1292 
1293 		/*
1294 		 * Set the incoming checksum information for the packet.
1295 		 */
1296 		if (status & RFD_IPDetected) {
1297 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1298 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1299 			if (status & RFD_IPError)
1300 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1301 			if (status & RFD_TCPDetected) {
1302 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1303 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1304 				if (status & RFD_TCPError)
1305 					m->m_pkthdr.csum_flags |=
1306 					    M_CSUM_TCP_UDP_BAD;
1307 			} else if (status & RFD_UDPDetected) {
1308 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1309 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1310 				if (status & RFD_UDPError)
1311 					m->m_pkthdr.csum_flags |=
1312 					    M_CSUM_TCP_UDP_BAD;
1313 			}
1314 		}
1315 
1316 		m->m_pkthdr.rcvif = ifp;
1317 		m->m_pkthdr.len = len;
1318 
1319 #if NBPFILTER > 0
1320 		/*
1321 		 * Pass this up to any BPF listeners, but only
1322 		 * pass if up the stack if it's for us.
1323 		 */
1324 		if (ifp->if_bpf)
1325 			bpf_mtap(ifp->if_bpf, m);
1326 #endif /* NBPFILTER > 0 */
1327 
1328 		/* Pass it on. */
1329 		(*ifp->if_input)(ifp, m);
1330 	}
1331 
1332 	/* Update the receive pointer. */
1333 	sc->sc_rxptr = i;
1334 }
1335 
1336 /*
1337  * stge_tick:
1338  *
1339  *	One second timer, used to tick the MII.
1340  */
1341 void
1342 stge_tick(void *arg)
1343 {
1344 	struct stge_softc *sc = arg;
1345 	int s;
1346 
1347 	s = splnet();
1348 	mii_tick(&sc->sc_mii);
1349 	stge_stats_update(sc);
1350 	splx(s);
1351 
1352 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1353 }
1354 
1355 /*
1356  * stge_stats_update:
1357  *
1358  *	Read the TC9021 statistics counters.
1359  */
1360 void
1361 stge_stats_update(struct stge_softc *sc)
1362 {
1363 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1364 	bus_space_tag_t st = sc->sc_st;
1365 	bus_space_handle_t sh = sc->sc_sh;
1366 
1367 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1368 
1369 	ifp->if_ipackets +=
1370 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1371 
1372 	ifp->if_ierrors +=
1373 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1374 
1375 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1376 
1377 	ifp->if_opackets +=
1378 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1379 
1380 	ifp->if_collisions +=
1381 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1382 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1383 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1384 
1385 	ifp->if_oerrors +=
1386 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1387 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1388 }
1389 
1390 /*
1391  * stge_reset:
1392  *
1393  *	Perform a soft reset on the TC9021.
1394  */
1395 void
1396 stge_reset(struct stge_softc *sc)
1397 {
1398 	uint32_t ac;
1399 	int i;
1400 
1401 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1402 
1403 	/*
1404 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1405 	 * to be present in order for the reset to complete on fiber
1406 	 * cards.
1407 	 */
1408 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1409 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1410 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1411 	    (sc->sc_usefiber ? AC_RstOut : 0));
1412 
1413 	delay(50000);
1414 
1415 	for (i = 0; i < STGE_TIMEOUT; i++) {
1416 		delay(5000);
1417 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1418 		     AC_ResetBusy) == 0)
1419 			break;
1420 	}
1421 
1422 	if (i == STGE_TIMEOUT)
1423 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1424 
1425 	delay(1000);
1426 }
1427 
1428 /*
1429  * stge_init:		[ ifnet interface function ]
1430  *
1431  *	Initialize the interface.  Must be called at splnet().
1432  */
1433 int
1434 stge_init(struct ifnet *ifp)
1435 {
1436 	struct stge_softc *sc = ifp->if_softc;
1437 	bus_space_tag_t st = sc->sc_st;
1438 	bus_space_handle_t sh = sc->sc_sh;
1439 	struct stge_descsoft *ds;
1440 	int i, error = 0;
1441 
1442 	/*
1443 	 * Cancel any pending I/O.
1444 	 */
1445 	stge_stop(ifp, 0);
1446 
1447 	/*
1448 	 * Reset the chip to a known state.
1449 	 */
1450 	stge_reset(sc);
1451 
1452 	/*
1453 	 * Initialize the transmit descriptor ring.
1454 	 */
1455 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1456 	for (i = 0; i < STGE_NTXDESC; i++) {
1457 		sc->sc_txdescs[i].tfd_next =
1458 		    (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
1459 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1460 	}
1461 	sc->sc_txpending = 0;
1462 	sc->sc_txdirty = 0;
1463 	sc->sc_txlast = STGE_NTXDESC - 1;
1464 
1465 	/*
1466 	 * Initialize the receive descriptor and receive job
1467 	 * descriptor rings.
1468 	 */
1469 	for (i = 0; i < STGE_NRXDESC; i++) {
1470 		ds = &sc->sc_rxsoft[i];
1471 		if (ds->ds_mbuf == NULL) {
1472 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1473 				printf("%s: unable to allocate or map rx "
1474 				    "buffer %d, error = %d\n",
1475 				    sc->sc_dev.dv_xname, i, error);
1476 				/*
1477 				 * XXX Should attempt to run with fewer receive
1478 				 * XXX buffers instead of just failing.
1479 				 */
1480 				stge_rxdrain(sc);
1481 				goto out;
1482 			}
1483 		} else
1484 			STGE_INIT_RXDESC(sc, i);
1485 	}
1486 	sc->sc_rxptr = 0;
1487 	sc->sc_rxdiscard = 0;
1488 	STGE_RXCHAIN_RESET(sc);
1489 
1490 	/* Set the station address. */
1491 	bus_space_write_2(st, sh, STGE_StationAddress0,
1492 	    LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
1493 	bus_space_write_2(st, sh, STGE_StationAddress1,
1494 	    LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
1495 	bus_space_write_2(st, sh, STGE_StationAddress2,
1496 	    LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
1497 
1498 	/*
1499 	 * Set the statistics masks.  Disable all the RMON stats,
1500 	 * and disable selected stats in the non-RMON stats registers.
1501 	 */
1502 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1503 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1504 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1505 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1506 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1507 	    (1U << 21));
1508 
1509 	/* Set up the receive filter. */
1510 	stge_set_filter(sc);
1511 
1512 	/*
1513 	 * Give the transmit and receive ring to the chip.
1514 	 */
1515 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1516 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1517 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1518 
1519 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1520 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1521 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1522 
1523 	/*
1524 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1525 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1526 	 * transmit engine when there's actually a packet.
1527 	 */
1528 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1529 
1530 	/* ..and the Rx auto-poll period. */
1531 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1532 
1533 	/* Initialize the Tx start threshold. */
1534 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1535 
1536 	/*
1537 	 * Initialize the Rx DMA interrupt control register.  We
1538 	 * request an interrupt after every incoming packet, but
1539 	 * defer it for 32us (64 * 512 ns).  When the number of
1540 	 * interrupts pending reaches 8, we stop deferring the
1541 	 * interrupt, and signal it immediately.
1542 	 */
1543 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1544 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1545 
1546 	/*
1547 	 * Initialize the interrupt mask.
1548 	 */
1549 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1550 	    IE_TxDMAComplete | IE_RxDMAComplete | IE_RFDListEnd;
1551 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1552 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1553 
1554 	/*
1555 	 * Configure the DMA engine.
1556 	 * XXX Should auto-tune TxBurstLimit.
1557 	 */
1558 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1559 	    DMAC_TxBurstLimit(3));
1560 
1561 	/*
1562 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1563 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1564 	 * empty again.
1565 	 */
1566 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1567 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1568 
1569 	/*
1570 	 * Set the maximum frame size.
1571 	 */
1572 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1573 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1574 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1575 	     ETHER_VLAN_ENCAP_LEN : 0));
1576 
1577 	/*
1578 	 * Initialize MacCtrl -- do it before setting the media,
1579 	 * as setting the media will actually program the register.
1580 	 *
1581 	 * Note: We have to poke the IFS value before poking
1582 	 * anything else.
1583 	 */
1584 	sc->sc_MACCtrl = MC_IFSSelect(0);
1585 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1586 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1587 
1588 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1589 		/* Multi-frag frame bug work-around. */
1590 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1591 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1592 
1593 		/* Tx Poll Now bug work-around. */
1594 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1595 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1596 	}
1597 
1598 	/*
1599 	 * Set the current media.
1600 	 */
1601 	mii_mediachg(&sc->sc_mii);
1602 
1603 	/*
1604 	 * Start the one second MII clock.
1605 	 */
1606 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1607 
1608 	/*
1609 	 * ...all done!
1610 	 */
1611 	ifp->if_flags |= IFF_RUNNING;
1612 	ifp->if_flags &= ~IFF_OACTIVE;
1613 
1614  out:
1615 	if (error)
1616 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1617 	return (error);
1618 }
1619 
1620 /*
1621  * stge_drain:
1622  *
1623  *	Drain the receive queue.
1624  */
1625 void
1626 stge_rxdrain(struct stge_softc *sc)
1627 {
1628 	struct stge_descsoft *ds;
1629 	int i;
1630 
1631 	for (i = 0; i < STGE_NRXDESC; i++) {
1632 		ds = &sc->sc_rxsoft[i];
1633 		if (ds->ds_mbuf != NULL) {
1634 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1635 			ds->ds_mbuf->m_next = NULL;
1636 			m_freem(ds->ds_mbuf);
1637 			ds->ds_mbuf = NULL;
1638 		}
1639 	}
1640 }
1641 
1642 /*
1643  * stge_stop:		[ ifnet interface function ]
1644  *
1645  *	Stop transmission on the interface.
1646  */
1647 void
1648 stge_stop(struct ifnet *ifp, int disable)
1649 {
1650 	struct stge_softc *sc = ifp->if_softc;
1651 	struct stge_descsoft *ds;
1652 	int i;
1653 
1654 	/*
1655 	 * Stop the one second clock.
1656 	 */
1657 	callout_stop(&sc->sc_tick_ch);
1658 
1659 	/* Down the MII. */
1660 	mii_down(&sc->sc_mii);
1661 
1662 	/*
1663 	 * Disable interrupts.
1664 	 */
1665 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1666 
1667 	/*
1668 	 * Stop receiver, transmitter, and stats update.
1669 	 */
1670 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1671 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1672 
1673 	/*
1674 	 * Stop the transmit and receive DMA.
1675 	 */
1676 	stge_dma_wait(sc);
1677 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1678 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1679 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1680 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1681 
1682 	/*
1683 	 * Release any queued transmit buffers.
1684 	 */
1685 	for (i = 0; i < STGE_NTXDESC; i++) {
1686 		ds = &sc->sc_txsoft[i];
1687 		if (ds->ds_mbuf != NULL) {
1688 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1689 			m_freem(ds->ds_mbuf);
1690 			ds->ds_mbuf = NULL;
1691 		}
1692 	}
1693 
1694 	if (disable)
1695 		stge_rxdrain(sc);
1696 
1697 	/*
1698 	 * Mark the interface down and cancel the watchdog timer.
1699 	 */
1700 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1701 	ifp->if_timer = 0;
1702 }
1703 
1704 #if 0
1705 static int
1706 stge_eeprom_wait(struct stge_softc *sc)
1707 {
1708 	int i;
1709 
1710 	for (i = 0; i < STGE_TIMEOUT; i++) {
1711 		delay(1000);
1712 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1713 		     EC_EepromBusy) == 0)
1714 			return (0);
1715 	}
1716 	return (1);
1717 }
1718 
1719 /*
1720  * stge_read_eeprom:
1721  *
1722  *	Read data from the serial EEPROM.
1723  */
1724 void
1725 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1726 {
1727 
1728 	if (stge_eeprom_wait(sc))
1729 		printf("%s: EEPROM failed to come ready\n",
1730 		    sc->sc_dev.dv_xname);
1731 
1732 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1733 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1734 	if (stge_eeprom_wait(sc))
1735 		printf("%s: EEPROM read timed out\n",
1736 		    sc->sc_dev.dv_xname);
1737 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1738 }
1739 #endif /* 0 */
1740 
1741 /*
1742  * stge_add_rxbuf:
1743  *
1744  *	Add a receive buffer to the indicated descriptor.
1745  */
1746 int
1747 stge_add_rxbuf(struct stge_softc *sc, int idx)
1748 {
1749 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1750 	struct mbuf *m;
1751 	int error;
1752 
1753 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1754 	if (m == NULL)
1755 		return (ENOBUFS);
1756 
1757 	MCLGET(m, M_DONTWAIT);
1758 	if ((m->m_flags & M_EXT) == 0) {
1759 		m_freem(m);
1760 		return (ENOBUFS);
1761 	}
1762 
1763 	m->m_data = m->m_ext.ext_buf + 2;
1764 	m->m_len = MCLBYTES - 2;
1765 
1766 	if (ds->ds_mbuf != NULL)
1767 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1768 
1769 	ds->ds_mbuf = m;
1770 
1771 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1772 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1773 	if (error) {
1774 		printf("%s: can't load rx DMA map %d, error = %d\n",
1775 		    sc->sc_dev.dv_xname, idx, error);
1776 		panic("stge_add_rxbuf");	/* XXX */
1777 	}
1778 
1779 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1780 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1781 
1782 	STGE_INIT_RXDESC(sc, idx);
1783 
1784 	return (0);
1785 }
1786 
1787 /*
1788  * stge_set_filter:
1789  *
1790  *	Set up the receive filter.
1791  */
1792 void
1793 stge_set_filter(struct stge_softc *sc)
1794 {
1795 	struct ethercom *ec = &sc->sc_ethercom;
1796 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1797 	struct ether_multi *enm;
1798 	struct ether_multistep step;
1799 	uint32_t crc;
1800 	uint32_t mchash[2];
1801 
1802 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1803 	if (ifp->if_flags & IFF_BROADCAST)
1804 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1805 
1806 	if (ifp->if_flags & IFF_PROMISC) {
1807 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1808 		goto allmulti;
1809 	}
1810 
1811 	/*
1812 	 * Set up the multicast address filter by passing all multicast
1813 	 * addresses through a CRC generator, and then using the low-order
1814 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1815 	 * high order bits select the register, while the rest of the bits
1816 	 * select the bit within the register.
1817 	 */
1818 
1819 	memset(mchash, 0, sizeof(mchash));
1820 
1821 	ETHER_FIRST_MULTI(step, ec, enm);
1822 	if (enm == NULL)
1823 		goto done;
1824 
1825 	while (enm != NULL) {
1826 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1827 			/*
1828 			 * We must listen to a range of multicast addresses.
1829 			 * For now, just accept all multicasts, rather than
1830 			 * trying to set only those filter bits needed to match
1831 			 * the range.  (At this time, the only use of address
1832 			 * ranges is for IP multicast routing, for which the
1833 			 * range is big enough to require all bits set.)
1834 			 */
1835 			goto allmulti;
1836 		}
1837 
1838 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1839 
1840 		/* Just want the 6 least significant bits. */
1841 		crc &= 0x3f;
1842 
1843 		/* Set the corresponding bit in the hash table. */
1844 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1845 
1846 		ETHER_NEXT_MULTI(step, enm);
1847 	}
1848 
1849 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1850 
1851 	ifp->if_flags &= ~IFF_ALLMULTI;
1852 	goto done;
1853 
1854  allmulti:
1855 	ifp->if_flags |= IFF_ALLMULTI;
1856 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1857 
1858  done:
1859 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1860 		/*
1861 		 * Program the multicast hash table.
1862 		 */
1863 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1864 		    mchash[0]);
1865 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1866 		    mchash[1]);
1867 	}
1868 
1869 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1870 	    sc->sc_ReceiveMode);
1871 }
1872 
1873 /*
1874  * stge_mii_readreg:	[mii interface function]
1875  *
1876  *	Read a PHY register on the MII of the TC9021.
1877  */
1878 int
1879 stge_mii_readreg(struct device *self, int phy, int reg)
1880 {
1881 
1882 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1883 }
1884 
1885 /*
1886  * stge_mii_writereg:	[mii interface function]
1887  *
1888  *	Write a PHY register on the MII of the TC9021.
1889  */
1890 void
1891 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1892 {
1893 
1894 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1895 }
1896 
1897 /*
1898  * stge_mii_statchg:	[mii interface function]
1899  *
1900  *	Callback from MII layer when media changes.
1901  */
1902 void
1903 stge_mii_statchg(struct device *self)
1904 {
1905 	struct stge_softc *sc = (struct stge_softc *) self;
1906 
1907 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1908 		sc->sc_MACCtrl |= MC_DuplexSelect;
1909 	else
1910 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1911 
1912 	/* XXX 802.1x flow-control? */
1913 
1914 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1915 }
1916 
1917 /*
1918  * sste_mii_bitbang_read: [mii bit-bang interface function]
1919  *
1920  *	Read the MII serial port for the MII bit-bang module.
1921  */
1922 uint32_t
1923 stge_mii_bitbang_read(struct device *self)
1924 {
1925 	struct stge_softc *sc = (void *) self;
1926 
1927 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1928 }
1929 
1930 /*
1931  * stge_mii_bitbang_write: [mii big-bang interface function]
1932  *
1933  *	Write the MII serial port for the MII bit-bang module.
1934  */
1935 void
1936 stge_mii_bitbang_write(struct device *self, uint32_t val)
1937 {
1938 	struct stge_softc *sc = (void *) self;
1939 
1940 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1941 	    val | sc->sc_PhyCtrl);
1942 }
1943 
1944 /*
1945  * stge_mediastatus:	[ifmedia interface function]
1946  *
1947  *	Get the current interface media status.
1948  */
1949 void
1950 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1951 {
1952 	struct stge_softc *sc = ifp->if_softc;
1953 
1954 	mii_pollstat(&sc->sc_mii);
1955 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1956 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1957 }
1958 
1959 /*
1960  * stge_mediachange:	[ifmedia interface function]
1961  *
1962  *	Set hardware to newly-selected media.
1963  */
1964 int
1965 stge_mediachange(struct ifnet *ifp)
1966 {
1967 	struct stge_softc *sc = ifp->if_softc;
1968 
1969 	if (ifp->if_flags & IFF_UP)
1970 		mii_mediachg(&sc->sc_mii);
1971 	return (0);
1972 }
1973