xref: /netbsd/sys/dev/raidframe/rf_dagfuncs.c (revision bf9ec67e)
1 /*	$NetBSD: rf_dagfuncs.c,v 1.8 2001/11/13 07:11:13 lukem Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30  * dagfuncs.c -- DAG node execution routines
31  *
32  * Rules:
33  * 1. Every DAG execution function must eventually cause node->status to
34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
36  *    the node execution function can do these two things directly. In
37  *    the case of nodes that have to wait for some event (a disk read to
38  *    complete, a lock to be released, etc) to occur before they can
39  *    complete, this is typically achieved by having whatever module
40  *    is doing the operation call GenericWakeupFunc upon completion.
41  * 2. DAG execution functions should check the status in the DAG header
42  *    and NOP out their operations if the status is not "enable". However,
43  *    execution functions that release resources must be sure to release
44  *    them even when they NOP out the function that would use them.
45  *    Functions that acquire resources should go ahead and acquire them
46  *    even when they NOP, so that a downstream release node will not have
47  *    to check to find out whether or not the acquire was suppressed.
48  */
49 
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.8 2001/11/13 07:11:13 lukem Exp $");
52 
53 #include <sys/param.h>
54 #include <sys/ioctl.h>
55 
56 #include "rf_archs.h"
57 #include "rf_raid.h"
58 #include "rf_dag.h"
59 #include "rf_layout.h"
60 #include "rf_etimer.h"
61 #include "rf_acctrace.h"
62 #include "rf_diskqueue.h"
63 #include "rf_dagfuncs.h"
64 #include "rf_general.h"
65 #include "rf_engine.h"
66 #include "rf_dagutils.h"
67 
68 #include "rf_kintf.h"
69 
70 #if RF_INCLUDE_PARITYLOGGING > 0
71 #include "rf_paritylog.h"
72 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
73 
74 int     (*rf_DiskReadFunc) (RF_DagNode_t *);
75 int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
76 int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77 int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78 int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
79 int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
80 int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
81 int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
82 int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
83 
84 /*****************************************************************************************
85  * main (only) configuration routine for this module
86  ****************************************************************************************/
87 int
88 rf_ConfigureDAGFuncs(listp)
89 	RF_ShutdownList_t **listp;
90 {
91 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
92 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
93 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
94 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
95 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
96 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
97 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
98 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
99 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
100 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
101 	return (0);
102 }
103 
104 
105 
106 /*****************************************************************************************
107  * the execution function associated with a terminate node
108  ****************************************************************************************/
109 int
110 rf_TerminateFunc(node)
111 	RF_DagNode_t *node;
112 {
113 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
114 	node->status = rf_good;
115 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
116 }
117 
118 int
119 rf_TerminateUndoFunc(node)
120 	RF_DagNode_t *node;
121 {
122 	return (0);
123 }
124 
125 
126 /*****************************************************************************************
127  * execution functions associated with a mirror node
128  *
129  * parameters:
130  *
131  * 0 - physical disk addres of data
132  * 1 - buffer for holding read data
133  * 2 - parity stripe ID
134  * 3 - flags
135  * 4 - physical disk address of mirror (parity)
136  *
137  ****************************************************************************************/
138 
139 int
140 rf_DiskReadMirrorIdleFunc(node)
141 	RF_DagNode_t *node;
142 {
143 	/* select the mirror copy with the shortest queue and fill in node
144 	 * parameters with physical disk address */
145 
146 	rf_SelectMirrorDiskIdle(node);
147 	return (rf_DiskReadFunc(node));
148 }
149 
150 int
151 rf_DiskReadMirrorPartitionFunc(node)
152 	RF_DagNode_t *node;
153 {
154 	/* select the mirror copy with the shortest queue and fill in node
155 	 * parameters with physical disk address */
156 
157 	rf_SelectMirrorDiskPartition(node);
158 	return (rf_DiskReadFunc(node));
159 }
160 
161 int
162 rf_DiskReadMirrorUndoFunc(node)
163 	RF_DagNode_t *node;
164 {
165 	return (0);
166 }
167 
168 
169 
170 #if RF_INCLUDE_PARITYLOGGING > 0
171 /*****************************************************************************************
172  * the execution function associated with a parity log update node
173  ****************************************************************************************/
174 int
175 rf_ParityLogUpdateFunc(node)
176 	RF_DagNode_t *node;
177 {
178 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
179 	caddr_t buf = (caddr_t) node->params[1].p;
180 	RF_ParityLogData_t *logData;
181 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
182 	RF_Etimer_t timer;
183 
184 	if (node->dagHdr->status == rf_enable) {
185 		RF_ETIMER_START(timer);
186 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
187 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
188 		    node->wakeFunc, (void *) node,
189 		    node->dagHdr->tracerec, timer);
190 		if (logData)
191 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
192 		else {
193 			RF_ETIMER_STOP(timer);
194 			RF_ETIMER_EVAL(timer);
195 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
196 			(node->wakeFunc) (node, ENOMEM);
197 		}
198 	}
199 	return (0);
200 }
201 
202 
203 /*****************************************************************************************
204  * the execution function associated with a parity log overwrite node
205  ****************************************************************************************/
206 int
207 rf_ParityLogOverwriteFunc(node)
208 	RF_DagNode_t *node;
209 {
210 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
211 	caddr_t buf = (caddr_t) node->params[1].p;
212 	RF_ParityLogData_t *logData;
213 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
214 	RF_Etimer_t timer;
215 
216 	if (node->dagHdr->status == rf_enable) {
217 		RF_ETIMER_START(timer);
218 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
219 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
220 		if (logData)
221 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
222 		else {
223 			RF_ETIMER_STOP(timer);
224 			RF_ETIMER_EVAL(timer);
225 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
226 			(node->wakeFunc) (node, ENOMEM);
227 		}
228 	}
229 	return (0);
230 }
231 #else				/* RF_INCLUDE_PARITYLOGGING > 0 */
232 
233 int
234 rf_ParityLogUpdateFunc(node)
235 	RF_DagNode_t *node;
236 {
237 	return (0);
238 }
239 int
240 rf_ParityLogOverwriteFunc(node)
241 	RF_DagNode_t *node;
242 {
243 	return (0);
244 }
245 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
246 
247 int
248 rf_ParityLogUpdateUndoFunc(node)
249 	RF_DagNode_t *node;
250 {
251 	return (0);
252 }
253 
254 int
255 rf_ParityLogOverwriteUndoFunc(node)
256 	RF_DagNode_t *node;
257 {
258 	return (0);
259 }
260 /*****************************************************************************************
261  * the execution function associated with a NOP node
262  ****************************************************************************************/
263 int
264 rf_NullNodeFunc(node)
265 	RF_DagNode_t *node;
266 {
267 	node->status = rf_good;
268 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
269 }
270 
271 int
272 rf_NullNodeUndoFunc(node)
273 	RF_DagNode_t *node;
274 {
275 	node->status = rf_undone;
276 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
277 }
278 
279 
280 /*****************************************************************************************
281  * the execution function associated with a disk-read node
282  ****************************************************************************************/
283 int
284 rf_DiskReadFuncForThreads(node)
285 	RF_DagNode_t *node;
286 {
287 	RF_DiskQueueData_t *req;
288 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
289 	caddr_t buf = (caddr_t) node->params[1].p;
290 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
291 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
292 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
293 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
294 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
295 	RF_DiskQueueDataFlags_t flags = 0;
296 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
297 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
298 	void   *b_proc = NULL;
299 
300 	if (node->dagHdr->bp)
301 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
302 
303 	RF_ASSERT(!(lock && unlock));
304 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
305 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
306 
307 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
308 	    buf, parityStripeID, which_ru,
309 	    (int (*) (void *, int)) node->wakeFunc,
310 	    node, NULL, node->dagHdr->tracerec,
311 	    (void *) (node->dagHdr->raidPtr), flags, b_proc);
312 	if (!req) {
313 		(node->wakeFunc) (node, ENOMEM);
314 	} else {
315 		node->dagFuncData = (void *) req;
316 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
317 	}
318 	return (0);
319 }
320 
321 
322 /*****************************************************************************************
323  * the execution function associated with a disk-write node
324  ****************************************************************************************/
325 int
326 rf_DiskWriteFuncForThreads(node)
327 	RF_DagNode_t *node;
328 {
329 	RF_DiskQueueData_t *req;
330 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
331 	caddr_t buf = (caddr_t) node->params[1].p;
332 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
333 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
334 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
335 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
336 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
337 	RF_DiskQueueDataFlags_t flags = 0;
338 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
339 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
340 	void   *b_proc = NULL;
341 
342 	if (node->dagHdr->bp)
343 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
344 
345 	/* normal processing (rollaway or forward recovery) begins here */
346 	RF_ASSERT(!(lock && unlock));
347 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
348 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
349 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
350 	    buf, parityStripeID, which_ru,
351 	    (int (*) (void *, int)) node->wakeFunc,
352 	    (void *) node, NULL,
353 	    node->dagHdr->tracerec,
354 	    (void *) (node->dagHdr->raidPtr),
355 	    flags, b_proc);
356 
357 	if (!req) {
358 		(node->wakeFunc) (node, ENOMEM);
359 	} else {
360 		node->dagFuncData = (void *) req;
361 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
362 	}
363 
364 	return (0);
365 }
366 /*****************************************************************************************
367  * the undo function for disk nodes
368  * Note:  this is not a proper undo of a write node, only locks are released.
369  *        old data is not restored to disk!
370  ****************************************************************************************/
371 int
372 rf_DiskUndoFunc(node)
373 	RF_DagNode_t *node;
374 {
375 	RF_DiskQueueData_t *req;
376 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
377 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
378 
379 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
380 	    0L, 0, NULL, 0L, 0,
381 	    (int (*) (void *, int)) node->wakeFunc,
382 	    (void *) node,
383 	    NULL, node->dagHdr->tracerec,
384 	    (void *) (node->dagHdr->raidPtr),
385 	    RF_UNLOCK_DISK_QUEUE, NULL);
386 	if (!req)
387 		(node->wakeFunc) (node, ENOMEM);
388 	else {
389 		node->dagFuncData = (void *) req;
390 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
391 	}
392 
393 	return (0);
394 }
395 /*****************************************************************************************
396  * the execution function associated with an "unlock disk queue" node
397  ****************************************************************************************/
398 int
399 rf_DiskUnlockFuncForThreads(node)
400 	RF_DagNode_t *node;
401 {
402 	RF_DiskQueueData_t *req;
403 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
404 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
405 
406 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
407 	    0L, 0, NULL, 0L, 0,
408 	    (int (*) (void *, int)) node->wakeFunc,
409 	    (void *) node,
410 	    NULL, node->dagHdr->tracerec,
411 	    (void *) (node->dagHdr->raidPtr),
412 	    RF_UNLOCK_DISK_QUEUE, NULL);
413 	if (!req)
414 		(node->wakeFunc) (node, ENOMEM);
415 	else {
416 		node->dagFuncData = (void *) req;
417 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
418 	}
419 
420 	return (0);
421 }
422 /*****************************************************************************************
423  * Callback routine for DiskRead and DiskWrite nodes.  When the disk op completes,
424  * the routine is called to set the node status and inform the execution engine that
425  * the node has fired.
426  ****************************************************************************************/
427 int
428 rf_GenericWakeupFunc(node, status)
429 	RF_DagNode_t *node;
430 	int     status;
431 {
432 	switch (node->status) {
433 	case rf_bwd1:
434 		node->status = rf_bwd2;
435 		if (node->dagFuncData)
436 			rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
437 		return (rf_DiskWriteFuncForThreads(node));
438 		break;
439 	case rf_fired:
440 		if (status)
441 			node->status = rf_bad;
442 		else
443 			node->status = rf_good;
444 		break;
445 	case rf_recover:
446 		/* probably should never reach this case */
447 		if (status)
448 			node->status = rf_panic;
449 		else
450 			node->status = rf_undone;
451 		break;
452 	default:
453 		printf("rf_GenericWakeupFunc:");
454 		printf("node->status is %d,", node->status);
455 		printf("status is %d \n", status);
456 		RF_PANIC();
457 		break;
458 	}
459 	if (node->dagFuncData)
460 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
461 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
462 }
463 
464 
465 /*****************************************************************************************
466  * there are three distinct types of xor nodes
467  * A "regular xor" is used in the fault-free case where the access spans a complete
468  * stripe unit.  It assumes that the result buffer is one full stripe unit in size,
469  * and uses the stripe-unit-offset values that it computes from the PDAs to determine
470  * where within the stripe unit to XOR each argument buffer.
471  *
472  * A "simple xor" is used in the fault-free case where the access touches only a portion
473  * of one (or two, in some cases) stripe unit(s).  It assumes that all the argument
474  * buffers are of the same size and have the same stripe unit offset.
475  *
476  * A "recovery xor" is used in the degraded-mode case.  It's similar to the regular
477  * xor function except that it takes the failed PDA as an additional parameter, and
478  * uses it to determine what portions of the argument buffers need to be xor'd into
479  * the result buffer, and where in the result buffer they should go.
480  ****************************************************************************************/
481 
482 /* xor the params together and store the result in the result field.
483  * assume the result field points to a buffer that is the size of one SU,
484  * and use the pda params to determine where within the buffer to XOR
485  * the input buffers.
486  */
487 int
488 rf_RegularXorFunc(node)
489 	RF_DagNode_t *node;
490 {
491 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
492 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
493 	RF_Etimer_t timer;
494 	int     i, retcode;
495 
496 	retcode = 0;
497 	if (node->dagHdr->status == rf_enable) {
498 		/* don't do the XOR if the input is the same as the output */
499 		RF_ETIMER_START(timer);
500 		for (i = 0; i < node->numParams - 1; i += 2)
501 			if (node->params[i + 1].p != node->results[0]) {
502 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
503 				    (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
504 			}
505 		RF_ETIMER_STOP(timer);
506 		RF_ETIMER_EVAL(timer);
507 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
508 	}
509 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
510 							 * explicitly since no
511 							 * I/O in this node */
512 }
513 /* xor the inputs into the result buffer, ignoring placement issues */
514 int
515 rf_SimpleXorFunc(node)
516 	RF_DagNode_t *node;
517 {
518 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
519 	int     i, retcode = 0;
520 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
521 	RF_Etimer_t timer;
522 
523 	if (node->dagHdr->status == rf_enable) {
524 		RF_ETIMER_START(timer);
525 		/* don't do the XOR if the input is the same as the output */
526 		for (i = 0; i < node->numParams - 1; i += 2)
527 			if (node->params[i + 1].p != node->results[0]) {
528 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
529 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
530 				    (struct buf *) node->dagHdr->bp);
531 			}
532 		RF_ETIMER_STOP(timer);
533 		RF_ETIMER_EVAL(timer);
534 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
535 	}
536 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
537 							 * explicitly since no
538 							 * I/O in this node */
539 }
540 /* this xor is used by the degraded-mode dag functions to recover lost data.
541  * the second-to-last parameter is the PDA for the failed portion of the access.
542  * the code here looks at this PDA and assumes that the xor target buffer is
543  * equal in size to the number of sectors in the failed PDA.  It then uses
544  * the other PDAs in the parameter list to determine where within the target
545  * buffer the corresponding data should be xored.
546  */
547 int
548 rf_RecoveryXorFunc(node)
549 	RF_DagNode_t *node;
550 {
551 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
552 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
553 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
554 	int     i, retcode = 0;
555 	RF_PhysDiskAddr_t *pda;
556 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
557 	char   *srcbuf, *destbuf;
558 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
559 	RF_Etimer_t timer;
560 
561 	if (node->dagHdr->status == rf_enable) {
562 		RF_ETIMER_START(timer);
563 		for (i = 0; i < node->numParams - 2; i += 2)
564 			if (node->params[i + 1].p != node->results[0]) {
565 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
566 				srcbuf = (char *) node->params[i + 1].p;
567 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
568 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
569 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
570 			}
571 		RF_ETIMER_STOP(timer);
572 		RF_ETIMER_EVAL(timer);
573 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
574 	}
575 	return (rf_GenericWakeupFunc(node, retcode));
576 }
577 /*****************************************************************************************
578  * The next three functions are utilities used by the above xor-execution functions.
579  ****************************************************************************************/
580 
581 
582 /*
583  * this is just a glorified buffer xor.  targbuf points to a buffer that is one full stripe unit
584  * in size.  srcbuf points to a buffer that may be less than 1 SU, but never more.  When the
585  * access described by pda is one SU in size (which by implication means it's SU-aligned),
586  * all that happens is (targbuf) <- (srcbuf ^ targbuf).  When the access is less than one
587  * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
588  */
589 
590 int
591 rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
592 	RF_Raid_t *raidPtr;
593 	RF_PhysDiskAddr_t *pda;
594 	char   *srcbuf;
595 	char   *targbuf;
596 	void   *bp;
597 {
598 	char   *targptr;
599 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
600 	int     SUOffset = pda->startSector % sectPerSU;
601 	int     length, retcode = 0;
602 
603 	RF_ASSERT(pda->numSector <= sectPerSU);
604 
605 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
606 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
607 	retcode = rf_bxor(srcbuf, targptr, length, bp);
608 	return (retcode);
609 }
610 /* it really should be the case that the buffer pointers (returned by malloc)
611  * are aligned to the natural word size of the machine, so this is the only
612  * case we optimize for.  The length should always be a multiple of the sector
613  * size, so there should be no problem with leftover bytes at the end.
614  */
615 int
616 rf_bxor(src, dest, len, bp)
617 	char   *src;
618 	char   *dest;
619 	int     len;
620 	void   *bp;
621 {
622 	unsigned mask = sizeof(long) - 1, retcode = 0;
623 
624 	if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
625 		retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
626 	} else {
627 		RF_ASSERT(0);
628 	}
629 	return (retcode);
630 }
631 /* map a user buffer into kernel space, if necessary */
632 #define REMAP_VA(_bp,x,y) (y) = (x)
633 
634 /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
635  * We don't want to assume anything about which input buffers are in kernel/user
636  * space, nor about their alignment, so in each loop we compute the maximum number
637  * of bytes that we can xor without crossing any page boundaries, and do only this many
638  * bytes before the next remap.
639  */
640 int
641 rf_longword_bxor(src, dest, len, bp)
642 	unsigned long *src;
643 	unsigned long *dest;
644 	int     len;		/* longwords */
645 	void   *bp;
646 {
647 	unsigned long *end = src + len;
648 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
649 	unsigned long *pg_src, *pg_dest;	/* per-page source/dest
650 							 * pointers */
651 	int     longs_this_time;/* # longwords to xor in the current iteration */
652 
653 	REMAP_VA(bp, src, pg_src);
654 	REMAP_VA(bp, dest, pg_dest);
655 	if (!pg_src || !pg_dest)
656 		return (EFAULT);
657 
658 	while (len >= 4) {
659 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
660 		src += longs_this_time;
661 		dest += longs_this_time;
662 		len -= longs_this_time;
663 		while (longs_this_time >= 4) {
664 			d0 = pg_dest[0];
665 			d1 = pg_dest[1];
666 			d2 = pg_dest[2];
667 			d3 = pg_dest[3];
668 			s0 = pg_src[0];
669 			s1 = pg_src[1];
670 			s2 = pg_src[2];
671 			s3 = pg_src[3];
672 			pg_dest[0] = d0 ^ s0;
673 			pg_dest[1] = d1 ^ s1;
674 			pg_dest[2] = d2 ^ s2;
675 			pg_dest[3] = d3 ^ s3;
676 			pg_src += 4;
677 			pg_dest += 4;
678 			longs_this_time -= 4;
679 		}
680 		while (longs_this_time > 0) {	/* cannot cross any page
681 						 * boundaries here */
682 			*pg_dest++ ^= *pg_src++;
683 			longs_this_time--;
684 		}
685 
686 		/* either we're done, or we've reached a page boundary on one
687 		 * (or possibly both) of the pointers */
688 		if (len) {
689 			if (RF_PAGE_ALIGNED(src))
690 				REMAP_VA(bp, src, pg_src);
691 			if (RF_PAGE_ALIGNED(dest))
692 				REMAP_VA(bp, dest, pg_dest);
693 			if (!pg_src || !pg_dest)
694 				return (EFAULT);
695 		}
696 	}
697 	while (src < end) {
698 		*pg_dest++ ^= *pg_src++;
699 		src++;
700 		dest++;
701 		len--;
702 		if (RF_PAGE_ALIGNED(src))
703 			REMAP_VA(bp, src, pg_src);
704 		if (RF_PAGE_ALIGNED(dest))
705 			REMAP_VA(bp, dest, pg_dest);
706 	}
707 	RF_ASSERT(len == 0);
708 	return (0);
709 }
710 
711 
712 /*
713    dst = a ^ b ^ c;
714    a may equal dst
715    see comment above longword_bxor
716 */
717 int
718 rf_longword_bxor3(dst, a, b, c, len, bp)
719 	unsigned long *dst;
720 	unsigned long *a;
721 	unsigned long *b;
722 	unsigned long *c;
723 	int     len;		/* length in longwords */
724 	void   *bp;
725 {
726 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
727 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
728 								 * pointers */
729 	int     longs_this_time;/* # longs to xor in the current iteration */
730 	char    dst_is_a = 0;
731 
732 	REMAP_VA(bp, a, pg_a);
733 	REMAP_VA(bp, b, pg_b);
734 	REMAP_VA(bp, c, pg_c);
735 	if (a == dst) {
736 		pg_dst = pg_a;
737 		dst_is_a = 1;
738 	} else {
739 		REMAP_VA(bp, dst, pg_dst);
740 	}
741 
742 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
743 	while ((((unsigned long) pg_dst) & 0x1f)) {
744 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
745 		dst++;
746 		a++;
747 		b++;
748 		c++;
749 		if (RF_PAGE_ALIGNED(a)) {
750 			REMAP_VA(bp, a, pg_a);
751 			if (!pg_a)
752 				return (EFAULT);
753 		}
754 		if (RF_PAGE_ALIGNED(b)) {
755 			REMAP_VA(bp, a, pg_b);
756 			if (!pg_b)
757 				return (EFAULT);
758 		}
759 		if (RF_PAGE_ALIGNED(c)) {
760 			REMAP_VA(bp, a, pg_c);
761 			if (!pg_c)
762 				return (EFAULT);
763 		}
764 		len--;
765 	}
766 
767 	while (len > 4) {
768 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
769 		a += longs_this_time;
770 		b += longs_this_time;
771 		c += longs_this_time;
772 		dst += longs_this_time;
773 		len -= longs_this_time;
774 		while (longs_this_time >= 4) {
775 			a0 = pg_a[0];
776 			longs_this_time -= 4;
777 
778 			a1 = pg_a[1];
779 			a2 = pg_a[2];
780 
781 			a3 = pg_a[3];
782 			pg_a += 4;
783 
784 			b0 = pg_b[0];
785 			b1 = pg_b[1];
786 
787 			b2 = pg_b[2];
788 			b3 = pg_b[3];
789 			/* start dual issue */
790 			a0 ^= b0;
791 			b0 = pg_c[0];
792 
793 			pg_b += 4;
794 			a1 ^= b1;
795 
796 			a2 ^= b2;
797 			a3 ^= b3;
798 
799 			b1 = pg_c[1];
800 			a0 ^= b0;
801 
802 			b2 = pg_c[2];
803 			a1 ^= b1;
804 
805 			b3 = pg_c[3];
806 			a2 ^= b2;
807 
808 			pg_dst[0] = a0;
809 			a3 ^= b3;
810 			pg_dst[1] = a1;
811 			pg_c += 4;
812 			pg_dst[2] = a2;
813 			pg_dst[3] = a3;
814 			pg_dst += 4;
815 		}
816 		while (longs_this_time > 0) {	/* cannot cross any page
817 						 * boundaries here */
818 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
819 			longs_this_time--;
820 		}
821 
822 		if (len) {
823 			if (RF_PAGE_ALIGNED(a)) {
824 				REMAP_VA(bp, a, pg_a);
825 				if (!pg_a)
826 					return (EFAULT);
827 				if (dst_is_a)
828 					pg_dst = pg_a;
829 			}
830 			if (RF_PAGE_ALIGNED(b)) {
831 				REMAP_VA(bp, b, pg_b);
832 				if (!pg_b)
833 					return (EFAULT);
834 			}
835 			if (RF_PAGE_ALIGNED(c)) {
836 				REMAP_VA(bp, c, pg_c);
837 				if (!pg_c)
838 					return (EFAULT);
839 			}
840 			if (!dst_is_a)
841 				if (RF_PAGE_ALIGNED(dst)) {
842 					REMAP_VA(bp, dst, pg_dst);
843 					if (!pg_dst)
844 						return (EFAULT);
845 				}
846 		}
847 	}
848 	while (len) {
849 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
850 		dst++;
851 		a++;
852 		b++;
853 		c++;
854 		if (RF_PAGE_ALIGNED(a)) {
855 			REMAP_VA(bp, a, pg_a);
856 			if (!pg_a)
857 				return (EFAULT);
858 			if (dst_is_a)
859 				pg_dst = pg_a;
860 		}
861 		if (RF_PAGE_ALIGNED(b)) {
862 			REMAP_VA(bp, b, pg_b);
863 			if (!pg_b)
864 				return (EFAULT);
865 		}
866 		if (RF_PAGE_ALIGNED(c)) {
867 			REMAP_VA(bp, c, pg_c);
868 			if (!pg_c)
869 				return (EFAULT);
870 		}
871 		if (!dst_is_a)
872 			if (RF_PAGE_ALIGNED(dst)) {
873 				REMAP_VA(bp, dst, pg_dst);
874 				if (!pg_dst)
875 					return (EFAULT);
876 			}
877 		len--;
878 	}
879 	return (0);
880 }
881 
882 int
883 rf_bxor3(dst, a, b, c, len, bp)
884 	unsigned char *dst;
885 	unsigned char *a;
886 	unsigned char *b;
887 	unsigned char *c;
888 	unsigned long len;
889 	void   *bp;
890 {
891 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
892 
893 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
894 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
895 }
896