xref: /netbsd/sys/dev/pci/mly.c (revision bf9ec67e)
1 /*	$NetBSD: mly.c,v 1.9 2002/01/14 13:23:36 tsutsui Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 2000, 2001 Michael Smith
41  * Copyright (c) 2000 BSDi
42  * All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
66  */
67 
68 /*
69  * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
70  *
71  * TODO:
72  *
73  * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
74  * o Handle FC and multiple LUNs.
75  * o Fix mmbox usage.
76  * o Fix transfer speed fudge.
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: mly.c,v 1.9 2002/01/14 13:23:36 tsutsui Exp $");
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/device.h>
85 #include <sys/kernel.h>
86 #include <sys/queue.h>
87 #include <sys/buf.h>
88 #include <sys/endian.h>
89 #include <sys/conf.h>
90 #include <sys/malloc.h>
91 #include <sys/ioctl.h>
92 #include <sys/scsiio.h>
93 #include <sys/kthread.h>
94 
95 #include <uvm/uvm_extern.h>
96 
97 #include <machine/bus.h>
98 
99 #include <dev/scsipi/scsi_all.h>
100 #include <dev/scsipi/scsipi_all.h>
101 #include <dev/scsipi/scsiconf.h>
102 
103 #include <dev/pci/pcireg.h>
104 #include <dev/pci/pcivar.h>
105 #include <dev/pci/pcidevs.h>
106 
107 #include <dev/pci/mlyreg.h>
108 #include <dev/pci/mlyio.h>
109 #include <dev/pci/mlyvar.h>
110 #include <dev/pci/mly_tables.h>
111 
112 static void	mly_attach(struct device *, struct device *, void *);
113 static int	mly_match(struct device *, struct cfdata *, void *);
114 static const	struct mly_ident *mly_find_ident(struct pci_attach_args *);
115 static int	mly_fwhandshake(struct mly_softc *);
116 static int	mly_flush(struct mly_softc *);
117 static int	mly_intr(void *);
118 static void	mly_shutdown(void *);
119 
120 static int	mly_alloc_ccbs(struct mly_softc *);
121 static void	mly_check_event(struct mly_softc *);
122 static void	mly_complete_event(struct mly_softc *, struct mly_ccb *);
123 static void	mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
124 static int	mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
125 				 caddr_t *, bus_addr_t *, bus_dma_segment_t *);
126 static void	mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
127 				caddr_t, bus_dma_segment_t *);
128 static int	mly_enable_mmbox(struct mly_softc *);
129 static void	mly_fetch_event(struct mly_softc *);
130 static int	mly_get_controllerinfo(struct mly_softc *);
131 static int	mly_get_eventstatus(struct mly_softc *);
132 static int	mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
133 			  void **, size_t, void *, size_t *);
134 static void	mly_padstr(char *, const char *, int);
135 static void	mly_process_event(struct mly_softc *, struct mly_event *);
136 static void	mly_release_ccbs(struct mly_softc *);
137 static int	mly_scan_btl(struct mly_softc *, int, int);
138 static void	mly_scan_channel(struct mly_softc *, int);
139 static void	mly_thread(void *);
140 static void	mly_thread_create(void *);
141 
142 static int	mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
143 static void	mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
144 static void	mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
145 static void	mly_ccb_free(struct mly_softc *, struct mly_ccb *);
146 static int	mly_ccb_map(struct mly_softc *, struct mly_ccb *);
147 static int	mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
148 static int	mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
149 static void	mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
150 static int	mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
151 
152 static void	mly_get_xfer_mode(struct mly_softc *, int,
153 				  struct scsipi_xfer_mode *);
154 static void	mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
155 static int	mly_scsipi_ioctl(struct scsipi_channel *, u_long, caddr_t,
156 				 int, struct proc *);
157 static void	mly_scsipi_minphys(struct buf *);
158 static void	mly_scsipi_request(struct scsipi_channel *,
159 				   scsipi_adapter_req_t, void *);
160 
161 static int	mly_user_command(struct mly_softc *, struct mly_user_command *);
162 static int	mly_user_health(struct mly_softc *, struct mly_user_health *);
163 
164 cdev_decl(mly);
165 
166 extern struct	cfdriver mly_cd;
167 
168 struct cfattach mly_ca = {
169 	sizeof(struct mly_softc), mly_match, mly_attach
170 };
171 
172 struct mly_ident {
173 	u_short	vendor;
174 	u_short	product;
175 	u_short	subvendor;
176 	u_short	subproduct;
177 	int	hwif;
178 	const char	*desc;
179 } static const mly_ident[] = {
180 	{
181 		PCI_VENDOR_MYLEX,
182 		PCI_PRODUCT_MYLEX_EXTREMERAID,
183 		PCI_VENDOR_MYLEX,
184 		0x0040,
185 		MLY_HWIF_STRONGARM,
186 		"eXtremeRAID 2000"
187 	},
188 	{
189 		PCI_VENDOR_MYLEX,
190 		PCI_PRODUCT_MYLEX_EXTREMERAID,
191 		PCI_VENDOR_MYLEX,
192 		0x0030,
193 		MLY_HWIF_STRONGARM,
194 		"eXtremeRAID 3000"
195 	},
196 	{
197 		PCI_VENDOR_MYLEX,
198 		PCI_PRODUCT_MYLEX_ACCELERAID,
199 		PCI_VENDOR_MYLEX,
200 		0x0050,
201 		MLY_HWIF_I960RX,
202 		"AcceleRAID 352"
203 	},
204 	{
205 		PCI_VENDOR_MYLEX,
206 		PCI_PRODUCT_MYLEX_ACCELERAID,
207 		PCI_VENDOR_MYLEX,
208 		0x0052,
209 		MLY_HWIF_I960RX,
210 		"AcceleRAID 170"
211 	},
212 	{
213 		PCI_VENDOR_MYLEX,
214 		PCI_PRODUCT_MYLEX_ACCELERAID,
215 		PCI_VENDOR_MYLEX,
216 		0x0054,
217 		MLY_HWIF_I960RX,
218 		"AcceleRAID 160"
219 	},
220 };
221 
222 static void	*mly_sdh;
223 
224 /*
225  * Try to find a `mly_ident' entry corresponding to this board.
226  */
227 static const struct mly_ident *
228 mly_find_ident(struct pci_attach_args *pa)
229 {
230 	const struct mly_ident *mpi, *maxmpi;
231 	pcireg_t reg;
232 
233 	mpi = mly_ident;
234 	maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
235 
236 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
237 		return (NULL);
238 
239 	for (; mpi < maxmpi; mpi++) {
240 		if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
241 		    PCI_PRODUCT(pa->pa_id) != mpi->product)
242 			continue;
243 
244 		if (mpi->subvendor == 0x0000)
245 			return (mpi);
246 
247 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
248 
249 		if (PCI_VENDOR(reg) == mpi->subvendor &&
250 		    PCI_PRODUCT(reg) == mpi->subproduct)
251 			return (mpi);
252 	}
253 
254 	return (NULL);
255 }
256 
257 /*
258  * Match a supported board.
259  */
260 static int
261 mly_match(struct device *parent, struct cfdata *cfdata, void *aux)
262 {
263 
264 	return (mly_find_ident(aux) != NULL);
265 }
266 
267 /*
268  * Attach a supported board.
269  */
270 static void
271 mly_attach(struct device *parent, struct device *self, void *aux)
272 {
273 	struct pci_attach_args *pa;
274 	struct mly_softc *mly;
275 	struct mly_ioctl_getcontrollerinfo *mi;
276 	const struct mly_ident *ident;
277 	pci_chipset_tag_t pc;
278 	pci_intr_handle_t ih;
279 	bus_space_handle_t memh, ioh;
280 	bus_space_tag_t memt, iot;
281 	pcireg_t reg;
282 	const char *intrstr;
283 	int ior, memr, i, rv, state;
284 	struct scsipi_adapter *adapt;
285 	struct scsipi_channel *chan;
286 
287 	mly = (struct mly_softc *)self;
288 	pa = aux;
289 	pc = pa->pa_pc;
290 	ident = mly_find_ident(pa);
291 	state = 0;
292 
293 	mly->mly_dmat = pa->pa_dmat;
294 	mly->mly_hwif = ident->hwif;
295 
296 	printf(": Mylex %s\n", ident->desc);
297 
298 	/*
299 	 * Map the PCI register window.
300 	 */
301 	memr = -1;
302 	ior = -1;
303 
304 	for (i = 0x10; i <= 0x14; i += 4) {
305 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
306 
307 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
308 			if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
309 				ior = i;
310 		} else {
311 			if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
312 				memr = i;
313 		}
314 	}
315 
316 	if (memr != -1)
317 		if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
318 		    &memt, &memh, NULL, NULL))
319 			memr = -1;
320 	if (ior != -1)
321 		if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
322 		    &iot, &ioh, NULL, NULL))
323 		    	ior = -1;
324 
325 	if (memr != -1) {
326 		mly->mly_iot = memt;
327 		mly->mly_ioh = memh;
328 	} else if (ior != -1) {
329 		mly->mly_iot = iot;
330 		mly->mly_ioh = ioh;
331 	} else {
332 		printf("%s: can't map i/o or memory space\n", self->dv_xname);
333 		return;
334 	}
335 
336 	/*
337 	 * Enable the device.
338 	 */
339 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
340 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
341 	    reg | PCI_COMMAND_MASTER_ENABLE);
342 
343 	/*
344 	 * Map and establish the interrupt.
345 	 */
346 	if (pci_intr_map(pa, &ih)) {
347 		printf("%s: can't map interrupt\n", self->dv_xname);
348 		return;
349 	}
350 	intrstr = pci_intr_string(pc, ih);
351 	mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
352 	if (mly->mly_ih == NULL) {
353 		printf("%s: can't establish interrupt", self->dv_xname);
354 		if (intrstr != NULL)
355 			printf(" at %s", intrstr);
356 		printf("\n");
357 		return;
358 	}
359 
360 	if (intrstr != NULL)
361 		printf("%s: interrupting at %s\n", mly->mly_dv.dv_xname,
362 		    intrstr);
363 
364 	/*
365 	 * Take care of interface-specific tasks.
366 	 */
367 	switch (mly->mly_hwif) {
368 	case MLY_HWIF_I960RX:
369 		mly->mly_doorbell_true = 0x00;
370 		mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
371 		mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
372 		mly->mly_idbr = MLY_I960RX_IDBR;
373 		mly->mly_odbr = MLY_I960RX_ODBR;
374 		mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
375 		mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
376 		mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
377 		break;
378 
379 	case MLY_HWIF_STRONGARM:
380 		mly->mly_doorbell_true = 0xff;
381 		mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
382 		mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
383 		mly->mly_idbr = MLY_STRONGARM_IDBR;
384 		mly->mly_odbr = MLY_STRONGARM_ODBR;
385 		mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
386 		mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
387 		mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
388 		break;
389 	}
390 
391 	/*
392 	 * Allocate and map the scatter/gather lists.
393 	 */
394 	rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
395 	    &mly->mly_sg_dmamap, (caddr_t *)&mly->mly_sg,
396 	    &mly->mly_sg_busaddr, &mly->mly_sg_seg);
397 	if (rv) {
398 		printf("%s: unable to allocate S/G maps\n",
399 		    mly->mly_dv.dv_xname);
400 		goto bad;
401 	}
402 	state++;
403 
404 	/*
405 	 * Allocate and map the memory mailbox.
406 	 */
407 	rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
408 	    &mly->mly_mmbox_dmamap, (caddr_t *)&mly->mly_mmbox,
409 	    &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
410 	if (rv) {
411 		printf("%s: unable to allocate mailboxes\n",
412 		    mly->mly_dv.dv_xname);
413 		goto bad;
414 	}
415 	state++;
416 
417 	/*
418 	 * Initialise per-controller queues.
419 	 */
420 	SLIST_INIT(&mly->mly_ccb_free);
421 	SIMPLEQ_INIT(&mly->mly_ccb_queue);
422 
423 	/*
424 	 * Disable interrupts before we start talking to the controller.
425 	 */
426 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
427 
428 	/*
429 	 * Wait for the controller to come ready, handshaking with the
430 	 * firmware if required.  This is typically only necessary on
431 	 * platforms where the controller BIOS does not run.
432 	 */
433 	if (mly_fwhandshake(mly)) {
434 		printf("%s: unable to bring controller online\n",
435 		    mly->mly_dv.dv_xname);
436 		goto bad;
437 	}
438 
439 	/*
440 	 * Allocate initial command buffers, obtain controller feature
441 	 * information, and then reallocate command buffers, since we'll
442 	 * know how many we want.
443 	 */
444 	if (mly_alloc_ccbs(mly)) {
445 		printf("%s: unable to allocate CCBs\n",
446 		    mly->mly_dv.dv_xname);
447 		goto bad;
448 	}
449 	state++;
450 	if (mly_get_controllerinfo(mly)) {
451 		printf("%s: unable to retrieve controller info\n",
452 		    mly->mly_dv.dv_xname);
453 		goto bad;
454 	}
455 	mly_release_ccbs(mly);
456 	if (mly_alloc_ccbs(mly)) {
457 		printf("%s: unable to allocate CCBs\n",
458 		    mly->mly_dv.dv_xname);
459 		state--;
460 		goto bad;
461 	}
462 
463 	/*
464 	 * Get the current event counter for health purposes, populate the
465 	 * initial health status buffer.
466 	 */
467 	if (mly_get_eventstatus(mly)) {
468 		printf("%s: unable to retrieve event status\n",
469 		    mly->mly_dv.dv_xname);
470 		goto bad;
471 	}
472 
473 	/*
474 	 * Enable memory-mailbox mode.
475 	 */
476 	if (mly_enable_mmbox(mly)) {
477 		printf("%s: unable to enable memory mailbox\n",
478 		    mly->mly_dv.dv_xname);
479 		goto bad;
480 	}
481 
482 	/*
483 	 * Print a little information about the controller.
484 	 */
485 	mi = mly->mly_controllerinfo;
486 
487 	printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
488 	    "(%02d%02d%02d%02d), %dMB RAM\n", mly->mly_dv.dv_xname,
489 	    mi->physical_channels_present,
490 	    (mi->physical_channels_present) > 1 ? "s" : "",
491 	    mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
492 	    mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
493 	    le16toh(mi->memory_size));
494 
495 	/*
496 	 * Register our `shutdownhook'.
497 	 */
498 	if (mly_sdh == NULL)
499 		shutdownhook_establish(mly_shutdown, NULL);
500 
501 	/*
502 	 * Clear any previous BTL information.  For each bus that scsipi
503 	 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
504 	 * all BTL info at that point.
505 	 */
506 	memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
507 
508 	mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
509 	    mly->mly_controllerinfo->virtual_channels_present;
510 
511 	/*
512 	 * Attach to scsipi.
513 	 */
514 	adapt = &mly->mly_adapt;
515 	memset(adapt, 0, sizeof(*adapt));
516 	adapt->adapt_dev = &mly->mly_dv;
517 	adapt->adapt_nchannels = mly->mly_nchans;
518 	adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
519 	adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
520 	adapt->adapt_request = mly_scsipi_request;
521 	adapt->adapt_minphys = mly_scsipi_minphys;
522 	adapt->adapt_ioctl = mly_scsipi_ioctl;
523 
524 	for (i = 0; i < mly->mly_nchans; i++) {
525 		chan = &mly->mly_chans[i];
526 		memset(chan, 0, sizeof(*chan));
527 		chan->chan_adapter = adapt;
528 		chan->chan_bustype = &scsi_bustype;
529 		chan->chan_channel = i;
530 		chan->chan_ntargets = MLY_MAX_TARGETS;
531 		chan->chan_nluns = MLY_MAX_LUNS;
532 		chan->chan_id = mly->mly_controllerparam->initiator_id;
533 		chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
534 		config_found(&mly->mly_dv, chan, scsiprint);
535 	}
536 
537 	/*
538 	 * Now enable interrupts...
539 	 */
540 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
541 
542 	/*
543 	 * Finally, create our monitoring thread.
544 	 */
545 	kthread_create(mly_thread_create, mly);
546 
547 	mly->mly_state |= MLY_STATE_INITOK;
548 	return;
549 
550  bad:
551 	if (state > 2)
552 		mly_release_ccbs(mly);
553 	if (state > 1)
554 		mly_dmamem_free(mly, sizeof(struct mly_mmbox),
555 		    mly->mly_mmbox_dmamap, (caddr_t)mly->mly_mmbox,
556 		    &mly->mly_mmbox_seg);
557 	if (state > 0)
558 		mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
559 		    mly->mly_sg_dmamap, (caddr_t)mly->mly_sg,
560 		    &mly->mly_sg_seg);
561 }
562 
563 /*
564  * Scan all possible devices on the specified channel.
565  */
566 static void
567 mly_scan_channel(struct mly_softc *mly, int bus)
568 {
569 	int s, target;
570 
571 	for (target = 0; target < MLY_MAX_TARGETS; target++) {
572 		s = splbio();
573 		if (!mly_scan_btl(mly, bus, target)) {
574 			tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
575 			    0);
576 		}
577 		splx(s);
578 	}
579 }
580 
581 /*
582  * Shut down all configured `mly' devices.
583  */
584 static void
585 mly_shutdown(void *cookie)
586 {
587 	struct mly_softc *mly;
588 	int i;
589 
590 	for (i = 0; i < mly_cd.cd_ndevs; i++) {
591 		if ((mly = device_lookup(&mly_cd, i)) == NULL)
592 			continue;
593 
594 		if (mly_flush(mly))
595 			printf("%s: unable to flush cache\n",
596 			    mly->mly_dv.dv_xname);
597 	}
598 }
599 
600 /*
601  * Fill in the mly_controllerinfo and mly_controllerparam fields in the
602  * softc.
603  */
604 static int
605 mly_get_controllerinfo(struct mly_softc *mly)
606 {
607 	struct mly_cmd_ioctl mci;
608 	int rv;
609 
610 	/*
611 	 * Build the getcontrollerinfo ioctl and send it.
612 	 */
613 	memset(&mci, 0, sizeof(mci));
614 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
615 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
616 	    sizeof(*mly->mly_controllerinfo), NULL, NULL);
617 	if (rv != 0)
618 		return (rv);
619 
620 	/*
621 	 * Build the getcontrollerparameter ioctl and send it.
622 	 */
623 	memset(&mci, 0, sizeof(mci));
624 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
625 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
626 	    sizeof(*mly->mly_controllerparam), NULL, NULL);
627 
628 	return (rv);
629 }
630 
631 /*
632  * Rescan a device, possibly as a consequence of getting an event which
633  * suggests that it may have changed.  Must be called with interrupts
634  * blocked.
635  */
636 static int
637 mly_scan_btl(struct mly_softc *mly, int bus, int target)
638 {
639 	struct mly_ccb *mc;
640 	struct mly_cmd_ioctl *mci;
641 	int rv;
642 
643 	if (target == mly->mly_controllerparam->initiator_id) {
644 		mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
645 		return (EIO);
646 	}
647 
648 	/* Don't re-scan if a scan is already in progress. */
649 	if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
650 		return (EBUSY);
651 
652 	/* Get a command. */
653 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
654 		return (rv);
655 
656 	/* Set up the data buffer. */
657 	mc->mc_data = malloc(sizeof(union mly_devinfo),
658 	    M_DEVBUF, M_NOWAIT|M_ZERO);
659 
660 	mc->mc_flags |= MLY_CCB_DATAIN;
661 	mc->mc_complete = mly_complete_rescan;
662 
663 	/*
664 	 * Build the ioctl.
665 	 */
666 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
667 	mci->opcode = MDACMD_IOCTL;
668 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
669 	memset(&mci->param, 0, sizeof(mci->param));
670 
671 	if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
672 		mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
673 		mci->data_size = htole32(mc->mc_length);
674 		mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
675 		_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
676 		    mci->addr);
677 	} else {
678 		mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
679 		mci->data_size = htole32(mc->mc_length);
680 		mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
681 		_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
682 	}
683 
684 	/*
685 	 * Dispatch the command.
686 	 */
687 	if ((rv = mly_ccb_map(mly, mc)) != 0) {
688 		free(mc->mc_data, M_DEVBUF);
689 		mly_ccb_free(mly, mc);
690 		return(rv);
691 	}
692 
693 	mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
694 	mly_ccb_enqueue(mly, mc);
695 	return (0);
696 }
697 
698 /*
699  * Handle the completion of a rescan operation.
700  */
701 static void
702 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
703 {
704 	struct mly_ioctl_getlogdevinfovalid *ldi;
705 	struct mly_ioctl_getphysdevinfovalid *pdi;
706 	struct mly_cmd_ioctl *mci;
707 	struct mly_btl btl, *btlp;
708 	struct scsipi_xfer_mode xm;
709 	int bus, target, rescan;
710 	u_int tmp;
711 
712 	mly_ccb_unmap(mly, mc);
713 
714 	/*
715 	 * Recover the bus and target from the command.  We need these even
716 	 * in the case where we don't have a useful response.
717 	 */
718 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
719 	tmp = _3ltol(mci->addr);
720 	rescan = 0;
721 
722 	if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
723 		bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
724 		target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
725 	} else {
726 		bus = MLY_PHYADDR_CHANNEL(tmp);
727 		target = MLY_PHYADDR_TARGET(tmp);
728 	}
729 
730 	btlp = &mly->mly_btl[bus][target];
731 
732 	/* The default result is 'no device'. */
733 	memset(&btl, 0, sizeof(btl));
734 	btl.mb_flags = MLY_BTL_PROTECTED;
735 
736 	/* If the rescan completed OK, we have possibly-new BTL data. */
737 	if (mc->mc_status != 0)
738 		goto out;
739 
740 	if (mc->mc_length == sizeof(*ldi)) {
741 		ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
742 		tmp = le32toh(ldi->logical_device_number);
743 
744 		if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
745 		    MLY_LOGDEV_TARGET(mly, tmp) != target) {
746 #ifdef MLYDEBUG
747 			printf("%s: WARNING: BTL rescan (logical) for %d:%d "
748 			    "returned data for %d:%d instead\n",
749 			   mly->mly_dv.dv_xname, bus, target,
750 			   MLY_LOGDEV_BUS(mly, tmp),
751 			   MLY_LOGDEV_TARGET(mly, tmp));
752 #endif
753 			goto out;
754 		}
755 
756 		btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
757 		btl.mb_type = ldi->raid_level;
758 		btl.mb_state = ldi->state;
759 	} else if (mc->mc_length == sizeof(*pdi)) {
760 		pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
761 
762 		if (pdi->channel != bus || pdi->target != target) {
763 #ifdef MLYDEBUG
764 			printf("%s: WARNING: BTL rescan (physical) for %d:%d "
765 			    " returned data for %d:%d instead\n",
766 			   mly->mly_dv.dv_xname,
767 			   bus, target, pdi->channel, pdi->target);
768 #endif
769 			goto out;
770 		}
771 
772 		btl.mb_flags = MLY_BTL_PHYSICAL;
773 		btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
774 		btl.mb_state = pdi->state;
775 		btl.mb_speed = pdi->speed;
776 		btl.mb_width = pdi->width;
777 
778 		if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
779 			btl.mb_flags |= MLY_BTL_PROTECTED;
780 		if (pdi->command_tags != 0)
781 			btl.mb_flags |= MLY_BTL_TQING;
782 	} else {
783 		printf("%s: BTL rescan result invalid\n", mly->mly_dv.dv_xname);
784 		goto out;
785 	}
786 
787 	/* Decide whether we need to rescan the device. */
788 	if (btl.mb_flags != btlp->mb_flags ||
789 	    btl.mb_speed != btlp->mb_speed ||
790 	    btl.mb_width != btlp->mb_width)
791 		rescan = 1;
792 
793  out:
794 	*btlp = btl;
795 
796 	if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
797 		xm.xm_target = target;
798 		mly_get_xfer_mode(mly, bus, &xm);
799 		/* XXX SCSI mid-layer rescan goes here. */
800 	}
801 
802 	/* Wake anybody waiting on the device to be rescanned. */
803 	wakeup(btlp);
804 
805 	free(mc->mc_data, M_DEVBUF);
806 	mly_ccb_free(mly, mc);
807 }
808 
809 /*
810  * Get the current health status and set the 'next event' counter to suit.
811  */
812 static int
813 mly_get_eventstatus(struct mly_softc *mly)
814 {
815 	struct mly_cmd_ioctl mci;
816 	struct mly_health_status *mh;
817 	int rv;
818 
819 	/* Build the gethealthstatus ioctl and send it. */
820 	memset(&mci, 0, sizeof(mci));
821 	mh = NULL;
822 	mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
823 
824 	rv = mly_ioctl(mly, &mci, (void **)&mh, sizeof(*mh), NULL, NULL);
825 	if (rv)
826 		return (rv);
827 
828 	/* Get the event counter. */
829 	mly->mly_event_change = le32toh(mh->change_counter);
830 	mly->mly_event_waiting = le32toh(mh->next_event);
831 	mly->mly_event_counter = le32toh(mh->next_event);
832 
833 	/* Save the health status into the memory mailbox */
834 	memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
835 
836 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
837 	    offsetof(struct mly_mmbox, mmm_health),
838 	    sizeof(mly->mly_mmbox->mmm_health),
839 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
840 
841 	free(mh, M_DEVBUF);
842 	return (0);
843 }
844 
845 /*
846  * Enable memory mailbox mode.
847  */
848 static int
849 mly_enable_mmbox(struct mly_softc *mly)
850 {
851 	struct mly_cmd_ioctl mci;
852 	u_int8_t *sp;
853 	u_int64_t tmp;
854 	int rv;
855 
856 	/* Build the ioctl and send it. */
857 	memset(&mci, 0, sizeof(mci));
858 	mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
859 
860 	/* Set buffer addresses. */
861 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
862 	mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
863 
864 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
865 	mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
866 
867 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
868 	mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
869 
870 	/* Set buffer sizes - abuse of data_size field is revolting. */
871 	sp = (u_int8_t *)&mci.data_size;
872 	sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
873 	sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
874 	mci.param.setmemorymailbox.health_buffer_size =
875 	    sizeof(union mly_health_region) >> 10;
876 
877 	rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
878 	if (rv)
879 		return (rv);
880 
881 	mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
882 	return (0);
883 }
884 
885 /*
886  * Flush all pending I/O from the controller.
887  */
888 static int
889 mly_flush(struct mly_softc *mly)
890 {
891 	struct mly_cmd_ioctl mci;
892 
893 	/* Build the ioctl */
894 	memset(&mci, 0, sizeof(mci));
895 	mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
896 	mci.param.deviceoperation.operation_device =
897 	    MLY_OPDEVICE_PHYSICAL_CONTROLLER;
898 
899 	/* Pass it off to the controller */
900 	return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
901 }
902 
903 /*
904  * Perform an ioctl command.
905  *
906  * If (data) is not NULL, the command requires data transfer to the
907  * controller.  If (*data) is NULL the command requires data transfer from
908  * the controller, and we will allocate a buffer for it.
909  */
910 static int
911 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
912 	  size_t datasize, void *sense_buffer,
913 	  size_t *sense_length)
914 {
915 	struct mly_ccb *mc;
916 	struct mly_cmd_ioctl *mci;
917 	u_int8_t status;
918 	int rv;
919 
920 	mc = NULL;
921 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
922 		goto bad;
923 
924 	/*
925 	 * Copy the ioctl structure, but save some important fields and then
926 	 * fixup.
927 	 */
928 	mci = &mc->mc_packet->ioctl;
929 	ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
930 	ioctl->maximum_sense_size = mci->maximum_sense_size;
931 	*mci = *ioctl;
932 	mci->opcode = MDACMD_IOCTL;
933 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
934 
935 	/* Handle the data buffer. */
936 	if (data != NULL) {
937 		if (*data == NULL) {
938 			/* Allocate data buffer */
939 			mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
940 			mc->mc_flags |= MLY_CCB_DATAIN;
941 		} else {
942 			mc->mc_data = *data;
943 			mc->mc_flags |= MLY_CCB_DATAOUT;
944 		}
945 		mc->mc_length = datasize;
946 		mc->mc_packet->generic.data_size = htole32(datasize);
947 	}
948 
949 	/* Run the command. */
950 	if (datasize > 0)
951 		if ((rv = mly_ccb_map(mly, mc)) != 0)
952 			goto bad;
953 	rv = mly_ccb_poll(mly, mc, 30000);
954 	if (datasize > 0)
955 		mly_ccb_unmap(mly, mc);
956 	if (rv != 0)
957 		goto bad;
958 
959 	/* Clean up and return any data. */
960 	status = mc->mc_status;
961 
962 	if (status != 0)
963 		printf("mly_ioctl: command status %d\n", status);
964 
965 	if (mc->mc_sense > 0 && sense_buffer != NULL) {
966 		memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
967 		*sense_length = mc->mc_sense;
968 		goto bad;
969 	}
970 
971 	/* Should we return a data pointer? */
972 	if (data != NULL && *data == NULL)
973 		*data = mc->mc_data;
974 
975 	/* Command completed OK. */
976 	rv = (status != 0 ? EIO : 0);
977 
978  bad:
979 	if (mc != NULL) {
980 		/* Do we need to free a data buffer we allocated? */
981 		if (rv != 0 && mc->mc_data != NULL && *data == NULL)
982 			free(mc->mc_data, M_DEVBUF);
983 		mly_ccb_free(mly, mc);
984 	}
985 
986 	return (rv);
987 }
988 
989 /*
990  * Check for event(s) outstanding in the controller.
991  */
992 static void
993 mly_check_event(struct mly_softc *mly)
994 {
995 
996 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
997 	    offsetof(struct mly_mmbox, mmm_health),
998 	    sizeof(mly->mly_mmbox->mmm_health),
999 	    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1000 
1001 	/*
1002 	 * The controller may have updated the health status information, so
1003 	 * check for it here.  Note that the counters are all in host
1004 	 * memory, so this check is very cheap.  Also note that we depend on
1005 	 * checking on completion
1006 	 */
1007 	if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
1008 	    mly->mly_event_change) {
1009 		mly->mly_event_change =
1010 		    le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
1011 		mly->mly_event_waiting =
1012 		    le32toh(mly->mly_mmbox->mmm_health.status.next_event);
1013 
1014 		/* Wake up anyone that might be interested in this. */
1015 		wakeup(&mly->mly_event_change);
1016 	}
1017 
1018 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1019 	    offsetof(struct mly_mmbox, mmm_health),
1020 	    sizeof(mly->mly_mmbox->mmm_health),
1021 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1022 
1023 	if (mly->mly_event_counter != mly->mly_event_waiting)
1024 		mly_fetch_event(mly);
1025 }
1026 
1027 /*
1028  * Fetch one event from the controller.  If we fail due to resource
1029  * starvation, we'll be retried the next time a command completes.
1030  */
1031 static void
1032 mly_fetch_event(struct mly_softc *mly)
1033 {
1034 	struct mly_ccb *mc;
1035 	struct mly_cmd_ioctl *mci;
1036 	int s;
1037 	u_int32_t event;
1038 
1039 	/* Get a command. */
1040 	if (mly_ccb_alloc(mly, &mc))
1041 		return;
1042 
1043 	/* Set up the data buffer. */
1044 	mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF,
1045 	    M_NOWAIT|M_ZERO);
1046 
1047 	mc->mc_length = sizeof(struct mly_event);
1048 	mc->mc_flags |= MLY_CCB_DATAIN;
1049 	mc->mc_complete = mly_complete_event;
1050 
1051 	/*
1052 	 * Get an event number to fetch.  It's possible that we've raced
1053 	 * with another context for the last event, in which case there will
1054 	 * be no more events.
1055 	 */
1056 	s = splbio();
1057 	if (mly->mly_event_counter == mly->mly_event_waiting) {
1058 		splx(s);
1059 		free(mc->mc_data, M_DEVBUF);
1060 		mly_ccb_free(mly, mc);
1061 		return;
1062 	}
1063 	event = mly->mly_event_counter++;
1064 	splx(s);
1065 
1066 	/*
1067 	 * Build the ioctl.
1068 	 *
1069 	 * At this point we are committed to sending this request, as it
1070 	 * will be the only one constructed for this particular event
1071 	 * number.
1072 	 */
1073 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
1074 	mci->opcode = MDACMD_IOCTL;
1075 	mci->data_size = htole32(sizeof(struct mly_event));
1076 	_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
1077 	    mci->addr);
1078 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
1079 	mci->sub_ioctl = MDACIOCTL_GETEVENT;
1080 	mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
1081 
1082 	/*
1083 	 * Submit the command.
1084 	 */
1085 	if (mly_ccb_map(mly, mc) != 0)
1086 		goto bad;
1087 	mly_ccb_enqueue(mly, mc);
1088 	return;
1089 
1090  bad:
1091 	printf("%s: couldn't fetch event %u\n", mly->mly_dv.dv_xname, event);
1092 	free(mc->mc_data, M_DEVBUF);
1093 	mly_ccb_free(mly, mc);
1094 }
1095 
1096 /*
1097  * Handle the completion of an event poll.
1098  */
1099 static void
1100 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
1101 {
1102 	struct mly_event *me;
1103 
1104 	me = (struct mly_event *)mc->mc_data;
1105 	mly_ccb_unmap(mly, mc);
1106 	mly_ccb_free(mly, mc);
1107 
1108 	/* If the event was successfully fetched, process it. */
1109 	if (mc->mc_status == SCSI_OK)
1110 		mly_process_event(mly, me);
1111 	else
1112 		printf("%s: unable to fetch event; status = 0x%x\n",
1113 		    mly->mly_dv.dv_xname, mc->mc_status);
1114 
1115 	free(me, M_DEVBUF);
1116 
1117 	/* Check for another event. */
1118 	mly_check_event(mly);
1119 }
1120 
1121 /*
1122  * Process a controller event.  Called with interupts blocked (i.e., at
1123  * interrupt time).
1124  */
1125 static void
1126 mly_process_event(struct mly_softc *mly, struct mly_event *me)
1127 {
1128 	struct scsipi_sense_data *ssd;
1129 	int bus, target, event, class, action;
1130 	const char *fp, *tp;
1131 
1132 	ssd = (struct scsipi_sense_data *)&me->sense[0];
1133 
1134 	/*
1135 	 * Errors can be reported using vendor-unique sense data.  In this
1136 	 * case, the event code will be 0x1c (Request sense data present),
1137 	 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
1138 	 * will be set, and the actual event code will be a 16-bit value
1139 	 * comprised of the ASCQ (low byte) and low seven bits of the ASC
1140 	 * (low seven bits of the high byte).
1141 	 */
1142 	if (le32toh(me->code) == 0x1c &&
1143 	    (ssd->flags & SSD_KEY) == SKEY_VENDOR_UNIQUE &&
1144 	    (ssd->add_sense_code & 0x80) != 0) {
1145 		event = ((int)(ssd->add_sense_code & ~0x80) << 8) +
1146 		    ssd->add_sense_code_qual;
1147 	} else
1148 		event = le32toh(me->code);
1149 
1150 	/* Look up event, get codes. */
1151 	fp = mly_describe_code(mly_table_event, event);
1152 
1153 	/* Quiet event? */
1154 	class = fp[0];
1155 #ifdef notyet
1156 	if (isupper(class) && bootverbose)
1157 		class = tolower(class);
1158 #endif
1159 
1160 	/* Get action code, text string. */
1161 	action = fp[1];
1162 	tp = fp + 3;
1163 
1164 	/*
1165 	 * Print some information about the event.
1166 	 *
1167 	 * This code uses a table derived from the corresponding portion of
1168 	 * the Linux driver, and thus the parser is very similar.
1169 	 */
1170 	switch (class) {
1171 	case 'p':
1172 		/*
1173 		 * Error on physical drive.
1174 		 */
1175 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
1176 		    me->channel, me->target, tp);
1177 		if (action == 'r')
1178 			mly->mly_btl[me->channel][me->target].mb_flags |=
1179 			    MLY_BTL_RESCAN;
1180 		break;
1181 
1182 	case 'l':
1183 	case 'm':
1184 		/*
1185 		 * Error on logical unit, or message about logical unit.
1186 	 	 */
1187 		bus = MLY_LOGDEV_BUS(mly, me->lun);
1188 		target = MLY_LOGDEV_TARGET(mly, me->lun);
1189 		printf("%s: logical device %d:%d %s\n", mly->mly_dv.dv_xname,
1190 		    bus, target, tp);
1191 		if (action == 'r')
1192 			mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1193 		break;
1194 
1195 	case 's':
1196 		/*
1197 		 * Report of sense data.
1198 		 */
1199 		if (((ssd->flags & SSD_KEY) == SKEY_NO_SENSE ||
1200 		    (ssd->flags & SSD_KEY) == SKEY_NOT_READY) &&
1201 		    ssd->add_sense_code == 0x04 &&
1202 		    (ssd->add_sense_code_qual == 0x01 ||
1203 		    ssd->add_sense_code_qual == 0x02)) {
1204 			/* Ignore NO_SENSE or NOT_READY in one case */
1205 			break;
1206 		}
1207 
1208 		/*
1209 		 * XXX Should translate this if SCSIVERBOSE.
1210 		 */
1211 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
1212 		    me->channel, me->target, tp);
1213 		printf("%s:  sense key %d  asc %02x  ascq %02x\n",
1214 		    mly->mly_dv.dv_xname, ssd->flags & SSD_KEY,
1215 		    ssd->add_sense_code, ssd->add_sense_code_qual);
1216 		printf("%s:  info %x%x%x%x  csi %x%x%x%x\n",
1217 		    mly->mly_dv.dv_xname, ssd->info[0], ssd->info[1],
1218 		    ssd->info[2], ssd->info[3], ssd->cmd_spec_info[0],
1219 		    ssd->cmd_spec_info[1], ssd->cmd_spec_info[2],
1220 		    ssd->cmd_spec_info[3]);
1221 		if (action == 'r')
1222 			mly->mly_btl[me->channel][me->target].mb_flags |=
1223 			    MLY_BTL_RESCAN;
1224 		break;
1225 
1226 	case 'e':
1227 		printf("%s: ", mly->mly_dv.dv_xname);
1228 		printf(tp, me->target, me->lun);
1229 		break;
1230 
1231 	case 'c':
1232 		printf("%s: controller %s\n", mly->mly_dv.dv_xname, tp);
1233 		break;
1234 
1235 	case '?':
1236 		printf("%s: %s - %d\n", mly->mly_dv.dv_xname, tp, event);
1237 		break;
1238 
1239 	default:
1240 		/* Probably a 'noisy' event being ignored. */
1241 		break;
1242 	}
1243 }
1244 
1245 /*
1246  * Create the monitoring thread.  Called after the standard kernel threads
1247  * have been created.
1248  */
1249 static void
1250 mly_thread_create(void *cookie)
1251 {
1252 	struct mly_softc *mly;
1253 	int rv;
1254 
1255 	mly = cookie;
1256 
1257 	rv = kthread_create1(mly_thread, mly, &mly->mly_thread, "%s",
1258 	    mly->mly_dv.dv_xname);
1259  	if (rv != 0)
1260 		printf("%s: unable to create thread (%d)\n",
1261 		    mly->mly_dv.dv_xname, rv);
1262 }
1263 
1264 /*
1265  * Perform periodic activities.
1266  */
1267 static void
1268 mly_thread(void *cookie)
1269 {
1270 	struct mly_softc *mly;
1271 	struct mly_btl *btl;
1272 	int s, bus, target, done;
1273 
1274 	mly = (struct mly_softc *)cookie;
1275 
1276 	for (;;) {
1277 		/* Check for new events. */
1278 		mly_check_event(mly);
1279 
1280 		/* Re-scan up to 1 device. */
1281 		s = splbio();
1282 		done = 0;
1283 		for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
1284 			for (target = 0; target < MLY_MAX_TARGETS; target++) {
1285 				/* Perform device rescan? */
1286 				btl = &mly->mly_btl[bus][target];
1287 				if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
1288 					btl->mb_flags ^= MLY_BTL_RESCAN;
1289 					mly_scan_btl(mly, bus, target);
1290 					done = 1;
1291 					break;
1292 				}
1293 			}
1294 		}
1295 		splx(s);
1296 
1297 		/* Sleep for N seconds. */
1298 		tsleep(mly_thread, PWAIT, "mlyzzz",
1299 		    hz * MLY_PERIODIC_INTERVAL);
1300 	}
1301 }
1302 
1303 /*
1304  * Submit a command to the controller and poll on completion.  Return
1305  * non-zero on timeout.
1306  */
1307 static int
1308 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1309 {
1310 	int rv;
1311 
1312 	if ((rv = mly_ccb_submit(mly, mc)) != 0)
1313 		return (rv);
1314 
1315 	for (timo *= 10; timo != 0; timo--) {
1316 		if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
1317 			break;
1318 		mly_intr(mly);
1319 		DELAY(100);
1320 	}
1321 
1322 	return (timo == 0);
1323 }
1324 
1325 /*
1326  * Submit a command to the controller and sleep on completion.  Return
1327  * non-zero on timeout.
1328  */
1329 static int
1330 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1331 {
1332 	int rv, s;
1333 
1334 	mly_ccb_enqueue(mly, mc);
1335 
1336 	s = splbio();
1337 	if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
1338 		splx(s);
1339 		return (0);
1340 	}
1341 	rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
1342 	splx(s);
1343 
1344 	return (rv);
1345 }
1346 
1347 /*
1348  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1349  * the order that they were enqueued and try to submit their command blocks
1350  * to the controller for execution.
1351  */
1352 void
1353 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
1354 {
1355 	int s;
1356 
1357 	s = splbio();
1358 
1359 	if (mc != NULL)
1360 		SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1361 
1362 	while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
1363 		if (mly_ccb_submit(mly, mc))
1364 			break;
1365 		SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1366 	}
1367 
1368 	splx(s);
1369 }
1370 
1371 /*
1372  * Deliver a command to the controller.
1373  */
1374 static int
1375 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
1376 {
1377 	union mly_cmd_packet *pkt;
1378 	int s, off;
1379 
1380 	mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
1381 
1382 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1383 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1384 	    sizeof(union mly_cmd_packet),
1385 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1386 
1387 	s = splbio();
1388 
1389 	/*
1390 	 * Do we have to use the hardware mailbox?
1391 	 */
1392 	if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
1393 		/*
1394 		 * Check to see if the controller is ready for us.
1395 		 */
1396 		if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
1397 			splx(s);
1398 			return (EBUSY);
1399 		}
1400 
1401 		/*
1402 		 * It's ready, send the command.
1403 		 */
1404 		mly_outl(mly, mly->mly_cmd_mailbox,
1405 		    (u_int64_t)mc->mc_packetphys & 0xffffffff);
1406 		mly_outl(mly, mly->mly_cmd_mailbox + 4,
1407 		    (u_int64_t)mc->mc_packetphys >> 32);
1408 		mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
1409 	} else {
1410 		pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
1411 		off = (caddr_t)pkt - (caddr_t)mly->mly_mmbox;
1412 
1413 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1414 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1415 		    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1416 
1417 		/* Check to see if the next index is free yet. */
1418 		if (pkt->mmbox.flag != 0) {
1419 			splx(s);
1420 			return (EBUSY);
1421 		}
1422 
1423 		/* Copy in new command */
1424 		memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
1425 		    sizeof(pkt->mmbox.data));
1426 
1427 		/* Copy flag last. */
1428 		pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1429 
1430 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1431 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1432 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1433 
1434 		/* Signal controller and update index. */
1435 		mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
1436 		mly->mly_mmbox_cmd_idx =
1437 		    (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
1438 	}
1439 
1440 	splx(s);
1441 	return (0);
1442 }
1443 
1444 /*
1445  * Pick up completed commands from the controller and handle accordingly.
1446  */
1447 int
1448 mly_intr(void *cookie)
1449 {
1450 	struct mly_ccb *mc;
1451 	union mly_status_packet	*sp;
1452 	u_int16_t slot;
1453 	int forus, off;
1454 	struct mly_softc *mly;
1455 
1456 	mly = cookie;
1457 	forus = 0;
1458 
1459 	/*
1460 	 * Pick up hardware-mailbox commands.
1461 	 */
1462 	if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
1463 		slot = mly_inw(mly, mly->mly_status_mailbox);
1464 
1465 		if (slot < MLY_SLOT_MAX) {
1466 			mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1467 			mc->mc_status =
1468 			    mly_inb(mly, mly->mly_status_mailbox + 2);
1469 			mc->mc_sense =
1470 			    mly_inb(mly, mly->mly_status_mailbox + 3);
1471 			mc->mc_resid =
1472 			    mly_inl(mly, mly->mly_status_mailbox + 4);
1473 
1474 			mly_ccb_complete(mly, mc);
1475 		} else {
1476 			/* Slot 0xffff may mean "extremely bogus command". */
1477 			printf("%s: got HM completion for illegal slot %u\n",
1478 			    mly->mly_dv.dv_xname, slot);
1479 		}
1480 
1481 		/* Unconditionally acknowledge status. */
1482 		mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
1483 		mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
1484 		forus = 1;
1485 	}
1486 
1487 	/*
1488 	 * Pick up memory-mailbox commands.
1489 	 */
1490 	if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
1491 		for (;;) {
1492 			sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
1493 			off = (caddr_t)sp - (caddr_t)mly->mly_mmbox;
1494 
1495 			bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1496 			    off, sizeof(mly->mly_mmbox->mmm_command[0]),
1497 			    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1498 
1499 			/* Check for more status. */
1500 			if (sp->mmbox.flag == 0)
1501 				break;
1502 
1503 			/* Get slot number. */
1504 			slot = le16toh(sp->status.command_id);
1505 			if (slot < MLY_SLOT_MAX) {
1506 				mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1507 				mc->mc_status = sp->status.status;
1508 				mc->mc_sense = sp->status.sense_length;
1509 				mc->mc_resid = le32toh(sp->status.residue);
1510 				mly_ccb_complete(mly, mc);
1511 			} else {
1512 				/*
1513 				 * Slot 0xffff may mean "extremely bogus
1514 				 * command".
1515 				 */
1516 				printf("%s: got AM completion for illegal "
1517 				    "slot %u at %d\n", mly->mly_dv.dv_xname,
1518 				    slot, mly->mly_mmbox_sts_idx);
1519 			}
1520 
1521 			/* Clear and move to next index. */
1522 			sp->mmbox.flag = 0;
1523 			mly->mly_mmbox_sts_idx =
1524 			    (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
1525 		}
1526 
1527 		/* Acknowledge that we have collected status value(s). */
1528 		mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
1529 		forus = 1;
1530 	}
1531 
1532 	/*
1533 	 * Run the queue.
1534 	 */
1535 	if (forus && SIMPLEQ_FIRST(&mly->mly_ccb_queue) != NULL)
1536 		mly_ccb_enqueue(mly, NULL);
1537 
1538 	return (forus);
1539 }
1540 
1541 /*
1542  * Process completed commands
1543  */
1544 static void
1545 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
1546 {
1547 	void (*complete)(struct mly_softc *, struct mly_ccb *);
1548 
1549 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1550 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
1551 	    sizeof(union mly_cmd_packet),
1552 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1553 
1554 	complete = mc->mc_complete;
1555 	mc->mc_flags |= MLY_CCB_COMPLETE;
1556 
1557 	/*
1558 	 * Call completion handler or wake up sleeping consumer.
1559 	 */
1560 	if (complete != NULL)
1561 		(*complete)(mly, mc);
1562 	else
1563 		wakeup(mc);
1564 }
1565 
1566 /*
1567  * Allocate a command.
1568  */
1569 int
1570 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
1571 {
1572 	struct mly_ccb *mc;
1573 	int s;
1574 
1575 	s = splbio();
1576 	mc = SLIST_FIRST(&mly->mly_ccb_free);
1577 	if (mc != NULL)
1578 		SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
1579 	splx(s);
1580 
1581 	*mcp = mc;
1582 	return (mc == NULL ? EAGAIN : 0);
1583 }
1584 
1585 /*
1586  * Release a command back to the freelist.
1587  */
1588 void
1589 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
1590 {
1591 	int s;
1592 
1593 	/*
1594 	 * Fill in parts of the command that may cause confusion if a
1595 	 * consumer doesn't when we are later allocated.
1596 	 */
1597 	mc->mc_data = NULL;
1598 	mc->mc_flags = 0;
1599 	mc->mc_complete = NULL;
1600 	mc->mc_private = NULL;
1601 	mc->mc_packet->generic.command_control = 0;
1602 
1603 	/*
1604 	 * By default, we set up to overwrite the command packet with sense
1605 	 * information.
1606 	 */
1607 	mc->mc_packet->generic.sense_buffer_address =
1608 	    htole64(mc->mc_packetphys);
1609 	mc->mc_packet->generic.maximum_sense_size =
1610 	    sizeof(union mly_cmd_packet);
1611 
1612 	s = splbio();
1613 	SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
1614 	splx(s);
1615 }
1616 
1617 /*
1618  * Allocate and initialise command and packet structures.
1619  *
1620  * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
1621  * allocation to that number.  If we don't yet know how many commands the
1622  * controller supports, allocate a very small set (suitable for initialisation
1623  * purposes only).
1624  */
1625 static int
1626 mly_alloc_ccbs(struct mly_softc *mly)
1627 {
1628 	struct mly_ccb *mc;
1629 	int i, rv;
1630 
1631 	if (mly->mly_controllerinfo == NULL)
1632 		mly->mly_ncmds = MLY_CCBS_RESV;
1633 	else {
1634 		i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
1635 		mly->mly_ncmds = min(MLY_MAX_CCBS, i);
1636 	}
1637 
1638 	/*
1639 	 * Allocate enough space for all the command packets in one chunk
1640 	 * and map them permanently into controller-visible space.
1641 	 */
1642 	rv = mly_dmamem_alloc(mly,
1643 	    mly->mly_ncmds * sizeof(union mly_cmd_packet),
1644 	    &mly->mly_pkt_dmamap, (caddr_t *)&mly->mly_pkt,
1645 	    &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
1646 	if (rv)
1647 		return (rv);
1648 
1649 	mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
1650 	    M_DEVBUF, M_NOWAIT|M_ZERO);
1651 
1652 	for (i = 0; i < mly->mly_ncmds; i++) {
1653 		mc = mly->mly_ccbs + i;
1654 		mc->mc_slot = MLY_SLOT_START + i;
1655 		mc->mc_packet = mly->mly_pkt + i;
1656 		mc->mc_packetphys = mly->mly_pkt_busaddr +
1657 		    (i * sizeof(union mly_cmd_packet));
1658 
1659 		rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
1660 		    MLY_MAX_SEGS, MLY_MAX_XFER, 0,
1661 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1662 		    &mc->mc_datamap);
1663 		if (rv) {
1664 			mly_release_ccbs(mly);
1665 			return (rv);
1666 		}
1667 
1668 		mly_ccb_free(mly, mc);
1669 	}
1670 
1671 	return (0);
1672 }
1673 
1674 /*
1675  * Free all the storage held by commands.
1676  *
1677  * Must be called with all commands on the free list.
1678  */
1679 static void
1680 mly_release_ccbs(struct mly_softc *mly)
1681 {
1682 	struct mly_ccb *mc;
1683 
1684 	/* Throw away command buffer DMA maps. */
1685 	while (mly_ccb_alloc(mly, &mc) == 0)
1686 		bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
1687 
1688 	/* Release CCB storage. */
1689 	free(mly->mly_ccbs, M_DEVBUF);
1690 
1691 	/* Release the packet storage. */
1692 	mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
1693 	    mly->mly_pkt_dmamap, (caddr_t)mly->mly_pkt, &mly->mly_pkt_seg);
1694 }
1695 
1696 /*
1697  * Map a command into controller-visible space.
1698  */
1699 static int
1700 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
1701 {
1702 	struct mly_cmd_generic *gen;
1703 	struct mly_sg_entry *sg;
1704 	bus_dma_segment_t *ds;
1705 	int flg, nseg, rv;
1706 
1707 #ifdef DIAGNOSTIC
1708 	/* Don't map more than once. */
1709 	if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
1710 		panic("mly_ccb_map: already mapped");
1711 	mc->mc_flags |= MLY_CCB_MAPPED;
1712 
1713 	/* Does the command have a data buffer? */
1714 	if (mc->mc_data == NULL)
1715 		panic("mly_ccb_map: no data buffer");
1716 #endif
1717 
1718 	rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
1719 	    mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1720 	    ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
1721 	    BUS_DMA_READ : BUS_DMA_WRITE));
1722 	if (rv != 0)
1723 		return (rv);
1724 
1725 	gen = &mc->mc_packet->generic;
1726 
1727 	/*
1728 	 * Can we use the transfer structure directly?
1729 	 */
1730 	if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
1731 		mc->mc_sgoff = -1;
1732 		sg = &gen->transfer.direct.sg[0];
1733 	} else {
1734 		mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
1735 		    MLY_MAX_SEGS;
1736 		sg = mly->mly_sg + mc->mc_sgoff;
1737 		gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
1738 		gen->transfer.indirect.entries[0] = htole16(nseg);
1739 		gen->transfer.indirect.table_physaddr[0] =
1740 		    htole64(mly->mly_sg_busaddr +
1741 		    (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
1742 	}
1743 
1744 	/*
1745 	 * Fill the S/G table.
1746 	 */
1747 	for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
1748 		sg->physaddr = htole64(ds->ds_addr);
1749 		sg->length = htole64(ds->ds_len);
1750 	}
1751 
1752 	/*
1753 	 * Sync up the data map.
1754 	 */
1755 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1756 		flg = BUS_DMASYNC_PREREAD;
1757 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
1758 		gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
1759 		flg = BUS_DMASYNC_PREWRITE;
1760 	}
1761 
1762 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1763 
1764 	/*
1765 	 * Sync up the chained S/G table, if we're using one.
1766 	 */
1767 	if (mc->mc_sgoff == -1)
1768 		return (0);
1769 
1770 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1771 	    MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1772 
1773 	return (0);
1774 }
1775 
1776 /*
1777  * Unmap a command from controller-visible space.
1778  */
1779 static void
1780 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
1781 {
1782 	int flg;
1783 
1784 #ifdef DIAGNOSTIC
1785 	if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
1786 		panic("mly_ccb_unmap: not mapped");
1787 	mc->mc_flags &= ~MLY_CCB_MAPPED;
1788 #endif
1789 
1790 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1791 		flg = BUS_DMASYNC_POSTREAD;
1792 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
1793 		flg = BUS_DMASYNC_POSTWRITE;
1794 
1795 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1796 	bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
1797 
1798 	if (mc->mc_sgoff == -1)
1799 		return;
1800 
1801 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1802 	    MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
1803 }
1804 
1805 /*
1806  * Adjust the size of each I/O before it passes to the SCSI layer.
1807  */
1808 static void
1809 mly_scsipi_minphys(struct buf *bp)
1810 {
1811 
1812 	if (bp->b_bcount > MLY_MAX_XFER)
1813 		bp->b_bcount = MLY_MAX_XFER;
1814 	minphys(bp);
1815 }
1816 
1817 /*
1818  * Start a SCSI command.
1819  */
1820 static void
1821 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1822 		   void *arg)
1823 {
1824 	struct mly_ccb *mc;
1825 	struct mly_cmd_scsi_small *ss;
1826 	struct scsipi_xfer *xs;
1827 	struct scsipi_periph *periph;
1828 	struct mly_softc *mly;
1829 	struct mly_btl *btl;
1830 	int s, tmp;
1831 
1832 	mly = (void *)chan->chan_adapter->adapt_dev;
1833 
1834 	switch (req) {
1835 	case ADAPTER_REQ_RUN_XFER:
1836 		xs = arg;
1837 		periph = xs->xs_periph;
1838 		btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
1839 		s = splbio();
1840 		tmp = btl->mb_flags;
1841 		splx(s);
1842 
1843 		/*
1844 		 * Check for I/O attempt to a protected or non-existant
1845 		 * device.
1846 		 */
1847 		if ((tmp & MLY_BTL_PROTECTED) != 0) {
1848 			xs->error = XS_SELTIMEOUT;
1849 			scsipi_done(xs);
1850 			break;
1851 		}
1852 
1853 #ifdef DIAGNOSTIC
1854 		/* XXX Increase if/when we support large SCSI commands. */
1855 		if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
1856 			printf("%s: cmd too large\n", mly->mly_dv.dv_xname);
1857 			xs->error = XS_DRIVER_STUFFUP;
1858 			scsipi_done(xs);
1859 			break;
1860 		}
1861 #endif
1862 
1863 		if (mly_ccb_alloc(mly, &mc)) {
1864 			xs->error = XS_RESOURCE_SHORTAGE;
1865 			scsipi_done(xs);
1866 			break;
1867 		}
1868 
1869 		/* Build the command. */
1870 		mc->mc_data = xs->data;
1871 		mc->mc_length = xs->datalen;
1872 		mc->mc_complete = mly_scsipi_complete;
1873 		mc->mc_private = xs;
1874 
1875 		/* Build the packet for the controller. */
1876 		ss = &mc->mc_packet->scsi_small;
1877 		ss->opcode = MDACMD_SCSI;
1878 #ifdef notdef
1879 		/*
1880 		 * XXX FreeBSD does this, but it doesn't fix anything,
1881 		 * XXX and appears potentially harmful.
1882 		 */
1883 		ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
1884 #endif
1885 
1886 		ss->data_size = htole32(xs->datalen);
1887 		_lto3l(MLY_PHYADDR(0, chan->chan_channel,
1888 		    periph->periph_target, periph->periph_lun), ss->addr);
1889 
1890 		if (xs->timeout < 60 * 1000)
1891 			ss->timeout = xs->timeout / 1000 |
1892 			    MLY_TIMEOUT_SECONDS;
1893 		else if (xs->timeout < 60 * 60 * 1000)
1894 			ss->timeout = xs->timeout / (60 * 1000) |
1895 			    MLY_TIMEOUT_MINUTES;
1896 		else
1897 			ss->timeout = xs->timeout / (60 * 60 * 1000) |
1898 			    MLY_TIMEOUT_HOURS;
1899 
1900 		ss->maximum_sense_size = sizeof(xs->sense);
1901 		ss->cdb_length = xs->cmdlen;
1902 		memcpy(ss->cdb, xs->cmd, xs->cmdlen);
1903 
1904 		if (mc->mc_length != 0) {
1905 			if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
1906 				mc->mc_flags |= MLY_CCB_DATAOUT;
1907 			else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
1908 				mc->mc_flags |= MLY_CCB_DATAIN;
1909 
1910 			if (mly_ccb_map(mly, mc) != 0) {
1911 				xs->error = XS_DRIVER_STUFFUP;
1912 				mly_ccb_free(mly, mc);
1913 				scsipi_done(xs);
1914 				break;
1915 			}
1916 		}
1917 
1918 		/*
1919 		 * Give the command to the controller.
1920 		 */
1921 		if ((xs->xs_control & XS_CTL_POLL) != 0) {
1922 			if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
1923 				xs->error = XS_REQUEUE;
1924 				if (mc->mc_length != 0)
1925 					mly_ccb_unmap(mly, mc);
1926 				mly_ccb_free(mly, mc);
1927 				scsipi_done(xs);
1928 			}
1929 		} else
1930 			mly_ccb_enqueue(mly, mc);
1931 
1932 		break;
1933 
1934 	case ADAPTER_REQ_GROW_RESOURCES:
1935 		/*
1936 		 * Not supported.
1937 		 */
1938 		break;
1939 
1940 	case ADAPTER_REQ_SET_XFER_MODE:
1941 		/*
1942 		 * We can't change the transfer mode, but at least let
1943 		 * scsipi know what the adapter has negotiated.
1944 		 */
1945 		mly_get_xfer_mode(mly, chan->chan_channel, arg);
1946 		break;
1947 	}
1948 }
1949 
1950 /*
1951  * Handle completion of a SCSI command.
1952  */
1953 static void
1954 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
1955 {
1956 	struct scsipi_xfer *xs;
1957 	struct scsipi_channel *chan;
1958 	struct scsipi_inquiry_data *inq;
1959 	struct mly_btl *btl;
1960 	int target, sl, s;
1961 	const char *p;
1962 
1963 	xs = mc->mc_private;
1964 	xs->status = mc->mc_status;
1965 
1966 	/*
1967 	 * XXX The `resid' value as returned by the controller appears to be
1968 	 * bogus, so we always set it to zero.  Is it perhaps the transfer
1969 	 * count?
1970 	 */
1971 	xs->resid = 0; /* mc->mc_resid; */
1972 
1973 	if (mc->mc_length != 0)
1974 		mly_ccb_unmap(mly, mc);
1975 
1976 	switch (mc->mc_status) {
1977 	case SCSI_OK:
1978 		/*
1979 		 * In order to report logical device type and status, we
1980 		 * overwrite the result of the INQUIRY command to logical
1981 		 * devices.
1982 		 */
1983 		if (xs->cmd->opcode == INQUIRY) {
1984 			chan = xs->xs_periph->periph_channel;
1985 			target = xs->xs_periph->periph_target;
1986 			btl = &mly->mly_btl[chan->chan_channel][target];
1987 
1988 			s = splbio();
1989 			if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
1990 				inq = (struct scsipi_inquiry_data *)xs->data;
1991 				mly_padstr(inq->vendor, "MYLEX", 8);
1992 				p = mly_describe_code(mly_table_device_type,
1993 				    btl->mb_type);
1994 				mly_padstr(inq->product, p, 16);
1995 				p = mly_describe_code(mly_table_device_state,
1996 				    btl->mb_state);
1997 				mly_padstr(inq->revision, p, 4);
1998 			}
1999 			splx(s);
2000 		}
2001 
2002 		xs->error = XS_NOERROR;
2003 		break;
2004 
2005 	case SCSI_CHECK:
2006 		sl = mc->mc_sense;
2007 		if (sl > sizeof(xs->sense.scsi_sense))
2008 			sl = sizeof(xs->sense.scsi_sense);
2009 		memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
2010 		xs->error = XS_SENSE;
2011 		break;
2012 
2013 	case SCSI_BUSY:
2014 	case SCSI_QUEUE_FULL:
2015 		xs->error = XS_BUSY;
2016 		break;
2017 
2018 	default:
2019 		printf("%s: unknown SCSI status 0x%x\n",
2020 		    mly->mly_dv.dv_xname, xs->status);
2021 		xs->error = XS_DRIVER_STUFFUP;
2022 		break;
2023 	}
2024 
2025 	mly_ccb_free(mly, mc);
2026 	scsipi_done(xs);
2027 }
2028 
2029 /*
2030  * Notify scsipi about a target's transfer mode.
2031  */
2032 static void
2033 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
2034 {
2035 	struct mly_btl *btl;
2036 	int s;
2037 
2038 	btl = &mly->mly_btl[bus][xm->xm_target];
2039 	xm->xm_mode = 0;
2040 
2041 	s = splbio();
2042 
2043 	if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
2044 		if (btl->mb_speed == 0) {
2045 			xm->xm_period = 0;
2046 			xm->xm_offset = 0;
2047 		} else {
2048 			xm->xm_period = 12;			/* XXX */
2049 			xm->xm_offset = 8;			/* XXX */
2050 			xm->xm_mode |= PERIPH_CAP_SYNC;		/* XXX */
2051 		}
2052 
2053 		switch (btl->mb_width) {
2054 		case 32:
2055 			xm->xm_mode = PERIPH_CAP_WIDE32;
2056 			break;
2057 		case 16:
2058 			xm->xm_mode = PERIPH_CAP_WIDE16;
2059 			break;
2060 		default:
2061 			xm->xm_mode = 0;
2062 			break;
2063 		}
2064 	} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
2065 		xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
2066 		xm->xm_period = 12;
2067 		xm->xm_offset = 8;
2068 	}
2069 
2070 	if ((btl->mb_flags & MLY_BTL_TQING) != 0)
2071 		xm->xm_mode |= PERIPH_CAP_TQING;
2072 
2073 	splx(s);
2074 
2075 	scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
2076 }
2077 
2078 /*
2079  * ioctl hook; used here only to initiate low-level rescans.
2080  */
2081 static int
2082 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, caddr_t data,
2083 		 int flag, struct proc *p)
2084 {
2085 	struct mly_softc *mly;
2086 	int rv;
2087 
2088 	mly = (struct mly_softc *)chan->chan_adapter->adapt_dev;
2089 
2090 	switch (cmd) {
2091 	case SCBUSIOLLSCAN:
2092 		mly_scan_channel(mly, chan->chan_channel);
2093 		rv = 0;
2094 		break;
2095 	default:
2096 		rv = ENOTTY;
2097 		break;
2098 	}
2099 
2100 	return (rv);
2101 }
2102 
2103 /*
2104  * Handshake with the firmware while the card is being initialised.
2105  */
2106 static int
2107 mly_fwhandshake(struct mly_softc *mly)
2108 {
2109 	u_int8_t error, param0, param1;
2110 	int spinup;
2111 
2112 	spinup = 0;
2113 
2114 	/* Set HM_STSACK and let the firmware initialise. */
2115 	mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
2116 	DELAY(1000);	/* too short? */
2117 
2118 	/* If HM_STSACK is still true, the controller is initialising. */
2119 	if (!mly_idbr_true(mly, MLY_HM_STSACK))
2120 		return (0);
2121 
2122 	printf("%s: controller initialisation started\n",
2123 	    mly->mly_dv.dv_xname);
2124 
2125 	/*
2126 	 * Spin waiting for initialisation to finish, or for a message to be
2127 	 * delivered.
2128 	 */
2129 	while (mly_idbr_true(mly, MLY_HM_STSACK)) {
2130 		/* Check for a message */
2131 		if (!mly_error_valid(mly))
2132 			continue;
2133 
2134 		error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
2135 		param0 = mly_inb(mly, mly->mly_cmd_mailbox);
2136 		param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
2137 
2138 		switch (error) {
2139 		case MLY_MSG_SPINUP:
2140 			if (!spinup) {
2141 				printf("%s: drive spinup in progress\n",
2142 				    mly->mly_dv.dv_xname);
2143 				spinup = 1;
2144 			}
2145 			break;
2146 
2147 		case MLY_MSG_RACE_RECOVERY_FAIL:
2148 			printf("%s: mirror race recovery failed - \n",
2149 			    mly->mly_dv.dv_xname);
2150 			printf("%s: one or more drives offline\n",
2151 			    mly->mly_dv.dv_xname);
2152 			break;
2153 
2154 		case MLY_MSG_RACE_IN_PROGRESS:
2155 			printf("%s: mirror race recovery in progress\n",
2156 			    mly->mly_dv.dv_xname);
2157 			break;
2158 
2159 		case MLY_MSG_RACE_ON_CRITICAL:
2160 			printf("%s: mirror race recovery on critical drive\n",
2161 			    mly->mly_dv.dv_xname);
2162 			break;
2163 
2164 		case MLY_MSG_PARITY_ERROR:
2165 			printf("%s: FATAL MEMORY PARITY ERROR\n",
2166 			    mly->mly_dv.dv_xname);
2167 			return (ENXIO);
2168 
2169 		default:
2170 			printf("%s: unknown initialisation code 0x%x\n",
2171 			    mly->mly_dv.dv_xname, error);
2172 			break;
2173 		}
2174 	}
2175 
2176 	return (0);
2177 }
2178 
2179 /*
2180  * Space-fill a character string
2181  */
2182 static void
2183 mly_padstr(char *dst, const char *src, int len)
2184 {
2185 
2186 	while (len-- > 0) {
2187 		if (*src != '\0')
2188 			*dst++ = *src++;
2189 		else
2190 			*dst++ = ' ';
2191 	}
2192 }
2193 
2194 /*
2195  * Allocate DMA safe memory.
2196  */
2197 static int
2198 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
2199 		 caddr_t *kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
2200 {
2201 	int rseg, rv, state;
2202 
2203 	state = 0;
2204 
2205 	if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, NBPG, 0,
2206 	    seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
2207 		printf("%s: dmamem_alloc = %d\n", mly->mly_dv.dv_xname, rv);
2208 		goto bad;
2209 	}
2210 
2211 	state++;
2212 
2213 	if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
2214 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
2215 		printf("%s: dmamem_map = %d\n", mly->mly_dv.dv_xname, rv);
2216 		goto bad;
2217 	}
2218 
2219 	state++;
2220 
2221 	if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
2222 	    BUS_DMA_NOWAIT, dmamap)) != 0) {
2223 		printf("%s: dmamap_create = %d\n", mly->mly_dv.dv_xname, rv);
2224 		goto bad;
2225 	}
2226 
2227 	state++;
2228 
2229 	if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
2230 	    NULL, BUS_DMA_NOWAIT)) != 0) {
2231 		printf("%s: dmamap_load = %d\n", mly->mly_dv.dv_xname, rv);
2232 		goto bad;
2233 	}
2234 
2235 	*paddr = (*dmamap)->dm_segs[0].ds_addr;
2236 	memset(*kva, 0, size);
2237 	return (0);
2238 
2239  bad:
2240 	if (state > 2)
2241 		bus_dmamap_destroy(mly->mly_dmat, *dmamap);
2242 	if (state > 1)
2243 		bus_dmamem_unmap(mly->mly_dmat, *kva, size);
2244 	if (state > 0)
2245 		bus_dmamem_free(mly->mly_dmat, seg, 1);
2246 
2247 	return (rv);
2248 }
2249 
2250 /*
2251  * Free DMA safe memory.
2252  */
2253 static void
2254 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
2255 		caddr_t kva, bus_dma_segment_t *seg)
2256 {
2257 
2258 	bus_dmamap_unload(mly->mly_dmat, dmamap);
2259 	bus_dmamap_destroy(mly->mly_dmat, dmamap);
2260 	bus_dmamem_unmap(mly->mly_dmat, kva, size);
2261 	bus_dmamem_free(mly->mly_dmat, seg, 1);
2262 }
2263 
2264 
2265 /*
2266  * Accept an open operation on the control device.
2267  */
2268 int
2269 mlyopen(dev_t dev, int flag, int mode, struct proc *p)
2270 {
2271 	struct mly_softc *mly;
2272 
2273 	if ((mly = device_lookup(&mly_cd, minor(dev))) == NULL)
2274 		return (ENXIO);
2275 	if ((mly->mly_state & MLY_STATE_INITOK) == 0)
2276 		return (ENXIO);
2277 	if ((mly->mly_state & MLY_STATE_OPEN) != 0)
2278 		return (EBUSY);
2279 
2280 	mly->mly_state |= MLY_STATE_OPEN;
2281 	return (0);
2282 }
2283 
2284 /*
2285  * Accept the last close on the control device.
2286  */
2287 int
2288 mlyclose(dev_t dev, int flag, int mode, struct proc *p)
2289 {
2290 	struct mly_softc *mly;
2291 
2292 	mly = device_lookup(&mly_cd, minor(dev));
2293 	mly->mly_state &= ~MLY_STATE_OPEN;
2294 	return (0);
2295 }
2296 
2297 /*
2298  * Handle control operations.
2299  */
2300 int
2301 mlyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
2302 {
2303 	struct mly_softc *mly;
2304 	int rv;
2305 
2306 	if (securelevel >= 2)
2307 		return (EPERM);
2308 
2309 	mly = device_lookup(&mly_cd, minor(dev));
2310 
2311 	switch (cmd) {
2312 	case MLYIO_COMMAND:
2313 		rv = mly_user_command(mly, (void *)data);
2314 		break;
2315 	case MLYIO_HEALTH:
2316 		rv = mly_user_health(mly, (void *)data);
2317 		break;
2318 	default:
2319 		rv = ENOTTY;
2320 		break;
2321 	}
2322 
2323 	return (rv);
2324 }
2325 
2326 /*
2327  * Execute a command passed in from userspace.
2328  *
2329  * The control structure contains the actual command for the controller, as
2330  * well as the user-space data pointer and data size, and an optional sense
2331  * buffer size/pointer.  On completion, the data size is adjusted to the
2332  * command residual, and the sense buffer size to the size of the returned
2333  * sense data.
2334  */
2335 static int
2336 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
2337 {
2338 	struct mly_ccb	*mc;
2339 	int rv, mapped;
2340 
2341 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
2342 		return (rv);
2343 
2344 	mapped = 0;
2345 	mc->mc_data = NULL;
2346 
2347 	/*
2348 	 * Handle data size/direction.
2349 	 */
2350 	if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
2351 		if (mc->mc_length > MAXPHYS) {
2352 			rv = EINVAL;
2353 			goto out;
2354 		}
2355 
2356 		mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
2357 		if (mc->mc_data == NULL) {
2358 			rv = ENOMEM;
2359 			goto out;
2360 		}
2361 
2362 		if (uc->DataTransferLength > 0) {
2363 			mc->mc_flags |= MLY_CCB_DATAIN;
2364 			memset(mc->mc_data, 0, mc->mc_length);
2365 		}
2366 
2367 		if (uc->DataTransferLength < 0) {
2368 			mc->mc_flags |= MLY_CCB_DATAOUT;
2369 			rv = copyin(uc->DataTransferBuffer, mc->mc_data,
2370 			    mc->mc_length);
2371 			if (rv != 0)
2372 				goto out;
2373 		}
2374 
2375 		if ((rv = mly_ccb_map(mly, mc)) != 0)
2376 			goto out;
2377 		mapped = 1;
2378 	}
2379 
2380 	/* Copy in the command and execute it. */
2381 	memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
2382 
2383 	if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
2384 		goto out;
2385 
2386 	/* Return the data to userspace. */
2387 	if (uc->DataTransferLength > 0) {
2388 		rv = copyout(mc->mc_data, uc->DataTransferBuffer,
2389 		    mc->mc_length);
2390 		if (rv != 0)
2391 			goto out;
2392 	}
2393 
2394 	/* Return the sense buffer to userspace. */
2395 	if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
2396 		rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2397 		    min(uc->RequestSenseLength, mc->mc_sense));
2398 		if (rv != 0)
2399 			goto out;
2400 	}
2401 
2402 	/* Return command results to userspace (caller will copy out). */
2403 	uc->DataTransferLength = mc->mc_resid;
2404 	uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2405 	uc->CommandStatus = mc->mc_status;
2406 	rv = 0;
2407 
2408  out:
2409  	if (mapped)
2410  		mly_ccb_unmap(mly, mc);
2411 	if (mc->mc_data != NULL)
2412 		free(mc->mc_data, M_DEVBUF);
2413 	if (mc != NULL)
2414 		mly_ccb_free(mly, mc);
2415 
2416 	return (rv);
2417 }
2418 
2419 /*
2420  * Return health status to userspace.  If the health change index in the
2421  * user structure does not match that currently exported by the controller,
2422  * we return the current status immediately.  Otherwise, we block until
2423  * either interrupted or new status is delivered.
2424  */
2425 static int
2426 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
2427 {
2428 	struct mly_health_status mh;
2429 	int rv, s;
2430 
2431 	/* Fetch the current health status from userspace. */
2432 	rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
2433 	if (rv != 0)
2434 		return (rv);
2435 
2436 	/* spin waiting for a status update */
2437 	s = splbio();
2438 	if (mly->mly_event_change == mh.change_counter)
2439 		rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
2440 		    "mlyhealth", 0);
2441 	splx(s);
2442 
2443 	if (rv == 0) {
2444 		/*
2445 		 * Copy the controller's health status buffer out (there is
2446 		 * a race here if it changes again).
2447 		 */
2448 		rv = copyout(&mly->mly_mmbox->mmm_health.status,
2449 		    uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
2450 	}
2451 
2452 	return (rv);
2453 }
2454