xref: /netbsd/sys/dev/raidframe/rf_dagffrd.c (revision bf9ec67e)
1 /*	$NetBSD: rf_dagffrd.c,v 1.6 2001/11/13 07:11:13 lukem Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30  * rf_dagffrd.c
31  *
32  * code for creating fault-free read DAGs
33  *
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffrd.c,v 1.6 2001/11/13 07:11:13 lukem Exp $");
38 
39 #include <dev/raidframe/raidframevar.h>
40 
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_memchunk.h"
47 #include "rf_general.h"
48 #include "rf_dagffrd.h"
49 
50 /******************************************************************************
51  *
52  * General comments on DAG creation:
53  *
54  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
55  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
56  * is reached, the execution engine will halt forward execution and work
57  * backward through the graph, executing the undo functions.  Assuming that
58  * each node in the graph prior to the Cmt node are undoable and atomic - or -
59  * does not make changes to permanent state, the graph will fail atomically.
60  * If an error occurs after the Cmt node executes, the engine will roll-forward
61  * through the graph, blindly executing nodes until it reaches the end.
62  * If a graph reaches the end, it is assumed to have completed successfully.
63  *
64  * A graph has only 1 Cmt node.
65  *
66  */
67 
68 
69 /******************************************************************************
70  *
71  * The following wrappers map the standard DAG creation interface to the
72  * DAG creation routines.  Additionally, these wrappers enable experimentation
73  * with new DAG structures by providing an extra level of indirection, allowing
74  * the DAG creation routines to be replaced at this single point.
75  */
76 
77 void
78 rf_CreateFaultFreeReadDAG(
79     RF_Raid_t * raidPtr,
80     RF_AccessStripeMap_t * asmap,
81     RF_DagHeader_t * dag_h,
82     void *bp,
83     RF_RaidAccessFlags_t flags,
84     RF_AllocListElem_t * allocList)
85 {
86 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
87 	    RF_IO_TYPE_READ);
88 }
89 
90 
91 /******************************************************************************
92  *
93  * DAG creation code begins here
94  */
95 
96 /******************************************************************************
97  *
98  * creates a DAG to perform a nonredundant read or write of data within one
99  * stripe.
100  * For reads, this DAG is as follows:
101  *
102  *                   /---- read ----\
103  *    Header -- Block ---- read ---- Commit -- Terminate
104  *                   \---- read ----/
105  *
106  * For writes, this DAG is as follows:
107  *
108  *                    /---- write ----\
109  *    Header -- Commit ---- write ---- Block -- Terminate
110  *                    \---- write ----/
111  *
112  * There is one disk node per stripe unit accessed, and all disk nodes are in
113  * parallel.
114  *
115  * Tricky point here:  The first disk node (read or write) is created
116  * normally.  Subsequent disk nodes are created by copying the first one,
117  * and modifying a few params.  The "succedents" and "antecedents" fields are
118  * _not_ re-created in each node, but rather left pointing to the same array
119  * that was malloc'd when the first node was created.  Thus, it's essential
120  * that when this DAG is freed, the succedents and antecedents fields be freed
121  * in ONLY ONE of the read nodes.  This does not apply to the "params" field
122  * because it is recreated for each READ node.
123  *
124  * Note that normal-priority accesses do not need to be tagged with their
125  * parity stripe ID, because they will never be promoted.  Hence, I've
126  * commented-out the code to do this, and marked it with UNNEEDED.
127  *
128  *****************************************************************************/
129 
130 void
131 rf_CreateNonredundantDAG(
132     RF_Raid_t * raidPtr,
133     RF_AccessStripeMap_t * asmap,
134     RF_DagHeader_t * dag_h,
135     void *bp,
136     RF_RaidAccessFlags_t flags,
137     RF_AllocListElem_t * allocList,
138     RF_IoType_t type)
139 {
140 	RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode;
141 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
142 	int     (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
143 	int     i, n, totalNumNodes;
144 	char   *name;
145 
146 	n = asmap->numStripeUnitsAccessed;
147 	dag_h->creator = "NonredundantDAG";
148 
149 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
150 	switch (type) {
151 	case RF_IO_TYPE_READ:
152 		doFunc = rf_DiskReadFunc;
153 		undoFunc = rf_DiskReadUndoFunc;
154 		name = "R  ";
155 		if (rf_dagDebug)
156 			printf("[Creating non-redundant read DAG]\n");
157 		break;
158 	case RF_IO_TYPE_WRITE:
159 		doFunc = rf_DiskWriteFunc;
160 		undoFunc = rf_DiskWriteUndoFunc;
161 		name = "W  ";
162 		if (rf_dagDebug)
163 			printf("[Creating non-redundant write DAG]\n");
164 		break;
165 	default:
166 		RF_PANIC();
167 	}
168 
169 	/*
170          * For reads, the dag can not commit until the block node is reached.
171          * for writes, the dag commits immediately.
172          */
173 	dag_h->numCommitNodes = 1;
174 	dag_h->numCommits = 0;
175 	dag_h->numSuccedents = 1;
176 
177 	/*
178          * Node count:
179          * 1 block node
180          * n data reads (or writes)
181          * 1 commit node
182          * 1 terminator node
183          */
184 	RF_ASSERT(n > 0);
185 	totalNumNodes = n + 3;
186 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
187 	    (RF_DagNode_t *), allocList);
188 	i = 0;
189 	diskNodes = &nodes[i];
190 	i += n;
191 	blockNode = &nodes[i];
192 	i += 1;
193 	commitNode = &nodes[i];
194 	i += 1;
195 	termNode = &nodes[i];
196 	i += 1;
197 	RF_ASSERT(i == totalNumNodes);
198 
199 	/* initialize nodes */
200 	switch (type) {
201 	case RF_IO_TYPE_READ:
202 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
203 		    NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
204 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
205 		    NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
206 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
207 		    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
208 		break;
209 	case RF_IO_TYPE_WRITE:
210 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
211 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
212 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
213 		    NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
214 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
215 		    NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
216 		break;
217 	default:
218 		RF_PANIC();
219 	}
220 
221 	for (i = 0; i < n; i++) {
222 		RF_ASSERT(pda != NULL);
223 		rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
224 		    1, 1, 4, 0, dag_h, name, allocList);
225 		diskNodes[i].params[0].p = pda;
226 		diskNodes[i].params[1].p = pda->bufPtr;
227 		/* parity stripe id is not necessary */
228 		diskNodes[i].params[2].v = 0;
229 		diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
230 		pda = pda->next;
231 	}
232 
233 	/*
234          * Connect nodes.
235          */
236 
237 	/* connect hdr to block node */
238 	RF_ASSERT(blockNode->numAntecedents == 0);
239 	dag_h->succedents[0] = blockNode;
240 
241 	if (type == RF_IO_TYPE_READ) {
242 		/* connecting a nonredundant read DAG */
243 		RF_ASSERT(blockNode->numSuccedents == n);
244 		RF_ASSERT(commitNode->numAntecedents == n);
245 		for (i = 0; i < n; i++) {
246 			/* connect block node to each read node */
247 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
248 			blockNode->succedents[i] = &diskNodes[i];
249 			diskNodes[i].antecedents[0] = blockNode;
250 			diskNodes[i].antType[0] = rf_control;
251 
252 			/* connect each read node to the commit node */
253 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
254 			diskNodes[i].succedents[0] = commitNode;
255 			commitNode->antecedents[i] = &diskNodes[i];
256 			commitNode->antType[i] = rf_control;
257 		}
258 		/* connect the commit node to the term node */
259 		RF_ASSERT(commitNode->numSuccedents == 1);
260 		RF_ASSERT(termNode->numAntecedents == 1);
261 		RF_ASSERT(termNode->numSuccedents == 0);
262 		commitNode->succedents[0] = termNode;
263 		termNode->antecedents[0] = commitNode;
264 		termNode->antType[0] = rf_control;
265 	} else {
266 		/* connecting a nonredundant write DAG */
267 		/* connect the block node to the commit node */
268 		RF_ASSERT(blockNode->numSuccedents == 1);
269 		RF_ASSERT(commitNode->numAntecedents == 1);
270 		blockNode->succedents[0] = commitNode;
271 		commitNode->antecedents[0] = blockNode;
272 		commitNode->antType[0] = rf_control;
273 
274 		RF_ASSERT(commitNode->numSuccedents == n);
275 		RF_ASSERT(termNode->numAntecedents == n);
276 		RF_ASSERT(termNode->numSuccedents == 0);
277 		for (i = 0; i < n; i++) {
278 			/* connect the commit node to each write node */
279 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
280 			commitNode->succedents[i] = &diskNodes[i];
281 			diskNodes[i].antecedents[0] = commitNode;
282 			diskNodes[i].antType[0] = rf_control;
283 
284 			/* connect each write node to the term node */
285 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
286 			diskNodes[i].succedents[0] = termNode;
287 			termNode->antecedents[i] = &diskNodes[i];
288 			termNode->antType[i] = rf_control;
289 		}
290 	}
291 }
292 /******************************************************************************
293  * Create a fault-free read DAG for RAID level 1
294  *
295  * Hdr -> Nil -> Rmir -> Cmt -> Trm
296  *
297  * The "Rmir" node schedules a read from the disk in the mirror pair with the
298  * shortest disk queue.  the proper queue is selected at Rmir execution.  this
299  * deferred mapping is unlike other archs in RAIDframe which generally fix
300  * mapping at DAG creation time.
301  *
302  * Parameters:  raidPtr   - description of the physical array
303  *              asmap     - logical & physical addresses for this access
304  *              bp        - buffer ptr (for holding read data)
305  *              flags     - general flags (e.g. disk locking)
306  *              allocList - list of memory allocated in DAG creation
307  *****************************************************************************/
308 
309 static void
310 CreateMirrorReadDAG(
311     RF_Raid_t * raidPtr,
312     RF_AccessStripeMap_t * asmap,
313     RF_DagHeader_t * dag_h,
314     void *bp,
315     RF_RaidAccessFlags_t flags,
316     RF_AllocListElem_t * allocList,
317     int (*readfunc) (RF_DagNode_t * node))
318 {
319 	RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode;
320 	RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
321 	RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
322 	int     i, n, totalNumNodes;
323 
324 	n = asmap->numStripeUnitsAccessed;
325 	dag_h->creator = "RaidOneReadDAG";
326 	if (rf_dagDebug) {
327 		printf("[Creating RAID level 1 read DAG]\n");
328 	}
329 	/*
330          * This dag can not commit until the commit node is reached
331          * errors prior to the commit point imply the dag has failed.
332          */
333 	dag_h->numCommitNodes = 1;
334 	dag_h->numCommits = 0;
335 	dag_h->numSuccedents = 1;
336 
337 	/*
338          * Node count:
339          * n data reads
340          * 1 block node
341          * 1 commit node
342          * 1 terminator node
343          */
344 	RF_ASSERT(n > 0);
345 	totalNumNodes = n + 3;
346 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
347 	    (RF_DagNode_t *), allocList);
348 	i = 0;
349 	readNodes = &nodes[i];
350 	i += n;
351 	blockNode = &nodes[i];
352 	i += 1;
353 	commitNode = &nodes[i];
354 	i += 1;
355 	termNode = &nodes[i];
356 	i += 1;
357 	RF_ASSERT(i == totalNumNodes);
358 
359 	/* initialize nodes */
360 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
361 	    rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
362 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
363 	    rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
364 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
365 	    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
366 
367 	for (i = 0; i < n; i++) {
368 		RF_ASSERT(data_pda != NULL);
369 		RF_ASSERT(parity_pda != NULL);
370 		rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc,
371 		    rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
372 		    "Rmir", allocList);
373 		readNodes[i].params[0].p = data_pda;
374 		readNodes[i].params[1].p = data_pda->bufPtr;
375 		/* parity stripe id is not necessary */
376 		readNodes[i].params[2].p = 0;
377 		readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
378 		readNodes[i].params[4].p = parity_pda;
379 		data_pda = data_pda->next;
380 		parity_pda = parity_pda->next;
381 	}
382 
383 	/*
384          * Connect nodes
385          */
386 
387 	/* connect hdr to block node */
388 	RF_ASSERT(blockNode->numAntecedents == 0);
389 	dag_h->succedents[0] = blockNode;
390 
391 	/* connect block node to read nodes */
392 	RF_ASSERT(blockNode->numSuccedents == n);
393 	for (i = 0; i < n; i++) {
394 		RF_ASSERT(readNodes[i].numAntecedents == 1);
395 		blockNode->succedents[i] = &readNodes[i];
396 		readNodes[i].antecedents[0] = blockNode;
397 		readNodes[i].antType[0] = rf_control;
398 	}
399 
400 	/* connect read nodes to commit node */
401 	RF_ASSERT(commitNode->numAntecedents == n);
402 	for (i = 0; i < n; i++) {
403 		RF_ASSERT(readNodes[i].numSuccedents == 1);
404 		readNodes[i].succedents[0] = commitNode;
405 		commitNode->antecedents[i] = &readNodes[i];
406 		commitNode->antType[i] = rf_control;
407 	}
408 
409 	/* connect commit node to term node */
410 	RF_ASSERT(commitNode->numSuccedents == 1);
411 	RF_ASSERT(termNode->numAntecedents == 1);
412 	RF_ASSERT(termNode->numSuccedents == 0);
413 	commitNode->succedents[0] = termNode;
414 	termNode->antecedents[0] = commitNode;
415 	termNode->antType[0] = rf_control;
416 }
417 
418 void
419 rf_CreateMirrorIdleReadDAG(
420     RF_Raid_t * raidPtr,
421     RF_AccessStripeMap_t * asmap,
422     RF_DagHeader_t * dag_h,
423     void *bp,
424     RF_RaidAccessFlags_t flags,
425     RF_AllocListElem_t * allocList)
426 {
427 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
428 	    rf_DiskReadMirrorIdleFunc);
429 }
430 
431 void
432 rf_CreateMirrorPartitionReadDAG(
433     RF_Raid_t * raidPtr,
434     RF_AccessStripeMap_t * asmap,
435     RF_DagHeader_t * dag_h,
436     void *bp,
437     RF_RaidAccessFlags_t flags,
438     RF_AllocListElem_t * allocList)
439 {
440 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
441 	    rf_DiskReadMirrorPartitionFunc);
442 }
443