xref: /netbsd/sys/dev/raidframe/rf_dagdegwr.c (revision 6550d01e)
1 /*	$NetBSD: rf_dagdegwr.c,v 1.30 2006/11/16 01:33:23 christos Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30  * rf_dagdegwr.c
31  *
32  * code for creating degraded write DAGs
33  *
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.30 2006/11/16 01:33:23 christos Exp $");
38 
39 #include <dev/raidframe/raidframevar.h>
40 
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_general.h"
47 #include "rf_dagdegwr.h"
48 #include "rf_map.h"
49 
50 
51 /******************************************************************************
52  *
53  * General comments on DAG creation:
54  *
55  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
56  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
57  * is reached, the execution engine will halt forward execution and work
58  * backward through the graph, executing the undo functions.  Assuming that
59  * each node in the graph prior to the Cmt node are undoable and atomic - or -
60  * does not make changes to permanent state, the graph will fail atomically.
61  * If an error occurs after the Cmt node executes, the engine will roll-forward
62  * through the graph, blindly executing nodes until it reaches the end.
63  * If a graph reaches the end, it is assumed to have completed successfully.
64  *
65  * A graph has only 1 Cmt node.
66  *
67  */
68 
69 
70 /******************************************************************************
71  *
72  * The following wrappers map the standard DAG creation interface to the
73  * DAG creation routines.  Additionally, these wrappers enable experimentation
74  * with new DAG structures by providing an extra level of indirection, allowing
75  * the DAG creation routines to be replaced at this single point.
76  */
77 
78 static
79 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
80 {
81 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
82 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
83 }
84 
85 void
86 rf_CreateDegradedWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
87 			  RF_DagHeader_t *dag_h, void *bp,
88 			  RF_RaidAccessFlags_t flags,
89 			  RF_AllocListElem_t *allocList)
90 {
91 
92 	RF_ASSERT(asmap->numDataFailed == 1);
93 	dag_h->creator = "DegradedWriteDAG";
94 
95 	/*
96 	 * if the access writes only a portion of the failed unit, and also
97 	 * writes some portion of at least one surviving unit, we create two
98 	 * DAGs, one for the failed component and one for the non-failed
99 	 * component, and do them sequentially.  Note that the fact that we're
100 	 * accessing only a portion of the failed unit indicates that the
101 	 * access either starts or ends in the failed unit, and hence we need
102 	 * create only two dags.  This is inefficient in that the same data or
103 	 * parity can get read and written twice using this structure.  I need
104 	 * to fix this to do the access all at once.
105 	 */
106 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
107 		    asmap->failedPDAs[0]->numSector !=
108 			raidPtr->Layout.sectorsPerStripeUnit));
109 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
110 	    allocList);
111 }
112 
113 
114 
115 /******************************************************************************
116  *
117  * DAG creation code begins here
118  */
119 
120 
121 
122 /******************************************************************************
123  *
124  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
125  * write, which is as follows
126  *
127  *                                        / {Wnq} --\
128  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
129  *                  \  {Rod} /            \  Wnd ---/
130  *                                        \ {Wnd} -/
131  *
132  * commit nodes: Xor, Wnd
133  *
134  * IMPORTANT:
135  * This DAG generator does not work for double-degraded archs since it does not
136  * generate Q
137  *
138  * This dag is essentially identical to the large-write dag, except that the
139  * write to the failed data unit is suppressed.
140  *
141  * IMPORTANT:  this dag does not work in the case where the access writes only
142  * a portion of the failed unit, and also writes some portion of at least one
143  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
144  *
145  * The block & unblock nodes are leftovers from a previous version.  They
146  * do nothing, but I haven't deleted them because it would be a tremendous
147  * effort to put them back in.
148  *
149  * This dag is used whenever a one of the data units in a write has failed.
150  * If it is the parity unit that failed, the nonredundant write dag (below)
151  * is used.
152  *****************************************************************************/
153 
154 void
155 rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t *raidPtr,
156 				      RF_AccessStripeMap_t *asmap,
157 				      RF_DagHeader_t *dag_h, void *bp,
158 				      RF_RaidAccessFlags_t flags,
159 				      RF_AllocListElem_t *allocList,
160 				      int nfaults,
161 				      int (*redFunc) (RF_DagNode_t *),
162 				      int allowBufferRecycle)
163 {
164 	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
165 	        rdnodesFaked;
166 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
167 	RF_DagNode_t *wndNodes, *rrdNodes, *xorNode, *commitNode;
168 	RF_DagNode_t *tmpNode, *tmpwndNode, *tmprrdNode;
169 	RF_SectorCount_t sectorsPerSU;
170 	RF_ReconUnitNum_t which_ru;
171 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
172 					 * operation */
173 	char   overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
174 	RF_AccessStripeMapHeader_t *new_asm_h[2];
175 	RF_PhysDiskAddr_t *pda, *parityPDA;
176 	RF_StripeNum_t parityStripeID;
177 	RF_PhysDiskAddr_t *failedPDA;
178 	RF_RaidLayout_t *layoutPtr;
179 
180 	layoutPtr = &(raidPtr->Layout);
181 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
182 	    &which_ru);
183 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
184 	/* failedPDA points to the pda within the asm that targets the failed
185 	 * disk */
186 	failedPDA = asmap->failedPDAs[0];
187 
188 #if RF_DEBUG_DAG
189 	if (rf_dagDebug)
190 		printf("[Creating degraded-write DAG]\n");
191 #endif
192 
193 	RF_ASSERT(asmap->numDataFailed == 1);
194 	dag_h->creator = "SimpleDegradedWriteDAG";
195 
196 	/*
197          * Generate two ASMs identifying the surviving data
198          * we need in order to recover the lost data.
199          */
200 	/* overlappingPDAs array must be zero'd */
201 	memset(overlappingPDAs, 0, RF_MAXCOL);
202 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
203 	    &nXorBufs, NULL, overlappingPDAs, allocList);
204 
205 	/* create all the nodes at once */
206 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
207 							 * generated for the
208 							 * failed pda */
209 
210 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
211 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
212 	/*
213          * XXX
214          *
215          * There's a bug with a complete stripe overwrite- that means 0 reads
216          * of old data, and the rest of the DAG generation code doesn't like
217          * that. A release is coming, and I don't wanna risk breaking a critical
218          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
219          * I'm gonna fake there being a read node, and I'm gonna swap in a
220          * no-op node in its place (to make all the link-up code happy).
221          * This should be fixed at some point.  --jimz
222          */
223 	if (nRrdNodes == 0) {
224 		nRrdNodes = 1;
225 		rdnodesFaked = 1;
226 	} else {
227 		rdnodesFaked = 0;
228 	}
229 	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
230 	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
231 
232 	blockNode = rf_AllocDAGNode();
233 	blockNode->list_next = dag_h->nodes;
234 	dag_h->nodes = blockNode;
235 
236 	commitNode = rf_AllocDAGNode();
237 	commitNode->list_next = dag_h->nodes;
238 	dag_h->nodes = commitNode;
239 
240 	unblockNode = rf_AllocDAGNode();
241 	unblockNode->list_next = dag_h->nodes;
242 	dag_h->nodes = unblockNode;
243 
244 	termNode = rf_AllocDAGNode();
245 	termNode->list_next = dag_h->nodes;
246 	dag_h->nodes = termNode;
247 
248 	xorNode = rf_AllocDAGNode();
249 	xorNode->list_next = dag_h->nodes;
250 	dag_h->nodes = xorNode;
251 
252 	wnpNode = rf_AllocDAGNode();
253 	wnpNode->list_next = dag_h->nodes;
254 	dag_h->nodes = wnpNode;
255 
256 	for (i = 0; i < nWndNodes; i++) {
257 		tmpNode = rf_AllocDAGNode();
258 		tmpNode->list_next = dag_h->nodes;
259 		dag_h->nodes = tmpNode;
260 	}
261 	wndNodes = dag_h->nodes;
262 
263 	for (i = 0; i < nRrdNodes; i++) {
264 		tmpNode = rf_AllocDAGNode();
265 		tmpNode->list_next = dag_h->nodes;
266 		dag_h->nodes = tmpNode;
267 	}
268 	rrdNodes = dag_h->nodes;
269 
270 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
271 	if (nfaults == 2) {
272 		wnqNode = rf_AllocDAGNode();
273 		wnqNode->list_next = dag_h->nodes;
274 		dag_h->nodes = wnqNode;
275 	} else {
276 #endif
277 		wnqNode = NULL;
278 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
279 	}
280 #endif
281 
282 	/* this dag can not commit until all rrd and xor Nodes have completed */
283 	dag_h->numCommitNodes = 1;
284 	dag_h->numCommits = 0;
285 	dag_h->numSuccedents = 1;
286 
287 	RF_ASSERT(nRrdNodes > 0);
288 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
289 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
290 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
291 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
292 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
293 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
294 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
295 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
296 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
297 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
298 
299 	/*
300          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
301          * the failed buffer, save a pointer to it so we can use it as the target
302          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
303          * a buffer is the same size as the failed buffer, it must also be at the
304          * same alignment within the SU.
305          */
306 	i = 0;
307 	tmprrdNode = rrdNodes;
308 	if (new_asm_h[0]) {
309 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
310 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
311 		    i++, pda = pda->next) {
312 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
313 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
314 			RF_ASSERT(pda);
315 			tmprrdNode->params[0].p = pda;
316 			tmprrdNode->params[1].p = pda->bufPtr;
317 			tmprrdNode->params[2].v = parityStripeID;
318 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
319 			tmprrdNode = tmprrdNode->list_next;
320 		}
321 	}
322 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
323 	/* Note that for tmprrdNode, this means a continuation from above, so no need to
324 	   assign it anything.. */
325 	if (new_asm_h[1]) {
326 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
327 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
328 		    j++, pda = pda->next) {
329 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
330 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
331 			RF_ASSERT(pda);
332 			tmprrdNode->params[0].p = pda;
333 			tmprrdNode->params[1].p = pda->bufPtr;
334 			tmprrdNode->params[2].v = parityStripeID;
335 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
336 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
337 				xorTargetBuf = pda->bufPtr;
338 			tmprrdNode = tmprrdNode->list_next;
339 		}
340 	}
341 	if (rdnodesFaked) {
342 		/*
343 	         * This is where we'll init that fake noop read node
344 	         * (XXX should the wakeup func be different?)
345 	         */
346 		/* node that rrdNodes will just be a single node... */
347 		rf_InitNode(rrdNodes, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
348 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
349 	}
350 	/*
351          * Make a PDA for the parity unit.  The parity PDA should start at
352          * the same offset into the SU as the failed PDA.
353          */
354 	/* Danner comment: I don't think this copy is really necessary. We are
355 	 * in one of two cases here. (1) The entire failed unit is written.
356 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
357 	 * only writing a subset of the failed unit and nothing else. Then the
358 	 * asmap->parityInfo describes the failed unit and the copy can also
359 	 * be avoided. */
360 
361 	parityPDA = rf_AllocPhysDiskAddr();
362 	parityPDA->next = dag_h->pda_cleanup_list;
363 	dag_h->pda_cleanup_list = parityPDA;
364 	parityPDA->col = asmap->parityInfo->col;
365 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
366 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
367 	parityPDA->numSector = failedPDA->numSector;
368 
369 	if (!xorTargetBuf) {
370 		xorTargetBuf = rf_AllocBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
371 	}
372 	/* init the Wnp node */
373 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
374 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
375 	wnpNode->params[0].p = parityPDA;
376 	wnpNode->params[1].p = xorTargetBuf;
377 	wnpNode->params[2].v = parityStripeID;
378 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
379 
380 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
381 	/* fill in the Wnq Node */
382 	if (nfaults == 2) {
383 		{
384 			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
385 			    (RF_PhysDiskAddr_t *), allocList);
386 			parityPDA->col = asmap->qInfo->col;
387 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
388 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
389 			parityPDA->numSector = failedPDA->numSector;
390 
391 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
392 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
393 			wnqNode->params[0].p = parityPDA;
394 			RF_MallocAndAdd(xorNode->results[1],
395 			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
396 			wnqNode->params[1].p = xorNode->results[1];
397 			wnqNode->params[2].v = parityStripeID;
398 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
399 		}
400 	}
401 #endif
402 	/* fill in the Wnd nodes */
403 	tmpwndNode = wndNodes;
404 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
405 		if (pda == failedPDA) {
406 			i--;
407 			continue;
408 		}
409 		rf_InitNode(tmpwndNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
410 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
411 		RF_ASSERT(pda);
412 		tmpwndNode->params[0].p = pda;
413 		tmpwndNode->params[1].p = pda->bufPtr;
414 		tmpwndNode->params[2].v = parityStripeID;
415 		tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
416 		tmpwndNode = tmpwndNode->list_next;
417 	}
418 
419 	/* fill in the results of the xor node */
420 	xorNode->results[0] = xorTargetBuf;
421 
422 	/* fill in the params of the xor node */
423 
424 	paramNum = 0;
425 	if (rdnodesFaked == 0) {
426 		tmprrdNode = rrdNodes;
427 		for (i = 0; i < nRrdNodes; i++) {
428 			/* all the Rrd nodes need to be xored together */
429 			xorNode->params[paramNum++] = tmprrdNode->params[0];
430 			xorNode->params[paramNum++] = tmprrdNode->params[1];
431 			tmprrdNode = tmprrdNode->list_next;
432 		}
433 	}
434 	tmpwndNode = wndNodes;
435 	for (i = 0; i < nWndNodes; i++) {
436 		/* any Wnd nodes that overlap the failed access need to be
437 		 * xored in */
438 		if (overlappingPDAs[i]) {
439 			pda = rf_AllocPhysDiskAddr();
440 			memcpy((char *) pda, (char *) tmpwndNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
441 			/* add it into the pda_cleanup_list *after* the copy, TYVM */
442 			pda->next = dag_h->pda_cleanup_list;
443 			dag_h->pda_cleanup_list = pda;
444 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
445 			xorNode->params[paramNum++].p = pda;
446 			xorNode->params[paramNum++].p = pda->bufPtr;
447 		}
448 		tmpwndNode = tmpwndNode->list_next;
449 	}
450 
451 	/*
452          * Install the failed PDA into the xor param list so that the
453          * new data gets xor'd in.
454          */
455 	xorNode->params[paramNum++].p = failedPDA;
456 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
457 
458 	/*
459          * The last 2 params to the recovery xor node are always the failed
460          * PDA and the raidPtr. install the failedPDA even though we have just
461          * done so above. This allows us to use the same XOR function for both
462          * degraded reads and degraded writes.
463          */
464 	xorNode->params[paramNum++].p = failedPDA;
465 	xorNode->params[paramNum++].p = raidPtr;
466 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
467 
468 	/*
469          * Code to link nodes begins here
470          */
471 
472 	/* link header to block node */
473 	RF_ASSERT(blockNode->numAntecedents == 0);
474 	dag_h->succedents[0] = blockNode;
475 
476 	/* link block node to rd nodes */
477 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
478 	tmprrdNode = rrdNodes;
479 	for (i = 0; i < nRrdNodes; i++) {
480 		RF_ASSERT(tmprrdNode->numAntecedents == 1);
481 		blockNode->succedents[i] = tmprrdNode;
482 		tmprrdNode->antecedents[0] = blockNode;
483 		tmprrdNode->antType[0] = rf_control;
484 		tmprrdNode = tmprrdNode->list_next;
485 	}
486 
487 	/* link read nodes to xor node */
488 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
489 	tmprrdNode = rrdNodes;
490 	for (i = 0; i < nRrdNodes; i++) {
491 		RF_ASSERT(tmprrdNode->numSuccedents == 1);
492 		tmprrdNode->succedents[0] = xorNode;
493 		xorNode->antecedents[i] = tmprrdNode;
494 		xorNode->antType[i] = rf_trueData;
495 		tmprrdNode = tmprrdNode->list_next;
496 	}
497 
498 	/* link xor node to commit node */
499 	RF_ASSERT(xorNode->numSuccedents == 1);
500 	RF_ASSERT(commitNode->numAntecedents == 1);
501 	xorNode->succedents[0] = commitNode;
502 	commitNode->antecedents[0] = xorNode;
503 	commitNode->antType[0] = rf_control;
504 
505 	/* link commit node to wnd nodes */
506 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
507 	tmpwndNode = wndNodes;
508 	for (i = 0; i < nWndNodes; i++) {
509 		RF_ASSERT(tmpwndNode->numAntecedents == 1);
510 		commitNode->succedents[i] = tmpwndNode;
511 		tmpwndNode->antecedents[0] = commitNode;
512 		tmpwndNode->antType[0] = rf_control;
513 		tmpwndNode = tmpwndNode->list_next;
514 	}
515 
516 	/* link the commit node to wnp, wnq nodes */
517 	RF_ASSERT(wnpNode->numAntecedents == 1);
518 	commitNode->succedents[nWndNodes] = wnpNode;
519 	wnpNode->antecedents[0] = commitNode;
520 	wnpNode->antType[0] = rf_control;
521 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
522 	if (nfaults == 2) {
523 		RF_ASSERT(wnqNode->numAntecedents == 1);
524 		commitNode->succedents[nWndNodes + 1] = wnqNode;
525 		wnqNode->antecedents[0] = commitNode;
526 		wnqNode->antType[0] = rf_control;
527 	}
528 #endif
529 	/* link write new data nodes to unblock node */
530 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
531 	tmpwndNode = wndNodes;
532 	for (i = 0; i < nWndNodes; i++) {
533 		RF_ASSERT(tmpwndNode->numSuccedents == 1);
534 		tmpwndNode->succedents[0] = unblockNode;
535 		unblockNode->antecedents[i] = tmpwndNode;
536 		unblockNode->antType[i] = rf_control;
537 		tmpwndNode = tmpwndNode->list_next;
538 	}
539 
540 	/* link write new parity node to unblock node */
541 	RF_ASSERT(wnpNode->numSuccedents == 1);
542 	wnpNode->succedents[0] = unblockNode;
543 	unblockNode->antecedents[nWndNodes] = wnpNode;
544 	unblockNode->antType[nWndNodes] = rf_control;
545 
546 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
547 	/* link write new q node to unblock node */
548 	if (nfaults == 2) {
549 		RF_ASSERT(wnqNode->numSuccedents == 1);
550 		wnqNode->succedents[0] = unblockNode;
551 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
552 		unblockNode->antType[nWndNodes + 1] = rf_control;
553 	}
554 #endif
555 	/* link unblock node to term node */
556 	RF_ASSERT(unblockNode->numSuccedents == 1);
557 	RF_ASSERT(termNode->numAntecedents == 1);
558 	RF_ASSERT(termNode->numSuccedents == 0);
559 	unblockNode->succedents[0] = termNode;
560 	termNode->antecedents[0] = unblockNode;
561 	termNode->antType[0] = rf_control;
562 }
563 #define CONS_PDA(if,start,num) \
564   pda_p->col = asmap->if->col; \
565   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
566   pda_p->numSector = num; \
567   pda_p->next = NULL; \
568   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
569 #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
570 void
571 rf_WriteGenerateFailedAccessASMs(
572     RF_Raid_t * raidPtr,
573     RF_AccessStripeMap_t * asmap,
574     RF_PhysDiskAddr_t ** pdap,
575     int *nNodep,
576     RF_PhysDiskAddr_t ** pqpdap,
577     int *nPQNodep,
578     RF_AllocListElem_t * allocList)
579 {
580 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
581 	int     PDAPerDisk, i;
582 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
583 	int     numDataCol = layoutPtr->numDataCol;
584 	int     state;
585 	unsigned napdas;
586 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
587 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
588 	RF_PhysDiskAddr_t *pda_p;
589 	RF_RaidAddr_t sosAddr;
590 
591 	/* determine how many pda's we will have to generate per unaccess
592 	 * stripe. If there is only one failed data unit, it is one; if two,
593 	 * possibly two, depending wether they overlap. */
594 
595 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
596 	fone_end = fone_start + fone->numSector;
597 
598 	if (asmap->numDataFailed == 1) {
599 		PDAPerDisk = 1;
600 		state = 1;
601 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
602 		pda_p = *pqpdap;
603 		/* build p */
604 		CONS_PDA(parityInfo, fone_start, fone->numSector);
605 		pda_p->type = RF_PDA_TYPE_PARITY;
606 		pda_p++;
607 		/* build q */
608 		CONS_PDA(qInfo, fone_start, fone->numSector);
609 		pda_p->type = RF_PDA_TYPE_Q;
610 	} else {
611 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
612 		ftwo_end = ftwo_start + ftwo->numSector;
613 		if (fone->numSector + ftwo->numSector > secPerSU) {
614 			PDAPerDisk = 1;
615 			state = 2;
616 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
617 			pda_p = *pqpdap;
618 			CONS_PDA(parityInfo, 0, secPerSU);
619 			pda_p->type = RF_PDA_TYPE_PARITY;
620 			pda_p++;
621 			CONS_PDA(qInfo, 0, secPerSU);
622 			pda_p->type = RF_PDA_TYPE_Q;
623 		} else {
624 			PDAPerDisk = 2;
625 			state = 3;
626 			/* four of them, fone, then ftwo */
627 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
628 			pda_p = *pqpdap;
629 			CONS_PDA(parityInfo, fone_start, fone->numSector);
630 			pda_p->type = RF_PDA_TYPE_PARITY;
631 			pda_p++;
632 			CONS_PDA(qInfo, fone_start, fone->numSector);
633 			pda_p->type = RF_PDA_TYPE_Q;
634 			pda_p++;
635 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
636 			pda_p->type = RF_PDA_TYPE_PARITY;
637 			pda_p++;
638 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
639 			pda_p->type = RF_PDA_TYPE_Q;
640 		}
641 	}
642 	/* figure out number of nonaccessed pda */
643 	napdas = PDAPerDisk * (numDataCol - 2);
644 	*nPQNodep = PDAPerDisk;
645 
646 	*nNodep = napdas;
647 	if (napdas == 0)
648 		return;		/* short circuit */
649 
650 	/* allocate up our list of pda's */
651 
652 	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
653 			(RF_PhysDiskAddr_t *), allocList);
654 	*pdap = pda_p;
655 
656 	/* linkem together */
657 	for (i = 0; i < (napdas - 1); i++)
658 		pda_p[i].next = pda_p + (i + 1);
659 
660 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
661 	for (i = 0; i < numDataCol; i++) {
662 		if ((pda_p - (*pdap)) == napdas)
663 			continue;
664 		pda_p->type = RF_PDA_TYPE_DATA;
665 		pda_p->raidAddress = sosAddr + (i * secPerSU);
666 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
667 		/* skip over dead disks */
668 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
669 			continue;
670 		switch (state) {
671 		case 1:	/* fone */
672 			pda_p->numSector = fone->numSector;
673 			pda_p->raidAddress += fone_start;
674 			pda_p->startSector += fone_start;
675 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
676 			break;
677 		case 2:	/* full stripe */
678 			pda_p->numSector = secPerSU;
679 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
680 			break;
681 		case 3:	/* two slabs */
682 			pda_p->numSector = fone->numSector;
683 			pda_p->raidAddress += fone_start;
684 			pda_p->startSector += fone_start;
685 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
686 			pda_p++;
687 			pda_p->type = RF_PDA_TYPE_DATA;
688 			pda_p->raidAddress = sosAddr + (i * secPerSU);
689 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
690 			pda_p->numSector = ftwo->numSector;
691 			pda_p->raidAddress += ftwo_start;
692 			pda_p->startSector += ftwo_start;
693 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
694 			break;
695 		default:
696 			RF_PANIC();
697 		}
698 		pda_p++;
699 	}
700 
701 	RF_ASSERT(pda_p - *pdap == napdas);
702 	return;
703 }
704 #define DISK_NODE_PDA(node)  ((node)->params[0].p)
705 
706 #define DISK_NODE_PARAMS(_node_,_p_) \
707   (_node_).params[0].p = _p_ ; \
708   (_node_).params[1].p = (_p_)->bufPtr; \
709   (_node_).params[2].v = parityStripeID; \
710   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
711 
712 void
713 rf_DoubleDegSmallWrite(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
714 		       RF_DagHeader_t *dag_h, void *bp,
715 		       RF_RaidAccessFlags_t flags,
716 		       RF_AllocListElem_t *allocList,
717 		       const char *redundantReadNodeName,
718 		       const char *redundantWriteNodeName,
719 		       const char *recoveryNodeName,
720 		       int (*recovFunc) (RF_DagNode_t *))
721 {
722 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
723 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
724 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
725 	RF_PhysDiskAddr_t *pda, *pqPDAs;
726 	RF_PhysDiskAddr_t *npdas;
727 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
728 	RF_ReconUnitNum_t which_ru;
729 	int     nPQNodes;
730 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
731 
732 	/* simple small write case - First part looks like a reconstruct-read
733 	 * of the failed data units. Then a write of all data units not
734 	 * failed. */
735 
736 
737 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
738 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
739 	 * --Unblock- | T
740 	 *
741 	 * Rrd = read recovery data  (potentially none) Wud = write user data
742 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
743 	 * (could be two)
744 	 *
745 	 */
746 
747 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
748 
749 	RF_ASSERT(asmap->numDataFailed == 1);
750 
751 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
752 	nReadNodes = nRrdNodes + 2 * nPQNodes;
753 	nWriteNodes = nWudNodes + 2 * nPQNodes;
754 	nNodes = 4 + nReadNodes + nWriteNodes;
755 
756 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
757 	blockNode = nodes;
758 	unblockNode = blockNode + 1;
759 	termNode = unblockNode + 1;
760 	recoveryNode = termNode + 1;
761 	rrdNodes = recoveryNode + 1;
762 	rpNodes = rrdNodes + nRrdNodes;
763 	rqNodes = rpNodes + nPQNodes;
764 	wudNodes = rqNodes + nPQNodes;
765 	wpNodes = wudNodes + nWudNodes;
766 	wqNodes = wpNodes + nPQNodes;
767 
768 	dag_h->creator = "PQ_DDSimpleSmallWrite";
769 	dag_h->numSuccedents = 1;
770 	dag_h->succedents[0] = blockNode;
771 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
772 	termNode->antecedents[0] = unblockNode;
773 	termNode->antType[0] = rf_control;
774 
775 	/* init the block and unblock nodes */
776 	/* The block node has all the read nodes as successors */
777 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
778 	for (i = 0; i < nReadNodes; i++)
779 		blockNode->succedents[i] = rrdNodes + i;
780 
781 	/* The unblock node has all the writes as successors */
782 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
783 	for (i = 0; i < nWriteNodes; i++) {
784 		unblockNode->antecedents[i] = wudNodes + i;
785 		unblockNode->antType[i] = rf_control;
786 	}
787 	unblockNode->succedents[0] = termNode;
788 
789 #define INIT_READ_NODE(node,name) \
790   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
791   (node)->succedents[0] = recoveryNode; \
792   (node)->antecedents[0] = blockNode; \
793   (node)->antType[0] = rf_control;
794 
795 	/* build the read nodes */
796 	pda = npdas;
797 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
798 		INIT_READ_NODE(rrdNodes + i, "rrd");
799 		DISK_NODE_PARAMS(rrdNodes[i], pda);
800 	}
801 
802 	/* read redundancy pdas */
803 	pda = pqPDAs;
804 	INIT_READ_NODE(rpNodes, "Rp");
805 	RF_ASSERT(pda);
806 	DISK_NODE_PARAMS(rpNodes[0], pda);
807 	pda++;
808 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
809 	RF_ASSERT(pda);
810 	DISK_NODE_PARAMS(rqNodes[0], pda);
811 	if (nPQNodes == 2) {
812 		pda++;
813 		INIT_READ_NODE(rpNodes + 1, "Rp");
814 		RF_ASSERT(pda);
815 		DISK_NODE_PARAMS(rpNodes[1], pda);
816 		pda++;
817 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
818 		RF_ASSERT(pda);
819 		DISK_NODE_PARAMS(rqNodes[1], pda);
820 	}
821 	/* the recovery node has all reads as precedessors and all writes as
822 	 * successors. It generates a result for every write P or write Q
823 	 * node. As parameters, it takes a pda per read and a pda per stripe
824 	 * of user data written. It also takes as the last params the raidPtr
825 	 * and asm. For results, it takes PDA for P & Q. */
826 
827 
828 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
829 	    nWriteNodes,	/* succesors */
830 	    nReadNodes,		/* preds */
831 	    nReadNodes + nWudNodes + 3,	/* params */
832 	    2 * nPQNodes,	/* results */
833 	    dag_h, recoveryNodeName, allocList);
834 
835 
836 
837 	for (i = 0; i < nReadNodes; i++) {
838 		recoveryNode->antecedents[i] = rrdNodes + i;
839 		recoveryNode->antType[i] = rf_control;
840 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
841 	}
842 	for (i = 0; i < nWudNodes; i++) {
843 		recoveryNode->succedents[i] = wudNodes + i;
844 	}
845 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
846 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
847 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
848 
849 	for (; i < nWriteNodes; i++)
850 		recoveryNode->succedents[i] = wudNodes + i;
851 
852 	pda = pqPDAs;
853 	recoveryNode->results[0] = pda;
854 	pda++;
855 	recoveryNode->results[1] = pda;
856 	if (nPQNodes == 2) {
857 		pda++;
858 		recoveryNode->results[2] = pda;
859 		pda++;
860 		recoveryNode->results[3] = pda;
861 	}
862 	/* fill writes */
863 #define INIT_WRITE_NODE(node,name) \
864   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
865     (node)->succedents[0] = unblockNode; \
866     (node)->antecedents[0] = recoveryNode; \
867     (node)->antType[0] = rf_control;
868 
869 	pda = asmap->physInfo;
870 	for (i = 0; i < nWudNodes; i++) {
871 		INIT_WRITE_NODE(wudNodes + i, "Wd");
872 		DISK_NODE_PARAMS(wudNodes[i], pda);
873 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
874 		pda = pda->next;
875 	}
876 	/* write redundancy pdas */
877 	pda = pqPDAs;
878 	INIT_WRITE_NODE(wpNodes, "Wp");
879 	RF_ASSERT(pda);
880 	DISK_NODE_PARAMS(wpNodes[0], pda);
881 	pda++;
882 	INIT_WRITE_NODE(wqNodes, "Wq");
883 	RF_ASSERT(pda);
884 	DISK_NODE_PARAMS(wqNodes[0], pda);
885 	if (nPQNodes == 2) {
886 		pda++;
887 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
888 		RF_ASSERT(pda);
889 		DISK_NODE_PARAMS(wpNodes[1], pda);
890 		pda++;
891 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
892 		RF_ASSERT(pda);
893 		DISK_NODE_PARAMS(wqNodes[1], pda);
894 	}
895 }
896 #endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
897