xref: /netbsd/sys/dev/raidframe/rf_diskqueue.c (revision 6550d01e)
1 /*	$NetBSD: rf_diskqueue.c,v 1.52 2009/03/23 18:38:54 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /****************************************************************************
30  *
31  * rf_diskqueue.c -- higher-level disk queue code
32  *
33  * the routines here are a generic wrapper around the actual queueing
34  * routines.  The code here implements thread scheduling, synchronization,
35  * and locking ops (see below) on top of the lower-level queueing code.
36  *
37  * to support atomic RMW, we implement "locking operations".  When a
38  * locking op is dispatched to the lower levels of the driver, the
39  * queue is locked, and no further I/Os are dispatched until the queue
40  * receives & completes a corresponding "unlocking operation".  This
41  * code relies on the higher layers to guarantee that a locking op
42  * will always be eventually followed by an unlocking op.  The model
43  * is that the higher layers are structured so locking and unlocking
44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
45  * after a locking op reports completion.  There is no good way to
46  * check to see that an unlocking op "corresponds" to the op that
47  * currently has the queue locked, so we make no such attempt.  Since
48  * by definition there can be only one locking op outstanding on a
49  * disk, this should not be a problem.
50  *
51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
52  * to the disk driver.  In order to support locking ops in this
53  * environment, when we decide to do a locking op, we stop dispatching
54  * new I/Os and wait until all dispatched I/Os have completed before
55  * dispatching the locking op.
56  *
57  * Unfortunately, the code is different in the 3 different operating
58  * states (user level, kernel, simulator).  In the kernel, I/O is
59  * non-blocking, and we have no disk threads to dispatch for us.
60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
61  * time of enqueue, and also at the time of completion.  At user
62  * level, I/O is blocking, and so only the disk threads may dispatch
63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
64  * and wake up the disk thread to do the dispatch.
65  *
66  ****************************************************************************/
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.52 2009/03/23 18:38:54 oster Exp $");
70 
71 #include <dev/raidframe/raidframevar.h>
72 
73 #include "rf_threadstuff.h"
74 #include "rf_raid.h"
75 #include "rf_diskqueue.h"
76 #include "rf_alloclist.h"
77 #include "rf_acctrace.h"
78 #include "rf_etimer.h"
79 #include "rf_general.h"
80 #include "rf_debugprint.h"
81 #include "rf_shutdown.h"
82 #include "rf_cvscan.h"
83 #include "rf_sstf.h"
84 #include "rf_fifo.h"
85 #include "rf_kintf.h"
86 
87 static void rf_ShutdownDiskQueueSystem(void *);
88 
89 #ifndef RF_DEBUG_DISKQUEUE
90 #define RF_DEBUG_DISKQUEUE 0
91 #endif
92 
93 #if RF_DEBUG_DISKQUEUE
94 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
95 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
96 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
97 #else
98 #define Dprintf1(s,a)
99 #define Dprintf2(s,a,b)
100 #define Dprintf3(s,a,b,c)
101 #endif
102 
103 /*****************************************************************************
104  *
105  * the disk queue switch defines all the functions used in the
106  * different queueing disciplines queue ID, init routine, enqueue
107  * routine, dequeue routine
108  *
109  ****************************************************************************/
110 
111 static const RF_DiskQueueSW_t diskqueuesw[] = {
112 	{"fifo",		/* FIFO */
113 		rf_FifoCreate,
114 		rf_FifoEnqueue,
115 		rf_FifoDequeue,
116 		rf_FifoPeek,
117 	rf_FifoPromote},
118 
119 	{"cvscan",		/* cvscan */
120 		rf_CvscanCreate,
121 		rf_CvscanEnqueue,
122 		rf_CvscanDequeue,
123 		rf_CvscanPeek,
124 	rf_CvscanPromote},
125 
126 	{"sstf",		/* shortest seek time first */
127 		rf_SstfCreate,
128 		rf_SstfEnqueue,
129 		rf_SstfDequeue,
130 		rf_SstfPeek,
131 	rf_SstfPromote},
132 
133 	{"scan",		/* SCAN (two-way elevator) */
134 		rf_ScanCreate,
135 		rf_SstfEnqueue,
136 		rf_ScanDequeue,
137 		rf_ScanPeek,
138 	rf_SstfPromote},
139 
140 	{"cscan",		/* CSCAN (one-way elevator) */
141 		rf_CscanCreate,
142 		rf_SstfEnqueue,
143 		rf_CscanDequeue,
144 		rf_CscanPeek,
145 	rf_SstfPromote},
146 
147 };
148 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
149 
150 #define RF_MAX_FREE_DQD 256
151 #define RF_MIN_FREE_DQD  64
152 
153 #include <sys/buf.h>
154 
155 /* configures a single disk queue */
156 
157 int
158 rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
159 		      RF_RowCol_t c, const RF_DiskQueueSW_t *p,
160 		      RF_SectorCount_t sectPerDisk, dev_t dev,
161 		      int maxOutstanding, RF_ShutdownList_t **listp,
162 		      RF_AllocListElem_t *clList)
163 {
164 	diskqueue->col = c;
165 	diskqueue->qPtr = p;
166 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
167 	diskqueue->dev = dev;
168 	diskqueue->numOutstanding = 0;
169 	diskqueue->queueLength = 0;
170 	diskqueue->maxOutstanding = maxOutstanding;
171 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
172 	diskqueue->flags = 0;
173 	diskqueue->raidPtr = raidPtr;
174 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
175 	rf_mutex_init(&diskqueue->mutex);
176 	diskqueue->cond = 0;
177 	return (0);
178 }
179 
180 static void
181 rf_ShutdownDiskQueueSystem(void *ignored)
182 {
183 	pool_destroy(&rf_pools.dqd);
184 }
185 
186 int
187 rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
188 {
189 
190 	rf_pool_init(&rf_pools.dqd, sizeof(RF_DiskQueueData_t),
191 		     "rf_dqd_pl", RF_MIN_FREE_DQD, RF_MAX_FREE_DQD);
192 	rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
193 
194 	return (0);
195 }
196 
197 int
198 rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
199 		       RF_Config_t *cfgPtr)
200 {
201 	RF_DiskQueue_t *diskQueues, *spareQueues;
202 	const RF_DiskQueueSW_t *p;
203 	RF_RowCol_t r,c;
204 	int     rc, i;
205 
206 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
207 
208 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
209 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
210 			p = &diskqueuesw[i];
211 			break;
212 		}
213 	}
214 	if (p == NULL) {
215 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
216 		p = &diskqueuesw[0];
217 	}
218 	raidPtr->qType = p;
219 
220 	RF_MallocAndAdd(diskQueues,
221 			(raidPtr->numCol + RF_MAXSPARE) *
222 			sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
223 			raidPtr->cleanupList);
224 	if (diskQueues == NULL)
225 		return (ENOMEM);
226 	raidPtr->Queues = diskQueues;
227 
228 	for (c = 0; c < raidPtr->numCol; c++) {
229 		rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
230 					   c, p,
231 					   raidPtr->sectorsPerDisk,
232 					   raidPtr->Disks[c].dev,
233 					   cfgPtr->maxOutstandingDiskReqs,
234 					   listp, raidPtr->cleanupList);
235 		if (rc)
236 			return (rc);
237 	}
238 
239 	spareQueues = &raidPtr->Queues[raidPtr->numCol];
240 	for (r = 0; r < raidPtr->numSpare; r++) {
241 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
242 					   raidPtr->numCol + r, p,
243 					   raidPtr->sectorsPerDisk,
244 					   raidPtr->Disks[raidPtr->numCol + r].dev,
245 					   cfgPtr->maxOutstandingDiskReqs, listp,
246 					   raidPtr->cleanupList);
247 		if (rc)
248 			return (rc);
249 	}
250 	return (0);
251 }
252 /* Enqueue a disk I/O
253  *
254  * In the kernel, I/O is non-blocking and so we'd like to have multiple
255  * I/Os outstanding on the physical disks when possible.
256  *
257  * when any request arrives at a queue, we have two choices:
258  *    dispatch it to the lower levels
259  *    queue it up
260  *
261  * kernel rules for when to do what:
262  *    unlocking req  :  always dispatch it
263  *    normal req     :  queue empty => dispatch it & set priority
264  *                      queue not full & priority is ok => dispatch it
265  *                      else queue it
266  */
267 void
268 rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
269 {
270 	RF_ETIMER_START(req->qtime);
271 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
272 	req->priority = pri;
273 
274 #if RF_DEBUG_DISKQUEUE
275 	if (rf_queueDebug && (req->numSector == 0)) {
276 		printf("Warning: Enqueueing zero-sector access\n");
277 	}
278 #endif
279 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
280 	if (RF_OK_TO_DISPATCH(queue, req)) {
281 		Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
282 		rf_DispatchKernelIO(queue, req);
283 	} else {
284 		queue->queueLength++;	/* increment count of number of requests waiting in this queue */
285 		Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
286 		req->queue = (void *) queue;
287 		(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
288 	}
289 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
290 }
291 
292 
293 /* get the next set of I/Os started */
294 void
295 rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
296 {
297 	int     done = 0;
298 
299 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
300 	queue->numOutstanding--;
301 	RF_ASSERT(queue->numOutstanding >= 0);
302 
303 	/* dispatch requests to the disk until we find one that we can't. */
304 	/* no reason to continue once we've filled up the queue */
305 	/* no reason to even start if the queue is locked */
306 
307 	while (!done && !RF_QUEUE_FULL(queue)) {
308 		req = (queue->qPtr->Dequeue) (queue->qHdr);
309 		if (req) {
310 			Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
311 			queue->queueLength--;	/* decrement count of number of requests waiting in this queue */
312 			RF_ASSERT(queue->queueLength >= 0);
313 			if (RF_OK_TO_DISPATCH(queue, req)) {
314 				Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
315 				rf_DispatchKernelIO(queue, req);
316 			} else {
317 				/* we can't dispatch it, so just re-enqueue it.
318 				   potential trouble here if disk queues batch reqs */
319 				Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
320 				queue->queueLength++;
321 				(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
322 				done = 1;
323 			}
324 		} else {
325 			Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
326 			done = 1;
327 		}
328 	}
329 
330 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
331 }
332 /* promotes accesses tagged with the given parityStripeID from low priority
333  * to normal priority.  This promotion is optional, meaning that a queue
334  * need not implement it.  If there is no promotion routine associated with
335  * a queue, this routine does nothing and returns -1.
336  */
337 int
338 rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
339 		 RF_ReconUnitNum_t which_ru)
340 {
341 	int     retval;
342 
343 	if (!queue->qPtr->Promote)
344 		return (-1);
345 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
346 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
347 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
348 	return (retval);
349 }
350 
351 RF_DiskQueueData_t *
352 rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
353 		       RF_SectorCount_t nsect, void *bf,
354 		       RF_StripeNum_t parityStripeID,
355 		       RF_ReconUnitNum_t which_ru,
356 		       int (*wakeF) (void *, int), void *arg,
357 		       RF_AccTraceEntry_t *tracerec, RF_Raid_t *raidPtr,
358 		       RF_DiskQueueDataFlags_t flags, void *kb_proc,
359 		       int waitflag)
360 {
361 	RF_DiskQueueData_t *p;
362 
363 	p = pool_get(&rf_pools.dqd, waitflag);
364 	if (p == NULL)
365 		return (NULL);
366 
367 	memset(p, 0, sizeof(RF_DiskQueueData_t));
368 	if (waitflag == PR_WAITOK) {
369 		p->bp = getiobuf(NULL, true);
370 	} else {
371 		p->bp = getiobuf(NULL, false);
372 	}
373 	if (p->bp == NULL) {
374 		pool_put(&rf_pools.dqd, p);
375 		return (NULL);
376 	}
377 	SET(p->bp->b_cflags, BC_BUSY);	/* mark buffer busy */
378 
379 	p->sectorOffset = ssect + rf_protectedSectors;
380 	p->numSector = nsect;
381 	p->type = typ;
382 	p->buf = bf;
383 	p->parityStripeID = parityStripeID;
384 	p->which_ru = which_ru;
385 	p->CompleteFunc = wakeF;
386 	p->argument = arg;
387 	p->next = NULL;
388 	p->tracerec = tracerec;
389 	p->priority = RF_IO_NORMAL_PRIORITY;
390 	p->raidPtr = raidPtr;
391 	p->flags = flags;
392 	p->b_proc = kb_proc;
393 	return (p);
394 }
395 
396 void
397 rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
398 {
399 	int s;
400 	s = splbio();		/* XXX protect only pool_put, or neither? */
401 	putiobuf(p->bp);
402 	pool_put(&rf_pools.dqd, p);
403 	splx(s);
404 }
405