xref: /netbsd/sys/dev/pci/if_stge.c (revision c4a72b64)
1 /*	$NetBSD: if_stge.c,v 1.13 2002/10/21 23:38:11 fair Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. TC9021 10/100/1000
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.13 2002/10/21 23:38:11 fair Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60 
61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82 
83 #include <dev/pci/if_stgereg.h>
84 
85 /*
86  * Transmit descriptor list size.
87  */
88 #define	STGE_NTXDESC		256
89 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
90 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
91 
92 /*
93  * Receive descriptor list size.
94  */
95 #define	STGE_NRXDESC		256
96 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
97 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
98 
99 /*
100  * Only interrupt every N frames.  Must be a power-of-two.
101  */
102 #define	STGE_TXINTR_SPACING	16
103 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
104 
105 /*
106  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
107  * a single clump that maps to a single DMA segment to make several things
108  * easier.
109  */
110 struct stge_control_data {
111 	/*
112 	 * The transmit descriptors.
113 	 */
114 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
115 
116 	/*
117 	 * The receive descriptors.
118 	 */
119 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
120 };
121 
122 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
123 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
124 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
125 
126 /*
127  * Software state for transmit and receive jobs.
128  */
129 struct stge_descsoft {
130 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
131 	bus_dmamap_t ds_dmamap;		/* our DMA map */
132 };
133 
134 /*
135  * Software state per device.
136  */
137 struct stge_softc {
138 	struct device sc_dev;		/* generic device information */
139 	bus_space_tag_t sc_st;		/* bus space tag */
140 	bus_space_handle_t sc_sh;	/* bus space handle */
141 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
142 	struct ethercom sc_ethercom;	/* ethernet common data */
143 	void *sc_sdhook;		/* shutdown hook */
144 	int sc_rev;			/* silicon revision */
145 
146 	void *sc_ih;			/* interrupt cookie */
147 
148 	struct mii_data sc_mii;		/* MII/media information */
149 
150 	struct callout sc_tick_ch;	/* tick callout */
151 
152 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
153 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
154 
155 	/*
156 	 * Software state for transmit and receive descriptors.
157 	 */
158 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
159 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
160 
161 	/*
162 	 * Control data structures.
163 	 */
164 	struct stge_control_data *sc_control_data;
165 #define	sc_txdescs	sc_control_data->scd_txdescs
166 #define	sc_rxdescs	sc_control_data->scd_rxdescs
167 
168 #ifdef STGE_EVENT_COUNTERS
169 	/*
170 	 * Event counters.
171 	 */
172 	struct evcnt sc_ev_txstall;	/* Tx stalled */
173 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
174 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
175 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
176 
177 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
178 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
179 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
180 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
181 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
182 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
183 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
184 
185 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
186 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
187 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
188 
189 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
190 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
191 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
192 #endif /* STGE_EVENT_COUNTERS */
193 
194 	int	sc_txpending;		/* number of Tx requests pending */
195 	int	sc_txdirty;		/* first dirty Tx descriptor */
196 	int	sc_txlast;		/* last used Tx descriptor */
197 
198 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
199 	int	sc_rxdiscard;
200 	int	sc_rxlen;
201 	struct mbuf *sc_rxhead;
202 	struct mbuf *sc_rxtail;
203 	struct mbuf **sc_rxtailp;
204 
205 	int	sc_txthresh;		/* Tx threshold */
206 	int	sc_usefiber;		/* if we're fiber */
207 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
208 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
209 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
210 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
211 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
212 };
213 
214 #define	STGE_RXCHAIN_RESET(sc)						\
215 do {									\
216 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
217 	*(sc)->sc_rxtailp = NULL;					\
218 	(sc)->sc_rxlen = 0;						\
219 } while (/*CONSTCOND*/0)
220 
221 #define	STGE_RXCHAIN_LINK(sc, m)					\
222 do {									\
223 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
224 	(sc)->sc_rxtailp = &(m)->m_next;				\
225 } while (/*CONSTCOND*/0)
226 
227 #ifdef STGE_EVENT_COUNTERS
228 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
229 #else
230 #define	STGE_EVCNT_INCR(ev)	/* nothing */
231 #endif
232 
233 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
234 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
235 
236 #define	STGE_CDTXSYNC(sc, x, ops)					\
237 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
238 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
239 
240 #define	STGE_CDRXSYNC(sc, x, ops)					\
241 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
242 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
243 
244 #define	STGE_INIT_RXDESC(sc, x)						\
245 do {									\
246 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
247 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
248 									\
249 	/*								\
250 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
251 	 * so that the payload after the Ethernet header is aligned	\
252 	 * to a 4-byte boundary.					\
253 	 */								\
254 	__rfd->rfd_frag.frag_word0 =					\
255 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
256 	    FRAG_LEN(MCLBYTES - 2));					\
257 	__rfd->rfd_next =						\
258 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
259 	__rfd->rfd_status = 0;						\
260 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
261 } while (/*CONSTCOND*/0)
262 
263 #define STGE_TIMEOUT 1000
264 
265 void	stge_start(struct ifnet *);
266 void	stge_watchdog(struct ifnet *);
267 int	stge_ioctl(struct ifnet *, u_long, caddr_t);
268 int	stge_init(struct ifnet *);
269 void	stge_stop(struct ifnet *, int);
270 
271 void	stge_shutdown(void *);
272 
273 void	stge_reset(struct stge_softc *);
274 void	stge_rxdrain(struct stge_softc *);
275 int	stge_add_rxbuf(struct stge_softc *, int);
276 #if 0
277 void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
278 #endif
279 void	stge_tick(void *);
280 
281 void	stge_stats_update(struct stge_softc *);
282 
283 void	stge_set_filter(struct stge_softc *);
284 
285 int	stge_intr(void *);
286 void	stge_txintr(struct stge_softc *);
287 void	stge_rxintr(struct stge_softc *);
288 
289 int	stge_mii_readreg(struct device *, int, int);
290 void	stge_mii_writereg(struct device *, int, int, int);
291 void	stge_mii_statchg(struct device *);
292 
293 int	stge_mediachange(struct ifnet *);
294 void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
295 
296 int	stge_match(struct device *, struct cfdata *, void *);
297 void	stge_attach(struct device *, struct device *, void *);
298 
299 int	stge_copy_small = 0;
300 
301 CFATTACH_DECL(stge, sizeof(struct stge_softc),
302     stge_match, stge_attach, NULL, NULL);
303 
304 uint32_t stge_mii_bitbang_read(struct device *);
305 void	stge_mii_bitbang_write(struct device *, uint32_t);
306 
307 const struct mii_bitbang_ops stge_mii_bitbang_ops = {
308 	stge_mii_bitbang_read,
309 	stge_mii_bitbang_write,
310 	{
311 		PC_MgmtData,		/* MII_BIT_MDO */
312 		PC_MgmtData,		/* MII_BIT_MDI */
313 		PC_MgmtClk,		/* MII_BIT_MDC */
314 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
315 		0,			/* MII_BIT_DIR_PHY_HOST */
316 	}
317 };
318 
319 /*
320  * Devices supported by this driver.
321  */
322 const struct stge_product {
323 	pci_vendor_id_t		stge_vendor;
324 	pci_product_id_t	stge_product;
325 	const char		*stge_name;
326 } stge_products[] = {
327 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
328 	  "Sundance ST-2021 Gigabit Ethernet" },
329 
330 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
331 	  "Tamarack TC9021 Gigabit Ethernet" },
332 
333 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
334 	  "Tamarack TC9021 Gigabit Ethernet" },
335 
336 	/*
337 	 * The Sundance sample boards use the Sundance vendor ID,
338 	 * but the Tamarack product ID.
339 	 */
340 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
341 	  "Sundance TC9021 Gigabit Ethernet" },
342 
343 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
344 	  "Sundance TC9021 Gigabit Ethernet" },
345 
346 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
347 	  "D-Link DL-4000 Gigabit Ethernet" },
348 
349 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
350 	  "Antares Gigabit Ethernet" },
351 
352 	{ 0,				0,
353 	  NULL },
354 };
355 
356 static const struct stge_product *
357 stge_lookup(const struct pci_attach_args *pa)
358 {
359 	const struct stge_product *sp;
360 
361 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
362 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
363 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
364 			return (sp);
365 	}
366 	return (NULL);
367 }
368 
369 int
370 stge_match(struct device *parent, struct cfdata *cf, void *aux)
371 {
372 	struct pci_attach_args *pa = aux;
373 
374 	if (stge_lookup(pa) != NULL)
375 		return (1);
376 
377 	return (0);
378 }
379 
380 void
381 stge_attach(struct device *parent, struct device *self, void *aux)
382 {
383 	struct stge_softc *sc = (struct stge_softc *) self;
384 	struct pci_attach_args *pa = aux;
385 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
386 	pci_chipset_tag_t pc = pa->pa_pc;
387 	pci_intr_handle_t ih;
388 	const char *intrstr = NULL;
389 	bus_space_tag_t iot, memt;
390 	bus_space_handle_t ioh, memh;
391 	bus_dma_segment_t seg;
392 	int ioh_valid, memh_valid;
393 	int i, rseg, error;
394 	const struct stge_product *sp;
395 	pcireg_t pmode;
396 	uint8_t enaddr[ETHER_ADDR_LEN];
397 	int pmreg;
398 
399 	callout_init(&sc->sc_tick_ch);
400 
401 	sp = stge_lookup(pa);
402 	if (sp == NULL) {
403 		printf("\n");
404 		panic("ste_attach: impossible");
405 	}
406 
407 	sc->sc_rev = PCI_REVISION(pa->pa_class);
408 
409 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
410 
411 	/*
412 	 * Map the device.
413 	 */
414 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
415 	    PCI_MAPREG_TYPE_IO, 0,
416 	    &iot, &ioh, NULL, NULL) == 0);
417 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
418 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
419 	    &memt, &memh, NULL, NULL) == 0);
420 
421 	if (memh_valid) {
422 		sc->sc_st = memt;
423 		sc->sc_sh = memh;
424 	} else if (ioh_valid) {
425 		sc->sc_st = iot;
426 		sc->sc_sh = ioh;
427 	} else {
428 		printf("%s: unable to map device registers\n",
429 		    sc->sc_dev.dv_xname);
430 		return;
431 	}
432 
433 	sc->sc_dmat = pa->pa_dmat;
434 
435 	/* Enable bus mastering. */
436 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
437 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
438 	    PCI_COMMAND_MASTER_ENABLE);
439 
440 	/* Get it out of power save mode if needed. */
441 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
442 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
443 		if (pmode == 3) {
444 			/*
445 			 * The card has lost all configuration data in
446 			 * this state, so punt.
447 			 */
448 			printf("%s: unable to wake up from power state D3\n",
449 			    sc->sc_dev.dv_xname);
450 			return;
451 		}
452 		if (pmode != 0) {
453 			printf("%s: waking up from power state D%d\n",
454 			    sc->sc_dev.dv_xname, pmode);
455 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
456 		}
457 	}
458 
459 	/*
460 	 * Map and establish our interrupt.
461 	 */
462 	if (pci_intr_map(pa, &ih)) {
463 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
464 		return;
465 	}
466 	intrstr = pci_intr_string(pc, ih);
467 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
468 	if (sc->sc_ih == NULL) {
469 		printf("%s: unable to establish interrupt",
470 		    sc->sc_dev.dv_xname);
471 		if (intrstr != NULL)
472 			printf(" at %s", intrstr);
473 		printf("\n");
474 		return;
475 	}
476 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
477 
478 	/*
479 	 * Allocate the control data structures, and create and load the
480 	 * DMA map for it.
481 	 */
482 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
483 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
484 	    0)) != 0) {
485 		printf("%s: unable to allocate control data, error = %d\n",
486 		    sc->sc_dev.dv_xname, error);
487 		goto fail_0;
488 	}
489 
490 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
491 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
492 	    BUS_DMA_COHERENT)) != 0) {
493 		printf("%s: unable to map control data, error = %d\n",
494 		    sc->sc_dev.dv_xname, error);
495 		goto fail_1;
496 	}
497 
498 	if ((error = bus_dmamap_create(sc->sc_dmat,
499 	    sizeof(struct stge_control_data), 1,
500 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
501 		printf("%s: unable to create control data DMA map, "
502 		    "error = %d\n", sc->sc_dev.dv_xname, error);
503 		goto fail_2;
504 	}
505 
506 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
507 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
508 	    0)) != 0) {
509 		printf("%s: unable to load control data DMA map, error = %d\n",
510 		    sc->sc_dev.dv_xname, error);
511 		goto fail_3;
512 	}
513 
514 	/*
515 	 * Create the transmit buffer DMA maps.  Note that rev B.3
516 	 * and earlier seem to have a bug regarding multi-fragment
517 	 * packets.  We need to limit the number of Tx segments on
518 	 * such chips to 1.
519 	 */
520 	for (i = 0; i < STGE_NTXDESC; i++) {
521 		if ((error = bus_dmamap_create(sc->sc_dmat,
522 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
523 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
524 			printf("%s: unable to create tx DMA map %d, "
525 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
526 			goto fail_4;
527 		}
528 	}
529 
530 	/*
531 	 * Create the receive buffer DMA maps.
532 	 */
533 	for (i = 0; i < STGE_NRXDESC; i++) {
534 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
535 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
536 			printf("%s: unable to create rx DMA map %d, "
537 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
538 			goto fail_5;
539 		}
540 		sc->sc_rxsoft[i].ds_mbuf = NULL;
541 	}
542 
543 	/*
544 	 * Determine if we're copper or fiber.  It affects how we
545 	 * reset the card.
546 	 */
547 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
548 	    AC_PhyMedia)
549 		sc->sc_usefiber = 1;
550 	else
551 		sc->sc_usefiber = 0;
552 
553 	/*
554 	 * Reset the chip to a known state.
555 	 */
556 	stge_reset(sc);
557 
558 	/*
559 	 * Reading the station address from the EEPROM doesn't seem
560 	 * to work, at least on my sample boards.  Instread, since
561 	 * the reset sequence does AutoInit, read it from the station
562 	 * address registers.
563 	 */
564 	enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
565 	    STGE_StationAddress0) & 0xff;
566 	enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
567 	    STGE_StationAddress0) >> 8;
568 	enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
569 	    STGE_StationAddress1) & 0xff;
570 	enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
571 	    STGE_StationAddress1) >> 8;
572 	enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
573 	    STGE_StationAddress2) & 0xff;
574 	enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
575 	    STGE_StationAddress2) >> 8;
576 
577 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
578 	    ether_sprintf(enaddr));
579 
580 	/*
581 	 * Read some important bits from the PhyCtrl register.
582 	 */
583 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
584 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
585 
586 	/*
587 	 * Initialize our media structures and probe the MII.
588 	 */
589 	sc->sc_mii.mii_ifp = ifp;
590 	sc->sc_mii.mii_readreg = stge_mii_readreg;
591 	sc->sc_mii.mii_writereg = stge_mii_writereg;
592 	sc->sc_mii.mii_statchg = stge_mii_statchg;
593 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
594 	    stge_mediastatus);
595 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
596 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
597 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
598 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
599 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
600 	} else
601 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
602 
603 	ifp = &sc->sc_ethercom.ec_if;
604 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
605 	ifp->if_softc = sc;
606 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
607 	ifp->if_ioctl = stge_ioctl;
608 	ifp->if_start = stge_start;
609 	ifp->if_watchdog = stge_watchdog;
610 	ifp->if_init = stge_init;
611 	ifp->if_stop = stge_stop;
612 	IFQ_SET_READY(&ifp->if_snd);
613 
614 	/*
615 	 * The manual recommends disabling early transmit, so we
616 	 * do.  It's disabled anyway, if using IP checksumming,
617 	 * since the entire packet must be in the FIFO in order
618 	 * for the chip to perform the checksum.
619 	 */
620 	sc->sc_txthresh = 0x0fff;
621 
622 	/*
623 	 * Disable MWI if the PCI layer tells us to.
624 	 */
625 	sc->sc_DMACtrl = 0;
626 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
627 		sc->sc_DMACtrl |= DMAC_MWIDisable;
628 
629 	/*
630 	 * We can support 802.1Q VLAN-sized frames and jumbo
631 	 * Ethernet frames.
632 	 *
633 	 * XXX Figure out how to do hw-assisted VLAN tagging in
634 	 * XXX a reasonable way on this chip.
635 	 */
636 	sc->sc_ethercom.ec_capabilities |=
637 	    ETHERCAP_VLAN_MTU /* XXX | ETHERCAP_JUMBO_MTU */;
638 
639 	/*
640 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
641 	 */
642 	sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
643 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
644 
645 	/*
646 	 * Attach the interface.
647 	 */
648 	if_attach(ifp);
649 	ether_ifattach(ifp, enaddr);
650 
651 #ifdef STGE_EVENT_COUNTERS
652 	/*
653 	 * Attach event counters.
654 	 */
655 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
656 	    NULL, sc->sc_dev.dv_xname, "txstall");
657 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
658 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
659 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
660 	    NULL, sc->sc_dev.dv_xname, "txindintr");
661 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
662 	    NULL, sc->sc_dev.dv_xname, "rxintr");
663 
664 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
665 	    NULL, sc->sc_dev.dv_xname, "txseg1");
666 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
667 	    NULL, sc->sc_dev.dv_xname, "txseg2");
668 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
669 	    NULL, sc->sc_dev.dv_xname, "txseg3");
670 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
671 	    NULL, sc->sc_dev.dv_xname, "txseg4");
672 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
673 	    NULL, sc->sc_dev.dv_xname, "txseg5");
674 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
675 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
676 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
677 	    NULL, sc->sc_dev.dv_xname, "txcopy");
678 
679 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
680 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
681 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
682 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
683 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
684 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
685 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
686 	    NULL, sc->sc_dev.dv_xname, "txipsum");
687 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
688 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
689 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
690 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
691 #endif /* STGE_EVENT_COUNTERS */
692 
693 	/*
694 	 * Make sure the interface is shutdown during reboot.
695 	 */
696 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
697 	if (sc->sc_sdhook == NULL)
698 		printf("%s: WARNING: unable to establish shutdown hook\n",
699 		    sc->sc_dev.dv_xname);
700 	return;
701 
702 	/*
703 	 * Free any resources we've allocated during the failed attach
704 	 * attempt.  Do this in reverse order and fall through.
705 	 */
706  fail_5:
707 	for (i = 0; i < STGE_NRXDESC; i++) {
708 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
709 			bus_dmamap_destroy(sc->sc_dmat,
710 			    sc->sc_rxsoft[i].ds_dmamap);
711 	}
712  fail_4:
713 	for (i = 0; i < STGE_NTXDESC; i++) {
714 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
715 			bus_dmamap_destroy(sc->sc_dmat,
716 			    sc->sc_txsoft[i].ds_dmamap);
717 	}
718 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
719  fail_3:
720 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
721  fail_2:
722 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
723 	    sizeof(struct stge_control_data));
724  fail_1:
725 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
726  fail_0:
727 	return;
728 }
729 
730 /*
731  * stge_shutdown:
732  *
733  *	Make sure the interface is stopped at reboot time.
734  */
735 void
736 stge_shutdown(void *arg)
737 {
738 	struct stge_softc *sc = arg;
739 
740 	stge_stop(&sc->sc_ethercom.ec_if, 1);
741 }
742 
743 static void
744 stge_dma_wait(struct stge_softc *sc)
745 {
746 	int i;
747 
748 	for (i = 0; i < STGE_TIMEOUT; i++) {
749 		delay(2);
750 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
751 		     DMAC_TxDMAInProg) == 0)
752 			break;
753 	}
754 
755 	if (i == STGE_TIMEOUT)
756 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
757 }
758 
759 /*
760  * stge_start:		[ifnet interface function]
761  *
762  *	Start packet transmission on the interface.
763  */
764 void
765 stge_start(struct ifnet *ifp)
766 {
767 	struct stge_softc *sc = ifp->if_softc;
768 	struct mbuf *m0;
769 	struct stge_descsoft *ds;
770 	struct stge_tfd *tfd;
771 	bus_dmamap_t dmamap;
772 	int error, firsttx, nexttx, opending, seg, totlen;
773 	uint64_t csum_flags;
774 
775 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
776 		return;
777 
778 	/*
779 	 * Remember the previous number of pending transmissions
780 	 * and the first descriptor we will use.
781 	 */
782 	opending = sc->sc_txpending;
783 	firsttx = STGE_NEXTTX(sc->sc_txlast);
784 
785 	/*
786 	 * Loop through the send queue, setting up transmit descriptors
787 	 * until we drain the queue, or use up all available transmit
788 	 * descriptors.
789 	 */
790 	for (;;) {
791 		/*
792 		 * Grab a packet off the queue.
793 		 */
794 		IFQ_POLL(&ifp->if_snd, m0);
795 		if (m0 == NULL)
796 			break;
797 
798 		/*
799 		 * Leave one unused descriptor at the end of the
800 		 * list to prevent wrapping completely around.
801 		 */
802 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
803 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
804 			break;
805 		}
806 
807 		/*
808 		 * Get the last and next available transmit descriptor.
809 		 */
810 		nexttx = STGE_NEXTTX(sc->sc_txlast);
811 		tfd = &sc->sc_txdescs[nexttx];
812 		ds = &sc->sc_txsoft[nexttx];
813 
814 		dmamap = ds->ds_dmamap;
815 
816 		/*
817 		 * Load the DMA map.  If this fails, the packet either
818 		 * didn't fit in the alloted number of segments, or we
819 		 * were short on resources.  For the too-may-segments
820 		 * case, we simply report an error and drop the packet,
821 		 * since we can't sanely copy a jumbo packet to a single
822 		 * buffer.
823 		 */
824 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
825 		    BUS_DMA_NOWAIT);
826 		if (error) {
827 			if (error == EFBIG) {
828 				printf("%s: Tx packet consumes too many "
829 				    "DMA segments, dropping...\n",
830 				    sc->sc_dev.dv_xname);
831 				IFQ_DEQUEUE(&ifp->if_snd, m0);
832 				m_freem(m0);
833 				continue;
834 			}
835 			/*
836 			 * Short on resources, just stop for now.
837 			 */
838 			break;
839 		}
840 
841 		IFQ_DEQUEUE(&ifp->if_snd, m0);
842 
843 		/*
844 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
845 		 */
846 
847 		/* Sync the DMA map. */
848 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
849 		    BUS_DMASYNC_PREWRITE);
850 
851 		/* Initialize the fragment list. */
852 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
853 			tfd->tfd_frags[seg].frag_word0 =
854 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
855 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
856 			totlen += dmamap->dm_segs[seg].ds_len;
857 		}
858 
859 #ifdef STGE_EVENT_COUNTERS
860 		switch (dmamap->dm_nsegs) {
861 		case 1:
862 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
863 			break;
864 		case 2:
865 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
866 			break;
867 		case 3:
868 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
869 			break;
870 		case 4:
871 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
872 			break;
873 		case 5:
874 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
875 			break;
876 		default:
877 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
878 			break;
879 		}
880 #endif /* STGE_EVENT_COUNTERS */
881 
882 		/*
883 		 * Initialize checksumming flags in the descriptor.
884 		 * Byte-swap constants so the compiler can optimize.
885 		 */
886 		csum_flags = 0;
887 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
888 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
889 			csum_flags |= htole64(TFD_IPChecksumEnable);
890 		}
891 
892 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
893 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
894 			csum_flags |= htole64(TFD_TCPChecksumEnable);
895 		}
896 		else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
897 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
898 			csum_flags |= htole64(TFD_UDPChecksumEnable);
899 		}
900 
901 		/*
902 		 * Initialize the descriptor and give it to the chip.
903 		 */
904 		tfd->tfd_control = htole64(TFD_FrameId(nexttx) |
905 		    TFD_WordAlign(/*totlen & */3) |
906 		    TFD_FragCount(seg) | csum_flags |
907 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
908 		     TFD_TxDMAIndicate : 0));
909 
910 		/* Sync the descriptor. */
911 		STGE_CDTXSYNC(sc, nexttx,
912 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
913 
914 		/*
915 		 * Kick the transmit DMA logic.
916 		 */
917 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
918 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
919 
920 		/*
921 		 * Store a pointer to the packet so we can free it later.
922 		 */
923 		ds->ds_mbuf = m0;
924 
925 		/* Advance the tx pointer. */
926 		sc->sc_txpending++;
927 		sc->sc_txlast = nexttx;
928 
929 #if NBPFILTER > 0
930 		/*
931 		 * Pass the packet to any BPF listeners.
932 		 */
933 		if (ifp->if_bpf)
934 			bpf_mtap(ifp->if_bpf, m0);
935 #endif /* NBPFILTER > 0 */
936 	}
937 
938 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
939 		/* No more slots left; notify upper layer. */
940 		ifp->if_flags |= IFF_OACTIVE;
941 	}
942 
943 	if (sc->sc_txpending != opending) {
944 		/*
945 		 * We enqueued packets.  If the transmitter was idle,
946 		 * reset the txdirty pointer.
947 		 */
948 		if (opending == 0)
949 			sc->sc_txdirty = firsttx;
950 
951 		/* Set a watchdog timer in case the chip flakes out. */
952 		ifp->if_timer = 5;
953 	}
954 }
955 
956 /*
957  * stge_watchdog:	[ifnet interface function]
958  *
959  *	Watchdog timer handler.
960  */
961 void
962 stge_watchdog(struct ifnet *ifp)
963 {
964 	struct stge_softc *sc = ifp->if_softc;
965 
966 	/*
967 	 * Sweep up first, since we don't interrupt every frame.
968 	 */
969 	stge_txintr(sc);
970 	if (sc->sc_txpending != 0) {
971 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
972 		ifp->if_oerrors++;
973 
974 		(void) stge_init(ifp);
975 
976 		/* Try to get more packets going. */
977 		stge_start(ifp);
978 	}
979 }
980 
981 /*
982  * stge_ioctl:		[ifnet interface function]
983  *
984  *	Handle control requests from the operator.
985  */
986 int
987 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
988 {
989 	struct stge_softc *sc = ifp->if_softc;
990 	struct ifreq *ifr = (struct ifreq *)data;
991 	int s, error;
992 
993 	s = splnet();
994 
995 	switch (cmd) {
996 	case SIOCSIFMEDIA:
997 	case SIOCGIFMEDIA:
998 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
999 		break;
1000 
1001 	default:
1002 		error = ether_ioctl(ifp, cmd, data);
1003 		if (error == ENETRESET) {
1004 			/*
1005 			 * Multicast list has changed; set the hardware filter
1006 			 * accordingly.
1007 			 */
1008 			stge_set_filter(sc);
1009 			error = 0;
1010 		}
1011 		break;
1012 	}
1013 
1014 	/* Try to get more packets going. */
1015 	stge_start(ifp);
1016 
1017 	splx(s);
1018 	return (error);
1019 }
1020 
1021 /*
1022  * stge_intr:
1023  *
1024  *	Interrupt service routine.
1025  */
1026 int
1027 stge_intr(void *arg)
1028 {
1029 	struct stge_softc *sc = arg;
1030 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1031 	uint32_t txstat;
1032 	int wantinit;
1033 	uint16_t isr;
1034 
1035 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1036 	     IS_InterruptStatus) == 0)
1037 		return (0);
1038 
1039 	for (wantinit = 0; wantinit == 0;) {
1040 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1041 		if ((isr & sc->sc_IntEnable) == 0)
1042 			break;
1043 
1044 		/* Receive interrupts. */
1045 		if (isr & (IE_RxDMAComplete|IE_RFDListEnd)) {
1046 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1047 			stge_rxintr(sc);
1048 			if (isr & IE_RFDListEnd) {
1049 				printf("%s: receive ring overflow\n",
1050 				    sc->sc_dev.dv_xname);
1051 				/*
1052 				 * XXX Should try to recover from this
1053 				 * XXX more gracefully.
1054 				 */
1055 				wantinit = 1;
1056 			}
1057 		}
1058 
1059 		/* Transmit interrupts. */
1060 		if (isr & (IE_TxDMAComplete|IE_TxComplete)) {
1061 #ifdef STGE_EVENT_COUNTERS
1062 			if (isr & IE_TxDMAComplete)
1063 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1064 #endif
1065 			stge_txintr(sc);
1066 		}
1067 
1068 		/* Statistics overflow. */
1069 		if (isr & IE_UpdateStats)
1070 			stge_stats_update(sc);
1071 
1072 		/* Transmission errors. */
1073 		if (isr & IE_TxComplete) {
1074 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1075 			for (;;) {
1076 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1077 				    STGE_TxStatus);
1078 				if ((txstat & TS_TxComplete) == 0)
1079 					break;
1080 				if (txstat & TS_TxUnderrun) {
1081 					sc->sc_txthresh++;
1082 					if (sc->sc_txthresh > 0x0fff)
1083 						sc->sc_txthresh = 0x0fff;
1084 					printf("%s: transmit underrun, new "
1085 					    "threshold: %d bytes\n",
1086 					    sc->sc_dev.dv_xname,
1087 					    sc->sc_txthresh << 5);
1088 				}
1089 				if (txstat & TS_MaxCollisions)
1090 					printf("%s: excessive collisions\n",
1091 					    sc->sc_dev.dv_xname);
1092 			}
1093 			wantinit = 1;
1094 		}
1095 
1096 		/* Host interface errors. */
1097 		if (isr & IE_HostError) {
1098 			printf("%s: Host interface error\n",
1099 			    sc->sc_dev.dv_xname);
1100 			wantinit = 1;
1101 		}
1102 	}
1103 
1104 	if (wantinit)
1105 		stge_init(ifp);
1106 
1107 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1108 	    sc->sc_IntEnable);
1109 
1110 	/* Try to get more packets going. */
1111 	stge_start(ifp);
1112 
1113 	return (1);
1114 }
1115 
1116 /*
1117  * stge_txintr:
1118  *
1119  *	Helper; handle transmit interrupts.
1120  */
1121 void
1122 stge_txintr(struct stge_softc *sc)
1123 {
1124 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1125 	struct stge_descsoft *ds;
1126 	uint64_t control;
1127 	int i;
1128 
1129 	ifp->if_flags &= ~IFF_OACTIVE;
1130 
1131 	/*
1132 	 * Go through our Tx list and free mbufs for those
1133 	 * frames which have been transmitted.
1134 	 */
1135 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1136 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
1137 		ds = &sc->sc_txsoft[i];
1138 
1139 		STGE_CDTXSYNC(sc, i,
1140 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1141 
1142 		control = le64toh(sc->sc_txdescs[i].tfd_control);
1143 		if ((control & TFD_TFDDone) == 0)
1144 			break;
1145 
1146 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1147 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1148 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1149 		m_freem(ds->ds_mbuf);
1150 		ds->ds_mbuf = NULL;
1151 	}
1152 
1153 	/* Update the dirty transmit buffer pointer. */
1154 	sc->sc_txdirty = i;
1155 
1156 	/*
1157 	 * If there are no more pending transmissions, cancel the watchdog
1158 	 * timer.
1159 	 */
1160 	if (sc->sc_txpending == 0)
1161 		ifp->if_timer = 0;
1162 }
1163 
1164 /*
1165  * stge_rxintr:
1166  *
1167  *	Helper; handle receive interrupts.
1168  */
1169 void
1170 stge_rxintr(struct stge_softc *sc)
1171 {
1172 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1173 	struct stge_descsoft *ds;
1174 	struct mbuf *m, *tailm;
1175 	uint64_t status;
1176 	int i, len;
1177 
1178 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1179 		ds = &sc->sc_rxsoft[i];
1180 
1181 		STGE_CDRXSYNC(sc, i,
1182 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1183 
1184 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
1185 
1186 		if ((status & RFD_RFDDone) == 0)
1187 			break;
1188 
1189 		if (__predict_false(sc->sc_rxdiscard)) {
1190 			STGE_INIT_RXDESC(sc, i);
1191 			if (status & RFD_FrameEnd) {
1192 				/* Reset our state. */
1193 				sc->sc_rxdiscard = 0;
1194 			}
1195 			continue;
1196 		}
1197 
1198 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1199 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1200 
1201 		m = ds->ds_mbuf;
1202 
1203 		/*
1204 		 * Add a new receive buffer to the ring.
1205 		 */
1206 		if (stge_add_rxbuf(sc, i) != 0) {
1207 			/*
1208 			 * Failed, throw away what we've done so
1209 			 * far, and discard the rest of the packet.
1210 			 */
1211 			ifp->if_ierrors++;
1212 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1213 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1214 			STGE_INIT_RXDESC(sc, i);
1215 			if ((status & RFD_FrameEnd) == 0)
1216 				sc->sc_rxdiscard = 1;
1217 			if (sc->sc_rxhead != NULL)
1218 				m_freem(sc->sc_rxhead);
1219 			STGE_RXCHAIN_RESET(sc);
1220 			continue;
1221 		}
1222 
1223 #ifdef DIAGNOSTIC
1224 		if (status & RFD_FrameStart) {
1225 			KASSERT(sc->sc_rxhead == NULL);
1226 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1227 		}
1228 #endif
1229 
1230 		STGE_RXCHAIN_LINK(sc, m);
1231 
1232 		/*
1233 		 * If this is not the end of the packet, keep
1234 		 * looking.
1235 		 */
1236 		if ((status & RFD_FrameEnd) == 0) {
1237 			sc->sc_rxlen += m->m_len;
1238 			continue;
1239 		}
1240 
1241 		/*
1242 		 * Okay, we have the entire packet now...
1243 		 */
1244 		*sc->sc_rxtailp = NULL;
1245 		m = sc->sc_rxhead;
1246 		tailm = sc->sc_rxtail;
1247 
1248 		STGE_RXCHAIN_RESET(sc);
1249 
1250 		/*
1251 		 * If the packet had an error, drop it.  Note we
1252 		 * count the error later in the periodic stats update.
1253 		 */
1254 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1255 			      RFD_RxAlignmentError | RFD_RxFCSError |
1256 			      RFD_RxLengthError)) {
1257 			m_freem(m);
1258 			continue;
1259 		}
1260 
1261 		/*
1262 		 * No errors.
1263 		 *
1264 		 * Note we have configured the chip to not include
1265 		 * the CRC at the end of the packet.
1266 		 */
1267 		len = RFD_RxDMAFrameLen(status);
1268 		tailm->m_len = len - sc->sc_rxlen;
1269 
1270 		/*
1271 		 * If the packet is small enough to fit in a
1272 		 * single header mbuf, allocate one and copy
1273 		 * the data into it.  This greatly reduces
1274 		 * memory consumption when we receive lots
1275 		 * of small packets.
1276 		 */
1277 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1278 			struct mbuf *nm;
1279 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1280 			if (nm == NULL) {
1281 				ifp->if_ierrors++;
1282 				m_freem(m);
1283 				continue;
1284 			}
1285 			nm->m_data += 2;
1286 			nm->m_pkthdr.len = nm->m_len = len;
1287 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1288 			m_freem(m);
1289 			m = nm;
1290 		}
1291 
1292 		/*
1293 		 * Set the incoming checksum information for the packet.
1294 		 */
1295 		if (status & RFD_IPDetected) {
1296 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1297 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1298 			if (status & RFD_IPError)
1299 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1300 			if (status & RFD_TCPDetected) {
1301 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1302 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1303 				if (status & RFD_TCPError)
1304 					m->m_pkthdr.csum_flags |=
1305 					    M_CSUM_TCP_UDP_BAD;
1306 			} else if (status & RFD_UDPDetected) {
1307 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1308 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1309 				if (status & RFD_UDPError)
1310 					m->m_pkthdr.csum_flags |=
1311 					    M_CSUM_TCP_UDP_BAD;
1312 			}
1313 		}
1314 
1315 		m->m_pkthdr.rcvif = ifp;
1316 		m->m_pkthdr.len = len;
1317 
1318 #if NBPFILTER > 0
1319 		/*
1320 		 * Pass this up to any BPF listeners, but only
1321 		 * pass if up the stack if it's for us.
1322 		 */
1323 		if (ifp->if_bpf)
1324 			bpf_mtap(ifp->if_bpf, m);
1325 #endif /* NBPFILTER > 0 */
1326 
1327 		/* Pass it on. */
1328 		(*ifp->if_input)(ifp, m);
1329 	}
1330 
1331 	/* Update the receive pointer. */
1332 	sc->sc_rxptr = i;
1333 }
1334 
1335 /*
1336  * stge_tick:
1337  *
1338  *	One second timer, used to tick the MII.
1339  */
1340 void
1341 stge_tick(void *arg)
1342 {
1343 	struct stge_softc *sc = arg;
1344 	int s;
1345 
1346 	s = splnet();
1347 	mii_tick(&sc->sc_mii);
1348 	stge_stats_update(sc);
1349 	splx(s);
1350 
1351 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1352 }
1353 
1354 /*
1355  * stge_stats_update:
1356  *
1357  *	Read the TC9021 statistics counters.
1358  */
1359 void
1360 stge_stats_update(struct stge_softc *sc)
1361 {
1362 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1363 	bus_space_tag_t st = sc->sc_st;
1364 	bus_space_handle_t sh = sc->sc_sh;
1365 
1366 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1367 
1368 	ifp->if_ipackets +=
1369 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1370 
1371 	ifp->if_ierrors +=
1372 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1373 
1374 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1375 
1376 	ifp->if_opackets +=
1377 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1378 
1379 	ifp->if_collisions +=
1380 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
1381 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
1382 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
1383 
1384 	ifp->if_oerrors +=
1385 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1386 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1387 }
1388 
1389 /*
1390  * stge_reset:
1391  *
1392  *	Perform a soft reset on the TC9021.
1393  */
1394 void
1395 stge_reset(struct stge_softc *sc)
1396 {
1397 	uint32_t ac;
1398 	int i;
1399 
1400 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1401 
1402 	/*
1403 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1404 	 * to be present in order for the reset to complete on fiber
1405 	 * cards.
1406 	 */
1407 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1408 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1409 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1410 	    (sc->sc_usefiber ? AC_RstOut : 0));
1411 
1412 	delay(50000);
1413 
1414 	for (i = 0; i < STGE_TIMEOUT; i++) {
1415 		delay(5000);
1416 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1417 		     AC_ResetBusy) == 0)
1418 			break;
1419 	}
1420 
1421 	if (i == STGE_TIMEOUT)
1422 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1423 
1424 	delay(1000);
1425 }
1426 
1427 /*
1428  * stge_init:		[ ifnet interface function ]
1429  *
1430  *	Initialize the interface.  Must be called at splnet().
1431  */
1432 int
1433 stge_init(struct ifnet *ifp)
1434 {
1435 	struct stge_softc *sc = ifp->if_softc;
1436 	bus_space_tag_t st = sc->sc_st;
1437 	bus_space_handle_t sh = sc->sc_sh;
1438 	struct stge_descsoft *ds;
1439 	int i, error = 0;
1440 
1441 	/*
1442 	 * Cancel any pending I/O.
1443 	 */
1444 	stge_stop(ifp, 0);
1445 
1446 	/*
1447 	 * Reset the chip to a known state.
1448 	 */
1449 	stge_reset(sc);
1450 
1451 	/*
1452 	 * Initialize the transmit descriptor ring.
1453 	 */
1454 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1455 	for (i = 0; i < STGE_NTXDESC; i++) {
1456 		sc->sc_txdescs[i].tfd_next =
1457 		    (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
1458 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1459 	}
1460 	sc->sc_txpending = 0;
1461 	sc->sc_txdirty = 0;
1462 	sc->sc_txlast = STGE_NTXDESC - 1;
1463 
1464 	/*
1465 	 * Initialize the receive descriptor and receive job
1466 	 * descriptor rings.
1467 	 */
1468 	for (i = 0; i < STGE_NRXDESC; i++) {
1469 		ds = &sc->sc_rxsoft[i];
1470 		if (ds->ds_mbuf == NULL) {
1471 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1472 				printf("%s: unable to allocate or map rx "
1473 				    "buffer %d, error = %d\n",
1474 				    sc->sc_dev.dv_xname, i, error);
1475 				/*
1476 				 * XXX Should attempt to run with fewer receive
1477 				 * XXX buffers instead of just failing.
1478 				 */
1479 				stge_rxdrain(sc);
1480 				goto out;
1481 			}
1482 		} else
1483 			STGE_INIT_RXDESC(sc, i);
1484 	}
1485 	sc->sc_rxptr = 0;
1486 	sc->sc_rxdiscard = 0;
1487 	STGE_RXCHAIN_RESET(sc);
1488 
1489 	/* Set the station address. */
1490 	bus_space_write_2(st, sh, STGE_StationAddress0,
1491 	    LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
1492 	bus_space_write_2(st, sh, STGE_StationAddress1,
1493 	    LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
1494 	bus_space_write_2(st, sh, STGE_StationAddress2,
1495 	    LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
1496 
1497 	/*
1498 	 * Set the statistics masks.  Disable all the RMON stats,
1499 	 * and disable selected stats in the non-RMON stats registers.
1500 	 */
1501 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1502 	bus_space_write_4(st, sh, STGE_StatisticsMask,
1503 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1504 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1505 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1506 	    (1U << 21));
1507 
1508 	/* Set up the receive filter. */
1509 	stge_set_filter(sc);
1510 
1511 	/*
1512 	 * Give the transmit and receive ring to the chip.
1513 	 */
1514 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1515 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1516 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1517 
1518 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1519 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1520 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1521 
1522 	/*
1523 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1524 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1525 	 * transmit engine when there's actually a packet.
1526 	 */
1527 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1528 
1529 	/* ..and the Rx auto-poll period. */
1530 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1531 
1532 	/* Initialize the Tx start threshold. */
1533 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1534 
1535 	/*
1536 	 * Initialize the Rx DMA interrupt control register.  We
1537 	 * request an interrupt after every incoming packet, but
1538 	 * defer it for 32us (64 * 512 ns).  When the number of
1539 	 * interrupts pending reaches 8, we stop deferring the
1540 	 * interrupt, and signal it immediately.
1541 	 */
1542 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1543 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1544 
1545 	/*
1546 	 * Initialize the interrupt mask.
1547 	 */
1548 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1549 	    IE_TxDMAComplete | IE_RxDMAComplete | IE_RFDListEnd;
1550 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1551 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1552 
1553 	/*
1554 	 * Configure the DMA engine.
1555 	 * XXX Should auto-tune TxBurstLimit.
1556 	 */
1557 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1558 	    DMAC_TxBurstLimit(3));
1559 
1560 	/*
1561 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1562 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1563 	 * empty again.
1564 	 */
1565 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1566 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1567 
1568 	/*
1569 	 * Set the maximum frame size.
1570 	 */
1571 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
1572 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1573 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1574 	     ETHER_VLAN_ENCAP_LEN : 0));
1575 
1576 	/*
1577 	 * Initialize MacCtrl -- do it before setting the media,
1578 	 * as setting the media will actually program the register.
1579 	 *
1580 	 * Note: We have to poke the IFS value before poking
1581 	 * anything else.
1582 	 */
1583 	sc->sc_MACCtrl = MC_IFSSelect(0);
1584 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1585 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1586 
1587 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1588 		/* Multi-frag frame bug work-around. */
1589 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1590 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1591 
1592 		/* Tx Poll Now bug work-around. */
1593 		bus_space_write_2(st, sh, STGE_DebugCtrl,
1594 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1595 	}
1596 
1597 	/*
1598 	 * Set the current media.
1599 	 */
1600 	mii_mediachg(&sc->sc_mii);
1601 
1602 	/*
1603 	 * Start the one second MII clock.
1604 	 */
1605 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1606 
1607 	/*
1608 	 * ...all done!
1609 	 */
1610 	ifp->if_flags |= IFF_RUNNING;
1611 	ifp->if_flags &= ~IFF_OACTIVE;
1612 
1613  out:
1614 	if (error)
1615 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1616 	return (error);
1617 }
1618 
1619 /*
1620  * stge_drain:
1621  *
1622  *	Drain the receive queue.
1623  */
1624 void
1625 stge_rxdrain(struct stge_softc *sc)
1626 {
1627 	struct stge_descsoft *ds;
1628 	int i;
1629 
1630 	for (i = 0; i < STGE_NRXDESC; i++) {
1631 		ds = &sc->sc_rxsoft[i];
1632 		if (ds->ds_mbuf != NULL) {
1633 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1634 			ds->ds_mbuf->m_next = NULL;
1635 			m_freem(ds->ds_mbuf);
1636 			ds->ds_mbuf = NULL;
1637 		}
1638 	}
1639 }
1640 
1641 /*
1642  * stge_stop:		[ ifnet interface function ]
1643  *
1644  *	Stop transmission on the interface.
1645  */
1646 void
1647 stge_stop(struct ifnet *ifp, int disable)
1648 {
1649 	struct stge_softc *sc = ifp->if_softc;
1650 	struct stge_descsoft *ds;
1651 	int i;
1652 
1653 	/*
1654 	 * Stop the one second clock.
1655 	 */
1656 	callout_stop(&sc->sc_tick_ch);
1657 
1658 	/* Down the MII. */
1659 	mii_down(&sc->sc_mii);
1660 
1661 	/*
1662 	 * Disable interrupts.
1663 	 */
1664 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1665 
1666 	/*
1667 	 * Stop receiver, transmitter, and stats update.
1668 	 */
1669 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1670 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1671 
1672 	/*
1673 	 * Stop the transmit and receive DMA.
1674 	 */
1675 	stge_dma_wait(sc);
1676 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1677 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1678 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1679 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1680 
1681 	/*
1682 	 * Release any queued transmit buffers.
1683 	 */
1684 	for (i = 0; i < STGE_NTXDESC; i++) {
1685 		ds = &sc->sc_txsoft[i];
1686 		if (ds->ds_mbuf != NULL) {
1687 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1688 			m_freem(ds->ds_mbuf);
1689 			ds->ds_mbuf = NULL;
1690 		}
1691 	}
1692 
1693 	if (disable)
1694 		stge_rxdrain(sc);
1695 
1696 	/*
1697 	 * Mark the interface down and cancel the watchdog timer.
1698 	 */
1699 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1700 	ifp->if_timer = 0;
1701 }
1702 
1703 #if 0
1704 static int
1705 stge_eeprom_wait(struct stge_softc *sc)
1706 {
1707 	int i;
1708 
1709 	for (i = 0; i < STGE_TIMEOUT; i++) {
1710 		delay(1000);
1711 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1712 		     EC_EepromBusy) == 0)
1713 			return (0);
1714 	}
1715 	return (1);
1716 }
1717 
1718 /*
1719  * stge_read_eeprom:
1720  *
1721  *	Read data from the serial EEPROM.
1722  */
1723 void
1724 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1725 {
1726 
1727 	if (stge_eeprom_wait(sc))
1728 		printf("%s: EEPROM failed to come ready\n",
1729 		    sc->sc_dev.dv_xname);
1730 
1731 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1732 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1733 	if (stge_eeprom_wait(sc))
1734 		printf("%s: EEPROM read timed out\n",
1735 		    sc->sc_dev.dv_xname);
1736 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1737 }
1738 #endif /* 0 */
1739 
1740 /*
1741  * stge_add_rxbuf:
1742  *
1743  *	Add a receive buffer to the indicated descriptor.
1744  */
1745 int
1746 stge_add_rxbuf(struct stge_softc *sc, int idx)
1747 {
1748 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1749 	struct mbuf *m;
1750 	int error;
1751 
1752 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1753 	if (m == NULL)
1754 		return (ENOBUFS);
1755 
1756 	MCLGET(m, M_DONTWAIT);
1757 	if ((m->m_flags & M_EXT) == 0) {
1758 		m_freem(m);
1759 		return (ENOBUFS);
1760 	}
1761 
1762 	m->m_data = m->m_ext.ext_buf + 2;
1763 	m->m_len = MCLBYTES - 2;
1764 
1765 	if (ds->ds_mbuf != NULL)
1766 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1767 
1768 	ds->ds_mbuf = m;
1769 
1770 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1771 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1772 	if (error) {
1773 		printf("%s: can't load rx DMA map %d, error = %d\n",
1774 		    sc->sc_dev.dv_xname, idx, error);
1775 		panic("stge_add_rxbuf");	/* XXX */
1776 	}
1777 
1778 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1779 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1780 
1781 	STGE_INIT_RXDESC(sc, idx);
1782 
1783 	return (0);
1784 }
1785 
1786 /*
1787  * stge_set_filter:
1788  *
1789  *	Set up the receive filter.
1790  */
1791 void
1792 stge_set_filter(struct stge_softc *sc)
1793 {
1794 	struct ethercom *ec = &sc->sc_ethercom;
1795 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1796 	struct ether_multi *enm;
1797 	struct ether_multistep step;
1798 	uint32_t crc;
1799 	uint32_t mchash[2];
1800 
1801 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1802 	if (ifp->if_flags & IFF_BROADCAST)
1803 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1804 
1805 	if (ifp->if_flags & IFF_PROMISC) {
1806 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1807 		goto allmulti;
1808 	}
1809 
1810 	/*
1811 	 * Set up the multicast address filter by passing all multicast
1812 	 * addresses through a CRC generator, and then using the low-order
1813 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1814 	 * high order bits select the register, while the rest of the bits
1815 	 * select the bit within the register.
1816 	 */
1817 
1818 	memset(mchash, 0, sizeof(mchash));
1819 
1820 	ETHER_FIRST_MULTI(step, ec, enm);
1821 	if (enm == NULL)
1822 		goto done;
1823 
1824 	while (enm != NULL) {
1825 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1826 			/*
1827 			 * We must listen to a range of multicast addresses.
1828 			 * For now, just accept all multicasts, rather than
1829 			 * trying to set only those filter bits needed to match
1830 			 * the range.  (At this time, the only use of address
1831 			 * ranges is for IP multicast routing, for which the
1832 			 * range is big enough to require all bits set.)
1833 			 */
1834 			goto allmulti;
1835 		}
1836 
1837 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1838 
1839 		/* Just want the 6 least significant bits. */
1840 		crc &= 0x3f;
1841 
1842 		/* Set the corresponding bit in the hash table. */
1843 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1844 
1845 		ETHER_NEXT_MULTI(step, enm);
1846 	}
1847 
1848 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1849 
1850 	ifp->if_flags &= ~IFF_ALLMULTI;
1851 	goto done;
1852 
1853  allmulti:
1854 	ifp->if_flags |= IFF_ALLMULTI;
1855 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1856 
1857  done:
1858 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1859 		/*
1860 		 * Program the multicast hash table.
1861 		 */
1862 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1863 		    mchash[0]);
1864 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1865 		    mchash[1]);
1866 	}
1867 
1868 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1869 	    sc->sc_ReceiveMode);
1870 }
1871 
1872 /*
1873  * stge_mii_readreg:	[mii interface function]
1874  *
1875  *	Read a PHY register on the MII of the TC9021.
1876  */
1877 int
1878 stge_mii_readreg(struct device *self, int phy, int reg)
1879 {
1880 
1881 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1882 }
1883 
1884 /*
1885  * stge_mii_writereg:	[mii interface function]
1886  *
1887  *	Write a PHY register on the MII of the TC9021.
1888  */
1889 void
1890 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1891 {
1892 
1893 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1894 }
1895 
1896 /*
1897  * stge_mii_statchg:	[mii interface function]
1898  *
1899  *	Callback from MII layer when media changes.
1900  */
1901 void
1902 stge_mii_statchg(struct device *self)
1903 {
1904 	struct stge_softc *sc = (struct stge_softc *) self;
1905 
1906 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1907 		sc->sc_MACCtrl |= MC_DuplexSelect;
1908 	else
1909 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
1910 
1911 	/* XXX 802.1x flow-control? */
1912 
1913 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1914 }
1915 
1916 /*
1917  * sste_mii_bitbang_read: [mii bit-bang interface function]
1918  *
1919  *	Read the MII serial port for the MII bit-bang module.
1920  */
1921 uint32_t
1922 stge_mii_bitbang_read(struct device *self)
1923 {
1924 	struct stge_softc *sc = (void *) self;
1925 
1926 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1927 }
1928 
1929 /*
1930  * stge_mii_bitbang_write: [mii big-bang interface function]
1931  *
1932  *	Write the MII serial port for the MII bit-bang module.
1933  */
1934 void
1935 stge_mii_bitbang_write(struct device *self, uint32_t val)
1936 {
1937 	struct stge_softc *sc = (void *) self;
1938 
1939 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1940 	    val | sc->sc_PhyCtrl);
1941 }
1942 
1943 /*
1944  * stge_mediastatus:	[ifmedia interface function]
1945  *
1946  *	Get the current interface media status.
1947  */
1948 void
1949 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1950 {
1951 	struct stge_softc *sc = ifp->if_softc;
1952 
1953 	mii_pollstat(&sc->sc_mii);
1954 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1955 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1956 }
1957 
1958 /*
1959  * stge_mediachange:	[ifmedia interface function]
1960  *
1961  *	Set hardware to newly-selected media.
1962  */
1963 int
1964 stge_mediachange(struct ifnet *ifp)
1965 {
1966 	struct stge_softc *sc = ifp->if_softc;
1967 
1968 	if (ifp->if_flags & IFF_UP)
1969 		mii_mediachg(&sc->sc_mii);
1970 	return (0);
1971 }
1972