xref: /netbsd/sys/dev/raidframe/rf_map.c (revision bf9ec67e)
1 /*	$NetBSD: rf_map.c,v 1.12 2002/05/22 15:40:49 wiz Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /**************************************************************************
30  *
31  * map.c -- main code for mapping RAID addresses to physical disk addresses
32  *
33  **************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.12 2002/05/22 15:40:49 wiz Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_threadstuff.h"
41 #include "rf_raid.h"
42 #include "rf_general.h"
43 #include "rf_map.h"
44 #include "rf_freelist.h"
45 #include "rf_shutdown.h"
46 
47 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
48 static void
49 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
50     int count);
51 
52 /*****************************************************************************************
53  *
54  * MapAccess -- main 1st order mapping routine.
55  *
56  * Maps an access in the RAID address space to the corresponding set of physical disk
57  * addresses.  The result is returned as a list of AccessStripeMap structures, one per
58  * stripe accessed.  Each ASM structure contains a pointer to a list of PhysDiskAddr
59  * structures, which describe the physical locations touched by the user access.  Note
60  * that this routine returns only static mapping information, i.e. the list of physical
61  * addresses returned does not necessarily identify the set of physical locations that
62  * will actually be read or written.
63  *
64  * The routine also maps the parity.  The physical disk location returned always
65  * indicates the entire parity unit, even when only a subset of it is being accessed.
66  * This is because an access that is not stripe unit aligned but that spans a stripe
67  * unit boundary may require access two distinct portions of the parity unit, and we
68  * can't yet tell which portion(s) we'll actually need.  We leave it up to the algorithm
69  * selection code to decide what subset of the parity unit to access.
70  *
71  * Note that addresses in the RAID address space must always be maintained as
72  * longs, instead of ints.
73  *
74  * This routine returns NULL if numBlocks is 0
75  *
76  ****************************************************************************************/
77 
78 RF_AccessStripeMapHeader_t *
79 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
80 	RF_Raid_t *raidPtr;
81 	RF_RaidAddr_t raidAddress;	/* starting address in RAID address
82 					 * space */
83 	RF_SectorCount_t numBlocks;	/* number of blocks in RAID address
84 					 * space to access */
85 	caddr_t buffer;		/* buffer to supply/receive data */
86 	int     remap;		/* 1 => remap addresses to spare space */
87 {
88 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
89 	RF_AccessStripeMapHeader_t *asm_hdr = NULL;
90 	RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
91 	int     faultsTolerated = layoutPtr->map->faultsTolerated;
92 	RF_RaidAddr_t startAddress = raidAddress;	/* we'll change
93 							 * raidAddress along the
94 							 * way */
95 	RF_RaidAddr_t endAddress = raidAddress + numBlocks;
96 	RF_RaidDisk_t **disks = raidPtr->Disks;
97 
98 	RF_PhysDiskAddr_t *pda_p, *pda_q;
99 	RF_StripeCount_t numStripes = 0;
100 	RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
101 	RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
102 	RF_StripeCount_t totStripes;
103 	RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
104 	RF_AccessStripeMap_t *asmList, *t_asm;
105 	RF_PhysDiskAddr_t *pdaList, *t_pda;
106 
107 	/* allocate all the ASMs and PDAs up front */
108 	lastRaidAddr = raidAddress + numBlocks - 1;
109 	stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
110 	lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
111 	totStripes = lastSID - stripeID + 1;
112 	SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
113 	lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
114 
115 	asmList = rf_AllocASMList(totStripes);
116 	pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes);	/* may also need pda(s)
117 											 * per stripe for parity */
118 
119 	if (raidAddress + numBlocks > raidPtr->totalSectors) {
120 		RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
121 		    (int) raidAddress);
122 		return (NULL);
123 	}
124 	if (rf_mapDebug)
125 		rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
126 	for (; raidAddress < endAddress;) {
127 		/* make the next stripe structure */
128 		RF_ASSERT(asmList);
129 		t_asm = asmList;
130 		asmList = asmList->next;
131 		memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
132 		if (!asm_p)
133 			asm_list = asm_p = t_asm;
134 		else {
135 			asm_p->next = t_asm;
136 			asm_p = asm_p->next;
137 		}
138 		numStripes++;
139 
140 		/* map SUs from current location to the end of the stripe */
141 		asm_p->stripeID =	/* rf_RaidAddressToStripeID(layoutPtr,
142 		        raidAddress) */ stripeID++;
143 		stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
144 		stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
145 		asm_p->raidAddress = raidAddress;
146 		asm_p->endRaidAddress = stripeEndAddress;
147 
148 		/* map each stripe unit in the stripe */
149 		pda_p = NULL;
150 		startAddrWithinStripe = raidAddress;	/* Raid addr of start of
151 							 * portion of access
152 							 * that is within this
153 							 * stripe */
154 		for (; raidAddress < stripeEndAddress;) {
155 			RF_ASSERT(pdaList);
156 			t_pda = pdaList;
157 			pdaList = pdaList->next;
158 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
159 			if (!pda_p)
160 				asm_p->physInfo = pda_p = t_pda;
161 			else {
162 				pda_p->next = t_pda;
163 				pda_p = pda_p->next;
164 			}
165 
166 			pda_p->type = RF_PDA_TYPE_DATA;
167 			(layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
168 
169 			/* mark any failures we find.  failedPDA is don't-care
170 			 * if there is more than one failure */
171 			pda_p->raidAddress = raidAddress;	/* the RAID address
172 								 * corresponding to this
173 								 * physical disk address */
174 			nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
175 			pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
176 			RF_ASSERT(pda_p->numSector != 0);
177 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
178 			pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
179 			asm_p->totalSectorsAccessed += pda_p->numSector;
180 			asm_p->numStripeUnitsAccessed++;
181 			asm_p->origRow = pda_p->row;	/* redundant but
182 							 * harmless to do this
183 							 * in every loop
184 							 * iteration */
185 
186 			raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
187 		}
188 
189 		/* Map the parity. At this stage, the startSector and
190 		 * numSector fields for the parity unit are always set to
191 		 * indicate the entire parity unit. We may modify this after
192 		 * mapping the data portion. */
193 		switch (faultsTolerated) {
194 		case 0:
195 			break;
196 		case 1:	/* single fault tolerant */
197 			RF_ASSERT(pdaList);
198 			t_pda = pdaList;
199 			pdaList = pdaList->next;
200 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
201 			pda_p = asm_p->parityInfo = t_pda;
202 			pda_p->type = RF_PDA_TYPE_PARITY;
203 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
204 			    &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
205 			pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
206 			/* raidAddr may be needed to find unit to redirect to */
207 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
208 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
209 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
210 
211 			break;
212 		case 2:	/* two fault tolerant */
213 			RF_ASSERT(pdaList && pdaList->next);
214 			t_pda = pdaList;
215 			pdaList = pdaList->next;
216 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
217 			pda_p = asm_p->parityInfo = t_pda;
218 			pda_p->type = RF_PDA_TYPE_PARITY;
219 			t_pda = pdaList;
220 			pdaList = pdaList->next;
221 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
222 			pda_q = asm_p->qInfo = t_pda;
223 			pda_q->type = RF_PDA_TYPE_Q;
224 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
225 			    &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
226 			(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
227 			    &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
228 			pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
229 			/* raidAddr may be needed to find unit to redirect to */
230 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
231 			pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
232 			/* failure mode stuff */
233 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
234 			rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
235 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
236 			rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
237 			break;
238 		}
239 	}
240 	RF_ASSERT(asmList == NULL && pdaList == NULL);
241 	/* make the header structure */
242 	asm_hdr = rf_AllocAccessStripeMapHeader();
243 	RF_ASSERT(numStripes == totStripes);
244 	asm_hdr->numStripes = numStripes;
245 	asm_hdr->stripeMap = asm_list;
246 
247 	if (rf_mapDebug)
248 		rf_PrintAccessStripeMap(asm_hdr);
249 	return (asm_hdr);
250 }
251 /*****************************************************************************************
252  * This routine walks through an ASM list and marks the PDAs that have failed.
253  * It's called only when a disk failure causes an in-flight DAG to fail.
254  * The parity may consist of two components, but we want to use only one failedPDA
255  * pointer.  Thus we set failedPDA to point to the first parity component, and rely
256  * on the rest of the code to do the right thing with this.
257  ****************************************************************************************/
258 
259 void
260 rf_MarkFailuresInASMList(raidPtr, asm_h)
261 	RF_Raid_t *raidPtr;
262 	RF_AccessStripeMapHeader_t *asm_h;
263 {
264 	RF_RaidDisk_t **disks = raidPtr->Disks;
265 	RF_AccessStripeMap_t *asmap;
266 	RF_PhysDiskAddr_t *pda;
267 
268 	for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
269 		asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
270 		asmap->numFailedPDAs = 0;
271 		memset((char *) asmap->failedPDAs, 0,
272 		    RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
273 		for (pda = asmap->physInfo; pda; pda = pda->next) {
274 			if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
275 				asmap->numDataFailed++;
276 				asmap->failedPDAs[asmap->numFailedPDAs] = pda;
277 				asmap->numFailedPDAs++;
278 			}
279 		}
280 		pda = asmap->parityInfo;
281 		if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
282 			asmap->numParityFailed++;
283 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
284 			asmap->numFailedPDAs++;
285 		}
286 		pda = asmap->qInfo;
287 		if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
288 			asmap->numQFailed++;
289 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
290 			asmap->numFailedPDAs++;
291 		}
292 	}
293 }
294 /*****************************************************************************************
295  *
296  * DuplicateASM -- duplicates an ASM and returns the new one
297  *
298  ****************************************************************************************/
299 RF_AccessStripeMap_t *
300 rf_DuplicateASM(asmap)
301 	RF_AccessStripeMap_t *asmap;
302 {
303 	RF_AccessStripeMap_t *new_asm;
304 	RF_PhysDiskAddr_t *pda, *new_pda, *t_pda;
305 
306 	new_pda = NULL;
307 	new_asm = rf_AllocAccessStripeMapComponent();
308 	memcpy((char *) new_asm, (char *) asmap, sizeof(RF_AccessStripeMap_t));
309 	new_asm->numFailedPDAs = 0;	/* ??? */
310 	new_asm->failedPDAs[0] = NULL;
311 	new_asm->physInfo = NULL;
312 	new_asm->parityInfo = NULL;
313 	new_asm->next = NULL;
314 
315 	for (pda = asmap->physInfo; pda; pda = pda->next) {	/* copy the physInfo
316 								 * list */
317 		t_pda = rf_AllocPhysDiskAddr();
318 		memcpy((char *) t_pda, (char *) pda, sizeof(RF_PhysDiskAddr_t));
319 		t_pda->next = NULL;
320 		if (!new_asm->physInfo) {
321 			new_asm->physInfo = t_pda;
322 			new_pda = t_pda;
323 		} else {
324 			new_pda->next = t_pda;
325 			new_pda = new_pda->next;
326 		}
327 		if (pda == asmap->failedPDAs[0])
328 			new_asm->failedPDAs[0] = t_pda;
329 	}
330 	for (pda = asmap->parityInfo; pda; pda = pda->next) {	/* copy the parityInfo
331 								 * list */
332 		t_pda = rf_AllocPhysDiskAddr();
333 		memcpy((char *) t_pda, (char *) pda, sizeof(RF_PhysDiskAddr_t));
334 		t_pda->next = NULL;
335 		if (!new_asm->parityInfo) {
336 			new_asm->parityInfo = t_pda;
337 			new_pda = t_pda;
338 		} else {
339 			new_pda->next = t_pda;
340 			new_pda = new_pda->next;
341 		}
342 		if (pda == asmap->failedPDAs[0])
343 			new_asm->failedPDAs[0] = t_pda;
344 	}
345 	return (new_asm);
346 }
347 /*****************************************************************************************
348  *
349  * DuplicatePDA -- duplicates a PDA and returns the new one
350  *
351  ****************************************************************************************/
352 RF_PhysDiskAddr_t *
353 rf_DuplicatePDA(pda)
354 	RF_PhysDiskAddr_t *pda;
355 {
356 	RF_PhysDiskAddr_t *new;
357 
358 	new = rf_AllocPhysDiskAddr();
359 	memcpy((char *) new, (char *) pda, sizeof(RF_PhysDiskAddr_t));
360 	return (new);
361 }
362 /*****************************************************************************************
363  *
364  * routines to allocate and free list elements.  All allocation routines zero the
365  * structure before returning it.
366  *
367  * FreePhysDiskAddr is static.  It should never be called directly, because
368  * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list.
369  *
370  ****************************************************************************************/
371 
372 static RF_FreeList_t *rf_asmhdr_freelist;
373 #define RF_MAX_FREE_ASMHDR 128
374 #define RF_ASMHDR_INC       16
375 #define RF_ASMHDR_INITIAL   32
376 
377 static RF_FreeList_t *rf_asm_freelist;
378 #define RF_MAX_FREE_ASM 192
379 #define RF_ASM_INC       24
380 #define RF_ASM_INITIAL   64
381 
382 static RF_FreeList_t *rf_pda_freelist;
383 #define RF_MAX_FREE_PDA 192
384 #define RF_PDA_INC       24
385 #define RF_PDA_INITIAL   64
386 
387 /* called at shutdown time.  So far, all that is necessary is to release all the free lists */
388 static void rf_ShutdownMapModule(void *);
389 static void
390 rf_ShutdownMapModule(ignored)
391 	void   *ignored;
392 {
393 	RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
394 	RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
395 	RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
396 }
397 
398 int
399 rf_ConfigureMapModule(listp)
400 	RF_ShutdownList_t **listp;
401 {
402 	int     rc;
403 
404 	RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
405 	    RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
406 	if (rf_asmhdr_freelist == NULL) {
407 		return (ENOMEM);
408 	}
409 	RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
410 	    RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
411 	if (rf_asm_freelist == NULL) {
412 		RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
413 		return (ENOMEM);
414 	}
415 	RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
416 	    RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
417 	if (rf_pda_freelist == NULL) {
418 		RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
419 		RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
420 		return (ENOMEM);
421 	}
422 	rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
423 	if (rc) {
424 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
425 		    __LINE__, rc);
426 		rf_ShutdownMapModule(NULL);
427 		return (rc);
428 	}
429 	RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
430 	    (RF_AccessStripeMapHeader_t *));
431 	RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
432 	    (RF_AccessStripeMap_t *));
433 	RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
434 	    (RF_PhysDiskAddr_t *));
435 
436 	return (0);
437 }
438 
439 RF_AccessStripeMapHeader_t *
440 rf_AllocAccessStripeMapHeader()
441 {
442 	RF_AccessStripeMapHeader_t *p;
443 
444 	RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
445 	memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
446 
447 	return (p);
448 }
449 
450 
451 void
452 rf_FreeAccessStripeMapHeader(p)
453 	RF_AccessStripeMapHeader_t *p;
454 {
455 	RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
456 }
457 
458 RF_PhysDiskAddr_t *
459 rf_AllocPhysDiskAddr()
460 {
461 	RF_PhysDiskAddr_t *p;
462 
463 	RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
464 	memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
465 
466 	return (p);
467 }
468 /* allocates a list of PDAs, locking the free list only once
469  * when we have to call calloc, we do it one component at a time to simplify
470  * the process of freeing the list at program shutdown.  This should not be
471  * much of a performance hit, because it should be very infrequently executed.
472  */
473 RF_PhysDiskAddr_t *
474 rf_AllocPDAList(count)
475 	int     count;
476 {
477 	RF_PhysDiskAddr_t *p = NULL;
478 
479 	RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
480 	return (p);
481 }
482 
483 void
484 rf_FreePhysDiskAddr(p)
485 	RF_PhysDiskAddr_t *p;
486 {
487 	RF_FREELIST_FREE(rf_pda_freelist, p, next);
488 }
489 
490 static void
491 rf_FreePDAList(l_start, l_end, count)
492 	RF_PhysDiskAddr_t *l_start, *l_end;	/* pointers to start and end
493 						 * of list */
494 	int     count;		/* number of elements in list */
495 {
496 	RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
497 }
498 
499 RF_AccessStripeMap_t *
500 rf_AllocAccessStripeMapComponent()
501 {
502 	RF_AccessStripeMap_t *p;
503 
504 	RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *));
505 	memset((char *) p, 0, sizeof(RF_AccessStripeMap_t));
506 
507 	return (p);
508 }
509 /* this is essentially identical to AllocPDAList.  I should combine the two.
510  * when we have to call calloc, we do it one component at a time to simplify
511  * the process of freeing the list at program shutdown.  This should not be
512  * much of a performance hit, because it should be very infrequently executed.
513  */
514 RF_AccessStripeMap_t *
515 rf_AllocASMList(count)
516 	int     count;
517 {
518 	RF_AccessStripeMap_t *p = NULL;
519 
520 	RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
521 	return (p);
522 }
523 
524 void
525 rf_FreeAccessStripeMapComponent(p)
526 	RF_AccessStripeMap_t *p;
527 {
528 	RF_FREELIST_FREE(rf_asm_freelist, p, next);
529 }
530 
531 static void
532 rf_FreeASMList(l_start, l_end, count)
533 	RF_AccessStripeMap_t *l_start, *l_end;
534 	int     count;
535 {
536 	RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
537 }
538 
539 void
540 rf_FreeAccessStripeMap(hdr)
541 	RF_AccessStripeMapHeader_t *hdr;
542 {
543 	RF_AccessStripeMap_t *p, *pt = NULL;
544 	RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
545 	int     count = 0, t, asm_count = 0;
546 
547 	for (p = hdr->stripeMap; p; p = p->next) {
548 
549 		/* link the 3 pda lists into the accumulating pda list */
550 
551 		if (!pdaList)
552 			pdaList = p->qInfo;
553 		else
554 			pdaEnd->next = p->qInfo;
555 		for (trailer = NULL, pdp = p->qInfo; pdp;) {
556 			trailer = pdp;
557 			pdp = pdp->next;
558 			count++;
559 		}
560 		if (trailer)
561 			pdaEnd = trailer;
562 
563 		if (!pdaList)
564 			pdaList = p->parityInfo;
565 		else
566 			pdaEnd->next = p->parityInfo;
567 		for (trailer = NULL, pdp = p->parityInfo; pdp;) {
568 			trailer = pdp;
569 			pdp = pdp->next;
570 			count++;
571 		}
572 		if (trailer)
573 			pdaEnd = trailer;
574 
575 		if (!pdaList)
576 			pdaList = p->physInfo;
577 		else
578 			pdaEnd->next = p->physInfo;
579 		for (trailer = NULL, pdp = p->physInfo; pdp;) {
580 			trailer = pdp;
581 			pdp = pdp->next;
582 			count++;
583 		}
584 		if (trailer)
585 			pdaEnd = trailer;
586 
587 		pt = p;
588 		asm_count++;
589 	}
590 
591 	/* debug only */
592 	for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
593 		t++;
594 	RF_ASSERT(t == count);
595 
596 	if (pdaList)
597 		rf_FreePDAList(pdaList, pdaEnd, count);
598 	rf_FreeASMList(hdr->stripeMap, pt, asm_count);
599 	rf_FreeAccessStripeMapHeader(hdr);
600 }
601 /* We can't use the large write optimization if there are any failures in the stripe.
602  * In the declustered layout, there is no way to immediately determine what disks
603  * constitute a stripe, so we actually have to hunt through the stripe looking for failures.
604  * The reason we map the parity instead of just using asm->parityInfo->col is because
605  * the latter may have been already redirected to a spare drive, which would
606  * mess up the computation of the stripe offset.
607  *
608  * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.
609  */
610 int
611 rf_CheckStripeForFailures(raidPtr, asmap)
612 	RF_Raid_t *raidPtr;
613 	RF_AccessStripeMap_t *asmap;
614 {
615 	RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i;
616 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
617 	RF_StripeCount_t stripeOffset;
618 	int     numFailures;
619 	RF_RaidAddr_t sosAddr;
620 	RF_SectorNum_t diskOffset, poffset;
621 	RF_RowCol_t testrow;
622 
623 	/* quick out in the fault-free case.  */
624 	RF_LOCK_MUTEX(raidPtr->mutex);
625 	numFailures = raidPtr->numFailures;
626 	RF_UNLOCK_MUTEX(raidPtr->mutex);
627 	if (numFailures == 0)
628 		return (0);
629 
630 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
631 	row = asmap->physInfo->row;
632 	(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
633 	(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0);	/* get pcol */
634 
635 	/* this need not be true if we've redirected the access to a spare in
636 	 * another row RF_ASSERT(row == testrow); */
637 	stripeOffset = 0;
638 	for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
639 		if (diskids[i] != pcol) {
640 			if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
641 				if (raidPtr->status[testrow] != rf_rs_reconstructing)
642 					return (1);
643 				RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
644 				layoutPtr->map->MapSector(raidPtr,
645 				    sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
646 				    &trow, &tcol, &diskOffset, 0);
647 				RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
648 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
649 					return (1);
650 				asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
651 				return (0);
652 			}
653 			stripeOffset++;
654 		}
655 	}
656 	return (0);
657 }
658 /*
659    return the number of failed data units in the stripe.
660 */
661 
662 int
663 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
664 	RF_Raid_t *raidPtr;
665 	RF_AccessStripeMap_t *asmap;
666 {
667 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
668 	RF_RowCol_t trow, tcol, row, i;
669 	RF_SectorNum_t diskOffset;
670 	RF_RaidAddr_t sosAddr;
671 	int     numFailures;
672 
673 	/* quick out in the fault-free case.  */
674 	RF_LOCK_MUTEX(raidPtr->mutex);
675 	numFailures = raidPtr->numFailures;
676 	RF_UNLOCK_MUTEX(raidPtr->mutex);
677 	if (numFailures == 0)
678 		return (0);
679 	numFailures = 0;
680 
681 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
682 	row = asmap->physInfo->row;
683 	for (i = 0; i < layoutPtr->numDataCol; i++) {
684 		(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
685 		    &trow, &tcol, &diskOffset, 0);
686 		if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
687 			numFailures++;
688 	}
689 
690 	return numFailures;
691 }
692 
693 
694 /*****************************************************************************************
695  *
696  * debug routines
697  *
698  ****************************************************************************************/
699 
700 void
701 rf_PrintAccessStripeMap(asm_h)
702 	RF_AccessStripeMapHeader_t *asm_h;
703 {
704 	rf_PrintFullAccessStripeMap(asm_h, 0);
705 }
706 
707 void
708 rf_PrintFullAccessStripeMap(asm_h, prbuf)
709 	RF_AccessStripeMapHeader_t *asm_h;
710 	int     prbuf;		/* flag to print buffer pointers */
711 {
712 	int     i;
713 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
714 	RF_PhysDiskAddr_t *p;
715 	printf("%d stripes total\n", (int) asm_h->numStripes);
716 	for (; asmap; asmap = asmap->next) {
717 		/* printf("Num failures: %d\n",asmap->numDataFailed); */
718 		/* printf("Num sectors:
719 		 * %d\n",(int)asmap->totalSectorsAccessed); */
720 		printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
721 		    (int) asmap->stripeID,
722 		    (int) asmap->totalSectorsAccessed,
723 		    (int) asmap->numDataFailed,
724 		    (int) asmap->numParityFailed);
725 		if (asmap->parityInfo) {
726 			printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
727 			    (int) asmap->parityInfo->startSector,
728 			    (int) (asmap->parityInfo->startSector +
729 				asmap->parityInfo->numSector - 1));
730 			if (prbuf)
731 				printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
732 			if (asmap->parityInfo->next) {
733 				printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
734 				    asmap->parityInfo->next->col,
735 				    (int) asmap->parityInfo->next->startSector,
736 				    (int) (asmap->parityInfo->next->startSector +
737 					asmap->parityInfo->next->numSector - 1));
738 				if (prbuf)
739 					printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
740 				RF_ASSERT(asmap->parityInfo->next->next == NULL);
741 			}
742 			printf("]\n\t");
743 		}
744 		for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
745 			printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
746 			    (int) (p->startSector + p->numSector - 1));
747 			if (prbuf)
748 				printf("b0x%lx ", (unsigned long) p->bufPtr);
749 			if (i && !(i & 1))
750 				printf("\n\t");
751 		}
752 		printf("\n");
753 		p = asm_h->stripeMap->failedPDAs[0];
754 		if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
755 			printf("[multiple failures]\n");
756 		else
757 			if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
758 				printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
759 				    (int) p->startSector, (int) (p->startSector + p->numSector - 1));
760 	}
761 }
762 
763 void
764 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
765 	RF_Raid_t *raidPtr;
766 	RF_RaidAddr_t raidAddr;
767 	RF_SectorCount_t numBlocks;
768 {
769 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
770 	RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
771 
772 	printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
773 	for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
774 		printf("%d (0x%x), ", (int) ra, (int) ra);
775 	}
776 	printf("\n");
777 	printf("Offset into stripe unit: %d (0x%x)\n",
778 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
779 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
780 }
781 /*
782    given a parity descriptor and the starting address within a stripe,
783    range restrict the parity descriptor to touch only the correct stuff.
784 */
785 void
786 rf_ASMParityAdjust(
787     RF_PhysDiskAddr_t * toAdjust,
788     RF_StripeNum_t startAddrWithinStripe,
789     RF_SectorNum_t endAddress,
790     RF_RaidLayout_t * layoutPtr,
791     RF_AccessStripeMap_t * asm_p)
792 {
793 	RF_PhysDiskAddr_t *new_pda;
794 
795 	/* when we're accessing only a portion of one stripe unit, we want the
796 	 * parity descriptor to identify only the chunk of parity associated
797 	 * with the data.  When the access spans exactly one stripe unit
798 	 * boundary and is less than a stripe unit in size, it uses two
799 	 * disjoint regions of the parity unit.  When an access spans more
800 	 * than one stripe unit boundary, it uses all of the parity unit.
801 	 *
802 	 * To better handle the case where stripe units are small, we may
803 	 * eventually want to change the 2nd case so that if the SU size is
804 	 * below some threshold, we just read/write the whole thing instead of
805 	 * breaking it up into two accesses. */
806 	if (asm_p->numStripeUnitsAccessed == 1) {
807 		int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
808 		toAdjust->startSector += x;
809 		toAdjust->raidAddress += x;
810 		toAdjust->numSector = asm_p->physInfo->numSector;
811 		RF_ASSERT(toAdjust->numSector != 0);
812 	} else
813 		if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
814 			int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
815 
816 			/* create a second pda and copy the parity map info
817 			 * into it */
818 			RF_ASSERT(toAdjust->next == NULL);
819 			new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
820 			*new_pda = *toAdjust;	/* structure assignment */
821 			new_pda->next = NULL;
822 
823 			/* adjust the start sector & number of blocks for the
824 			 * first parity pda */
825 			toAdjust->startSector += x;
826 			toAdjust->raidAddress += x;
827 			toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
828 			RF_ASSERT(toAdjust->numSector != 0);
829 
830 			/* adjust the second pda */
831 			new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
832 			/* new_pda->raidAddress =
833 			 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
834 			 * toAdjust->raidAddress); */
835 			RF_ASSERT(new_pda->numSector != 0);
836 		}
837 }
838 
839 /*
840    Check if a disk has been spared or failed. If spared,
841    redirect the I/O.
842    If it has been failed, record it in the asm pointer.
843    Fourth arg is whether data or parity.
844 */
845 void
846 rf_ASMCheckStatus(
847     RF_Raid_t * raidPtr,
848     RF_PhysDiskAddr_t * pda_p,
849     RF_AccessStripeMap_t * asm_p,
850     RF_RaidDisk_t ** disks,
851     int parity)
852 {
853 	RF_DiskStatus_t dstatus;
854 	RF_RowCol_t frow, fcol;
855 
856 	dstatus = disks[pda_p->row][pda_p->col].status;
857 
858 	if (dstatus == rf_ds_spared) {
859 		/* if the disk has been spared, redirect access to the spare */
860 		frow = pda_p->row;
861 		fcol = pda_p->col;
862 		pda_p->row = disks[frow][fcol].spareRow;
863 		pda_p->col = disks[frow][fcol].spareCol;
864 	} else
865 		if (dstatus == rf_ds_dist_spared) {
866 			/* ditto if disk has been spared to dist spare space */
867 			RF_RowCol_t or = pda_p->row, oc = pda_p->col;
868 			RF_SectorNum_t oo = pda_p->startSector;
869 
870 			if (pda_p->type == RF_PDA_TYPE_DATA)
871 				raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
872 			else
873 				raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
874 
875 			if (rf_mapDebug) {
876 				printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
877 				    pda_p->row, pda_p->col, (int) pda_p->startSector);
878 			}
879 		} else
880 			if (RF_DEAD_DISK(dstatus)) {
881 				/* if the disk is inaccessible, mark the
882 				 * failure */
883 				if (parity)
884 					asm_p->numParityFailed++;
885 				else {
886 					asm_p->numDataFailed++;
887 				}
888 				asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
889 				asm_p->numFailedPDAs++;
890 #if 0
891 				switch (asm_p->numParityFailed + asm_p->numDataFailed) {
892 				case 1:
893 					asm_p->failedPDAs[0] = pda_p;
894 					break;
895 				case 2:
896 					asm_p->failedPDAs[1] = pda_p;
897 				default:
898 					break;
899 				}
900 #endif
901 			}
902 	/* the redirected access should never span a stripe unit boundary */
903 	RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
904 	    rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
905 	RF_ASSERT(pda_p->col != -1);
906 }
907