xref: /netbsd/sys/dev/raidframe/rf_parityscan.c (revision bf9ec67e)
1 /*	$NetBSD: rf_parityscan.c,v 1.12 2001/11/13 07:11:16 lukem Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*****************************************************************************
30  *
31  * rf_parityscan.c -- misc utilities related to parity verification
32  *
33  *****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.12 2001/11/13 07:11:16 lukem Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_raid.h"
41 #include "rf_dag.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_dagutils.h"
44 #include "rf_mcpair.h"
45 #include "rf_general.h"
46 #include "rf_engine.h"
47 #include "rf_parityscan.h"
48 #include "rf_map.h"
49 
50 /*****************************************************************************************
51  *
52  * walk through the entire arry and write new parity.
53  * This works by creating two DAGs, one to read a stripe of data and one to
54  * write new parity.  The first is executed, the data is xored together, and
55  * then the second is executed.  To avoid constantly building and tearing down
56  * the DAGs, we create them a priori and fill them in with the mapping
57  * information as we go along.
58  *
59  * there should never be more than one thread running this.
60  *
61  ****************************************************************************************/
62 
63 int
64 rf_RewriteParity(raidPtr)
65 	RF_Raid_t *raidPtr;
66 {
67 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
68 	RF_AccessStripeMapHeader_t *asm_h;
69 	int ret_val;
70 	int rc;
71 	RF_PhysDiskAddr_t pda;
72 	RF_SectorNum_t i;
73 
74 	if (raidPtr->Layout.map->faultsTolerated == 0) {
75 		/* There isn't any parity. Call it "okay." */
76 		return (RF_PARITY_OKAY);
77 	}
78 	if (raidPtr->status[0] != rf_rs_optimal) {
79 		/*
80 		 * We're in degraded mode.  Don't try to verify parity now!
81 		 * XXX: this should be a "we don't want to", not a
82 		 * "we can't" error.
83 		 */
84 		return (RF_PARITY_COULD_NOT_VERIFY);
85 	}
86 
87 	ret_val = 0;
88 
89 	pda.startSector = 0;
90 	pda.numSector = raidPtr->Layout.sectorsPerStripeUnit;
91 	rc = RF_PARITY_OKAY;
92 
93 	for (i = 0; i < raidPtr->totalSectors &&
94 		     rc <= RF_PARITY_CORRECTED;
95 	     i += layoutPtr->dataSectorsPerStripe) {
96 		if (raidPtr->waitShutdown) {
97 			/* Someone is pulling the plug on this set...
98 			   abort the re-write */
99 			return (1);
100 		}
101 		asm_h = rf_MapAccess(raidPtr, i,
102 				     layoutPtr->dataSectorsPerStripe,
103 				     NULL, RF_DONT_REMAP);
104 		raidPtr->parity_rewrite_stripes_done =
105 			i / layoutPtr->dataSectorsPerStripe ;
106 		rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
107 
108 		switch (rc) {
109 		case RF_PARITY_OKAY:
110 		case RF_PARITY_CORRECTED:
111 			break;
112 		case RF_PARITY_BAD:
113 			printf("Parity bad during correction\n");
114 			ret_val = 1;
115 			break;
116 		case RF_PARITY_COULD_NOT_CORRECT:
117 			printf("Could not correct bad parity\n");
118 			ret_val = 1;
119 			break;
120 		case RF_PARITY_COULD_NOT_VERIFY:
121 			printf("Could not verify parity\n");
122 			ret_val = 1;
123 			break;
124 		default:
125 			printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
126 			ret_val = 1;
127 		}
128 		rf_FreeAccessStripeMap(asm_h);
129 	}
130 	return (ret_val);
131 }
132 /*****************************************************************************************
133  *
134  * verify that the parity in a particular stripe is correct.
135  * we validate only the range of parity defined by parityPDA, since
136  * this is all we have locked.  The way we do this is to create an asm
137  * that maps the whole stripe and then range-restrict it to the parity
138  * region defined by the parityPDA.
139  *
140  ****************************************************************************************/
141 int
142 rf_VerifyParity(raidPtr, aasm, correct_it, flags)
143 	RF_Raid_t *raidPtr;
144 	RF_AccessStripeMap_t *aasm;
145 	int     correct_it;
146 	RF_RaidAccessFlags_t flags;
147 {
148 	RF_PhysDiskAddr_t *parityPDA;
149 	RF_AccessStripeMap_t *doasm;
150 	RF_LayoutSW_t *lp;
151 	int     lrc, rc;
152 
153 	lp = raidPtr->Layout.map;
154 	if (lp->faultsTolerated == 0) {
155 		/*
156 	         * There isn't any parity. Call it "okay."
157 	         */
158 		return (RF_PARITY_OKAY);
159 	}
160 	rc = RF_PARITY_OKAY;
161 	if (lp->VerifyParity) {
162 		for (doasm = aasm; doasm; doasm = doasm->next) {
163 			for (parityPDA = doasm->parityInfo; parityPDA;
164 			     parityPDA = parityPDA->next) {
165 				lrc = lp->VerifyParity(raidPtr,
166 						       doasm->raidAddress,
167 						       parityPDA,
168 						       correct_it, flags);
169 				if (lrc > rc) {
170 					/* see rf_parityscan.h for why this
171 					 * works */
172 					rc = lrc;
173 				}
174 			}
175 		}
176 	} else {
177 		rc = RF_PARITY_COULD_NOT_VERIFY;
178 	}
179 	return (rc);
180 }
181 
182 int
183 rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags)
184 	RF_Raid_t *raidPtr;
185 	RF_RaidAddr_t raidAddr;
186 	RF_PhysDiskAddr_t *parityPDA;
187 	int     correct_it;
188 	RF_RaidAccessFlags_t flags;
189 {
190 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
191 	RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
192 								     raidAddr);
193 	RF_SectorCount_t numsector = parityPDA->numSector;
194 	int     numbytes = rf_RaidAddressToByte(raidPtr, numsector);
195 	int     bytesPerStripe = numbytes * layoutPtr->numDataCol;
196 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;	/* read, write dag */
197 	RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;
198 	RF_AccessStripeMapHeader_t *asm_h;
199 	RF_AccessStripeMap_t *asmap;
200 	RF_AllocListElem_t *alloclist;
201 	RF_PhysDiskAddr_t *pda;
202 	char   *pbuf, *buf, *end_p, *p;
203 	int     i, retcode;
204 	RF_ReconUnitNum_t which_ru;
205 	RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
206 							     raidAddr,
207 							     &which_ru);
208 	int     stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
209 	RF_AccTraceEntry_t tracerec;
210 	RF_MCPair_t *mcpair;
211 
212 	retcode = RF_PARITY_OKAY;
213 
214 	mcpair = rf_AllocMCPair();
215 	rf_MakeAllocList(alloclist);
216 	RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
217 	RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist);	/* use calloc to make
218 									 * sure buffer is zeroed */
219 	end_p = buf + bytesPerStripe;
220 
221 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
222 	    "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
223 	blockNode = rd_dag_h->succedents[0];
224 	unblockNode = blockNode->succedents[0]->succedents[0];
225 
226 	/* map the stripe and fill in the PDAs in the dag */
227 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
228 	asmap = asm_h->stripeMap;
229 
230 	for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
231 		RF_ASSERT(pda);
232 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
233 		RF_ASSERT(pda->numSector != 0);
234 		if (rf_TryToRedirectPDA(raidPtr, pda, 0))
235 			goto out;	/* no way to verify parity if disk is
236 					 * dead.  return w/ good status */
237 		blockNode->succedents[i]->params[0].p = pda;
238 		blockNode->succedents[i]->params[2].v = psID;
239 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
240 	}
241 
242 	RF_ASSERT(!asmap->parityInfo->next);
243 	rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
244 	RF_ASSERT(asmap->parityInfo->numSector != 0);
245 	if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
246 		goto out;
247 	blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
248 
249 	/* fire off the DAG */
250 	memset((char *) &tracerec, 0, sizeof(tracerec));
251 	rd_dag_h->tracerec = &tracerec;
252 
253 	if (rf_verifyParityDebug) {
254 		printf("Parity verify read dag:\n");
255 		rf_PrintDAGList(rd_dag_h);
256 	}
257 	RF_LOCK_MUTEX(mcpair->mutex);
258 	mcpair->flag = 0;
259 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
260 	    (void *) mcpair);
261 	while (!mcpair->flag)
262 		RF_WAIT_COND(mcpair->cond, mcpair->mutex);
263 	RF_UNLOCK_MUTEX(mcpair->mutex);
264 	if (rd_dag_h->status != rf_enable) {
265 		RF_ERRORMSG("Unable to verify parity:  can't read the stripe\n");
266 		retcode = RF_PARITY_COULD_NOT_VERIFY;
267 		goto out;
268 	}
269 	for (p = buf; p < end_p; p += numbytes) {
270 		rf_bxor(p, pbuf, numbytes, NULL);
271 	}
272 	for (i = 0; i < numbytes; i++) {
273 #if 0
274 		if (pbuf[i] != 0 || buf[bytesPerStripe + i] != 0) {
275 			printf("Bytes: %d %d %d\n", i, pbuf[i], buf[bytesPerStripe + i]);
276 		}
277 #endif
278 		if (pbuf[i] != buf[bytesPerStripe + i]) {
279 			if (!correct_it)
280 				RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
281 				    i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
282 			retcode = RF_PARITY_BAD;
283 			break;
284 		}
285 	}
286 
287 	if (retcode && correct_it) {
288 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
289 		    "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
290 		wrBlock = wr_dag_h->succedents[0];
291 		wrUnblock = wrBlock->succedents[0]->succedents[0];
292 		wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
293 		wrBlock->succedents[0]->params[2].v = psID;
294 		wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
295 		memset((char *) &tracerec, 0, sizeof(tracerec));
296 		wr_dag_h->tracerec = &tracerec;
297 		if (rf_verifyParityDebug) {
298 			printf("Parity verify write dag:\n");
299 			rf_PrintDAGList(wr_dag_h);
300 		}
301 		RF_LOCK_MUTEX(mcpair->mutex);
302 		mcpair->flag = 0;
303 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
304 		    (void *) mcpair);
305 		while (!mcpair->flag)
306 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
307 		RF_UNLOCK_MUTEX(mcpair->mutex);
308 		if (wr_dag_h->status != rf_enable) {
309 			RF_ERRORMSG("Unable to correct parity in VerifyParity:  can't write the stripe\n");
310 			retcode = RF_PARITY_COULD_NOT_CORRECT;
311 		}
312 		rf_FreeDAG(wr_dag_h);
313 		if (retcode == RF_PARITY_BAD)
314 			retcode = RF_PARITY_CORRECTED;
315 	}
316 out:
317 	rf_FreeAccessStripeMap(asm_h);
318 	rf_FreeAllocList(alloclist);
319 	rf_FreeDAG(rd_dag_h);
320 	rf_FreeMCPair(mcpair);
321 	return (retcode);
322 }
323 
324 int
325 rf_TryToRedirectPDA(raidPtr, pda, parity)
326 	RF_Raid_t *raidPtr;
327 	RF_PhysDiskAddr_t *pda;
328 	int     parity;
329 {
330 	if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) {
331 		if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) {
332 			if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
333 				RF_RowCol_t or = pda->row, oc = pda->col;
334 				RF_SectorNum_t os = pda->startSector;
335 				if (parity) {
336 					(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
337 					if (rf_verifyParityDebug)
338 						printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n",
339 						    or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
340 				} else {
341 					(raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
342 					if (rf_verifyParityDebug)
343 						printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n",
344 						    or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
345 				}
346 			} else {
347 				RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow;
348 				RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol;
349 				pda->row = spRow;
350 				pda->col = spCol;
351 			}
352 		}
353 	}
354 	if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status))
355 		return (1);
356 	return (0);
357 }
358 /*****************************************************************************************
359  *
360  * currently a stub.
361  *
362  * takes as input an ASM describing a write operation and containing one failure, and
363  * verifies that the parity was correctly updated to reflect the write.
364  *
365  * if it's a data unit that's failed, we read the other data units in the stripe and
366  * the parity unit, XOR them together, and verify that we get the data intended for
367  * the failed disk.  Since it's easy, we also validate that the right data got written
368  * to the surviving data disks.
369  *
370  * If it's the parity that failed, there's really no validation we can do except the
371  * above verification that the right data got written to all disks.  This is because
372  * the new data intended for the failed disk is supplied in the ASM, but this is of
373  * course not the case for the new parity.
374  *
375  ****************************************************************************************/
376 int
377 rf_VerifyDegrModeWrite(raidPtr, asmh)
378 	RF_Raid_t *raidPtr;
379 	RF_AccessStripeMapHeader_t *asmh;
380 {
381 	return (0);
382 }
383 /* creates a simple DAG with a header, a block-recon node at level 1,
384  * nNodes nodes at level 2, an unblock-recon node at level 3, and
385  * a terminator node at level 4.  The stripe address field in
386  * the block and unblock nodes are not touched, nor are the pda
387  * fields in the second-level nodes, so they must be filled in later.
388  *
389  * commit point is established at unblock node - this means that any
390  * failure during dag execution causes the dag to fail
391  */
392 RF_DagHeader_t *
393 rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority)
394 	RF_Raid_t *raidPtr;
395 	int     nNodes;
396 	int     bytesPerSU;
397 	char   *databuf;
398 	int     (*doFunc) (RF_DagNode_t * node);
399 	int     (*undoFunc) (RF_DagNode_t * node);
400 	char   *name;		/* node names at the second level */
401 	RF_AllocListElem_t *alloclist;
402 	RF_RaidAccessFlags_t flags;
403 	int     priority;
404 {
405 	RF_DagHeader_t *dag_h;
406 	RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;
407 	int     i;
408 
409 	/* create the nodes, the block & unblock nodes, and the terminator
410 	 * node */
411 	RF_CallocAndAdd(nodes, nNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist);
412 	blockNode = &nodes[nNodes];
413 	unblockNode = blockNode + 1;
414 	termNode = unblockNode + 1;
415 
416 	dag_h = rf_AllocDAGHeader();
417 	dag_h->raidPtr = (void *) raidPtr;
418 	dag_h->allocList = NULL;/* we won't use this alloc list */
419 	dag_h->status = rf_enable;
420 	dag_h->numSuccedents = 1;
421 	dag_h->creator = "SimpleDAG";
422 
423 	/* this dag can not commit until the unblock node is reached errors
424 	 * prior to the commit point imply the dag has failed */
425 	dag_h->numCommitNodes = 1;
426 	dag_h->numCommits = 0;
427 
428 	dag_h->succedents[0] = blockNode;
429 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
430 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
431 	unblockNode->succedents[0] = termNode;
432 	for (i = 0; i < nNodes; i++) {
433 		blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];
434 		unblockNode->antType[i] = rf_control;
435 		rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
436 		nodes[i].succedents[0] = unblockNode;
437 		nodes[i].antecedents[0] = blockNode;
438 		nodes[i].antType[0] = rf_control;
439 		nodes[i].params[1].p = (databuf + (i * bytesPerSU));
440 	}
441 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
442 	termNode->antecedents[0] = unblockNode;
443 	termNode->antType[0] = rf_control;
444 	return (dag_h);
445 }
446