xref: /netbsd/sys/dev/pci/if_ti.c (revision c4a72b64)
1 /* $NetBSD: if_ti.c,v 1.52 2002/10/02 16:51:32 thorpej Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring desciptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.52 2002/10/02 16:51:32 thorpej Exp $");
85 
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100 
101 #include <uvm/uvm_extern.h>
102 
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112 
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119 
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124 
125 #include <machine/bus.h>
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130 
131 #include <dev/pci/if_tireg.h>
132 
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 
140 static const struct ti_type ti_devs[] = {
141 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
142 		"Alteon AceNIC 1000BASE-SX Ethernet" },
143 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 		"Alteon AceNIC 1000BASE-T Ethernet" },
145 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
146 		"3Com 3c985-SX Gigabit Ethernet" },
147 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 		"Netgear GA620 1000BASE-SX Ethernet" },
149 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 		"Netgear GA620 1000BASE-T Ethernet" },
151 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 		"Silicon Graphics Gigabit Ethernet" },
153 	{ 0, 0, NULL }
154 };
155 
156 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
157 static int ti_probe	__P((struct device *, struct cfdata *, void *));
158 static void ti_attach	__P((struct device *, struct device *, void *));
159 static void ti_shutdown __P((void *));
160 static void ti_txeof_tigon1	__P((struct ti_softc *));
161 static void ti_txeof_tigon2	__P((struct ti_softc *));
162 static void ti_rxeof		__P((struct ti_softc *));
163 
164 static void ti_stats_update	__P((struct ti_softc *));
165 static int ti_encap_tigon1	__P((struct ti_softc *, struct mbuf *,
166 					u_int32_t *));
167 static int ti_encap_tigon2	__P((struct ti_softc *, struct mbuf *,
168 					u_int32_t *));
169 
170 static int ti_intr		__P((void *));
171 static void ti_start		__P((struct ifnet *));
172 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
173 static void ti_init		__P((void *));
174 static void ti_init2		__P((struct ti_softc *));
175 static void ti_stop		__P((struct ti_softc *));
176 static void ti_watchdog		__P((struct ifnet *));
177 static int ti_ifmedia_upd	__P((struct ifnet *));
178 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
179 
180 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
181 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
182 						int, u_int8_t *));
183 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
184 
185 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
186 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
187 static void ti_setmulti		__P((struct ti_softc *));
188 
189 static void ti_mem		__P((struct ti_softc *, u_int32_t,
190 					u_int32_t, caddr_t));
191 static void ti_loadfw		__P((struct ti_softc *));
192 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
193 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
194 					caddr_t, int));
195 static void ti_handle_events	__P((struct ti_softc *));
196 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
197 static void *ti_jalloc		__P((struct ti_softc *));
198 static void ti_jfree		__P((struct mbuf *, caddr_t, u_int, void *));
199 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
200 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
201 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
202 static int ti_init_rx_ring_std	__P((struct ti_softc *));
203 static void ti_free_rx_ring_std	__P((struct ti_softc *));
204 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
205 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
206 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
207 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
208 static void ti_free_tx_ring	__P((struct ti_softc *));
209 static int ti_init_tx_ring	__P((struct ti_softc *));
210 
211 static int ti_64bitslot_war	__P((struct ti_softc *));
212 static int ti_chipinit		__P((struct ti_softc *));
213 static int ti_gibinit		__P((struct ti_softc *));
214 
215 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
216 
217 CFATTACH_DECL(ti, sizeof(struct ti_softc),
218     ti_probe, ti_attach, NULL, NULL);
219 
220 /*
221  * Send an instruction or address to the EEPROM, check for ACK.
222  */
223 static u_int32_t ti_eeprom_putbyte(sc, byte)
224 	struct ti_softc		*sc;
225 	int			byte;
226 {
227 	int		i, ack = 0;
228 
229 	/*
230 	 * Make sure we're in TX mode.
231 	 */
232 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
233 
234 	/*
235 	 * Feed in each bit and stobe the clock.
236 	 */
237 	for (i = 0x80; i; i >>= 1) {
238 		if (byte & i) {
239 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
240 		} else {
241 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
242 		}
243 		DELAY(1);
244 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
245 		DELAY(1);
246 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
247 	}
248 
249 	/*
250 	 * Turn off TX mode.
251 	 */
252 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
253 
254 	/*
255 	 * Check for ack.
256 	 */
257 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
258 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
259 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
260 
261 	return(ack);
262 }
263 
264 /*
265  * Read a byte of data stored in the EEPROM at address 'addr.'
266  * We have to send two address bytes since the EEPROM can hold
267  * more than 256 bytes of data.
268  */
269 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
270 	struct ti_softc		*sc;
271 	int			addr;
272 	u_int8_t		*dest;
273 {
274 	int		i;
275 	u_int8_t		byte = 0;
276 
277 	EEPROM_START;
278 
279 	/*
280 	 * Send write control code to EEPROM.
281 	 */
282 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
283 		printf("%s: failed to send write command, status: %x\n",
284 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
285 		return(1);
286 	}
287 
288 	/*
289 	 * Send first byte of address of byte we want to read.
290 	 */
291 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
292 		printf("%s: failed to send address, status: %x\n",
293 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
294 		return(1);
295 	}
296 	/*
297 	 * Send second byte address of byte we want to read.
298 	 */
299 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
300 		printf("%s: failed to send address, status: %x\n",
301 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302 		return(1);
303 	}
304 
305 	EEPROM_STOP;
306 	EEPROM_START;
307 	/*
308 	 * Send read control code to EEPROM.
309 	 */
310 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
311 		printf("%s: failed to send read command, status: %x\n",
312 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
313 		return(1);
314 	}
315 
316 	/*
317 	 * Start reading bits from EEPROM.
318 	 */
319 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
320 	for (i = 0x80; i; i >>= 1) {
321 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322 		DELAY(1);
323 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
324 			byte |= i;
325 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
326 		DELAY(1);
327 	}
328 
329 	EEPROM_STOP;
330 
331 	/*
332 	 * No ACK generated for read, so just return byte.
333 	 */
334 
335 	*dest = byte;
336 
337 	return(0);
338 }
339 
340 /*
341  * Read a sequence of bytes from the EEPROM.
342  */
343 static int ti_read_eeprom(sc, dest, off, cnt)
344 	struct ti_softc		*sc;
345 	caddr_t			dest;
346 	int			off;
347 	int			cnt;
348 {
349 	int			err = 0, i;
350 	u_int8_t		byte = 0;
351 
352 	for (i = 0; i < cnt; i++) {
353 		err = ti_eeprom_getbyte(sc, off + i, &byte);
354 		if (err)
355 			break;
356 		*(dest + i) = byte;
357 	}
358 
359 	return(err ? 1 : 0);
360 }
361 
362 /*
363  * NIC memory access function. Can be used to either clear a section
364  * of NIC local memory or (if buf is non-NULL) copy data into it.
365  */
366 static void ti_mem(sc, addr, len, buf)
367 	struct ti_softc		*sc;
368 	u_int32_t		addr, len;
369 	caddr_t			buf;
370 {
371 	int			segptr, segsize, cnt;
372 	caddr_t			ptr;
373 
374 	segptr = addr;
375 	cnt = len;
376 	ptr = buf;
377 
378 	while(cnt) {
379 		if (cnt < TI_WINLEN)
380 			segsize = cnt;
381 		else
382 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
383 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
384 		if (buf == NULL) {
385 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
386 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
387 			    segsize / 4);
388 		} else {
389 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
390 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
391 			    (u_int32_t *)ptr, segsize / 4);
392 			ptr += segsize;
393 		}
394 		segptr += segsize;
395 		cnt -= segsize;
396 	}
397 
398 	return;
399 }
400 
401 /*
402  * Load firmware image into the NIC. Check that the firmware revision
403  * is acceptable and see if we want the firmware for the Tigon 1 or
404  * Tigon 2.
405  */
406 static void ti_loadfw(sc)
407 	struct ti_softc		*sc;
408 {
409 	switch(sc->ti_hwrev) {
410 	case TI_HWREV_TIGON:
411 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
412 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
413 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
414 			printf("%s: firmware revision mismatch; want "
415 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
416 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
417 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
418 			    tigonFwReleaseMinor, tigonFwReleaseFix);
419 			return;
420 		}
421 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
422 		    (caddr_t)tigonFwText);
423 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
424 		    (caddr_t)tigonFwData);
425 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
426 		    (caddr_t)tigonFwRodata);
427 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
428 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
429 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
430 		break;
431 	case TI_HWREV_TIGON_II:
432 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
433 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
434 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
435 			printf("%s: firmware revision mismatch; want "
436 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
437 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
438 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
439 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
440 			return;
441 		}
442 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
443 		    (caddr_t)tigon2FwText);
444 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
445 		    (caddr_t)tigon2FwData);
446 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
447 		    (caddr_t)tigon2FwRodata);
448 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
449 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
450 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
451 		break;
452 	default:
453 		printf("%s: can't load firmware: unknown hardware rev\n",
454 		    sc->sc_dev.dv_xname);
455 		break;
456 	}
457 
458 	return;
459 }
460 
461 /*
462  * Send the NIC a command via the command ring.
463  */
464 static void ti_cmd(sc, cmd)
465 	struct ti_softc		*sc;
466 	struct ti_cmd_desc	*cmd;
467 {
468 	u_int32_t		index;
469 
470 	index = sc->ti_cmd_saved_prodidx;
471 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
472 	TI_INC(index, TI_CMD_RING_CNT);
473 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
474 	sc->ti_cmd_saved_prodidx = index;
475 
476 	return;
477 }
478 
479 /*
480  * Send the NIC an extended command. The 'len' parameter specifies the
481  * number of command slots to include after the initial command.
482  */
483 static void ti_cmd_ext(sc, cmd, arg, len)
484 	struct ti_softc		*sc;
485 	struct ti_cmd_desc	*cmd;
486 	caddr_t			arg;
487 	int			len;
488 {
489 	u_int32_t		index;
490 	int		i;
491 
492 	index = sc->ti_cmd_saved_prodidx;
493 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
494 	TI_INC(index, TI_CMD_RING_CNT);
495 	for (i = 0; i < len; i++) {
496 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
497 		    *(u_int32_t *)(&arg[i * 4]));
498 		TI_INC(index, TI_CMD_RING_CNT);
499 	}
500 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
501 	sc->ti_cmd_saved_prodidx = index;
502 
503 	return;
504 }
505 
506 /*
507  * Handle events that have triggered interrupts.
508  */
509 static void ti_handle_events(sc)
510 	struct ti_softc		*sc;
511 {
512 	struct ti_event_desc	*e;
513 
514 	if (sc->ti_rdata->ti_event_ring == NULL)
515 		return;
516 
517 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
518 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
519 		switch(e->ti_event) {
520 		case TI_EV_LINKSTAT_CHANGED:
521 			sc->ti_linkstat = e->ti_code;
522 			if (e->ti_code == TI_EV_CODE_LINK_UP)
523 				printf("%s: 10/100 link up\n",
524 				       sc->sc_dev.dv_xname);
525 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
526 				printf("%s: gigabit link up\n",
527 				       sc->sc_dev.dv_xname);
528 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
529 				printf("%s: link down\n",
530 				       sc->sc_dev.dv_xname);
531 			break;
532 		case TI_EV_ERROR:
533 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
534 				printf("%s: invalid command\n",
535 				       sc->sc_dev.dv_xname);
536 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
537 				printf("%s: unknown command\n",
538 				       sc->sc_dev.dv_xname);
539 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
540 				printf("%s: bad config data\n",
541 				       sc->sc_dev.dv_xname);
542 			break;
543 		case TI_EV_FIRMWARE_UP:
544 			ti_init2(sc);
545 			break;
546 		case TI_EV_STATS_UPDATED:
547 			ti_stats_update(sc);
548 			break;
549 		case TI_EV_RESET_JUMBO_RING:
550 		case TI_EV_MCAST_UPDATED:
551 			/* Who cares. */
552 			break;
553 		default:
554 			printf("%s: unknown event: %d\n",
555 			    sc->sc_dev.dv_xname, e->ti_event);
556 			break;
557 		}
558 		/* Advance the consumer index. */
559 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
560 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
561 	}
562 
563 	return;
564 }
565 
566 /*
567  * Memory management for the jumbo receive ring is a pain in the
568  * butt. We need to allocate at least 9018 bytes of space per frame,
569  * _and_ it has to be contiguous (unless you use the extended
570  * jumbo descriptor format). Using malloc() all the time won't
571  * work: malloc() allocates memory in powers of two, which means we
572  * would end up wasting a considerable amount of space by allocating
573  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
574  * to do our own memory management.
575  *
576  * The driver needs to allocate a contiguous chunk of memory at boot
577  * time. We then chop this up ourselves into 9K pieces and use them
578  * as external mbuf storage.
579  *
580  * One issue here is how much memory to allocate. The jumbo ring has
581  * 256 slots in it, but at 9K per slot than can consume over 2MB of
582  * RAM. This is a bit much, especially considering we also need
583  * RAM for the standard ring and mini ring (on the Tigon 2). To
584  * save space, we only actually allocate enough memory for 64 slots
585  * by default, which works out to between 500 and 600K. This can
586  * be tuned by changing a #define in if_tireg.h.
587  */
588 
589 static int ti_alloc_jumbo_mem(sc)
590 	struct ti_softc		*sc;
591 {
592 	caddr_t			ptr;
593 	int		i;
594 	struct ti_jpool_entry   *entry;
595 	bus_dma_segment_t dmaseg;
596 	int error, dmanseg;
597 
598 	/* Grab a big chunk o' storage. */
599 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
600 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
601 	    BUS_DMA_NOWAIT)) != 0) {
602 		printf("%s: can't allocate jumbo buffer, error = %d\n",
603 		       sc->sc_dev.dv_xname, error);
604 		return (error);
605 	}
606 
607 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
608 	    TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
609 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
610 		printf("%s: can't map jumbo buffer, error = %d\n",
611 		       sc->sc_dev.dv_xname, error);
612 		return (error);
613 	}
614 
615 	if ((error = bus_dmamap_create(sc->sc_dmat,
616 	    TI_JMEM, 1,
617 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
618 	    &sc->jumbo_dmamap)) != 0) {
619 		printf("%s: can't create jumbo buffer DMA map, error = %d\n",
620 		       sc->sc_dev.dv_xname, error);
621 		return (error);
622 	}
623 
624 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
625 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
626 	    BUS_DMA_NOWAIT)) != 0) {
627 		printf("%s: can't load jumbo buffer DMA map, error = %d\n",
628 		       sc->sc_dev.dv_xname, error);
629 		return (error);
630 	}
631 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
632 
633 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
634 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
635 
636 	/*
637 	 * Now divide it up into 9K pieces and save the addresses
638 	 * in an array.
639 	 */
640 	ptr = sc->ti_cdata.ti_jumbo_buf;
641 	for (i = 0; i < TI_JSLOTS; i++) {
642 		sc->ti_cdata.ti_jslots[i] = ptr;
643 		ptr += TI_JLEN;
644 		entry = malloc(sizeof(struct ti_jpool_entry),
645 			       M_DEVBUF, M_NOWAIT);
646 		if (entry == NULL) {
647 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
648 			sc->ti_cdata.ti_jumbo_buf = NULL;
649 			printf("%s: no memory for jumbo "
650 			    "buffer queue!\n", sc->sc_dev.dv_xname);
651 			return(ENOBUFS);
652 		}
653 		entry->slot = i;
654 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
655 				    jpool_entries);
656 	}
657 
658 	return(0);
659 }
660 
661 /*
662  * Allocate a jumbo buffer.
663  */
664 static void *ti_jalloc(sc)
665 	struct ti_softc		*sc;
666 {
667 	struct ti_jpool_entry   *entry;
668 
669 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
670 
671 	if (entry == NULL) {
672 		printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
673 		return(NULL);
674 	}
675 
676 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
677 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
678 	return(sc->ti_cdata.ti_jslots[entry->slot]);
679 }
680 
681 /*
682  * Release a jumbo buffer.
683  */
684 static void ti_jfree(m, buf, size, arg)
685 	struct mbuf		*m;
686 	caddr_t			buf;
687 	u_int			size;
688 	void *arg;
689 {
690 	struct ti_softc		*sc;
691 	int		        i, s;
692 	struct ti_jpool_entry   *entry;
693 
694 	/* Extract the softc struct pointer. */
695 	sc = (struct ti_softc *)arg;
696 
697 	if (sc == NULL)
698 		panic("ti_jfree: didn't get softc pointer!");
699 
700 	/* calculate the slot this buffer belongs to */
701 
702 	i = ((caddr_t)buf
703 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
704 
705 	if ((i < 0) || (i >= TI_JSLOTS))
706 		panic("ti_jfree: asked to free buffer that we don't manage!");
707 
708 	s = splvm();
709 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
710 	if (entry == NULL)
711 		panic("ti_jfree: buffer not in use!");
712 	entry->slot = i;
713 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
714 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
715 
716 	if (__predict_true(m != NULL))
717 		pool_cache_put(&mbpool_cache, m);
718 	splx(s);
719 }
720 
721 
722 /*
723  * Intialize a standard receive ring descriptor.
724  */
725 static int ti_newbuf_std(sc, i, m, dmamap)
726 	struct ti_softc		*sc;
727 	int			i;
728 	struct mbuf		*m;
729 	bus_dmamap_t dmamap; /* required if (m != NULL) */
730 {
731 	struct mbuf		*m_new = NULL;
732 	struct ti_rx_desc	*r;
733 	int error;
734 
735 	if (dmamap == NULL) {
736 		/* if (m) panic() */
737 
738 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
739 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
740 					       &dmamap)) != 0) {
741 			printf("%s: can't create recv map, error = %d\n",
742 			       sc->sc_dev.dv_xname, error);
743 			return(ENOMEM);
744 		}
745 	}
746 	sc->std_dmamap[i] = dmamap;
747 
748 	if (m == NULL) {
749 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
750 		if (m_new == NULL) {
751 			printf("%s: mbuf allocation failed "
752 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
753 			return(ENOBUFS);
754 		}
755 
756 		MCLGET(m_new, M_DONTWAIT);
757 		if (!(m_new->m_flags & M_EXT)) {
758 			printf("%s: cluster allocation failed "
759 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
760 			m_freem(m_new);
761 			return(ENOBUFS);
762 		}
763 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
764 		m_adj(m_new, ETHER_ALIGN);
765 
766 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
767 				mtod(m_new, caddr_t), m_new->m_len, NULL,
768 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
769 			printf("%s: can't load recv map, error = %d\n",
770 			       sc->sc_dev.dv_xname, error);
771 			return (ENOMEM);
772 		}
773 	} else {
774 		m_new = m;
775 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
776 		m_new->m_data = m_new->m_ext.ext_buf;
777 		m_adj(m_new, ETHER_ALIGN);
778 
779 		/* reuse the dmamap */
780 	}
781 
782 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
783 	r = &sc->ti_rdata->ti_rx_std_ring[i];
784 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
785 	r->ti_type = TI_BDTYPE_RECV_BD;
786 	r->ti_flags = 0;
787 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
788 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
789 	if (sc->ethercom.ec_if.if_capenable &
790 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
791 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
792 	r->ti_len = m_new->m_len; /* == ds_len */
793 	r->ti_idx = i;
794 
795 	return(0);
796 }
797 
798 /*
799  * Intialize a mini receive ring descriptor. This only applies to
800  * the Tigon 2.
801  */
802 static int ti_newbuf_mini(sc, i, m, dmamap)
803 	struct ti_softc		*sc;
804 	int			i;
805 	struct mbuf		*m;
806 	bus_dmamap_t dmamap; /* required if (m != NULL) */
807 {
808 	struct mbuf		*m_new = NULL;
809 	struct ti_rx_desc	*r;
810 	int error;
811 
812 	if (dmamap == NULL) {
813 		/* if (m) panic() */
814 
815 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
816 					       MHLEN, 0, BUS_DMA_NOWAIT,
817 					       &dmamap)) != 0) {
818 			printf("%s: can't create recv map, error = %d\n",
819 			       sc->sc_dev.dv_xname, error);
820 			return(ENOMEM);
821 		}
822 	}
823 	sc->mini_dmamap[i] = dmamap;
824 
825 	if (m == NULL) {
826 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
827 		if (m_new == NULL) {
828 			printf("%s: mbuf allocation failed "
829 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
830 			return(ENOBUFS);
831 		}
832 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
833 		m_adj(m_new, ETHER_ALIGN);
834 
835 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
836 				mtod(m_new, caddr_t), m_new->m_len, NULL,
837 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
838 			printf("%s: can't load recv map, error = %d\n",
839 			       sc->sc_dev.dv_xname, error);
840 			return (ENOMEM);
841 		}
842 	} else {
843 		m_new = m;
844 		m_new->m_data = m_new->m_pktdat;
845 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
846 		m_adj(m_new, ETHER_ALIGN);
847 
848 		/* reuse the dmamap */
849 	}
850 
851 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
852 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
853 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
854 	r->ti_type = TI_BDTYPE_RECV_BD;
855 	r->ti_flags = TI_BDFLAG_MINI_RING;
856 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
857 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
858 	if (sc->ethercom.ec_if.if_capenable &
859 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
860 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
861 	r->ti_len = m_new->m_len; /* == ds_len */
862 	r->ti_idx = i;
863 
864 	return(0);
865 }
866 
867 /*
868  * Initialize a jumbo receive ring descriptor. This allocates
869  * a jumbo buffer from the pool managed internally by the driver.
870  */
871 static int ti_newbuf_jumbo(sc, i, m)
872 	struct ti_softc		*sc;
873 	int			i;
874 	struct mbuf		*m;
875 {
876 	struct mbuf		*m_new = NULL;
877 	struct ti_rx_desc	*r;
878 
879 	if (m == NULL) {
880 		caddr_t			*buf = NULL;
881 
882 		/* Allocate the mbuf. */
883 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
884 		if (m_new == NULL) {
885 			printf("%s: mbuf allocation failed "
886 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
887 			return(ENOBUFS);
888 		}
889 
890 		/* Allocate the jumbo buffer */
891 		buf = ti_jalloc(sc);
892 		if (buf == NULL) {
893 			m_freem(m_new);
894 			printf("%s: jumbo allocation failed "
895 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
896 			return(ENOBUFS);
897 		}
898 
899 		/* Attach the buffer to the mbuf. */
900 		MEXTADD(m_new, (void *)buf, ETHER_MAX_LEN_JUMBO,
901 		    M_DEVBUF, ti_jfree, sc);
902 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
903 	} else {
904 		m_new = m;
905 		m_new->m_data = m_new->m_ext.ext_buf;
906 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
907 	}
908 
909 	m_adj(m_new, ETHER_ALIGN);
910 	/* Set up the descriptor. */
911 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
912 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
913 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
914 		((caddr_t)mtod(m_new, caddr_t)
915 		 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
916 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
917 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
918 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
919 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
920 	if (sc->ethercom.ec_if.if_capenable &
921 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
922 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
923 	r->ti_len = m_new->m_len;
924 	r->ti_idx = i;
925 
926 	return(0);
927 }
928 
929 /*
930  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
931  * that's 1MB or memory, which is a lot. For now, we fill only the first
932  * 256 ring entries and hope that our CPU is fast enough to keep up with
933  * the NIC.
934  */
935 static int ti_init_rx_ring_std(sc)
936 	struct ti_softc		*sc;
937 {
938 	int		i;
939 	struct ti_cmd_desc	cmd;
940 
941 	for (i = 0; i < TI_SSLOTS; i++) {
942 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
943 			return(ENOBUFS);
944 	};
945 
946 	TI_UPDATE_STDPROD(sc, i - 1);
947 	sc->ti_std = i - 1;
948 
949 	return(0);
950 }
951 
952 static void ti_free_rx_ring_std(sc)
953 	struct ti_softc		*sc;
954 {
955 	int		i;
956 
957 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
958 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
959 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
960 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
961 
962 			/* if (sc->std_dmamap[i] == 0) panic() */
963 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
964 			sc->std_dmamap[i] = 0;
965 		}
966 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
967 		    sizeof(struct ti_rx_desc));
968 	}
969 
970 	return;
971 }
972 
973 static int ti_init_rx_ring_jumbo(sc)
974 	struct ti_softc		*sc;
975 {
976 	int		i;
977 	struct ti_cmd_desc	cmd;
978 
979 	for (i = 0; i < (TI_JSLOTS - 20); i++) {
980 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
981 			return(ENOBUFS);
982 	};
983 
984 	TI_UPDATE_JUMBOPROD(sc, i - 1);
985 	sc->ti_jumbo = i - 1;
986 
987 	return(0);
988 }
989 
990 static void ti_free_rx_ring_jumbo(sc)
991 	struct ti_softc		*sc;
992 {
993 	int		i;
994 
995 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
996 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
997 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
998 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
999 		}
1000 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1001 		    sizeof(struct ti_rx_desc));
1002 	}
1003 
1004 	return;
1005 }
1006 
1007 static int ti_init_rx_ring_mini(sc)
1008 	struct ti_softc		*sc;
1009 {
1010 	int		i;
1011 
1012 	for (i = 0; i < TI_MSLOTS; i++) {
1013 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1014 			return(ENOBUFS);
1015 	};
1016 
1017 	TI_UPDATE_MINIPROD(sc, i - 1);
1018 	sc->ti_mini = i - 1;
1019 
1020 	return(0);
1021 }
1022 
1023 static void ti_free_rx_ring_mini(sc)
1024 	struct ti_softc		*sc;
1025 {
1026 	int		i;
1027 
1028 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1029 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1030 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1031 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1032 
1033 			/* if (sc->mini_dmamap[i] == 0) panic() */
1034 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1035 			sc->mini_dmamap[i] = 0;
1036 		}
1037 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1038 		    sizeof(struct ti_rx_desc));
1039 	}
1040 
1041 	return;
1042 }
1043 
1044 static void ti_free_tx_ring(sc)
1045 	struct ti_softc		*sc;
1046 {
1047 	int		i;
1048 	struct txdmamap_pool_entry *dma;
1049 
1050 	if (sc->ti_rdata->ti_tx_ring == NULL)
1051 		return;
1052 
1053 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1054 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1055 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1056 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1057 
1058 			/* if (sc->txdma[i] == 0) panic() */
1059 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1060 					    link);
1061 			sc->txdma[i] = 0;
1062 		}
1063 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1064 		    sizeof(struct ti_tx_desc));
1065 	}
1066 
1067 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1068 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1069 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1070 		free(dma, M_DEVBUF);
1071 	}
1072 
1073 	return;
1074 }
1075 
1076 static int ti_init_tx_ring(sc)
1077 	struct ti_softc		*sc;
1078 {
1079 	int i, error;
1080 	bus_dmamap_t dmamap;
1081 	struct txdmamap_pool_entry *dma;
1082 
1083 	sc->ti_txcnt = 0;
1084 	sc->ti_tx_saved_considx = 0;
1085 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1086 
1087 	SIMPLEQ_INIT(&sc->txdma_list);
1088 	for (i = 0; i < TI_RSLOTS; i++) {
1089 		/* I've seen mbufs with 30 fragments. */
1090 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1091 					       40, ETHER_MAX_LEN_JUMBO, 0,
1092 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
1093 			printf("%s: can't create tx map, error = %d\n",
1094 			       sc->sc_dev.dv_xname, error);
1095 			return(ENOMEM);
1096 		}
1097 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1098 		if (!dma) {
1099 			printf("%s: can't alloc txdmamap_pool_entry\n",
1100 			       sc->sc_dev.dv_xname);
1101 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1102 			return (ENOMEM);
1103 		}
1104 		dma->dmamap = dmamap;
1105 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1106 	}
1107 
1108 	return(0);
1109 }
1110 
1111 /*
1112  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1113  * but we have to support the old way too so that Tigon 1 cards will
1114  * work.
1115  */
1116 void ti_add_mcast(sc, addr)
1117 	struct ti_softc		*sc;
1118 	struct ether_addr	*addr;
1119 {
1120 	struct ti_cmd_desc	cmd;
1121 	u_int16_t		*m;
1122 	u_int32_t		ext[2] = {0, 0};
1123 
1124 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1125 
1126 	switch(sc->ti_hwrev) {
1127 	case TI_HWREV_TIGON:
1128 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1129 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1130 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1131 		break;
1132 	case TI_HWREV_TIGON_II:
1133 		ext[0] = htons(m[0]);
1134 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1135 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1136 		break;
1137 	default:
1138 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1139 		break;
1140 	}
1141 
1142 	return;
1143 }
1144 
1145 void ti_del_mcast(sc, addr)
1146 	struct ti_softc		*sc;
1147 	struct ether_addr	*addr;
1148 {
1149 	struct ti_cmd_desc	cmd;
1150 	u_int16_t		*m;
1151 	u_int32_t		ext[2] = {0, 0};
1152 
1153 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1154 
1155 	switch(sc->ti_hwrev) {
1156 	case TI_HWREV_TIGON:
1157 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1158 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1159 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1160 		break;
1161 	case TI_HWREV_TIGON_II:
1162 		ext[0] = htons(m[0]);
1163 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1164 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1165 		break;
1166 	default:
1167 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1168 		break;
1169 	}
1170 
1171 	return;
1172 }
1173 
1174 /*
1175  * Configure the Tigon's multicast address filter.
1176  *
1177  * The actual multicast table management is a bit of a pain, thanks to
1178  * slight brain damage on the part of both Alteon and us. With our
1179  * multicast code, we are only alerted when the multicast address table
1180  * changes and at that point we only have the current list of addresses:
1181  * we only know the current state, not the previous state, so we don't
1182  * actually know what addresses were removed or added. The firmware has
1183  * state, but we can't get our grubby mits on it, and there is no 'delete
1184  * all multicast addresses' command. Hence, we have to maintain our own
1185  * state so we know what addresses have been programmed into the NIC at
1186  * any given time.
1187  */
1188 static void ti_setmulti(sc)
1189 	struct ti_softc		*sc;
1190 {
1191 	struct ifnet		*ifp;
1192 	struct ti_cmd_desc	cmd;
1193 	struct ti_mc_entry	*mc;
1194 	u_int32_t		intrs;
1195 	struct ether_multi *enm;
1196 	struct ether_multistep step;
1197 
1198 	ifp = &sc->ethercom.ec_if;
1199 
1200 	/* Disable interrupts. */
1201 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1202 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1203 
1204 	/* First, zot all the existing filters. */
1205 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1206 		ti_del_mcast(sc, &mc->mc_addr);
1207 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1208 		free(mc, M_DEVBUF);
1209 	}
1210 
1211 	/*
1212 	 * Remember all multicast addresses so that we can delete them
1213 	 * later.  Punt if there is a range of addresses or memory shortage.
1214 	 */
1215 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1216 	while (enm != NULL) {
1217 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1218 		    ETHER_ADDR_LEN) != 0)
1219 			goto allmulti;
1220 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1221 		    M_NOWAIT)) == NULL)
1222 			goto allmulti;
1223 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1224 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1225 		ETHER_NEXT_MULTI(step, enm);
1226 	}
1227 
1228 	/* Accept only programmed multicast addresses */
1229 	ifp->if_flags &= ~IFF_ALLMULTI;
1230 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1231 
1232 	/* Now program new ones. */
1233 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1234 		ti_add_mcast(sc, &mc->mc_addr);
1235 
1236 	/* Re-enable interrupts. */
1237 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1238 
1239 	return;
1240 
1241 allmulti:
1242 	/* No need to keep individual multicast addresses */
1243 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1244 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1245 		free(mc, M_DEVBUF);
1246 	}
1247 
1248 	/* Accept all multicast addresses */
1249 	ifp->if_flags |= IFF_ALLMULTI;
1250 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1251 
1252 	/* Re-enable interrupts. */
1253 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1254 }
1255 
1256 /*
1257  * Check to see if the BIOS has configured us for a 64 bit slot when
1258  * we aren't actually in one. If we detect this condition, we can work
1259  * around it on the Tigon 2 by setting a bit in the PCI state register,
1260  * but for the Tigon 1 we must give up and abort the interface attach.
1261  */
1262 static int ti_64bitslot_war(sc)
1263 	struct ti_softc		*sc;
1264 {
1265 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1266 		CSR_WRITE_4(sc, 0x600, 0);
1267 		CSR_WRITE_4(sc, 0x604, 0);
1268 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1269 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1270 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1271 				return(EINVAL);
1272 			else {
1273 				TI_SETBIT(sc, TI_PCI_STATE,
1274 				    TI_PCISTATE_32BIT_BUS);
1275 				return(0);
1276 			}
1277 		}
1278 	}
1279 
1280 	return(0);
1281 }
1282 
1283 /*
1284  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1285  * self-test results.
1286  */
1287 static int ti_chipinit(sc)
1288 	struct ti_softc		*sc;
1289 {
1290 	u_int32_t		cacheline;
1291 	u_int32_t		pci_writemax = 0;
1292 
1293 	/* Initialize link to down state. */
1294 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1295 
1296 	/* Set endianness before we access any non-PCI registers. */
1297 #if BYTE_ORDER == BIG_ENDIAN
1298 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1299 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1300 #else
1301 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1302 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1303 #endif
1304 
1305 	/* Check the ROM failed bit to see if self-tests passed. */
1306 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1307 		printf("%s: board self-diagnostics failed!\n",
1308 		       sc->sc_dev.dv_xname);
1309 		return(ENODEV);
1310 	}
1311 
1312 	/* Halt the CPU. */
1313 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1314 
1315 	/* Figure out the hardware revision. */
1316 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1317 	case TI_REV_TIGON_I:
1318 		sc->ti_hwrev = TI_HWREV_TIGON;
1319 		break;
1320 	case TI_REV_TIGON_II:
1321 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1322 		break;
1323 	default:
1324 		printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1325 		return(ENODEV);
1326 	}
1327 
1328 	/* Do special setup for Tigon 2. */
1329 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1330 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1331 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1332 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1333 	}
1334 
1335 	/* Set up the PCI state register. */
1336 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1337 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1338 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1339 	}
1340 
1341 	/* Clear the read/write max DMA parameters. */
1342 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1343 	    TI_PCISTATE_READ_MAXDMA));
1344 
1345 	/* Get cache line size. */
1346 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1347 
1348 	/*
1349 	 * If the system has set enabled the PCI memory write
1350 	 * and invalidate command in the command register, set
1351 	 * the write max parameter accordingly. This is necessary
1352 	 * to use MWI with the Tigon 2.
1353 	 */
1354 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1355 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1356 		switch(cacheline) {
1357 		case 1:
1358 		case 4:
1359 		case 8:
1360 		case 16:
1361 		case 32:
1362 		case 64:
1363 			break;
1364 		default:
1365 		/* Disable PCI memory write and invalidate. */
1366 			if (bootverbose)
1367 				printf("%s: cache line size %d not "
1368 				    "supported; disabling PCI MWI\n",
1369 				    sc->sc_dev.dv_xname, cacheline);
1370 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1371 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1372 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1373 			break;
1374 		}
1375 	}
1376 
1377 #ifdef __brokenalpha__
1378 	/*
1379 	 * From the Alteon sample driver:
1380 	 * Must insure that we do not cross an 8K (bytes) boundary
1381 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1382 	 * restriction on some ALPHA platforms with early revision
1383 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1384 	 */
1385 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1386 #else
1387 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1388 #endif
1389 
1390 	/* This sets the min dma param all the way up (0xff). */
1391 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1392 
1393 	/* Configure DMA variables. */
1394 #if BYTE_ORDER == BIG_ENDIAN
1395 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1396 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1397 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1398 	    TI_OPMODE_DONT_FRAG_JUMBO);
1399 #else
1400 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1401 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1402 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1403 #endif
1404 
1405 	/*
1406 	 * Only allow 1 DMA channel to be active at a time.
1407 	 * I don't think this is a good idea, but without it
1408 	 * the firmware racks up lots of nicDmaReadRingFull
1409 	 * errors.
1410 	 * Incompatible with hardware assisted checksums.
1411 	 */
1412 	if ((sc->ethercom.ec_if.if_capenable &
1413 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1414 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1415 
1416 	/* Recommended settings from Tigon manual. */
1417 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1418 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1419 
1420 	if (ti_64bitslot_war(sc)) {
1421 		printf("%s: bios thinks we're in a 64 bit slot, "
1422 		    "but we aren't", sc->sc_dev.dv_xname);
1423 		return(EINVAL);
1424 	}
1425 
1426 	return(0);
1427 }
1428 
1429 /*
1430  * Initialize the general information block and firmware, and
1431  * start the CPU(s) running.
1432  */
1433 static int ti_gibinit(sc)
1434 	struct ti_softc		*sc;
1435 {
1436 	struct ti_rcb		*rcb;
1437 	int			i;
1438 	struct ifnet		*ifp;
1439 
1440 	ifp = &sc->ethercom.ec_if;
1441 
1442 	/* Disable interrupts for now. */
1443 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1444 
1445 	/* Tell the chip where to find the general information block. */
1446 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1447 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1448 
1449 	/* Load the firmware into SRAM. */
1450 	ti_loadfw(sc);
1451 
1452 	/* Set up the contents of the general info and ring control blocks. */
1453 
1454 	/* Set up the event ring and producer pointer. */
1455 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1456 
1457 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1458 	rcb->ti_flags = 0;
1459 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1460 	    TI_CDEVPRODADDR(sc);
1461 
1462 	sc->ti_ev_prodidx.ti_idx = 0;
1463 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1464 	sc->ti_ev_saved_considx = 0;
1465 
1466 	/* Set up the command ring and producer mailbox. */
1467 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1468 
1469 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1470 	rcb->ti_flags = 0;
1471 	rcb->ti_max_len = 0;
1472 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1473 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1474 	}
1475 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1476 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1477 	sc->ti_cmd_saved_prodidx = 0;
1478 
1479 	/*
1480 	 * Assign the address of the stats refresh buffer.
1481 	 * We re-use the current stats buffer for this to
1482 	 * conserve memory.
1483 	 */
1484 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1485 	    TI_CDSTATSADDR(sc);
1486 
1487 	/* Set up the standard receive ring. */
1488 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1489 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1490 	rcb->ti_max_len = ETHER_MAX_LEN;
1491 	rcb->ti_flags = 0;
1492 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1493 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1494 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1495 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1496 	if (sc->ethercom.ec_nvlans != 0)
1497 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1498 
1499 	/* Set up the jumbo receive ring. */
1500 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1501 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1502 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1503 	rcb->ti_flags = 0;
1504 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1505 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1506 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1507 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1508 	if (sc->ethercom.ec_nvlans != 0)
1509 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1510 
1511 	/*
1512 	 * Set up the mini ring. Only activated on the
1513 	 * Tigon 2 but the slot in the config block is
1514 	 * still there on the Tigon 1.
1515 	 */
1516 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1517 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1518 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1519 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1520 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1521 	else
1522 		rcb->ti_flags = 0;
1523 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1524 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1525 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1526 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1527 	if (sc->ethercom.ec_nvlans != 0)
1528 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1529 
1530 	/*
1531 	 * Set up the receive return ring.
1532 	 */
1533 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1534 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1535 	rcb->ti_flags = 0;
1536 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1537 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1538 	    TI_CDRTNPRODADDR(sc);
1539 
1540 	/*
1541 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1542 	 * of putting the transmit ring in the host's address space and
1543 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1544 	 * memory and accessing it through the shared memory region. We
1545 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1546 	 * so we have to revert to the shared memory scheme if we detect
1547 	 * a Tigon 1 chip.
1548 	 */
1549 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1550 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1551 		sc->ti_tx_ring_nic =
1552 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1553 	}
1554 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1555 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1556 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1557 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1558 		rcb->ti_flags = 0;
1559 	else
1560 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1561 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1562 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1563 	/*
1564 	 * When we get the packet, there is a pseudo-header seed already
1565 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
1566 	 * compute the pseudo-header checksum again!
1567 	 */
1568 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1569 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1570 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
1571 	if (sc->ethercom.ec_nvlans != 0)
1572 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1573 	rcb->ti_max_len = TI_TX_RING_CNT;
1574 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1575 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1576 	else
1577 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1578 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1579 	    TI_CDTXCONSADDR(sc);
1580 
1581 	/*
1582 	 * We're done frobbing the General Information Block.  Sync
1583 	 * it.  Note we take care of the first stats sync here, as
1584 	 * well.
1585 	 */
1586 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1587 
1588 	/* Set up tuneables */
1589 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1590 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1591 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1592 		    (sc->ti_rx_coal_ticks / 10));
1593 	else
1594 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1595 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1596 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1597 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1598 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1599 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1600 
1601 	/* Turn interrupts on. */
1602 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1603 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1604 
1605 	/* Start CPU. */
1606 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1607 
1608 	return(0);
1609 }
1610 
1611 /*
1612  * look for id in the device list, returning the first match
1613  */
1614 static const struct ti_type *
1615 ti_type_match(pa)
1616 	struct pci_attach_args *pa;
1617 {
1618 	const struct ti_type          *t;
1619 
1620 	t = ti_devs;
1621 	while(t->ti_name != NULL) {
1622 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1623 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1624 			return (t);
1625 		}
1626 		t++;
1627 	}
1628 
1629 	return(NULL);
1630 }
1631 
1632 /*
1633  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1634  * against our list and return its name if we find a match.
1635  */
1636 static int ti_probe(parent, match, aux)
1637 	struct device *parent;
1638 	struct cfdata *match;
1639 	void *aux;
1640 {
1641 	struct pci_attach_args *pa = aux;
1642 	const struct ti_type		*t;
1643 
1644 	t = ti_type_match(pa);
1645 
1646 	return((t == NULL) ? 0 : 1);
1647 }
1648 
1649 static void ti_attach(parent, self, aux)
1650 	struct device *parent, *self;
1651 	void *aux;
1652 {
1653 	u_int32_t		command;
1654 	struct ifnet		*ifp;
1655 	struct ti_softc		*sc;
1656 	u_char eaddr[ETHER_ADDR_LEN];
1657 	struct pci_attach_args *pa = aux;
1658 	pci_chipset_tag_t pc = pa->pa_pc;
1659 	pci_intr_handle_t ih;
1660 	const char *intrstr = NULL;
1661 	bus_dma_segment_t dmaseg;
1662 	int error, dmanseg, nolinear;
1663 	const struct ti_type		*t;
1664 
1665 	t = ti_type_match(pa);
1666 	if (t == NULL) {
1667 		printf("ti_attach: were did the card go ?\n");
1668 		return;
1669 	}
1670 
1671 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1672 
1673 	sc = (struct ti_softc *)self;
1674 
1675 	/*
1676 	 * Map control/status registers.
1677 	 */
1678 	nolinear = 0;
1679 	if (pci_mapreg_map(pa, 0x10,
1680 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1681 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1682 	    NULL, NULL)) {
1683 		nolinear = 1;
1684 		if (pci_mapreg_map(pa, 0x10,
1685 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1686 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1687 			printf(": can't map memory space\n");
1688 			return;
1689 		}
1690 	}
1691 	if (nolinear == 0)
1692 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1693 	else
1694 		sc->ti_vhandle = NULL;
1695 
1696 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1697 	command |= PCI_COMMAND_MASTER_ENABLE;
1698 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1699 
1700 	/* Allocate interrupt */
1701 	if (pci_intr_map(pa, &ih)) {
1702 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1703 		return;;
1704 	}
1705 	intrstr = pci_intr_string(pc, ih);
1706 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1707 	if (sc->sc_ih == NULL) {
1708 		printf("%s: couldn't establish interrupt",
1709 		    sc->sc_dev.dv_xname);
1710 		if (intrstr != NULL)
1711 			printf(" at %s", intrstr);
1712 		printf("\n");
1713 		return;;
1714 	}
1715 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1716 	/*
1717 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1718 	 * doing do could allow DMA to corrupt kernel memory during the
1719 	 * reboot before the driver initializes.
1720 	 */
1721 	(void) shutdownhook_establish(ti_shutdown, sc);
1722 
1723 	if (ti_chipinit(sc)) {
1724 		printf("%s: chip initialization failed\n", self->dv_xname);
1725 		goto fail2;
1726 	}
1727 
1728 	/*
1729 	 * Deal with some chip diffrences.
1730 	 */
1731 	switch (sc->ti_hwrev) {
1732 	case TI_HWREV_TIGON:
1733 		sc->sc_tx_encap = ti_encap_tigon1;
1734 		sc->sc_tx_eof = ti_txeof_tigon1;
1735 		if (nolinear == 1)
1736 			printf("%s: memory space not mapped linear\n",
1737 			    self->dv_xname);
1738 		break;
1739 
1740 	case TI_HWREV_TIGON_II:
1741 		sc->sc_tx_encap = ti_encap_tigon2;
1742 		sc->sc_tx_eof = ti_txeof_tigon2;
1743 		break;
1744 
1745 	default:
1746 		printf("%s: Unknown chip version: %d\n", self->dv_xname,
1747 		    sc->ti_hwrev);
1748 		goto fail2;
1749 	}
1750 
1751 	/* Zero out the NIC's on-board SRAM. */
1752 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1753 
1754 	/* Init again -- zeroing memory may have clobbered some registers. */
1755 	if (ti_chipinit(sc)) {
1756 		printf("%s: chip initialization failed\n", self->dv_xname);
1757 		goto fail2;
1758 	}
1759 
1760 	/*
1761 	 * Get station address from the EEPROM. Note: the manual states
1762 	 * that the MAC address is at offset 0x8c, however the data is
1763 	 * stored as two longwords (since that's how it's loaded into
1764 	 * the NIC). This means the MAC address is actually preceded
1765 	 * by two zero bytes. We need to skip over those.
1766 	 */
1767 	if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1768 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1769 		printf("%s: failed to read station address\n", self->dv_xname);
1770 		goto fail2;
1771 	}
1772 
1773 	/*
1774 	 * A Tigon chip was detected. Inform the world.
1775 	 */
1776 	printf("%s: Ethernet address: %s\n", self->dv_xname,
1777 				ether_sprintf(eaddr));
1778 
1779 	sc->sc_dmat = pa->pa_dmat;
1780 
1781 	/* Allocate the general information block and ring buffers. */
1782 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1783 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1784 	    BUS_DMA_NOWAIT)) != 0) {
1785 		printf("%s: can't allocate ring buffer, error = %d\n",
1786 		       sc->sc_dev.dv_xname, error);
1787 		goto fail2;
1788 	}
1789 
1790 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1791 	    sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1792 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1793 		printf("%s: can't map ring buffer, error = %d\n",
1794 		       sc->sc_dev.dv_xname, error);
1795 		goto fail2;
1796 	}
1797 
1798 	if ((error = bus_dmamap_create(sc->sc_dmat,
1799 	    sizeof(struct ti_ring_data), 1,
1800 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1801 	    &sc->info_dmamap)) != 0) {
1802 		printf("%s: can't create ring buffer DMA map, error = %d\n",
1803 		       sc->sc_dev.dv_xname, error);
1804 		goto fail2;
1805 	}
1806 
1807 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1808 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1809 	    BUS_DMA_NOWAIT)) != 0) {
1810 		printf("%s: can't load ring buffer DMA map, error = %d\n",
1811 		       sc->sc_dev.dv_xname, error);
1812 		goto fail2;
1813 	}
1814 
1815 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1816 
1817 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1818 
1819 	/* Try to allocate memory for jumbo buffers. */
1820 	if (ti_alloc_jumbo_mem(sc)) {
1821 		printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1822 		goto fail2;
1823 	}
1824 
1825 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1826 
1827 	/*
1828 	 * We really need a better way to tell a 1000baseT card
1829 	 * from a 1000baseSX one, since in theory there could be
1830 	 * OEMed 1000baseT cards from lame vendors who aren't
1831 	 * clever enough to change the PCI ID. For the moment
1832 	 * though, the AceNIC is the only copper card available.
1833 	 */
1834 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1835 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1836 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1837 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1838 		sc->ti_copper = 1;
1839 	else
1840 		sc->ti_copper = 0;
1841 
1842 	/* Set default tuneable values. */
1843 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1844 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1845 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1846 	sc->ti_rx_max_coal_bds = 64;
1847 	sc->ti_tx_max_coal_bds = 128;
1848 	sc->ti_tx_buf_ratio = 21;
1849 
1850 	/* Set up ifnet structure */
1851 	ifp = &sc->ethercom.ec_if;
1852 	ifp->if_softc = sc;
1853 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1854 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1855 	ifp->if_ioctl = ti_ioctl;
1856 	ifp->if_start = ti_start;
1857 	ifp->if_watchdog = ti_watchdog;
1858 	IFQ_SET_READY(&ifp->if_snd);
1859 
1860 #if 0
1861 	/*
1862 	 * XXX This is not really correct -- we don't necessarily
1863 	 * XXX want to queue up as many as we can transmit at the
1864 	 * XXX upper layer like that.  Someone with a board should
1865 	 * XXX check to see how this affects performance.
1866 	 */
1867 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1868 #endif
1869 
1870 	/*
1871 	 * We can support 802.1Q VLAN-sized frames.
1872 	 */
1873 	sc->ethercom.ec_capabilities |=
1874 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1875 
1876 	/*
1877 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1878 	 */
1879 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1880 	    IFCAP_CSUM_UDPv4;
1881 
1882 	/* Set up ifmedia support. */
1883 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1884 	if (sc->ti_copper) {
1885                 /*
1886                  * Copper cards allow manual 10/100 mode selection,
1887                  * but not manual 1000baseT mode selection. Why?
1888                  * Becuase currently there's no way to specify the
1889                  * master/slave setting through the firmware interface,
1890                  * so Alteon decided to just bag it and handle it
1891                  * via autonegotiation.
1892                  */
1893                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1894                 ifmedia_add(&sc->ifmedia,
1895                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1896                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1897                 ifmedia_add(&sc->ifmedia,
1898                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1899                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1900                 ifmedia_add(&sc->ifmedia,
1901                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1902 	} else {
1903 		/* Fiber cards don't support 10/100 modes. */
1904 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1905 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1906 	}
1907 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1908 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1909 
1910 	/*
1911 	 * Call MI attach routines.
1912 	 */
1913 	if_attach(ifp);
1914 	ether_ifattach(ifp, eaddr);
1915 
1916 	return;
1917 fail2:
1918 	pci_intr_disestablish(pc, sc->sc_ih);
1919 	return;
1920 }
1921 
1922 /*
1923  * Frame reception handling. This is called if there's a frame
1924  * on the receive return list.
1925  *
1926  * Note: we have to be able to handle three possibilities here:
1927  * 1) the frame is from the mini receive ring (can only happen)
1928  *    on Tigon 2 boards)
1929  * 2) the frame is from the jumbo receive ring
1930  * 3) the frame is from the standard receive ring
1931  */
1932 
1933 static void ti_rxeof(sc)
1934 	struct ti_softc		*sc;
1935 {
1936 	struct ifnet		*ifp;
1937 	struct ti_cmd_desc	cmd;
1938 
1939 	ifp = &sc->ethercom.ec_if;
1940 
1941 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1942 		struct ti_rx_desc	*cur_rx;
1943 		u_int32_t		rxidx;
1944 		struct mbuf		*m = NULL;
1945 		u_int16_t		vlan_tag = 0;
1946 		int			have_tag = 0;
1947 		struct ether_header	*eh;
1948 		bus_dmamap_t dmamap;
1949 
1950 		cur_rx =
1951 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1952 		rxidx = cur_rx->ti_idx;
1953 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1954 
1955 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1956 			have_tag = 1;
1957 			vlan_tag = cur_rx->ti_vlan_tag;
1958 		}
1959 
1960 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1961 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1962 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1963 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1964 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1965 				ifp->if_ierrors++;
1966 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1967 				continue;
1968 			}
1969 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1970 			    == ENOBUFS) {
1971 				ifp->if_ierrors++;
1972 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1973 				continue;
1974 			}
1975 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1976 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1977 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1978 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1979 			dmamap = sc->mini_dmamap[rxidx];
1980 			sc->mini_dmamap[rxidx] = 0;
1981 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1982 				ifp->if_ierrors++;
1983 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1984 				continue;
1985 			}
1986 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1987 			    == ENOBUFS) {
1988 				ifp->if_ierrors++;
1989 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1990 				continue;
1991 			}
1992 		} else {
1993 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1994 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1995 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1996 			dmamap = sc->std_dmamap[rxidx];
1997 			sc->std_dmamap[rxidx] = 0;
1998 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1999 				ifp->if_ierrors++;
2000 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2001 				continue;
2002 			}
2003 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2004 			    == ENOBUFS) {
2005 				ifp->if_ierrors++;
2006 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2007 				continue;
2008 			}
2009 		}
2010 
2011 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2012 		ifp->if_ipackets++;
2013 		m->m_pkthdr.rcvif = ifp;
2014 
2015 #if NBPFILTER > 0
2016 		/*
2017 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
2018 	 	 * don't pass it up to the ether_input() layer unless it's
2019 	 	 * a broadcast packet, multicast packet, matches our ethernet
2020 	 	 * address or the interface is in promiscuous mode.
2021 	 	 */
2022 		if (ifp->if_bpf)
2023 			bpf_mtap(ifp->if_bpf, m);
2024 #endif
2025 
2026 		eh = mtod(m, struct ether_header *);
2027 		switch (ntohs(eh->ether_type)) {
2028 #ifdef INET
2029 		case ETHERTYPE_IP:
2030 		    {
2031 			struct ip *ip = (struct ip *) (eh + 1);
2032 
2033 			/*
2034 			 * Note the Tigon firmware does not invert
2035 			 * the checksum for us, hence the XOR.
2036 			 */
2037 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2038 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2039 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2040 			/*
2041 			 * ntohs() the constant so the compiler can
2042 			 * optimize...
2043 			 *
2044 			 * XXX Figure out a sane way to deal with
2045 			 * fragmented packets.
2046 			 */
2047 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2048 				switch (ip->ip_p) {
2049 				case IPPROTO_TCP:
2050 					m->m_pkthdr.csum_data =
2051 					    cur_rx->ti_tcp_udp_cksum;
2052 					m->m_pkthdr.csum_flags |=
2053 					    M_CSUM_TCPv4|M_CSUM_DATA;
2054 					break;
2055 				case IPPROTO_UDP:
2056 					m->m_pkthdr.csum_data =
2057 					    cur_rx->ti_tcp_udp_cksum;
2058 					m->m_pkthdr.csum_flags |=
2059 					    M_CSUM_UDPv4|M_CSUM_DATA;
2060 					break;
2061 				default:
2062 					/* Nothing */;
2063 				}
2064 			}
2065 			break;
2066 		    }
2067 #endif
2068 		default:
2069 			/* Nothing. */
2070 			break;
2071 		}
2072 
2073 		if (have_tag) {
2074 			struct mbuf *n;
2075 			n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2076 			if (n) {
2077 				*mtod(n, int *) = vlan_tag;
2078 				n->m_len = sizeof(int);
2079 			} else {
2080 				printf("%s: no mbuf for tag\n", ifp->if_xname);
2081 				m_freem(m);
2082 				continue;
2083 			}
2084 			have_tag = vlan_tag = 0;
2085 		}
2086 		(*ifp->if_input)(ifp, m);
2087 	}
2088 
2089 	/* Only necessary on the Tigon 1. */
2090 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2091 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2092 		    sc->ti_rx_saved_considx);
2093 
2094 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2095 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2096 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2097 
2098 	return;
2099 }
2100 
2101 static void ti_txeof_tigon1(sc)
2102 	struct ti_softc		*sc;
2103 {
2104 	struct ti_tx_desc	*cur_tx = NULL;
2105 	struct ifnet		*ifp;
2106 	struct txdmamap_pool_entry *dma;
2107 
2108 	ifp = &sc->ethercom.ec_if;
2109 
2110 	/*
2111 	 * Go through our tx ring and free mbufs for those
2112 	 * frames that have been sent.
2113 	 */
2114 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2115 		u_int32_t		idx = 0;
2116 
2117 		idx = sc->ti_tx_saved_considx;
2118 		if (idx > 383)
2119 			CSR_WRITE_4(sc, TI_WINBASE,
2120 			    TI_TX_RING_BASE + 6144);
2121 		else if (idx > 255)
2122 			CSR_WRITE_4(sc, TI_WINBASE,
2123 			    TI_TX_RING_BASE + 4096);
2124 		else if (idx > 127)
2125 			CSR_WRITE_4(sc, TI_WINBASE,
2126 			    TI_TX_RING_BASE + 2048);
2127 		else
2128 			CSR_WRITE_4(sc, TI_WINBASE,
2129 			    TI_TX_RING_BASE);
2130 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2131 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2132 			ifp->if_opackets++;
2133 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2134 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2135 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2136 
2137 			dma = sc->txdma[idx];
2138 			KDASSERT(dma != NULL);
2139 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2140 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2141 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2142 
2143 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2144 			sc->txdma[idx] = NULL;
2145 		}
2146 		sc->ti_txcnt--;
2147 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2148 		ifp->if_timer = 0;
2149 	}
2150 
2151 	if (cur_tx != NULL)
2152 		ifp->if_flags &= ~IFF_OACTIVE;
2153 
2154 	return;
2155 }
2156 
2157 static void ti_txeof_tigon2(sc)
2158 	struct ti_softc		*sc;
2159 {
2160 	struct ti_tx_desc	*cur_tx = NULL;
2161 	struct ifnet		*ifp;
2162 	struct txdmamap_pool_entry *dma;
2163 	int firstidx, cnt;
2164 
2165 	ifp = &sc->ethercom.ec_if;
2166 
2167 	/*
2168 	 * Go through our tx ring and free mbufs for those
2169 	 * frames that have been sent.
2170 	 */
2171 	firstidx = sc->ti_tx_saved_considx;
2172 	cnt = 0;
2173 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2174 		u_int32_t		idx = 0;
2175 
2176 		idx = sc->ti_tx_saved_considx;
2177 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2178 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2179 			ifp->if_opackets++;
2180 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2181 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2182 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2183 
2184 			dma = sc->txdma[idx];
2185 			KDASSERT(dma != NULL);
2186 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2187 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2188 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2189 
2190 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2191 			sc->txdma[idx] = NULL;
2192 		}
2193 		cnt++;
2194 		sc->ti_txcnt--;
2195 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2196 		ifp->if_timer = 0;
2197 	}
2198 
2199 	if (cnt != 0)
2200 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2201 
2202 	if (cur_tx != NULL)
2203 		ifp->if_flags &= ~IFF_OACTIVE;
2204 
2205 	return;
2206 }
2207 
2208 static int ti_intr(xsc)
2209 	void			*xsc;
2210 {
2211 	struct ti_softc		*sc;
2212 	struct ifnet		*ifp;
2213 
2214 	sc = xsc;
2215 	ifp = &sc->ethercom.ec_if;
2216 
2217 #ifdef notdef
2218 	/* Avoid this for now -- checking this register is expensive. */
2219 	/* Make sure this is really our interrupt. */
2220 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2221 		return (0);
2222 #endif
2223 
2224 	/* Ack interrupt and stop others from occuring. */
2225 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2226 
2227 	if (ifp->if_flags & IFF_RUNNING) {
2228 		/* Check RX return ring producer/consumer */
2229 		ti_rxeof(sc);
2230 
2231 		/* Check TX ring producer/consumer */
2232 		(*sc->sc_tx_eof)(sc);
2233 	}
2234 
2235 	ti_handle_events(sc);
2236 
2237 	/* Re-enable interrupts. */
2238 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2239 
2240 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2241 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2242 		ti_start(ifp);
2243 
2244 	return (1);
2245 }
2246 
2247 static void ti_stats_update(sc)
2248 	struct ti_softc		*sc;
2249 {
2250 	struct ifnet		*ifp;
2251 
2252 	ifp = &sc->ethercom.ec_if;
2253 
2254 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2255 
2256 	ifp->if_collisions +=
2257 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2258 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2259 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2260 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2261 	   ifp->if_collisions;
2262 
2263 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2264 }
2265 
2266 /*
2267  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2268  * pointers to descriptors.
2269  */
2270 static int ti_encap_tigon1(sc, m_head, txidx)
2271 	struct ti_softc		*sc;
2272 	struct mbuf		*m_head;
2273 	u_int32_t		*txidx;
2274 {
2275 	struct ti_tx_desc	*f = NULL;
2276 	u_int32_t		frag, cur, cnt = 0;
2277 	struct txdmamap_pool_entry *dma;
2278 	bus_dmamap_t dmamap;
2279 	int error, i;
2280 	struct mbuf *n;
2281 	u_int16_t csum_flags = 0;
2282 
2283 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2284 	if (dma == NULL) {
2285 		return ENOMEM;
2286 	}
2287 	dmamap = dma->dmamap;
2288 
2289 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2290 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2291 	if (error) {
2292 		struct mbuf *m;
2293 		int i = 0;
2294 		for (m = m_head; m; m = m->m_next)
2295 			i++;
2296 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2297 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2298 		return (ENOMEM);
2299 	}
2300 
2301 	cur = frag = *txidx;
2302 
2303 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2304 		/* IP header checksum field must be 0! */
2305 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2306 	}
2307 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2308 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2309 
2310 	/* XXX fragmented packet checksum capability? */
2311 
2312 	/*
2313  	 * Start packing the mbufs in this chain into
2314 	 * the fragment pointers. Stop when we run out
2315  	 * of fragments or hit the end of the mbuf chain.
2316 	 */
2317 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2318 		if (frag > 383)
2319 			CSR_WRITE_4(sc, TI_WINBASE,
2320 			    TI_TX_RING_BASE + 6144);
2321 		else if (frag > 255)
2322 			CSR_WRITE_4(sc, TI_WINBASE,
2323 			    TI_TX_RING_BASE + 4096);
2324 		else if (frag > 127)
2325 			CSR_WRITE_4(sc, TI_WINBASE,
2326 			    TI_TX_RING_BASE + 2048);
2327 		else
2328 			CSR_WRITE_4(sc, TI_WINBASE,
2329 			    TI_TX_RING_BASE);
2330 		f = &sc->ti_tx_ring_nic[frag % 128];
2331 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2332 			break;
2333 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2334 		f->ti_len = dmamap->dm_segs[i].ds_len;
2335 		f->ti_flags = csum_flags;
2336 		n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2337 		if (n) {
2338 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2339 			f->ti_vlan_tag = *mtod(n, int *);
2340 		} else {
2341 			f->ti_vlan_tag = 0;
2342 		}
2343 		/*
2344 		 * Sanity check: avoid coming within 16 descriptors
2345 		 * of the end of the ring.
2346 		 */
2347 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2348 			return(ENOBUFS);
2349 		cur = frag;
2350 		TI_INC(frag, TI_TX_RING_CNT);
2351 		cnt++;
2352 	}
2353 
2354 	if (i < dmamap->dm_nsegs)
2355 		return(ENOBUFS);
2356 
2357 	if (frag == sc->ti_tx_saved_considx)
2358 		return(ENOBUFS);
2359 
2360 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2361 	    TI_BDFLAG_END;
2362 
2363 	/* Sync the packet's DMA map. */
2364 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2365 	    BUS_DMASYNC_PREWRITE);
2366 
2367 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2368 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2369 	sc->txdma[cur] = dma;
2370 	sc->ti_txcnt += cnt;
2371 
2372 	*txidx = frag;
2373 
2374 	return(0);
2375 }
2376 
2377 static int ti_encap_tigon2(sc, m_head, txidx)
2378 	struct ti_softc		*sc;
2379 	struct mbuf		*m_head;
2380 	u_int32_t		*txidx;
2381 {
2382 	struct ti_tx_desc	*f = NULL;
2383 	u_int32_t		frag, firstfrag, cur, cnt = 0;
2384 	struct txdmamap_pool_entry *dma;
2385 	bus_dmamap_t dmamap;
2386 	int error, i;
2387 	struct mbuf *n;
2388 	u_int16_t csum_flags = 0;
2389 
2390 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2391 	if (dma == NULL) {
2392 		return ENOMEM;
2393 	}
2394 	dmamap = dma->dmamap;
2395 
2396 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2397 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2398 	if (error) {
2399 		struct mbuf *m;
2400 		int i = 0;
2401 		for (m = m_head; m; m = m->m_next)
2402 			i++;
2403 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2404 		       "error %d\n", m_head->m_pkthdr.len, i, error);
2405 		return (ENOMEM);
2406 	}
2407 
2408 	cur = firstfrag = frag = *txidx;
2409 
2410 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2411 		/* IP header checksum field must be 0! */
2412 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2413 	}
2414 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2415 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2416 
2417 	/* XXX fragmented packet checksum capability? */
2418 
2419 	/*
2420  	 * Start packing the mbufs in this chain into
2421 	 * the fragment pointers. Stop when we run out
2422  	 * of fragments or hit the end of the mbuf chain.
2423 	 */
2424 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2425 		f = &sc->ti_rdata->ti_tx_ring[frag];
2426 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2427 			break;
2428 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2429 		f->ti_len = dmamap->dm_segs[i].ds_len;
2430 		f->ti_flags = csum_flags;
2431 		n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2432 		if (n) {
2433 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2434 			f->ti_vlan_tag = *mtod(n, int *);
2435 		} else {
2436 			f->ti_vlan_tag = 0;
2437 		}
2438 		/*
2439 		 * Sanity check: avoid coming within 16 descriptors
2440 		 * of the end of the ring.
2441 		 */
2442 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2443 			return(ENOBUFS);
2444 		cur = frag;
2445 		TI_INC(frag, TI_TX_RING_CNT);
2446 		cnt++;
2447 	}
2448 
2449 	if (i < dmamap->dm_nsegs)
2450 		return(ENOBUFS);
2451 
2452 	if (frag == sc->ti_tx_saved_considx)
2453 		return(ENOBUFS);
2454 
2455 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2456 
2457 	/* Sync the packet's DMA map. */
2458 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2459 	    BUS_DMASYNC_PREWRITE);
2460 
2461 	/* Sync the descriptors we are using. */
2462 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2463 
2464 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2465 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2466 	sc->txdma[cur] = dma;
2467 	sc->ti_txcnt += cnt;
2468 
2469 	*txidx = frag;
2470 
2471 	return(0);
2472 }
2473 
2474 /*
2475  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2476  * to the mbuf data regions directly in the transmit descriptors.
2477  */
2478 static void ti_start(ifp)
2479 	struct ifnet		*ifp;
2480 {
2481 	struct ti_softc		*sc;
2482 	struct mbuf		*m_head = NULL;
2483 	u_int32_t		prodidx = 0;
2484 
2485 	sc = ifp->if_softc;
2486 
2487 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2488 
2489 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2490 		IFQ_POLL(&ifp->if_snd, m_head);
2491 		if (m_head == NULL)
2492 			break;
2493 
2494 		/*
2495 		 * Pack the data into the transmit ring. If we
2496 		 * don't have room, set the OACTIVE flag and wait
2497 		 * for the NIC to drain the ring.
2498 		 */
2499 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2500 			ifp->if_flags |= IFF_OACTIVE;
2501 			break;
2502 		}
2503 
2504 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2505 
2506 		/*
2507 		 * If there's a BPF listener, bounce a copy of this frame
2508 		 * to him.
2509 		 */
2510 #if NBPFILTER > 0
2511 		if (ifp->if_bpf)
2512 			bpf_mtap(ifp->if_bpf, m_head);
2513 #endif
2514 	}
2515 
2516 	/* Transmit */
2517 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2518 
2519 	/*
2520 	 * Set a timeout in case the chip goes out to lunch.
2521 	 */
2522 	ifp->if_timer = 5;
2523 
2524 	return;
2525 }
2526 
2527 static void ti_init(xsc)
2528 	void			*xsc;
2529 {
2530 	struct ti_softc		*sc = xsc;
2531         int			s;
2532 
2533 	s = splnet();
2534 
2535 	/* Cancel pending I/O and flush buffers. */
2536 	ti_stop(sc);
2537 
2538 	/* Init the gen info block, ring control blocks and firmware. */
2539 	if (ti_gibinit(sc)) {
2540 		printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2541 		splx(s);
2542 		return;
2543 	}
2544 
2545 	splx(s);
2546 
2547 	return;
2548 }
2549 
2550 static void ti_init2(sc)
2551 	struct ti_softc		*sc;
2552 {
2553 	struct ti_cmd_desc	cmd;
2554 	struct ifnet		*ifp;
2555 	u_int8_t		*m;
2556 	struct ifmedia		*ifm;
2557 	int			tmp;
2558 
2559 	ifp = &sc->ethercom.ec_if;
2560 
2561 	/* Specify MTU and interface index. */
2562 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2563 
2564 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2565 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2566 		tmp += ETHER_VLAN_ENCAP_LEN;
2567 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2568 
2569 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2570 
2571 	/* Load our MAC address. */
2572 	m = (u_int8_t *)LLADDR(ifp->if_sadl);
2573 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2574 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2575 		    | (m[4] << 8) | m[5]);
2576 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2577 
2578 	/* Enable or disable promiscuous mode as needed. */
2579 	if (ifp->if_flags & IFF_PROMISC) {
2580 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2581 	} else {
2582 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2583 	}
2584 
2585 	/* Program multicast filter. */
2586 	ti_setmulti(sc);
2587 
2588 	/*
2589 	 * If this is a Tigon 1, we should tell the
2590 	 * firmware to use software packet filtering.
2591 	 */
2592 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2593 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2594 	}
2595 
2596 	/* Init RX ring. */
2597 	ti_init_rx_ring_std(sc);
2598 
2599 	/* Init jumbo RX ring. */
2600 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2601 		ti_init_rx_ring_jumbo(sc);
2602 
2603 	/*
2604 	 * If this is a Tigon 2, we can also configure the
2605 	 * mini ring.
2606 	 */
2607 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2608 		ti_init_rx_ring_mini(sc);
2609 
2610 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2611 	sc->ti_rx_saved_considx = 0;
2612 
2613 	/* Init TX ring. */
2614 	ti_init_tx_ring(sc);
2615 
2616 	/* Tell firmware we're alive. */
2617 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2618 
2619 	/* Enable host interrupts. */
2620 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2621 
2622 	ifp->if_flags |= IFF_RUNNING;
2623 	ifp->if_flags &= ~IFF_OACTIVE;
2624 
2625 	/*
2626 	 * Make sure to set media properly. We have to do this
2627 	 * here since we have to issue commands in order to set
2628 	 * the link negotiation and we can't issue commands until
2629 	 * the firmware is running.
2630 	 */
2631 	ifm = &sc->ifmedia;
2632 	tmp = ifm->ifm_media;
2633 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2634 	ti_ifmedia_upd(ifp);
2635 	ifm->ifm_media = tmp;
2636 
2637 	return;
2638 }
2639 
2640 /*
2641  * Set media options.
2642  */
2643 static int ti_ifmedia_upd(ifp)
2644 	struct ifnet		*ifp;
2645 {
2646 	struct ti_softc		*sc;
2647 	struct ifmedia		*ifm;
2648 	struct ti_cmd_desc	cmd;
2649 
2650 	sc = ifp->if_softc;
2651 	ifm = &sc->ifmedia;
2652 
2653 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2654 		return(EINVAL);
2655 
2656 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2657 	case IFM_AUTO:
2658 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2659 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2660 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2661 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2662 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2663 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2664 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2665 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2666 		break;
2667 	case IFM_1000_SX:
2668 	case IFM_1000_T:
2669 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2670 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2671 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2672 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2673 		} else {
2674 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2675 			    TI_GLNK_PREF|TI_GLNK_1000MB|
2676 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2677 		}
2678 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2679 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2680 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2681 		break;
2682 	case IFM_100_FX:
2683 	case IFM_10_FL:
2684 	case IFM_100_TX:
2685 	case IFM_10_T:
2686 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2687 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2688 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2689 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2690 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2691 		} else {
2692 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2693 		}
2694 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2695 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2696 		} else {
2697 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2698 		}
2699 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2700 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2701 		break;
2702 	}
2703 
2704 	sc->ethercom.ec_if.if_baudrate =
2705 	    ifmedia_baudrate(ifm->ifm_media);
2706 
2707 	return(0);
2708 }
2709 
2710 /*
2711  * Report current media status.
2712  */
2713 static void ti_ifmedia_sts(ifp, ifmr)
2714 	struct ifnet		*ifp;
2715 	struct ifmediareq	*ifmr;
2716 {
2717 	struct ti_softc		*sc;
2718 	u_int32_t               media = 0;
2719 
2720 	sc = ifp->if_softc;
2721 
2722 	ifmr->ifm_status = IFM_AVALID;
2723 	ifmr->ifm_active = IFM_ETHER;
2724 
2725 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2726 		return;
2727 
2728 	ifmr->ifm_status |= IFM_ACTIVE;
2729 
2730 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2731 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2732 		if (sc->ti_copper)
2733 			ifmr->ifm_active |= IFM_1000_T;
2734 		else
2735 			ifmr->ifm_active |= IFM_1000_SX;
2736 		if (media & TI_GLNK_FULL_DUPLEX)
2737 			ifmr->ifm_active |= IFM_FDX;
2738 		else
2739 			ifmr->ifm_active |= IFM_HDX;
2740 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2741 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2742 		if (sc->ti_copper) {
2743 			if (media & TI_LNK_100MB)
2744 				ifmr->ifm_active |= IFM_100_TX;
2745 			if (media & TI_LNK_10MB)
2746 				ifmr->ifm_active |= IFM_10_T;
2747 		} else {
2748 			if (media & TI_LNK_100MB)
2749 				ifmr->ifm_active |= IFM_100_FX;
2750 			if (media & TI_LNK_10MB)
2751 				ifmr->ifm_active |= IFM_10_FL;
2752 		}
2753 		if (media & TI_LNK_FULL_DUPLEX)
2754 			ifmr->ifm_active |= IFM_FDX;
2755 		if (media & TI_LNK_HALF_DUPLEX)
2756 			ifmr->ifm_active |= IFM_HDX;
2757 	}
2758 
2759 	sc->ethercom.ec_if.if_baudrate =
2760 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2761 
2762 	return;
2763 }
2764 
2765 static int
2766 ti_ether_ioctl(ifp, cmd, data)
2767 	struct ifnet *ifp;
2768 	u_long cmd;
2769 	caddr_t data;
2770 {
2771 	struct ifaddr *ifa = (struct ifaddr *) data;
2772 	struct ti_softc *sc = ifp->if_softc;
2773 
2774 	if ((ifp->if_flags & IFF_UP) == 0) {
2775 		ifp->if_flags |= IFF_UP;
2776 		ti_init(sc);
2777 	}
2778 
2779 	switch (cmd) {
2780 	case SIOCSIFADDR:
2781 
2782 		switch (ifa->ifa_addr->sa_family) {
2783 #ifdef INET
2784 		case AF_INET:
2785 			arp_ifinit(ifp, ifa);
2786 			break;
2787 #endif
2788 #ifdef NS
2789 		case AF_NS:
2790 		    {
2791 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2792 
2793 			 if (ns_nullhost(*ina))
2794 				ina->x_host = *(union ns_host *)
2795 				    LLADDR(ifp->if_sadl);
2796 			 else
2797 				memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2798 				    ifp->if_addrlen);
2799 			 break;
2800 		    }
2801 #endif
2802 		default:
2803 			break;
2804 		}
2805 		break;
2806 
2807 	default:
2808 		return (EINVAL);
2809 	}
2810 
2811 	return (0);
2812 }
2813 
2814 static int ti_ioctl(ifp, command, data)
2815 	struct ifnet		*ifp;
2816 	u_long			command;
2817 	caddr_t			data;
2818 {
2819 	struct ti_softc		*sc = ifp->if_softc;
2820 	struct ifreq		*ifr = (struct ifreq *) data;
2821 	int			s, error = 0;
2822 	struct ti_cmd_desc	cmd;
2823 
2824 	s = splnet();
2825 
2826 	switch(command) {
2827 	case SIOCSIFADDR:
2828 	case SIOCGIFADDR:
2829 		error = ti_ether_ioctl(ifp, command, data);
2830 		break;
2831 	case SIOCSIFMTU:
2832 		if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2833 			error = EINVAL;
2834 		else {
2835 			ifp->if_mtu = ifr->ifr_mtu;
2836 			ti_init(sc);
2837 		}
2838 		break;
2839 	case SIOCSIFFLAGS:
2840 		if (ifp->if_flags & IFF_UP) {
2841 			/*
2842 			 * If only the state of the PROMISC flag changed,
2843 			 * then just use the 'set promisc mode' command
2844 			 * instead of reinitializing the entire NIC. Doing
2845 			 * a full re-init means reloading the firmware and
2846 			 * waiting for it to start up, which may take a
2847 			 * second or two.
2848 			 */
2849 			if (ifp->if_flags & IFF_RUNNING &&
2850 			    ifp->if_flags & IFF_PROMISC &&
2851 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2852 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2853 				    TI_CMD_CODE_PROMISC_ENB, 0);
2854 			} else if (ifp->if_flags & IFF_RUNNING &&
2855 			    !(ifp->if_flags & IFF_PROMISC) &&
2856 			    sc->ti_if_flags & IFF_PROMISC) {
2857 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2858 				    TI_CMD_CODE_PROMISC_DIS, 0);
2859 			} else
2860 				ti_init(sc);
2861 		} else {
2862 			if (ifp->if_flags & IFF_RUNNING) {
2863 				ti_stop(sc);
2864 			}
2865 		}
2866 		sc->ti_if_flags = ifp->if_flags;
2867 		error = 0;
2868 		break;
2869 	case SIOCADDMULTI:
2870 	case SIOCDELMULTI:
2871 		error = (command == SIOCADDMULTI) ?
2872 		    ether_addmulti(ifr, &sc->ethercom) :
2873 		    ether_delmulti(ifr, &sc->ethercom);
2874 		if (error == ENETRESET) {
2875 			if (ifp->if_flags & IFF_RUNNING)
2876 				ti_setmulti(sc);
2877 			error = 0;
2878 		}
2879 		break;
2880 	case SIOCSIFMEDIA:
2881 	case SIOCGIFMEDIA:
2882 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2883 		break;
2884 	default:
2885 		error = EINVAL;
2886 		break;
2887 	}
2888 
2889 	(void)splx(s);
2890 
2891 	return(error);
2892 }
2893 
2894 static void ti_watchdog(ifp)
2895 	struct ifnet		*ifp;
2896 {
2897 	struct ti_softc		*sc;
2898 
2899 	sc = ifp->if_softc;
2900 
2901 	printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2902 	ti_stop(sc);
2903 	ti_init(sc);
2904 
2905 	ifp->if_oerrors++;
2906 
2907 	return;
2908 }
2909 
2910 /*
2911  * Stop the adapter and free any mbufs allocated to the
2912  * RX and TX lists.
2913  */
2914 static void ti_stop(sc)
2915 	struct ti_softc		*sc;
2916 {
2917 	struct ifnet		*ifp;
2918 	struct ti_cmd_desc	cmd;
2919 
2920 	ifp = &sc->ethercom.ec_if;
2921 
2922 	/* Disable host interrupts. */
2923 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2924 	/*
2925 	 * Tell firmware we're shutting down.
2926 	 */
2927 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2928 
2929 	/* Halt and reinitialize. */
2930 	ti_chipinit(sc);
2931 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2932 	ti_chipinit(sc);
2933 
2934 	/* Free the RX lists. */
2935 	ti_free_rx_ring_std(sc);
2936 
2937 	/* Free jumbo RX list. */
2938 	ti_free_rx_ring_jumbo(sc);
2939 
2940 	/* Free mini RX list. */
2941 	ti_free_rx_ring_mini(sc);
2942 
2943 	/* Free TX buffers. */
2944 	ti_free_tx_ring(sc);
2945 
2946 	sc->ti_ev_prodidx.ti_idx = 0;
2947 	sc->ti_return_prodidx.ti_idx = 0;
2948 	sc->ti_tx_considx.ti_idx = 0;
2949 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2950 
2951 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2952 
2953 	return;
2954 }
2955 
2956 /*
2957  * Stop all chip I/O so that the kernel's probe routines don't
2958  * get confused by errant DMAs when rebooting.
2959  */
2960 static void ti_shutdown(v)
2961 	void *v;
2962 {
2963 	struct ti_softc		*sc = v;
2964 
2965 	ti_chipinit(sc);
2966 
2967 	return;
2968 }
2969