xref: /netbsd/sys/dev/raidframe/rf_states.c (revision bf9ec67e)
1 /*	$NetBSD: rf_states.c,v 1.16 2001/11/13 07:11:17 lukem Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, William V. Courtright II, Robby Findler
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.16 2001/11/13 07:11:17 lukem Exp $");
31 
32 #include <sys/errno.h>
33 
34 #include "rf_archs.h"
35 #include "rf_threadstuff.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_desc.h"
39 #include "rf_aselect.h"
40 #include "rf_general.h"
41 #include "rf_states.h"
42 #include "rf_dagutils.h"
43 #include "rf_driver.h"
44 #include "rf_engine.h"
45 #include "rf_map.h"
46 #include "rf_etimer.h"
47 #include "rf_kintf.h"
48 
49 /* prototypes for some of the available states.
50 
51    States must:
52 
53      - not block.
54 
55      - either schedule rf_ContinueRaidAccess as a callback and return
56        RF_TRUE, or complete all of their work and return RF_FALSE.
57 
58      - increment desc->state when they have finished their work.
59 */
60 
61 static char *
62 StateName(RF_AccessState_t state)
63 {
64 	switch (state) {
65 		case rf_QuiesceState:return "QuiesceState";
66 	case rf_MapState:
67 		return "MapState";
68 	case rf_LockState:
69 		return "LockState";
70 	case rf_CreateDAGState:
71 		return "CreateDAGState";
72 	case rf_ExecuteDAGState:
73 		return "ExecuteDAGState";
74 	case rf_ProcessDAGState:
75 		return "ProcessDAGState";
76 	case rf_CleanupState:
77 		return "CleanupState";
78 	case rf_LastState:
79 		return "LastState";
80 	case rf_IncrAccessesCountState:
81 		return "IncrAccessesCountState";
82 	case rf_DecrAccessesCountState:
83 		return "DecrAccessesCountState";
84 	default:
85 		return "!!! UnnamedState !!!";
86 	}
87 }
88 
89 void
90 rf_ContinueRaidAccess(RF_RaidAccessDesc_t * desc)
91 {
92 	int     suspended = RF_FALSE;
93 	int     current_state_index = desc->state;
94 	RF_AccessState_t current_state = desc->states[current_state_index];
95 	int     unit = desc->raidPtr->raidid;
96 
97 	do {
98 
99 		current_state_index = desc->state;
100 		current_state = desc->states[current_state_index];
101 
102 		switch (current_state) {
103 
104 		case rf_QuiesceState:
105 			suspended = rf_State_Quiesce(desc);
106 			break;
107 		case rf_IncrAccessesCountState:
108 			suspended = rf_State_IncrAccessCount(desc);
109 			break;
110 		case rf_MapState:
111 			suspended = rf_State_Map(desc);
112 			break;
113 		case rf_LockState:
114 			suspended = rf_State_Lock(desc);
115 			break;
116 		case rf_CreateDAGState:
117 			suspended = rf_State_CreateDAG(desc);
118 			break;
119 		case rf_ExecuteDAGState:
120 			suspended = rf_State_ExecuteDAG(desc);
121 			break;
122 		case rf_ProcessDAGState:
123 			suspended = rf_State_ProcessDAG(desc);
124 			break;
125 		case rf_CleanupState:
126 			suspended = rf_State_Cleanup(desc);
127 			break;
128 		case rf_DecrAccessesCountState:
129 			suspended = rf_State_DecrAccessCount(desc);
130 			break;
131 		case rf_LastState:
132 			suspended = rf_State_LastState(desc);
133 			break;
134 		}
135 
136 		/* after this point, we cannot dereference desc since desc may
137 		 * have been freed. desc is only freed in LastState, so if we
138 		 * renter this function or loop back up, desc should be valid. */
139 
140 		if (rf_printStatesDebug) {
141 			printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
142 			       unit, StateName(current_state),
143 			       current_state_index, (long) desc,
144 			       suspended ? "callback scheduled" : "looping");
145 		}
146 	} while (!suspended && current_state != rf_LastState);
147 
148 	return;
149 }
150 
151 
152 void
153 rf_ContinueDagAccess(RF_DagList_t * dagList)
154 {
155 	RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
156 	RF_RaidAccessDesc_t *desc;
157 	RF_DagHeader_t *dag_h;
158 	RF_Etimer_t timer;
159 	int     i;
160 
161 	desc = dagList->desc;
162 
163 	timer = tracerec->timer;
164 	RF_ETIMER_STOP(timer);
165 	RF_ETIMER_EVAL(timer);
166 	tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
167 	RF_ETIMER_START(tracerec->timer);
168 
169 	/* skip to dag which just finished */
170 	dag_h = dagList->dags;
171 	for (i = 0; i < dagList->numDagsDone; i++) {
172 		dag_h = dag_h->next;
173 	}
174 
175 	/* check to see if retry is required */
176 	if (dag_h->status == rf_rollBackward) {
177 		/* when a dag fails, mark desc status as bad and allow all
178 		 * other dags in the desc to execute to completion.  then,
179 		 * free all dags and start over */
180 		desc->status = 1;	/* bad status */
181 		{
182 			printf("raid%d: DAG failure: %c addr 0x%lx (%ld) nblk 0x%x (%d) buf 0x%lx\n",
183 			       desc->raidPtr->raidid, desc->type,
184 			       (long) desc->raidAddress,
185 			       (long) desc->raidAddress, (int) desc->numBlocks,
186 			       (int) desc->numBlocks,
187 			       (unsigned long) (desc->bufPtr));
188 		}
189 	}
190 	dagList->numDagsDone++;
191 	rf_ContinueRaidAccess(desc);
192 }
193 
194 int
195 rf_State_LastState(RF_RaidAccessDesc_t * desc)
196 {
197 	void    (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
198 	RF_CBParam_t callbackArg;
199 
200 	callbackArg.p = desc->callbackArg;
201 
202 	/*
203 	 * If this is not an async request, wake up the caller
204 	 */
205 	if (desc->async_flag == 0)
206 		wakeup(desc->bp);
207 
208 	/*
209 	 * That's all the IO for this one... unbusy the 'disk'.
210 	 */
211 
212 	rf_disk_unbusy(desc);
213 
214 	/*
215 	 * Wakeup any requests waiting to go.
216 	 */
217 
218 	RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
219 	((RF_Raid_t *) desc->raidPtr)->openings++;
220 	RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
221 
222 	/* wake up any pending IO */
223 	raidstart(((RF_Raid_t *) desc->raidPtr));
224 
225 	/* printf("Calling biodone on 0x%x\n",desc->bp); */
226 	biodone(desc->bp);	/* access came through ioctl */
227 
228 	if (callbackFunc)
229 		callbackFunc(callbackArg);
230 	rf_FreeRaidAccDesc(desc);
231 
232 	return RF_FALSE;
233 }
234 
235 int
236 rf_State_IncrAccessCount(RF_RaidAccessDesc_t * desc)
237 {
238 	RF_Raid_t *raidPtr;
239 
240 	raidPtr = desc->raidPtr;
241 	/* Bummer. We have to do this to be 100% safe w.r.t. the increment
242 	 * below */
243 	RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
244 	raidPtr->accs_in_flight++;	/* used to detect quiescence */
245 	RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
246 
247 	desc->state++;
248 	return RF_FALSE;
249 }
250 
251 int
252 rf_State_DecrAccessCount(RF_RaidAccessDesc_t * desc)
253 {
254 	RF_Raid_t *raidPtr;
255 
256 	raidPtr = desc->raidPtr;
257 
258 	RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
259 	raidPtr->accs_in_flight--;
260 	if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
261 		rf_SignalQuiescenceLock(raidPtr, raidPtr->reconDesc);
262 	}
263 	rf_UpdateUserStats(raidPtr, RF_ETIMER_VAL_US(desc->timer), desc->numBlocks);
264 	RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
265 
266 	desc->state++;
267 	return RF_FALSE;
268 }
269 
270 int
271 rf_State_Quiesce(RF_RaidAccessDesc_t * desc)
272 {
273 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
274 	RF_Etimer_t timer;
275 	int     suspended = RF_FALSE;
276 	RF_Raid_t *raidPtr;
277 
278 	raidPtr = desc->raidPtr;
279 
280 	RF_ETIMER_START(timer);
281 	RF_ETIMER_START(desc->timer);
282 
283 	RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
284 	if (raidPtr->accesses_suspended) {
285 		RF_CallbackDesc_t *cb;
286 		cb = rf_AllocCallbackDesc();
287 		/* XXX the following cast is quite bogus...
288 		 * rf_ContinueRaidAccess takes a (RF_RaidAccessDesc_t *) as an
289 		 * argument..  GO */
290 		cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
291 		cb->callbackArg.p = (void *) desc;
292 		cb->next = raidPtr->quiesce_wait_list;
293 		raidPtr->quiesce_wait_list = cb;
294 		suspended = RF_TRUE;
295 	}
296 	RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
297 
298 	RF_ETIMER_STOP(timer);
299 	RF_ETIMER_EVAL(timer);
300 	tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
301 
302 	if (suspended && rf_quiesceDebug)
303 		printf("Stalling access due to quiescence lock\n");
304 
305 	desc->state++;
306 	return suspended;
307 }
308 
309 int
310 rf_State_Map(RF_RaidAccessDesc_t * desc)
311 {
312 	RF_Raid_t *raidPtr = desc->raidPtr;
313 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
314 	RF_Etimer_t timer;
315 
316 	RF_ETIMER_START(timer);
317 
318 	if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
319 		    desc->bufPtr, RF_DONT_REMAP)))
320 		RF_PANIC();
321 
322 	RF_ETIMER_STOP(timer);
323 	RF_ETIMER_EVAL(timer);
324 	tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
325 
326 	desc->state++;
327 	return RF_FALSE;
328 }
329 
330 int
331 rf_State_Lock(RF_RaidAccessDesc_t * desc)
332 {
333 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
334 	RF_Raid_t *raidPtr = desc->raidPtr;
335 	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
336 	RF_AccessStripeMap_t *asm_p;
337 	RF_Etimer_t timer;
338 	int     suspended = RF_FALSE;
339 
340 	RF_ETIMER_START(timer);
341 	if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
342 		RF_StripeNum_t lastStripeID = -1;
343 
344 		/* acquire each lock that we don't already hold */
345 		for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
346 			RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
347 			if (!rf_suppressLocksAndLargeWrites &&
348 			    asm_p->parityInfo &&
349 			    !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
350 			    !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
351 				asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
352 				RF_ASSERT(asm_p->stripeID > lastStripeID);	/* locks must be
353 										 * acquired
354 										 * hierarchically */
355 				lastStripeID = asm_p->stripeID;
356 				/* XXX the cast to (void (*)(RF_CBParam_t))
357 				 * below is bogus!  GO */
358 				RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
359 				    (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
360 				    raidPtr->Layout.dataSectorsPerStripe);
361 				if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
362 					&asm_p->lockReqDesc)) {
363 					suspended = RF_TRUE;
364 					break;
365 				}
366 			}
367 			if (desc->type == RF_IO_TYPE_WRITE &&
368 			    raidPtr->status[asm_p->physInfo->row] == rf_rs_reconstructing) {
369 				if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
370 					int     val;
371 
372 					asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
373 					/* XXX the cast below is quite
374 					 * bogus!!! XXX  GO */
375 					val = rf_ForceOrBlockRecon(raidPtr, asm_p,
376 					    (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
377 					if (val == 0) {
378 						asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
379 					} else {
380 						suspended = RF_TRUE;
381 						break;
382 					}
383 				} else {
384 					if (rf_pssDebug) {
385 						printf("raid%d: skipping force/block because already done, psid %ld\n",
386 						       desc->raidPtr->raidid,
387 						       (long) asm_p->stripeID);
388 					}
389 				}
390 			} else {
391 				if (rf_pssDebug) {
392 					printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
393 					       desc->raidPtr->raidid,
394 					       (long) asm_p->stripeID);
395 				}
396 			}
397 		}
398 
399 		RF_ETIMER_STOP(timer);
400 		RF_ETIMER_EVAL(timer);
401 		tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
402 
403 		if (suspended)
404 			return (RF_TRUE);
405 	}
406 	desc->state++;
407 	return (RF_FALSE);
408 }
409 /*
410  * the following three states create, execute, and post-process dags
411  * the error recovery unit is a single dag.
412  * by default, SelectAlgorithm creates an array of dags, one per parity stripe
413  * in some tricky cases, multiple dags per stripe are created
414  *   - dags within a parity stripe are executed sequentially (arbitrary order)
415  *   - dags for distinct parity stripes are executed concurrently
416  *
417  * repeat until all dags complete successfully -or- dag selection fails
418  *
419  * while !done
420  *   create dag(s) (SelectAlgorithm)
421  *   if dag
422  *     execute dag (DispatchDAG)
423  *     if dag successful
424  *       done (SUCCESS)
425  *     else
426  *       !done (RETRY - start over with new dags)
427  *   else
428  *     done (FAIL)
429  */
430 int
431 rf_State_CreateDAG(RF_RaidAccessDesc_t * desc)
432 {
433 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
434 	RF_Etimer_t timer;
435 	RF_DagHeader_t *dag_h;
436 	int     i, selectStatus;
437 
438 	/* generate a dag for the access, and fire it off.  When the dag
439 	 * completes, we'll get re-invoked in the next state. */
440 	RF_ETIMER_START(timer);
441 	/* SelectAlgorithm returns one or more dags */
442 	selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
443 	if (rf_printDAGsDebug)
444 		for (i = 0; i < desc->numStripes; i++)
445 			rf_PrintDAGList(desc->dagArray[i].dags);
446 	RF_ETIMER_STOP(timer);
447 	RF_ETIMER_EVAL(timer);
448 	/* update time to create all dags */
449 	tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
450 
451 	desc->status = 0;	/* good status */
452 
453 	if (selectStatus) {
454 		/* failed to create a dag */
455 		/* this happens when there are too many faults or incomplete
456 		 * dag libraries */
457 		printf("[Failed to create a DAG]\n");
458 		RF_PANIC();
459 	} else {
460 		/* bind dags to desc */
461 		for (i = 0; i < desc->numStripes; i++) {
462 			dag_h = desc->dagArray[i].dags;
463 			while (dag_h) {
464 				dag_h->bp = (struct buf *) desc->bp;
465 				dag_h->tracerec = tracerec;
466 				dag_h = dag_h->next;
467 			}
468 		}
469 		desc->flags |= RF_DAG_DISPATCH_RETURNED;
470 		desc->state++;	/* next state should be rf_State_ExecuteDAG */
471 	}
472 	return RF_FALSE;
473 }
474 
475 
476 
477 /* the access has an array of dagLists, one dagList per parity stripe.
478  * fire the first dag in each parity stripe (dagList).
479  * dags within a stripe (dagList) must be executed sequentially
480  *  - this preserves atomic parity update
481  * dags for independents parity groups (stripes) are fired concurrently */
482 
483 int
484 rf_State_ExecuteDAG(RF_RaidAccessDesc_t * desc)
485 {
486 	int     i;
487 	RF_DagHeader_t *dag_h;
488 	RF_DagList_t *dagArray = desc->dagArray;
489 
490 	/* next state is always rf_State_ProcessDAG important to do this
491 	 * before firing the first dag (it may finish before we leave this
492 	 * routine) */
493 	desc->state++;
494 
495 	/* sweep dag array, a stripe at a time, firing the first dag in each
496 	 * stripe */
497 	for (i = 0; i < desc->numStripes; i++) {
498 		RF_ASSERT(dagArray[i].numDags > 0);
499 		RF_ASSERT(dagArray[i].numDagsDone == 0);
500 		RF_ASSERT(dagArray[i].numDagsFired == 0);
501 		RF_ETIMER_START(dagArray[i].tracerec.timer);
502 		/* fire first dag in this stripe */
503 		dag_h = dagArray[i].dags;
504 		RF_ASSERT(dag_h);
505 		dagArray[i].numDagsFired++;
506 		/* XXX Yet another case where we pass in a conflicting
507 		 * function pointer :-(  XXX  GO */
508 		rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, &dagArray[i]);
509 	}
510 
511 	/* the DAG will always call the callback, even if there was no
512 	 * blocking, so we are always suspended in this state */
513 	return RF_TRUE;
514 }
515 
516 
517 
518 /* rf_State_ProcessDAG is entered when a dag completes.
519  * first, check to all dags in the access have completed
520  * if not, fire as many dags as possible */
521 
522 int
523 rf_State_ProcessDAG(RF_RaidAccessDesc_t * desc)
524 {
525 	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
526 	RF_Raid_t *raidPtr = desc->raidPtr;
527 	RF_DagHeader_t *dag_h;
528 	int     i, j, done = RF_TRUE;
529 	RF_DagList_t *dagArray = desc->dagArray;
530 	RF_Etimer_t timer;
531 
532 	/* check to see if this is the last dag */
533 	for (i = 0; i < desc->numStripes; i++)
534 		if (dagArray[i].numDags != dagArray[i].numDagsDone)
535 			done = RF_FALSE;
536 
537 	if (done) {
538 		if (desc->status) {
539 			/* a dag failed, retry */
540 			RF_ETIMER_START(timer);
541 			/* free all dags */
542 			for (i = 0; i < desc->numStripes; i++) {
543 				rf_FreeDAG(desc->dagArray[i].dags);
544 			}
545 			rf_MarkFailuresInASMList(raidPtr, asmh);
546 			/* back up to rf_State_CreateDAG */
547 			desc->state = desc->state - 2;
548 			return RF_FALSE;
549 		} else {
550 			/* move on to rf_State_Cleanup */
551 			desc->state++;
552 		}
553 		return RF_FALSE;
554 	} else {
555 		/* more dags to execute */
556 		/* see if any are ready to be fired.  if so, fire them */
557 		/* don't fire the initial dag in a list, it's fired in
558 		 * rf_State_ExecuteDAG */
559 		for (i = 0; i < desc->numStripes; i++) {
560 			if ((dagArray[i].numDagsDone < dagArray[i].numDags)
561 			    && (dagArray[i].numDagsDone == dagArray[i].numDagsFired)
562 			    && (dagArray[i].numDagsFired > 0)) {
563 				RF_ETIMER_START(dagArray[i].tracerec.timer);
564 				/* fire next dag in this stripe */
565 				/* first, skip to next dag awaiting execution */
566 				dag_h = dagArray[i].dags;
567 				for (j = 0; j < dagArray[i].numDagsDone; j++)
568 					dag_h = dag_h->next;
569 				dagArray[i].numDagsFired++;
570 				/* XXX and again we pass a different function
571 				 * pointer.. GO */
572 				rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
573 				    &dagArray[i]);
574 			}
575 		}
576 		return RF_TRUE;
577 	}
578 }
579 /* only make it this far if all dags complete successfully */
580 int
581 rf_State_Cleanup(RF_RaidAccessDesc_t * desc)
582 {
583 	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
584 	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
585 	RF_Raid_t *raidPtr = desc->raidPtr;
586 	RF_AccessStripeMap_t *asm_p;
587 	RF_DagHeader_t *dag_h;
588 	RF_Etimer_t timer;
589 	int i;
590 
591 	desc->state++;
592 
593 	timer = tracerec->timer;
594 	RF_ETIMER_STOP(timer);
595 	RF_ETIMER_EVAL(timer);
596 	tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
597 
598 	/* the RAID I/O is complete.  Clean up. */
599 	tracerec->specific.user.dag_retry_us = 0;
600 
601 	RF_ETIMER_START(timer);
602 	if (desc->flags & RF_DAG_RETURN_DAG) {
603 		/* copy dags into paramDAG */
604 		*(desc->paramDAG) = desc->dagArray[0].dags;
605 		dag_h = *(desc->paramDAG);
606 		for (i = 1; i < desc->numStripes; i++) {
607 			/* concatenate dags from remaining stripes */
608 			RF_ASSERT(dag_h);
609 			while (dag_h->next)
610 				dag_h = dag_h->next;
611 			dag_h->next = desc->dagArray[i].dags;
612 		}
613 	} else {
614 		/* free all dags */
615 		for (i = 0; i < desc->numStripes; i++) {
616 			rf_FreeDAG(desc->dagArray[i].dags);
617 		}
618 	}
619 
620 	RF_ETIMER_STOP(timer);
621 	RF_ETIMER_EVAL(timer);
622 	tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
623 
624 	RF_ETIMER_START(timer);
625 	if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
626 		for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
627 			if (!rf_suppressLocksAndLargeWrites &&
628 			    asm_p->parityInfo &&
629 			    !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
630 				RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
631 				rf_ReleaseStripeLock(raidPtr->lockTable,
632 						     asm_p->stripeID,
633 						     &asm_p->lockReqDesc);
634 			}
635 			if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
636 				rf_UnblockRecon(raidPtr, asm_p);
637 			}
638 		}
639 	}
640 	RF_ETIMER_STOP(timer);
641 	RF_ETIMER_EVAL(timer);
642 	tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
643 
644 	RF_ETIMER_START(timer);
645 	if (desc->flags & RF_DAG_RETURN_ASM)
646 		*(desc->paramASM) = asmh;
647 	else
648 		rf_FreeAccessStripeMap(asmh);
649 	RF_ETIMER_STOP(timer);
650 	RF_ETIMER_EVAL(timer);
651 	tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
652 
653 	RF_ETIMER_STOP(desc->timer);
654 	RF_ETIMER_EVAL(desc->timer);
655 
656 	timer = desc->tracerec.tot_timer;
657 	RF_ETIMER_STOP(timer);
658 	RF_ETIMER_EVAL(timer);
659 	desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
660 
661 	rf_LogTraceRec(raidPtr, tracerec);
662 
663 	desc->flags |= RF_DAG_ACCESS_COMPLETE;
664 
665 	return RF_FALSE;
666 }
667