xref: /netbsd/sys/dev/raidframe/rf_dagutils.c (revision c4a72b64)
1 /*	$NetBSD: rf_dagutils.c,v 1.19 2002/11/22 20:56:10 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /******************************************************************************
30  *
31  * rf_dagutils.c -- utility routines for manipulating dags
32  *
33  *****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.19 2002/11/22 20:56:10 oster Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_freelist.h"
48 #include "rf_map.h"
49 #include "rf_shutdown.h"
50 
51 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
52 
53 RF_RedFuncs_t rf_xorFuncs = {
54 	rf_RegularXorFunc, "Reg Xr",
55 rf_SimpleXorFunc, "Simple Xr"};
56 
57 RF_RedFuncs_t rf_xorRecoveryFuncs = {
58 	rf_RecoveryXorFunc, "Recovery Xr",
59 rf_RecoveryXorFunc, "Recovery Xr"};
60 
61 #if RF_DEBUG_VALIDATE_DAG
62 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
63 static void rf_PrintDAG(RF_DagHeader_t *);
64 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
65 			     RF_DagNode_t **, int);
66 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
67 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
68 #endif /* RF_DEBUG_VALIDATE_DAG */
69 
70 /******************************************************************************
71  *
72  * InitNode - initialize a dag node
73  *
74  * the size of the propList array is always the same as that of the
75  * successors array.
76  *
77  *****************************************************************************/
78 void
79 rf_InitNode(
80     RF_DagNode_t * node,
81     RF_NodeStatus_t initstatus,
82     int commit,
83     int (*doFunc) (RF_DagNode_t * node),
84     int (*undoFunc) (RF_DagNode_t * node),
85     int (*wakeFunc) (RF_DagNode_t * node, int status),
86     int nSucc,
87     int nAnte,
88     int nParam,
89     int nResult,
90     RF_DagHeader_t * hdr,
91     char *name,
92     RF_AllocListElem_t * alist)
93 {
94 	void  **ptrs;
95 	int     nptrs;
96 
97 	if (nAnte > RF_MAX_ANTECEDENTS)
98 		RF_PANIC();
99 	node->status = initstatus;
100 	node->commitNode = commit;
101 	node->doFunc = doFunc;
102 	node->undoFunc = undoFunc;
103 	node->wakeFunc = wakeFunc;
104 	node->numParams = nParam;
105 	node->numResults = nResult;
106 	node->numAntecedents = nAnte;
107 	node->numAntDone = 0;
108 	node->next = NULL;
109 	node->numSuccedents = nSucc;
110 	node->name = name;
111 	node->dagHdr = hdr;
112 	node->visited = 0;
113 
114 	/* allocate all the pointers with one call to malloc */
115 	nptrs = nSucc + nAnte + nResult + nSucc;
116 
117 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
118 		/*
119 	         * The dag_ptrs field of the node is basically some scribble
120 	         * space to be used here. We could get rid of it, and always
121 	         * allocate the range of pointers, but that's expensive. So,
122 	         * we pick a "common case" size for the pointer cache. Hopefully,
123 	         * we'll find that:
124 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
125 	         *     only a little bit (least efficient case)
126 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
127 	         *     (wasted memory)
128 	         */
129 		ptrs = (void **) node->dag_ptrs;
130 	} else {
131 		RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
132 	}
133 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
134 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
135 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
136 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
137 
138 	if (nParam) {
139 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
140 			node->params = (RF_DagParam_t *) node->dag_params;
141 		} else {
142 			RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
143 		}
144 	} else {
145 		node->params = NULL;
146 	}
147 }
148 
149 
150 
151 /******************************************************************************
152  *
153  * allocation and deallocation routines
154  *
155  *****************************************************************************/
156 
157 void
158 rf_FreeDAG(dag_h)
159 	RF_DagHeader_t *dag_h;
160 {
161 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
162 	RF_DagHeader_t *nextDag;
163 
164 	while (dag_h) {
165 		nextDag = dag_h->next;
166 		rf_FreeAllocList(dag_h->allocList);
167 		for (asmap = dag_h->asmList; asmap;) {
168 			t_asmap = asmap;
169 			asmap = asmap->next;
170 			rf_FreeAccessStripeMap(t_asmap);
171 		}
172 		rf_FreeDAGHeader(dag_h);
173 		dag_h = nextDag;
174 	}
175 }
176 
177 
178 static RF_FreeList_t *rf_dagh_freelist;
179 
180 #define RF_MAX_FREE_DAGH 128
181 #define RF_DAGH_INC       16
182 #define RF_DAGH_INITIAL   32
183 
184 static void rf_ShutdownDAGs(void *);
185 static void
186 rf_ShutdownDAGs(ignored)
187 	void   *ignored;
188 {
189 	RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
190 }
191 
192 int
193 rf_ConfigureDAGs(listp)
194 	RF_ShutdownList_t **listp;
195 {
196 	int     rc;
197 
198 	RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
199 	    RF_DAGH_INC, sizeof(RF_DagHeader_t));
200 	if (rf_dagh_freelist == NULL)
201 		return (ENOMEM);
202 	rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
203 	if (rc) {
204 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
205 		rf_ShutdownDAGs(NULL);
206 		return (rc);
207 	}
208 	RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
209 	    (RF_DagHeader_t *));
210 	return (0);
211 }
212 
213 RF_DagHeader_t *
214 rf_AllocDAGHeader()
215 {
216 	RF_DagHeader_t *dh;
217 
218 	RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
219 	if (dh) {
220 		memset((char *) dh, 0, sizeof(RF_DagHeader_t));
221 	}
222 	return (dh);
223 }
224 
225 void
226 rf_FreeDAGHeader(RF_DagHeader_t * dh)
227 {
228 	RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
229 }
230 /* allocates a buffer big enough to hold the data described by pda */
231 void   *
232 rf_AllocBuffer(
233     RF_Raid_t * raidPtr,
234     RF_DagHeader_t * dag_h,
235     RF_PhysDiskAddr_t * pda,
236     RF_AllocListElem_t * allocList)
237 {
238 	char   *p;
239 
240 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
241 	    (char *), allocList);
242 	return ((void *) p);
243 }
244 #if RF_DEBUG_VALIDATE_DAG
245 /******************************************************************************
246  *
247  * debug routines
248  *
249  *****************************************************************************/
250 
251 char   *
252 rf_NodeStatusString(RF_DagNode_t * node)
253 {
254 	switch (node->status) {
255 		case rf_wait:return ("wait");
256 	case rf_fired:
257 		return ("fired");
258 	case rf_good:
259 		return ("good");
260 	case rf_bad:
261 		return ("bad");
262 	default:
263 		return ("?");
264 	}
265 }
266 
267 void
268 rf_PrintNodeInfoString(RF_DagNode_t * node)
269 {
270 	RF_PhysDiskAddr_t *pda;
271 	int     (*df) (RF_DagNode_t *) = node->doFunc;
272 	int     i, lk, unlk;
273 	void   *bufPtr;
274 
275 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
276 	    || (df == rf_DiskReadMirrorIdleFunc)
277 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
278 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
279 		bufPtr = (void *) node->params[1].p;
280 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
281 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
282 		RF_ASSERT(!(lk && unlk));
283 		printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
284 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
285 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
286 		return;
287 	}
288 	if (df == rf_DiskUnlockFunc) {
289 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
290 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
291 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
292 		RF_ASSERT(!(lk && unlk));
293 		printf("r %d c %d %s\n", pda->row, pda->col,
294 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
295 		return;
296 	}
297 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
298 	    || (df == rf_RecoveryXorFunc)) {
299 		printf("result buf 0x%lx\n", (long) node->results[0]);
300 		for (i = 0; i < node->numParams - 1; i += 2) {
301 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
302 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
303 			printf("    buf 0x%lx r%d c%d offs %ld nsect %d\n",
304 			    (long) bufPtr, pda->row, pda->col,
305 			    (long) pda->startSector, (int) pda->numSector);
306 		}
307 		return;
308 	}
309 #if RF_INCLUDE_PARITYLOGGING > 0
310 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
311 		for (i = 0; i < node->numParams - 1; i += 2) {
312 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
313 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
314 			printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
315 			    pda->row, pda->col, (long) pda->startSector,
316 			    (int) pda->numSector, (long) bufPtr);
317 		}
318 		return;
319 	}
320 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
321 
322 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
323 		printf("\n");
324 		return;
325 	}
326 	printf("?\n");
327 }
328 #ifdef DEBUG
329 static void
330 rf_RecurPrintDAG(node, depth, unvisited)
331 	RF_DagNode_t *node;
332 	int     depth;
333 	int     unvisited;
334 {
335 	char   *anttype;
336 	int     i;
337 
338 	node->visited = (unvisited) ? 0 : 1;
339 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
340 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
341 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
342 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
343 	for (i = 0; i < node->numSuccedents; i++) {
344 		printf("%d%s", node->succedents[i]->nodeNum,
345 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
346 	}
347 	printf("} A{");
348 	for (i = 0; i < node->numAntecedents; i++) {
349 		switch (node->antType[i]) {
350 		case rf_trueData:
351 			anttype = "T";
352 			break;
353 		case rf_antiData:
354 			anttype = "A";
355 			break;
356 		case rf_outputData:
357 			anttype = "O";
358 			break;
359 		case rf_control:
360 			anttype = "C";
361 			break;
362 		default:
363 			anttype = "?";
364 			break;
365 		}
366 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
367 	}
368 	printf("}; ");
369 	rf_PrintNodeInfoString(node);
370 	for (i = 0; i < node->numSuccedents; i++) {
371 		if (node->succedents[i]->visited == unvisited)
372 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
373 	}
374 }
375 
376 static void
377 rf_PrintDAG(dag_h)
378 	RF_DagHeader_t *dag_h;
379 {
380 	int     unvisited, i;
381 	char   *status;
382 
383 	/* set dag status */
384 	switch (dag_h->status) {
385 	case rf_enable:
386 		status = "enable";
387 		break;
388 	case rf_rollForward:
389 		status = "rollForward";
390 		break;
391 	case rf_rollBackward:
392 		status = "rollBackward";
393 		break;
394 	default:
395 		status = "illegal!";
396 		break;
397 	}
398 	/* find out if visited bits are currently set or clear */
399 	unvisited = dag_h->succedents[0]->visited;
400 
401 	printf("DAG type:  %s\n", dag_h->creator);
402 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
403 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
404 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
405 	for (i = 0; i < dag_h->numSuccedents; i++) {
406 		printf("%d%s", dag_h->succedents[i]->nodeNum,
407 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
408 	}
409 	printf("};\n");
410 	for (i = 0; i < dag_h->numSuccedents; i++) {
411 		if (dag_h->succedents[i]->visited == unvisited)
412 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
413 	}
414 }
415 #endif
416 /* assigns node numbers */
417 int
418 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
419 {
420 	int     unvisited, i, nnum;
421 	RF_DagNode_t *node;
422 
423 	nnum = 0;
424 	unvisited = dag_h->succedents[0]->visited;
425 
426 	dag_h->nodeNum = nnum++;
427 	for (i = 0; i < dag_h->numSuccedents; i++) {
428 		node = dag_h->succedents[i];
429 		if (node->visited == unvisited) {
430 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
431 		}
432 	}
433 	return (nnum);
434 }
435 
436 int
437 rf_RecurAssignNodeNums(node, num, unvisited)
438 	RF_DagNode_t *node;
439 	int     num;
440 	int     unvisited;
441 {
442 	int     i;
443 
444 	node->visited = (unvisited) ? 0 : 1;
445 
446 	node->nodeNum = num++;
447 	for (i = 0; i < node->numSuccedents; i++) {
448 		if (node->succedents[i]->visited == unvisited) {
449 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
450 		}
451 	}
452 	return (num);
453 }
454 /* set the header pointers in each node to "newptr" */
455 void
456 rf_ResetDAGHeaderPointers(dag_h, newptr)
457 	RF_DagHeader_t *dag_h;
458 	RF_DagHeader_t *newptr;
459 {
460 	int     i;
461 	for (i = 0; i < dag_h->numSuccedents; i++)
462 		if (dag_h->succedents[i]->dagHdr != newptr)
463 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
464 }
465 
466 void
467 rf_RecurResetDAGHeaderPointers(node, newptr)
468 	RF_DagNode_t *node;
469 	RF_DagHeader_t *newptr;
470 {
471 	int     i;
472 	node->dagHdr = newptr;
473 	for (i = 0; i < node->numSuccedents; i++)
474 		if (node->succedents[i]->dagHdr != newptr)
475 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
476 }
477 
478 
479 void
480 rf_PrintDAGList(RF_DagHeader_t * dag_h)
481 {
482 	int     i = 0;
483 
484 	for (; dag_h; dag_h = dag_h->next) {
485 		rf_AssignNodeNums(dag_h);
486 		printf("\n\nDAG %d IN LIST:\n", i++);
487 		rf_PrintDAG(dag_h);
488 	}
489 }
490 
491 static int
492 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
493 	RF_DagNode_t *node;
494 	int    *scount;
495 	int    *acount;
496 	RF_DagNode_t **nodes;
497 	int     unvisited;
498 {
499 	int     i, retcode = 0;
500 
501 	/* construct an array of node pointers indexed by node num */
502 	node->visited = (unvisited) ? 0 : 1;
503 	nodes[node->nodeNum] = node;
504 
505 	if (node->next != NULL) {
506 		printf("INVALID DAG: next pointer in node is not NULL\n");
507 		retcode = 1;
508 	}
509 	if (node->status != rf_wait) {
510 		printf("INVALID DAG: Node status is not wait\n");
511 		retcode = 1;
512 	}
513 	if (node->numAntDone != 0) {
514 		printf("INVALID DAG: numAntDone is not zero\n");
515 		retcode = 1;
516 	}
517 	if (node->doFunc == rf_TerminateFunc) {
518 		if (node->numSuccedents != 0) {
519 			printf("INVALID DAG: Terminator node has succedents\n");
520 			retcode = 1;
521 		}
522 	} else {
523 		if (node->numSuccedents == 0) {
524 			printf("INVALID DAG: Non-terminator node has no succedents\n");
525 			retcode = 1;
526 		}
527 	}
528 	for (i = 0; i < node->numSuccedents; i++) {
529 		if (!node->succedents[i]) {
530 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
531 			retcode = 1;
532 		}
533 		scount[node->succedents[i]->nodeNum]++;
534 	}
535 	for (i = 0; i < node->numAntecedents; i++) {
536 		if (!node->antecedents[i]) {
537 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
538 			retcode = 1;
539 		}
540 		acount[node->antecedents[i]->nodeNum]++;
541 	}
542 	for (i = 0; i < node->numSuccedents; i++) {
543 		if (node->succedents[i]->visited == unvisited) {
544 			if (rf_ValidateBranch(node->succedents[i], scount,
545 				acount, nodes, unvisited)) {
546 				retcode = 1;
547 			}
548 		}
549 	}
550 	return (retcode);
551 }
552 
553 static void
554 rf_ValidateBranchVisitedBits(node, unvisited, rl)
555 	RF_DagNode_t *node;
556 	int     unvisited;
557 	int     rl;
558 {
559 	int     i;
560 
561 	RF_ASSERT(node->visited == unvisited);
562 	for (i = 0; i < node->numSuccedents; i++) {
563 		if (node->succedents[i] == NULL) {
564 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
565 			RF_ASSERT(0);
566 		}
567 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
568 	}
569 }
570 /* NOTE:  never call this on a big dag, because it is exponential
571  * in execution time
572  */
573 static void
574 rf_ValidateVisitedBits(dag)
575 	RF_DagHeader_t *dag;
576 {
577 	int     i, unvisited;
578 
579 	unvisited = dag->succedents[0]->visited;
580 
581 	for (i = 0; i < dag->numSuccedents; i++) {
582 		if (dag->succedents[i] == NULL) {
583 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
584 			RF_ASSERT(0);
585 		}
586 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
587 	}
588 }
589 /* validate a DAG.  _at entry_ verify that:
590  *   -- numNodesCompleted is zero
591  *   -- node queue is null
592  *   -- dag status is rf_enable
593  *   -- next pointer is null on every node
594  *   -- all nodes have status wait
595  *   -- numAntDone is zero in all nodes
596  *   -- terminator node has zero successors
597  *   -- no other node besides terminator has zero successors
598  *   -- no successor or antecedent pointer in a node is NULL
599  *   -- number of times that each node appears as a successor of another node
600  *      is equal to the antecedent count on that node
601  *   -- number of times that each node appears as an antecedent of another node
602  *      is equal to the succedent count on that node
603  *   -- what else?
604  */
605 int
606 rf_ValidateDAG(dag_h)
607 	RF_DagHeader_t *dag_h;
608 {
609 	int     i, nodecount;
610 	int    *scount, *acount;/* per-node successor and antecedent counts */
611 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
612 	int     retcode = 0;
613 	int     unvisited;
614 	int     commitNodeCount = 0;
615 
616 	if (rf_validateVisitedDebug)
617 		rf_ValidateVisitedBits(dag_h);
618 
619 	if (dag_h->numNodesCompleted != 0) {
620 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
621 		retcode = 1;
622 		goto validate_dag_bad;
623 	}
624 	if (dag_h->status != rf_enable) {
625 		printf("INVALID DAG: not enabled\n");
626 		retcode = 1;
627 		goto validate_dag_bad;
628 	}
629 	if (dag_h->numCommits != 0) {
630 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
631 		retcode = 1;
632 		goto validate_dag_bad;
633 	}
634 	if (dag_h->numSuccedents != 1) {
635 		/* currently, all dags must have only one succedent */
636 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
637 		retcode = 1;
638 		goto validate_dag_bad;
639 	}
640 	nodecount = rf_AssignNodeNums(dag_h);
641 
642 	unvisited = dag_h->succedents[0]->visited;
643 
644 	RF_Calloc(scount, nodecount, sizeof(int), (int *));
645 	RF_Calloc(acount, nodecount, sizeof(int), (int *));
646 	RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
647 	for (i = 0; i < dag_h->numSuccedents; i++) {
648 		if ((dag_h->succedents[i]->visited == unvisited)
649 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
650 			acount, nodes, unvisited)) {
651 			retcode = 1;
652 		}
653 	}
654 	/* start at 1 to skip the header node */
655 	for (i = 1; i < nodecount; i++) {
656 		if (nodes[i]->commitNode)
657 			commitNodeCount++;
658 		if (nodes[i]->doFunc == NULL) {
659 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
660 			retcode = 1;
661 			goto validate_dag_out;
662 		}
663 		if (nodes[i]->undoFunc == NULL) {
664 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
665 			retcode = 1;
666 			goto validate_dag_out;
667 		}
668 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
669 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
670 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
671 			retcode = 1;
672 			goto validate_dag_out;
673 		}
674 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
675 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
676 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
677 			retcode = 1;
678 			goto validate_dag_out;
679 		}
680 	}
681 
682 	if (dag_h->numCommitNodes != commitNodeCount) {
683 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
684 		    dag_h->numCommitNodes, commitNodeCount);
685 		retcode = 1;
686 		goto validate_dag_out;
687 	}
688 validate_dag_out:
689 	RF_Free(scount, nodecount * sizeof(int));
690 	RF_Free(acount, nodecount * sizeof(int));
691 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
692 	if (retcode)
693 		rf_PrintDAGList(dag_h);
694 
695 	if (rf_validateVisitedDebug)
696 		rf_ValidateVisitedBits(dag_h);
697 
698 	return (retcode);
699 
700 validate_dag_bad:
701 	rf_PrintDAGList(dag_h);
702 	return (retcode);
703 }
704 
705 #endif /* RF_DEBUG_VALIDATE_DAG */
706 
707 /******************************************************************************
708  *
709  * misc construction routines
710  *
711  *****************************************************************************/
712 
713 void
714 rf_redirect_asm(
715     RF_Raid_t * raidPtr,
716     RF_AccessStripeMap_t * asmap)
717 {
718 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
719 	int     row = asmap->physInfo->row;
720 	int     fcol = raidPtr->reconControl[row]->fcol;
721 	int     srow = raidPtr->reconControl[row]->spareRow;
722 	int     scol = raidPtr->reconControl[row]->spareCol;
723 	RF_PhysDiskAddr_t *pda;
724 
725 	RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
726 	for (pda = asmap->physInfo; pda; pda = pda->next) {
727 		if (pda->col == fcol) {
728 			if (rf_dagDebug) {
729 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
730 					pda->startSector)) {
731 					RF_PANIC();
732 				}
733 			}
734 			/* printf("Remapped data for large write\n"); */
735 			if (ds) {
736 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
737 				    &pda->row, &pda->col, &pda->startSector, RF_REMAP);
738 			} else {
739 				pda->row = srow;
740 				pda->col = scol;
741 			}
742 		}
743 	}
744 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
745 		if (pda->col == fcol) {
746 			if (rf_dagDebug) {
747 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
748 					RF_PANIC();
749 				}
750 			}
751 		}
752 		if (ds) {
753 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
754 		} else {
755 			pda->row = srow;
756 			pda->col = scol;
757 		}
758 	}
759 }
760 
761 
762 /* this routine allocates read buffers and generates stripe maps for the
763  * regions of the array from the start of the stripe to the start of the
764  * access, and from the end of the access to the end of the stripe.  It also
765  * computes and returns the number of DAG nodes needed to read all this data.
766  * Note that this routine does the wrong thing if the access is fully
767  * contained within one stripe unit, so we RF_ASSERT against this case at the
768  * start.
769  */
770 void
771 rf_MapUnaccessedPortionOfStripe(
772     RF_Raid_t * raidPtr,
773     RF_RaidLayout_t * layoutPtr,/* in: layout information */
774     RF_AccessStripeMap_t * asmap,	/* in: access stripe map */
775     RF_DagHeader_t * dag_h,	/* in: header of the dag to create */
776     RF_AccessStripeMapHeader_t ** new_asm_h,	/* in: ptr to array of 2
777 						 * headers, to be filled in */
778     int *nRodNodes,		/* out: num nodes to be generated to read
779 				 * unaccessed data */
780     char **sosBuffer,		/* out: pointers to newly allocated buffer */
781     char **eosBuffer,
782     RF_AllocListElem_t * allocList)
783 {
784 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
785 	RF_SectorNum_t sosNumSector, eosNumSector;
786 
787 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
788 	/* generate an access map for the region of the array from start of
789 	 * stripe to start of access */
790 	new_asm_h[0] = new_asm_h[1] = NULL;
791 	*nRodNodes = 0;
792 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
793 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
794 		sosNumSector = asmap->raidAddress - sosRaidAddress;
795 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
796 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
797 		new_asm_h[0]->next = dag_h->asmList;
798 		dag_h->asmList = new_asm_h[0];
799 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
800 
801 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
802 		/* we're totally within one stripe here */
803 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
804 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
805 	}
806 	/* generate an access map for the region of the array from end of
807 	 * access to end of stripe */
808 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
809 		eosRaidAddress = asmap->endRaidAddress;
810 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
811 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
812 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
813 		new_asm_h[1]->next = dag_h->asmList;
814 		dag_h->asmList = new_asm_h[1];
815 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
816 
817 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
818 		/* we're totally within one stripe here */
819 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
820 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
821 	}
822 }
823 
824 
825 
826 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
827 int
828 rf_PDAOverlap(
829     RF_RaidLayout_t * layoutPtr,
830     RF_PhysDiskAddr_t * src,
831     RF_PhysDiskAddr_t * dest)
832 {
833 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
834 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
835 	/* use -1 to be sure we stay within SU */
836 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
837 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
838 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
839 }
840 
841 
842 /* GenerateFailedAccessASMs
843  *
844  * this routine figures out what portion of the stripe needs to be read
845  * to effect the degraded read or write operation.  It's primary function
846  * is to identify everything required to recover the data, and then
847  * eliminate anything that is already being accessed by the user.
848  *
849  * The main result is two new ASMs, one for the region from the start of the
850  * stripe to the start of the access, and one for the region from the end of
851  * the access to the end of the stripe.  These ASMs describe everything that
852  * needs to be read to effect the degraded access.  Other results are:
853  *    nXorBufs -- the total number of buffers that need to be XORed together to
854  *                recover the lost data,
855  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
856  *                at entry, not allocated.
857  *    overlappingPDAs --
858  *                describes which of the non-failed PDAs in the user access
859  *                overlap data that needs to be read to effect recovery.
860  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
861  *                PDA, the ith pda in the input asm overlaps data that needs
862  *                to be read for recovery.
863  */
864  /* in: asm - ASM for the actual access, one stripe only */
865  /* in: failedPDA - which component of the access has failed */
866  /* in: dag_h - header of the DAG we're going to create */
867  /* out: new_asm_h - the two new ASMs */
868  /* out: nXorBufs - the total number of xor bufs required */
869  /* out: rpBufPtr - a buffer for the parity read */
870 void
871 rf_GenerateFailedAccessASMs(
872     RF_Raid_t * raidPtr,
873     RF_AccessStripeMap_t * asmap,
874     RF_PhysDiskAddr_t * failedPDA,
875     RF_DagHeader_t * dag_h,
876     RF_AccessStripeMapHeader_t ** new_asm_h,
877     int *nXorBufs,
878     char **rpBufPtr,
879     char *overlappingPDAs,
880     RF_AllocListElem_t * allocList)
881 {
882 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
883 
884 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
885 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
886 
887 	RF_SectorCount_t numSect[2], numParitySect;
888 	RF_PhysDiskAddr_t *pda;
889 	char   *rdBuf, *bufP;
890 	int     foundit, i;
891 
892 	bufP = NULL;
893 	foundit = 0;
894 	/* first compute the following raid addresses: start of stripe,
895 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
896 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
897 	 * stripe (i.e. start of next stripe)   (eosAddr) */
898 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
899 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
900 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
901 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
902 
903 	/* now generate access stripe maps for each of the above regions of
904 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
905 
906 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
907 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
908 
909 	/* walk through the PDAs and range-restrict each SU to the region of
910 	 * the SU touched on the failed PDA.  also compute total data buffer
911 	 * space requirements in this step.  Ignore the parity for now. */
912 
913 	numSect[0] = numSect[1] = 0;
914 	if (new_asm_h[0]) {
915 		new_asm_h[0]->next = dag_h->asmList;
916 		dag_h->asmList = new_asm_h[0];
917 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
918 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
919 			numSect[0] += pda->numSector;
920 		}
921 	}
922 	if (new_asm_h[1]) {
923 		new_asm_h[1]->next = dag_h->asmList;
924 		dag_h->asmList = new_asm_h[1];
925 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
926 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
927 			numSect[1] += pda->numSector;
928 		}
929 	}
930 	numParitySect = failedPDA->numSector;
931 
932 	/* allocate buffer space for the data & parity we have to read to
933 	 * recover from the failure */
934 
935 	if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {	/* don't allocate parity
936 										 * buf if not needed */
937 		RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
938 		bufP = rdBuf;
939 		if (rf_degDagDebug)
940 			printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
941 			    (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
942 	}
943 	/* now walk through the pdas one last time and assign buffer pointers
944 	 * (ugh!).  Again, ignore the parity.  also, count nodes to find out
945 	 * how many bufs need to be xored together */
946 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
947 				 * case, 1 is for failed data */
948 	if (new_asm_h[0]) {
949 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
950 			pda->bufPtr = bufP;
951 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
952 		}
953 		*nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
954 	}
955 	if (new_asm_h[1]) {
956 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
957 			pda->bufPtr = bufP;
958 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
959 		}
960 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
961 	}
962 	if (rpBufPtr)
963 		*rpBufPtr = bufP;	/* the rest of the buffer is for
964 					 * parity */
965 
966 	/* the last step is to figure out how many more distinct buffers need
967 	 * to get xor'd to produce the missing unit.  there's one for each
968 	 * user-data read node that overlaps the portion of the failed unit
969 	 * being accessed */
970 
971 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
972 		if (pda == failedPDA) {
973 			i--;
974 			foundit = 1;
975 			continue;
976 		}
977 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
978 			overlappingPDAs[i] = 1;
979 			(*nXorBufs)++;
980 		}
981 	}
982 	if (!foundit) {
983 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
984 		RF_ASSERT(0);
985 	}
986 	if (rf_degDagDebug) {
987 		if (new_asm_h[0]) {
988 			printf("First asm:\n");
989 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
990 		}
991 		if (new_asm_h[1]) {
992 			printf("Second asm:\n");
993 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
994 		}
995 	}
996 }
997 
998 
999 /* adjusts the offset and number of sectors in the destination pda so that
1000  * it covers at most the region of the SU covered by the source PDA.  This
1001  * is exclusively a restriction:  the number of sectors indicated by the
1002  * target PDA can only shrink.
1003  *
1004  * For example:  s = sectors within SU indicated by source PDA
1005  *               d = sectors within SU indicated by dest PDA
1006  *               r = results, stored in dest PDA
1007  *
1008  * |--------------- one stripe unit ---------------------|
1009  * |           sssssssssssssssssssssssssssssssss         |
1010  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
1011  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
1012  *
1013  * Another example:
1014  *
1015  * |--------------- one stripe unit ---------------------|
1016  * |           sssssssssssssssssssssssssssssssss         |
1017  * |    ddddddddddddddddddddddd                          |
1018  * |           rrrrrrrrrrrrrrrr                          |
1019  *
1020  */
1021 void
1022 rf_RangeRestrictPDA(
1023     RF_Raid_t * raidPtr,
1024     RF_PhysDiskAddr_t * src,
1025     RF_PhysDiskAddr_t * dest,
1026     int dobuffer,
1027     int doraidaddr)
1028 {
1029 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1030 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1031 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1032 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
1033 													 * stay within SU */
1034 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1035 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
1036 
1037 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
1038 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1039 
1040 	if (dobuffer)
1041 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1042 	if (doraidaddr) {
1043 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1044 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
1045 	}
1046 }
1047 
1048 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1049 
1050 /*
1051  * Want the highest of these primes to be the largest one
1052  * less than the max expected number of columns (won't hurt
1053  * to be too small or too large, but won't be optimal, either)
1054  * --jimz
1055  */
1056 #define NLOWPRIMES 8
1057 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1058 /*****************************************************************************
1059  * compute the workload shift factor.  (chained declustering)
1060  *
1061  * return nonzero if access should shift to secondary, otherwise,
1062  * access is to primary
1063  *****************************************************************************/
1064 int
1065 rf_compute_workload_shift(
1066     RF_Raid_t * raidPtr,
1067     RF_PhysDiskAddr_t * pda)
1068 {
1069 	/*
1070          * variables:
1071          *  d   = column of disk containing primary
1072          *  f   = column of failed disk
1073          *  n   = number of disks in array
1074          *  sd  = "shift distance" (number of columns that d is to the right of f)
1075          *  row = row of array the access is in
1076          *  v   = numerator of redirection ratio
1077          *  k   = denominator of redirection ratio
1078          */
1079 	RF_RowCol_t d, f, sd, row, n;
1080 	int     k, v, ret, i;
1081 
1082 	row = pda->row;
1083 	n = raidPtr->numCol;
1084 
1085 	/* assign column of primary copy to d */
1086 	d = pda->col;
1087 
1088 	/* assign column of dead disk to f */
1089 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
1090 
1091 	RF_ASSERT(f < n);
1092 	RF_ASSERT(f != d);
1093 
1094 	sd = (f > d) ? (n + d - f) : (d - f);
1095 	RF_ASSERT(sd < n);
1096 
1097 	/*
1098          * v of every k accesses should be redirected
1099          *
1100          * v/k := (n-1-sd)/(n-1)
1101          */
1102 	v = (n - 1 - sd);
1103 	k = (n - 1);
1104 
1105 #if 1
1106 	/*
1107          * XXX
1108          * Is this worth it?
1109          *
1110          * Now reduce the fraction, by repeatedly factoring
1111          * out primes (just like they teach in elementary school!)
1112          */
1113 	for (i = 0; i < NLOWPRIMES; i++) {
1114 		if (lowprimes[i] > v)
1115 			break;
1116 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1117 			v /= lowprimes[i];
1118 			k /= lowprimes[i];
1119 		}
1120 	}
1121 #endif
1122 
1123 	raidPtr->hist_diskreq[row][d]++;
1124 	if (raidPtr->hist_diskreq[row][d] > v) {
1125 		ret = 0;	/* do not redirect */
1126 	} else {
1127 		ret = 1;	/* redirect */
1128 	}
1129 
1130 #if 0
1131 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1132 	    raidPtr->hist_diskreq[row][d]);
1133 #endif
1134 
1135 	if (raidPtr->hist_diskreq[row][d] >= k) {
1136 		/* reset counter */
1137 		raidPtr->hist_diskreq[row][d] = 0;
1138 	}
1139 	return (ret);
1140 }
1141 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1142 
1143 /*
1144  * Disk selection routines
1145  */
1146 
1147 /*
1148  * Selects the disk with the shortest queue from a mirror pair.
1149  * Both the disk I/Os queued in RAIDframe as well as those at the physical
1150  * disk are counted as members of the "queue"
1151  */
1152 void
1153 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1154 {
1155 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1156 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
1157 	int     dataQueueLength, mirrorQueueLength, usemirror;
1158 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1159 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1160 	RF_PhysDiskAddr_t *tmp_pda;
1161 	RF_RaidDisk_t **disks = raidPtr->Disks;
1162 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1163 
1164 	/* return the [row col] of the disk with the shortest queue */
1165 	rowData = data_pda->row;
1166 	colData = data_pda->col;
1167 	rowMirror = mirror_pda->row;
1168 	colMirror = mirror_pda->col;
1169 	dataQueue = &(dqs[rowData][colData]);
1170 	mirrorQueue = &(dqs[rowMirror][colMirror]);
1171 
1172 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1173 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1174 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1175 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1176 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1177 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1178 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1179 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1180 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1181 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1182 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1183 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1184 
1185 	usemirror = 0;
1186 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1187 		usemirror = 0;
1188 	} else
1189 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1190 			usemirror = 1;
1191 		} else
1192 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1193 				/* Trust only the main disk */
1194 				usemirror = 0;
1195 			} else
1196 				if (dataQueueLength < mirrorQueueLength) {
1197 					usemirror = 0;
1198 				} else
1199 					if (mirrorQueueLength < dataQueueLength) {
1200 						usemirror = 1;
1201 					} else {
1202 						/* queues are equal length. attempt
1203 						 * cleverness. */
1204 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1205 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1206 							usemirror = 0;
1207 						} else {
1208 							usemirror = 1;
1209 						}
1210 					}
1211 
1212 	if (usemirror) {
1213 		/* use mirror (parity) disk, swap params 0 & 4 */
1214 		tmp_pda = data_pda;
1215 		node->params[0].p = mirror_pda;
1216 		node->params[4].p = tmp_pda;
1217 	} else {
1218 		/* use data disk, leave param 0 unchanged */
1219 	}
1220 	/* printf("dataQueueLength %d, mirrorQueueLength
1221 	 * %d\n",dataQueueLength, mirrorQueueLength); */
1222 }
1223 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1224 /*
1225  * Do simple partitioning. This assumes that
1226  * the data and parity disks are laid out identically.
1227  */
1228 void
1229 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1230 {
1231 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1232 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
1233 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1234 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1235 	RF_PhysDiskAddr_t *tmp_pda;
1236 	RF_RaidDisk_t **disks = raidPtr->Disks;
1237 	int     usemirror;
1238 
1239 	/* return the [row col] of the disk with the shortest queue */
1240 	rowData = data_pda->row;
1241 	colData = data_pda->col;
1242 	rowMirror = mirror_pda->row;
1243 	colMirror = mirror_pda->col;
1244 
1245 	usemirror = 0;
1246 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1247 		usemirror = 0;
1248 	} else
1249 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1250 			usemirror = 1;
1251 		} else
1252 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1253 				/* Trust only the main disk */
1254 				usemirror = 0;
1255 			} else
1256 				if (data_pda->startSector <
1257 				    (disks[rowData][colData].numBlocks / 2)) {
1258 					usemirror = 0;
1259 				} else {
1260 					usemirror = 1;
1261 				}
1262 
1263 	if (usemirror) {
1264 		/* use mirror (parity) disk, swap params 0 & 4 */
1265 		tmp_pda = data_pda;
1266 		node->params[0].p = mirror_pda;
1267 		node->params[4].p = tmp_pda;
1268 	} else {
1269 		/* use data disk, leave param 0 unchanged */
1270 	}
1271 }
1272 #endif
1273