xref: /netbsd/sys/dev/scsipi/ses.c (revision bf9ec67e)
1 /*	$NetBSD: ses.c,v 1.13 2001/11/15 09:48:18 lukem Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.13 2001/11/15 09:48:18 lukem Exp $");
30 
31 #include "opt_scsi.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51 
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsipi_disk.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsiconf.h>
57 #include <dev/scsipi/ses.h>
58 
59 /*
60  * Platform Independent Driver Internal Definitions for SES devices.
61  */
62 typedef enum {
63 	SES_NONE,
64 	SES_SES_SCSI2,
65 	SES_SES,
66 	SES_SES_PASSTHROUGH,
67 	SES_SEN,
68 	SES_SAFT
69 } enctyp;
70 
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 	int (*softc_init) 	__P((ses_softc_t *, int));
75 	int (*init_enc)		__P((ses_softc_t *));
76 	int (*get_encstat)	__P((ses_softc_t *, int));
77 	int (*set_encstat)	__P((ses_softc_t *, ses_encstat, int));
78 	int (*get_objstat)	__P((ses_softc_t *, ses_objstat *, int));
79 	int (*set_objstat)	__P((ses_softc_t *, ses_objstat *, int));
80 } encvec;
81 
82 #define	ENCI_SVALID	0x80
83 
84 typedef struct {
85 	uint32_t
86 		enctype	: 8,		/* enclosure type */
87 		subenclosure : 8,	/* subenclosure id */
88 		svalid	: 1,		/* enclosure information valid */
89 		priv	: 15;		/* private data, per object */
90 	uint8_t	encstat[4];	/* state && stats */
91 } encobj;
92 
93 #define	SEN_ID		"UNISYS           SUN_SEN"
94 #define	SEN_ID_LEN	24
95 
96 static enctyp ses_type __P((struct scsipi_inquiry_data *));
97 
98 
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init __P((ses_softc_t *, int));
101 static int ses_init_enc __P((ses_softc_t *));
102 static int ses_get_encstat __P((ses_softc_t *, int));
103 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
104 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
105 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
106 
107 static int safte_softc_init __P((ses_softc_t *, int));
108 static int safte_init_enc __P((ses_softc_t *));
109 static int safte_get_encstat __P((ses_softc_t *, int));
110 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
111 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
112 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
113 
114 /*
115  * Platform implementation defines/functions for SES internal kernel stuff
116  */
117 
118 #define	STRNCMP			strncmp
119 #define	PRINTF			printf
120 #define	SES_LOG			ses_log
121 #if	defined(DEBUG) || defined(SCSIDEBUG)
122 #define	SES_VLOG		ses_log
123 #else
124 #define	SES_VLOG		if (0) ses_log
125 #endif
126 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
128 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
129 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
130 #define	RECEIVE_DIAGNOSTIC	0x1c
131 #define	SEND_DIAGNOSTIC		0x1d
132 #define	WRITE_BUFFER		0x3b
133 #define	READ_BUFFER		0x3c
134 
135 int sesopen __P((dev_t, int, int, struct proc *));
136 int sesclose __P((dev_t, int, int, struct proc *));
137 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
138 
139 static int ses_runcmd	__P((struct ses_softc *, char *, int, char *, int *));
140 static void ses_log	__P((struct ses_softc *, const char *, ...))
141      __attribute__((__format__(__printf__, 2, 3)));
142 
143 /*
144  * General NetBSD kernel stuff.
145  */
146 
147 struct ses_softc {
148 	struct device	sc_device;
149 	struct scsipi_periph *sc_periph;
150 	enctyp		ses_type;	/* type of enclosure */
151 	encvec		ses_vec;	/* vector to handlers */
152 	void *		ses_private;	/* per-type private data */
153 	encobj *	ses_objmap;	/* objects */
154 	u_int32_t	ses_nobjects;	/* number of objects */
155 	ses_encstat	ses_encstat;	/* overall status */
156 	u_int8_t	ses_flags;
157 };
158 #define	SES_FLAG_INVALID	0x01
159 #define	SES_FLAG_OPEN		0x02
160 #define	SES_FLAG_INITIALIZED	0x04
161 
162 #define SESUNIT(x)       (minor((x)))
163 
164 static int ses_match __P((struct device *, struct cfdata *, void *));
165 static void ses_attach __P((struct device *, struct device *, void *));
166 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
167 
168 struct cfattach ses_ca = {
169 	sizeof (struct ses_softc), ses_match, ses_attach
170 };
171 extern struct cfdriver ses_cd;
172 
173 const struct scsipi_periphsw ses_switch = {
174 	NULL,
175 	NULL,
176 	NULL,
177 	NULL
178 };
179 
180 
181 int
182 ses_match(parent, match, aux)
183 	struct device *parent;
184 	struct cfdata *match;
185 	void *aux;
186 {
187 	struct scsipibus_attach_args *sa = aux;
188 
189 	switch (ses_device_type(sa)) {
190 	case SES_SES:
191 	case SES_SES_SCSI2:
192 	case SES_SEN:
193 	case SES_SAFT:
194 	case SES_SES_PASSTHROUGH:
195 		/*
196 		 * For these devices, it's a perfect match.
197 		 */
198 		return (24);
199 	default:
200 		return (0);
201 	}
202 }
203 
204 
205 /*
206  * Complete the attachment.
207  *
208  * We have to repeat the rerun of INQUIRY data as above because
209  * it's not until the return from the match routine that we have
210  * the softc available to set stuff in.
211  */
212 void
213 ses_attach(parent, self, aux)
214 	struct device *parent;
215 	struct device *self;
216 	void *aux;
217 {
218 	char *tname;
219 	struct ses_softc *softc = (void *)self;
220 	struct scsipibus_attach_args *sa = aux;
221 	struct scsipi_periph *periph = sa->sa_periph;
222 
223 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
224 	softc->sc_periph = periph;
225 	periph->periph_dev = &softc->sc_device;
226 	periph->periph_switch = &ses_switch;
227 	periph->periph_openings = 1;
228 
229 	softc->ses_type = ses_device_type(sa);
230 	switch (softc->ses_type) {
231 	case SES_SES:
232 	case SES_SES_SCSI2:
233         case SES_SES_PASSTHROUGH:
234 		softc->ses_vec.softc_init = ses_softc_init;
235 		softc->ses_vec.init_enc = ses_init_enc;
236 		softc->ses_vec.get_encstat = ses_get_encstat;
237 		softc->ses_vec.set_encstat = ses_set_encstat;
238 		softc->ses_vec.get_objstat = ses_get_objstat;
239 		softc->ses_vec.set_objstat = ses_set_objstat;
240 		break;
241         case SES_SAFT:
242 		softc->ses_vec.softc_init = safte_softc_init;
243 		softc->ses_vec.init_enc = safte_init_enc;
244 		softc->ses_vec.get_encstat = safte_get_encstat;
245 		softc->ses_vec.set_encstat = safte_set_encstat;
246 		softc->ses_vec.get_objstat = safte_get_objstat;
247 		softc->ses_vec.set_objstat = safte_set_objstat;
248 		break;
249         case SES_SEN:
250 		break;
251 	case SES_NONE:
252 	default:
253 		break;
254 	}
255 
256 	switch (softc->ses_type) {
257 	default:
258 	case SES_NONE:
259 		tname = "No SES device";
260 		break;
261 	case SES_SES_SCSI2:
262 		tname = "SCSI-2 SES Device";
263 		break;
264 	case SES_SES:
265 		tname = "SCSI-3 SES Device";
266 		break;
267         case SES_SES_PASSTHROUGH:
268 		tname = "SES Passthrough Device";
269 		break;
270         case SES_SEN:
271 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
272 		break;
273         case SES_SAFT:
274 		tname = "SAF-TE Compliant Device";
275 		break;
276 	}
277 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
278 }
279 
280 
281 static enctyp
282 ses_device_type(sa)
283 	struct scsipibus_attach_args *sa;
284 {
285 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
286 
287 	if (inqp == NULL)
288 		return (SES_NONE);
289 
290 	return (ses_type(inqp));
291 }
292 
293 int
294 sesopen(dev, flags, fmt, p)
295 	dev_t dev;
296 	int flags;
297 	int fmt;
298 	struct proc *p;
299 {
300 	struct ses_softc *softc;
301 	int error, unit;
302 
303 	unit = SESUNIT(dev);
304 	if (unit >= ses_cd.cd_ndevs)
305 		return (ENXIO);
306 	softc = ses_cd.cd_devs[unit];
307 	if (softc == NULL)
308 		return (ENXIO);
309 
310 	if (softc->ses_flags & SES_FLAG_INVALID) {
311 		error = ENXIO;
312 		goto out;
313 	}
314 	if (softc->ses_flags & SES_FLAG_OPEN) {
315 		error = EBUSY;
316 		goto out;
317 	}
318 	if (softc->ses_vec.softc_init == NULL) {
319 		error = ENXIO;
320 		goto out;
321 	}
322 	error = scsipi_adapter_addref(
323 	    softc->sc_periph->periph_channel->chan_adapter);
324 	if (error != 0)
325                 goto out;
326 
327 
328 	softc->ses_flags |= SES_FLAG_OPEN;
329 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
330 		error = (*softc->ses_vec.softc_init)(softc, 1);
331 		if (error)
332 			softc->ses_flags &= ~SES_FLAG_OPEN;
333 		else
334 			softc->ses_flags |= SES_FLAG_INITIALIZED;
335 	}
336 
337 out:
338 	return (error);
339 }
340 
341 int
342 sesclose(dev, flags, fmt, p)
343 	dev_t dev;
344 	int flags;
345 	int fmt;
346 	struct proc *p;
347 {
348 	struct ses_softc *softc;
349 	int unit;
350 
351 	unit = SESUNIT(dev);
352 	if (unit >= ses_cd.cd_ndevs)
353 		return (ENXIO);
354 	softc = ses_cd.cd_devs[unit];
355 	if (softc == NULL)
356 		return (ENXIO);
357 
358 	scsipi_wait_drain(softc->sc_periph);
359 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
360 	softc->ses_flags &= ~SES_FLAG_OPEN;
361 	return (0);
362 }
363 
364 int
365 sesioctl(dev, cmd, arg_addr, flag, p)
366 	dev_t dev;
367 	u_long cmd;
368 	caddr_t arg_addr;
369 	int flag;
370 	struct proc *p;
371 {
372 	ses_encstat tmp;
373 	ses_objstat objs;
374 	ses_object obj, *uobj;
375 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
376 	void *addr;
377 	int error, i;
378 
379 
380 	if (arg_addr)
381 		addr = *((caddr_t *) arg_addr);
382 	else
383 		addr = NULL;
384 
385 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
386 
387 	/*
388 	 * Now check to see whether we're initialized or not.
389 	 */
390 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
391 		return (ENODEV);
392 	}
393 
394 	error = 0;
395 
396 	/*
397 	 * If this command can change the device's state,
398 	 * we must have the device open for writing.
399 	 */
400 	switch (cmd) {
401 	case SESIOC_GETNOBJ:
402 	case SESIOC_GETOBJMAP:
403 	case SESIOC_GETENCSTAT:
404 	case SESIOC_GETOBJSTAT:
405 		break;
406 	default:
407 		if ((flag & FWRITE) == 0) {
408 			return (EBADF);
409 		}
410 	}
411 
412 	switch (cmd) {
413 	case SESIOC_GETNOBJ:
414 		error = copyout(&ssc->ses_nobjects, addr,
415 		    sizeof (ssc->ses_nobjects));
416 		break;
417 
418 	case SESIOC_GETOBJMAP:
419 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
420 			obj.obj_id = i;
421 			obj.subencid = ssc->ses_objmap[i].subenclosure;
422 			obj.object_type = ssc->ses_objmap[i].enctype;
423 			error = copyout(&obj, uobj, sizeof (ses_object));
424 			if (error) {
425 				break;
426 			}
427 		}
428 		break;
429 
430 	case SESIOC_GETENCSTAT:
431 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
432 		if (error)
433 			break;
434 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
435 		error = copyout(&tmp, addr, sizeof (ses_encstat));
436 		ssc->ses_encstat = tmp;
437 		break;
438 
439 	case SESIOC_SETENCSTAT:
440 		error = copyin(addr, &tmp, sizeof (ses_encstat));
441 		if (error)
442 			break;
443 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
444 		break;
445 
446 	case SESIOC_GETOBJSTAT:
447 		error = copyin(addr, &objs, sizeof (ses_objstat));
448 		if (error)
449 			break;
450 		if (objs.obj_id >= ssc->ses_nobjects) {
451 			error = EINVAL;
452 			break;
453 		}
454 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
455 		if (error)
456 			break;
457 		error = copyout(&objs, addr, sizeof (ses_objstat));
458 		/*
459 		 * Always (for now) invalidate entry.
460 		 */
461 		ssc->ses_objmap[objs.obj_id].svalid = 0;
462 		break;
463 
464 	case SESIOC_SETOBJSTAT:
465 		error = copyin(addr, &objs, sizeof (ses_objstat));
466 		if (error)
467 			break;
468 
469 		if (objs.obj_id >= ssc->ses_nobjects) {
470 			error = EINVAL;
471 			break;
472 		}
473 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
474 
475 		/*
476 		 * Always (for now) invalidate entry.
477 		 */
478 		ssc->ses_objmap[objs.obj_id].svalid = 0;
479 		break;
480 
481 	case SESIOC_INIT:
482 
483 		error = (*ssc->ses_vec.init_enc)(ssc);
484 		break;
485 
486 	default:
487 		error = scsipi_do_ioctl(ssc->sc_periph,
488 			    dev, cmd, addr, flag, p);
489 		break;
490 	}
491 	return (error);
492 }
493 
494 static int
495 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
496 {
497 	struct scsipi_generic sgen;
498 	int dl, flg, error;
499 
500 	if (dptr) {
501 		if ((dl = *dlenp) < 0) {
502 			dl = -dl;
503 			flg = XS_CTL_DATA_OUT;
504 		} else {
505 			flg = XS_CTL_DATA_IN;
506 		}
507 	} else {
508 		dl = 0;
509 		flg = 0;
510 	}
511 
512 	if (cdbl > sizeof (struct scsipi_generic)) {
513 		cdbl = sizeof (struct scsipi_generic);
514 	}
515 	memcpy(&sgen, cdb, cdbl);
516 #ifndef	SCSIDEBUG
517 	flg |= XS_CTL_SILENT;
518 #endif
519 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
520 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
521 
522 	if (error == 0 && dptr)
523 		*dlenp = 0;
524 
525 	return (error);
526 }
527 
528 #ifdef	__STDC__
529 static void
530 ses_log(struct ses_softc *ssc, const char *fmt, ...)
531 {
532 	va_list ap;
533 
534 	printf("%s: ", ssc->sc_device.dv_xname);
535 	va_start(ap, fmt);
536 	vprintf(fmt, ap);
537 	va_end(ap);
538 }
539 #else
540 static void
541 ses_log(ssc, fmt, va_alist)
542 	struct ses_softc *ssc;
543 	char *fmt;
544 	va_dcl
545 {
546 	va_list ap;
547 
548 	printf("%s: ", ssc->sc_device.dv_xname);
549 	va_start(ap, fmt);
550 	vprintf(fmt, ap);
551 	va_end(ap);
552 }
553 #endif
554 
555 /*
556  * The code after this point runs on many platforms,
557  * so forgive the slightly awkward and nonconforming
558  * appearance.
559  */
560 
561 /*
562  * Is this a device that supports enclosure services?
563  *
564  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
565  * an SES device. If it happens to be an old UNISYS SEN device, we can
566  * handle that too.
567  */
568 
569 #define	SAFTE_START	44
570 #define	SAFTE_END	50
571 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
572 
573 static enctyp
574 ses_type(inqp)
575 	struct scsipi_inquiry_data *inqp;
576 {
577 	size_t	given_len = inqp->additional_length + 4;
578 
579 	if (given_len < 8+SEN_ID_LEN)
580 		return (SES_NONE);
581 
582 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
583 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
584 			return (SES_SEN);
585 		} else if ((inqp->version & SID_ANSII) > 2) {
586 			return (SES_SES);
587 		} else {
588 			return (SES_SES_SCSI2);
589 		}
590 		return (SES_NONE);
591 	}
592 
593 #ifdef	SES_ENABLE_PASSTHROUGH
594 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
595 		/*
596 		 * PassThrough Device.
597 		 */
598 		return (SES_SES_PASSTHROUGH);
599 	}
600 #endif
601 
602 	/*
603 	 * The comparison is short for a reason-
604 	 * some vendors were chopping it short.
605 	 */
606 
607 	if (given_len < SAFTE_END - 2) {
608 		return (SES_NONE);
609 	}
610 
611 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
612 			SAFTE_LEN - 2) == 0) {
613 		return (SES_SAFT);
614 	}
615 
616 	return (SES_NONE);
617 }
618 
619 /*
620  * SES Native Type Device Support
621  */
622 
623 /*
624  * SES Diagnostic Page Codes
625  */
626 
627 typedef enum {
628 	SesConfigPage = 0x1,
629 	SesControlPage,
630 #define	SesStatusPage SesControlPage
631 	SesHelpTxt,
632 	SesStringOut,
633 #define	SesStringIn	SesStringOut
634 	SesThresholdOut,
635 #define	SesThresholdIn SesThresholdOut
636 	SesArrayControl,
637 #define	SesArrayStatus	SesArrayControl
638 	SesElementDescriptor,
639 	SesShortStatus
640 } SesDiagPageCodes;
641 
642 /*
643  * minimal amounts
644  */
645 
646 /*
647  * Minimum amount of data, starting from byte 0, to have
648  * the config header.
649  */
650 #define	SES_CFGHDR_MINLEN	12
651 
652 /*
653  * Minimum amount of data, starting from byte 0, to have
654  * the config header and one enclosure header.
655  */
656 #define	SES_ENCHDR_MINLEN	48
657 
658 /*
659  * Take this value, subtract it from VEnclen and you know
660  * the length of the vendor unique bytes.
661  */
662 #define	SES_ENCHDR_VMIN		36
663 
664 /*
665  * SES Data Structures
666  */
667 
668 typedef struct {
669 	uint32_t GenCode;	/* Generation Code */
670 	uint8_t	Nsubenc;	/* Number of Subenclosures */
671 } SesCfgHdr;
672 
673 typedef struct {
674 	uint8_t	Subencid;	/* SubEnclosure Identifier */
675 	uint8_t	Ntypes;		/* # of supported types */
676 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
677 } SesEncHdr;
678 
679 typedef struct {
680 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
681 	uint8_t	encVid[8];
682 	uint8_t	encPid[16];
683 	uint8_t	encRev[4];
684 	uint8_t	encVen[1];
685 } SesEncDesc;
686 
687 typedef struct {
688 	uint8_t	enc_type;		/* type of element */
689 	uint8_t	enc_maxelt;		/* maximum supported */
690 	uint8_t	enc_subenc;		/* in SubEnc # N */
691 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
692 } SesThdr;
693 
694 typedef struct {
695 	uint8_t	comstatus;
696 	uint8_t	comstat[3];
697 } SesComStat;
698 
699 struct typidx {
700 	int ses_tidx;
701 	int ses_oidx;
702 };
703 
704 struct sscfg {
705 	uint8_t ses_ntypes;	/* total number of types supported */
706 
707 	/*
708 	 * We need to keep a type index as well as an
709 	 * object index for each object in an enclosure.
710 	 */
711 	struct typidx *ses_typidx;
712 
713 	/*
714 	 * We also need to keep track of the number of elements
715 	 * per type of element. This is needed later so that we
716 	 * can find precisely in the returned status data the
717 	 * status for the Nth element of the Kth type.
718 	 */
719 	uint8_t *	ses_eltmap;
720 };
721 
722 
723 /*
724  * (de)canonicalization defines
725  */
726 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
727 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
728 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
729 
730 #define	sset16(outp, idx, sval)	\
731 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
732 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
733 
734 
735 #define	sset24(outp, idx, sval)	\
736 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
737 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
738 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
739 
740 
741 #define	sset32(outp, idx, sval)	\
742 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
743 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
744 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
745 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
746 
747 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
748 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
749 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
750 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
751 
752 #define	sget16(inp, idx, lval)	\
753 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
754 		(((uint8_t *)(inp))[idx+1]), idx += 2
755 
756 #define	gget16(inp, idx, lval)	\
757 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
758 		(((uint8_t *)(inp))[idx+1])
759 
760 #define	sget24(inp, idx, lval)	\
761 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
762 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
763 			(((uint8_t *)(inp))[idx+2]), idx += 3
764 
765 #define	gget24(inp, idx, lval)	\
766 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
767 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
768 			(((uint8_t *)(inp))[idx+2])
769 
770 #define	sget32(inp, idx, lval)	\
771 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
772 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
773 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
774 			(((uint8_t *)(inp))[idx+3]), idx += 4
775 
776 #define	gget32(inp, idx, lval)	\
777 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
778 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
779 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
780 			(((uint8_t *)(inp))[idx+3])
781 
782 #define	SCSZ	0x2000
783 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
784 
785 /*
786  * Routines specific && private to SES only
787  */
788 
789 static int ses_getconfig(ses_softc_t *);
790 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
791 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
792 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
793 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
794 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
795 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
796 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
797 
798 static int
799 ses_softc_init(ses_softc_t *ssc, int doinit)
800 {
801 	if (doinit == 0) {
802 		struct sscfg *cc;
803 		if (ssc->ses_nobjects) {
804 			SES_FREE(ssc->ses_objmap,
805 			    ssc->ses_nobjects * sizeof (encobj));
806 			ssc->ses_objmap = NULL;
807 		}
808 		if ((cc = ssc->ses_private) != NULL) {
809 			if (cc->ses_eltmap && cc->ses_ntypes) {
810 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
811 				cc->ses_eltmap = NULL;
812 				cc->ses_ntypes = 0;
813 			}
814 			if (cc->ses_typidx && ssc->ses_nobjects) {
815 				SES_FREE(cc->ses_typidx,
816 				    ssc->ses_nobjects * sizeof (struct typidx));
817 				cc->ses_typidx = NULL;
818 			}
819 			SES_FREE(cc, sizeof (struct sscfg));
820 			ssc->ses_private = NULL;
821 		}
822 		ssc->ses_nobjects = 0;
823 		return (0);
824 	}
825 	if (ssc->ses_private == NULL) {
826 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
827 	}
828 	if (ssc->ses_private == NULL) {
829 		return (ENOMEM);
830 	}
831 	ssc->ses_nobjects = 0;
832 	ssc->ses_encstat = 0;
833 	return (ses_getconfig(ssc));
834 }
835 
836 static int
837 ses_init_enc(ses_softc_t *ssc)
838 {
839 	return (0);
840 }
841 
842 static int
843 ses_get_encstat(ses_softc_t *ssc, int slpflag)
844 {
845 	SesComStat ComStat;
846 	int status;
847 
848 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
849 		return (status);
850 	}
851 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
852 	return (0);
853 }
854 
855 static int
856 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
857 {
858 	SesComStat ComStat;
859 	int status;
860 
861 	ComStat.comstatus = encstat & 0xf;
862 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
863 		return (status);
864 	}
865 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
866 	return (0);
867 }
868 
869 static int
870 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
871 {
872 	int i = (int)obp->obj_id;
873 
874 	if (ssc->ses_objmap[i].svalid == 0) {
875 		SesComStat ComStat;
876 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
877 		if (err)
878 			return (err);
879 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
880 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
881 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
882 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
883 		ssc->ses_objmap[i].svalid = 1;
884 	}
885 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
886 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
887 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
888 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
889 	return (0);
890 }
891 
892 static int
893 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
894 {
895 	SesComStat ComStat;
896 	int err;
897 	/*
898 	 * If this is clear, we don't do diddly.
899 	 */
900 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
901 		return (0);
902 	}
903 	ComStat.comstatus = obp->cstat[0];
904 	ComStat.comstat[0] = obp->cstat[1];
905 	ComStat.comstat[1] = obp->cstat[2];
906 	ComStat.comstat[2] = obp->cstat[3];
907 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
908 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
909 	return (err);
910 }
911 
912 static int
913 ses_getconfig(ses_softc_t *ssc)
914 {
915 	struct sscfg *cc;
916 	SesCfgHdr cf;
917 	SesEncHdr hd;
918 	SesEncDesc *cdp;
919 	SesThdr thdr;
920 	int err, amt, i, nobj, ntype, maxima;
921 	char storage[CFLEN], *sdata;
922 	static char cdb[6] = {
923 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
924 	};
925 
926 	cc = ssc->ses_private;
927 	if (cc == NULL) {
928 		return (ENXIO);
929 	}
930 
931 	sdata = SES_MALLOC(SCSZ);
932 	if (sdata == NULL)
933 		return (ENOMEM);
934 
935 	amt = SCSZ;
936 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
937 	if (err) {
938 		SES_FREE(sdata, SCSZ);
939 		return (err);
940 	}
941 	amt = SCSZ - amt;
942 
943 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
944 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
945 		SES_FREE(sdata, SCSZ);
946 		return (EIO);
947 	}
948 	if (amt < SES_ENCHDR_MINLEN) {
949 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
950 		SES_FREE(sdata, SCSZ);
951 		return (EIO);
952 	}
953 
954 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
955 
956 	/*
957 	 * Now waltz through all the subenclosures toting up the
958 	 * number of types available in each. For this, we only
959 	 * really need the enclosure header. However, we get the
960 	 * enclosure descriptor for debug purposes, as well
961 	 * as self-consistency checking purposes.
962 	 */
963 
964 	maxima = cf.Nsubenc + 1;
965 	cdp = (SesEncDesc *) storage;
966 	for (ntype = i = 0; i < maxima; i++) {
967 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
968 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
969 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
970 			SES_FREE(sdata, SCSZ);
971 			return (EIO);
972 		}
973 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
974 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
975 
976 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
977 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
978 			SES_FREE(sdata, SCSZ);
979 			return (EIO);
980 		}
981 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
982 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
983 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
984 		    cdp->encWWN[6], cdp->encWWN[7]);
985 		ntype += hd.Ntypes;
986 	}
987 
988 	/*
989 	 * Now waltz through all the types that are available, getting
990 	 * the type header so we can start adding up the number of
991 	 * objects available.
992 	 */
993 	for (nobj = i = 0; i < ntype; i++) {
994 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
995 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
996 			SES_FREE(sdata, SCSZ);
997 			return (EIO);
998 		}
999 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1000 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1001 		    thdr.enc_subenc, thdr.enc_tlen);
1002 		nobj += thdr.enc_maxelt;
1003 	}
1004 
1005 
1006 	/*
1007 	 * Now allocate the object array and type map.
1008 	 */
1009 
1010 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1011 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1012 	cc->ses_eltmap = SES_MALLOC(ntype);
1013 
1014 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1015 	    cc->ses_eltmap == NULL) {
1016 		if (ssc->ses_objmap) {
1017 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1018 			ssc->ses_objmap = NULL;
1019 		}
1020 		if (cc->ses_typidx) {
1021 			SES_FREE(cc->ses_typidx,
1022 			    (nobj * sizeof (struct typidx)));
1023 			cc->ses_typidx = NULL;
1024 		}
1025 		if (cc->ses_eltmap) {
1026 			SES_FREE(cc->ses_eltmap, ntype);
1027 			cc->ses_eltmap = NULL;
1028 		}
1029 		SES_FREE(sdata, SCSZ);
1030 		return (ENOMEM);
1031 	}
1032 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1033 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1034 	MEMZERO(cc->ses_eltmap, ntype);
1035 	cc->ses_ntypes = (uint8_t) ntype;
1036 	ssc->ses_nobjects = nobj;
1037 
1038 	/*
1039 	 * Now waltz through the # of types again to fill in the types
1040 	 * (and subenclosure ids) of the allocated objects.
1041 	 */
1042 	nobj = 0;
1043 	for (i = 0; i < ntype; i++) {
1044 		int j;
1045 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1046 			continue;
1047 		}
1048 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1049 		for (j = 0; j < thdr.enc_maxelt; j++) {
1050 			cc->ses_typidx[nobj].ses_tidx = i;
1051 			cc->ses_typidx[nobj].ses_oidx = j;
1052 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1053 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1054 		}
1055 	}
1056 	SES_FREE(sdata, SCSZ);
1057 	return (0);
1058 }
1059 
1060 static int
1061 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1062 {
1063 	struct sscfg *cc;
1064 	int err, amt, bufsiz, tidx, oidx;
1065 	char cdb[6], *sdata;
1066 
1067 	cc = ssc->ses_private;
1068 	if (cc == NULL) {
1069 		return (ENXIO);
1070 	}
1071 
1072 	/*
1073 	 * If we're just getting overall enclosure status,
1074 	 * we only need 2 bytes of data storage.
1075 	 *
1076 	 * If we're getting anything else, we know how much
1077 	 * storage we need by noting that starting at offset
1078 	 * 8 in returned data, all object status bytes are 4
1079 	 * bytes long, and are stored in chunks of types(M)
1080 	 * and nth+1 instances of type M.
1081 	 */
1082 	if (objid == -1) {
1083 		bufsiz = 2;
1084 	} else {
1085 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1086 	}
1087 	sdata = SES_MALLOC(bufsiz);
1088 	if (sdata == NULL)
1089 		return (ENOMEM);
1090 
1091 	cdb[0] = RECEIVE_DIAGNOSTIC;
1092 	cdb[1] = 1;
1093 	cdb[2] = SesStatusPage;
1094 	cdb[3] = bufsiz >> 8;
1095 	cdb[4] = bufsiz & 0xff;
1096 	cdb[5] = 0;
1097 	amt = bufsiz;
1098 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1099 	if (err) {
1100 		SES_FREE(sdata, bufsiz);
1101 		return (err);
1102 	}
1103 	amt = bufsiz - amt;
1104 
1105 	if (objid == -1) {
1106 		tidx = -1;
1107 		oidx = -1;
1108 	} else {
1109 		tidx = cc->ses_typidx[objid].ses_tidx;
1110 		oidx = cc->ses_typidx[objid].ses_oidx;
1111 	}
1112 	if (in) {
1113 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1114 			err = ENODEV;
1115 		}
1116 	} else {
1117 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1118 			err = ENODEV;
1119 		} else {
1120 			cdb[0] = SEND_DIAGNOSTIC;
1121 			cdb[1] = 0x10;
1122 			cdb[2] = 0;
1123 			cdb[3] = bufsiz >> 8;
1124 			cdb[4] = bufsiz & 0xff;
1125 			cdb[5] = 0;
1126 			amt = -bufsiz;
1127 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1128 		}
1129 	}
1130 	SES_FREE(sdata, bufsiz);
1131 	return (0);
1132 }
1133 
1134 
1135 /*
1136  * Routines to parse returned SES data structures.
1137  * Architecture and compiler independent.
1138  */
1139 
1140 static int
1141 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1142 {
1143 	if (buflen < SES_CFGHDR_MINLEN) {
1144 		return (-1);
1145 	}
1146 	gget8(buffer, 1, cfp->Nsubenc);
1147 	gget32(buffer, 4, cfp->GenCode);
1148 	return (0);
1149 }
1150 
1151 static int
1152 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1153 {
1154 	int s, off = 8;
1155 	for (s = 0; s < SubEncId; s++) {
1156 		if (off + 3 > amt)
1157 			return (-1);
1158 		off += buffer[off+3] + 4;
1159 	}
1160 	if (off + 3 > amt) {
1161 		return (-1);
1162 	}
1163 	gget8(buffer, off+1, chp->Subencid);
1164 	gget8(buffer, off+2, chp->Ntypes);
1165 	gget8(buffer, off+3, chp->VEnclen);
1166 	return (0);
1167 }
1168 
1169 static int
1170 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1171 {
1172 	int s, e, enclen, off = 8;
1173 	for (s = 0; s < SubEncId; s++) {
1174 		if (off + 3 > amt)
1175 			return (-1);
1176 		off += buffer[off+3] + 4;
1177 	}
1178 	if (off + 3 > amt) {
1179 		return (-1);
1180 	}
1181 	gget8(buffer, off+3, enclen);
1182 	off += 4;
1183 	if (off  >= amt)
1184 		return (-1);
1185 
1186 	e = off + enclen;
1187 	if (e > amt) {
1188 		e = amt;
1189 	}
1190 	MEMCPY(cdp, &buffer[off], e - off);
1191 	return (0);
1192 }
1193 
1194 static int
1195 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1196 {
1197 	int s, off = 8;
1198 
1199 	if (amt < SES_CFGHDR_MINLEN) {
1200 		return (-1);
1201 	}
1202 	for (s = 0; s < buffer[1]; s++) {
1203 		if (off + 3 > amt)
1204 			return (-1);
1205 		off += buffer[off+3] + 4;
1206 	}
1207 	if (off + 3 > amt) {
1208 		return (-1);
1209 	}
1210 	off += buffer[off+3] + 4 + (nth * 4);
1211 	if (amt < (off + 4))
1212 		return (-1);
1213 
1214 	gget8(buffer, off++, thp->enc_type);
1215 	gget8(buffer, off++, thp->enc_maxelt);
1216 	gget8(buffer, off++, thp->enc_subenc);
1217 	gget8(buffer, off, thp->enc_tlen);
1218 	return (0);
1219 }
1220 
1221 /*
1222  * This function needs a little explanation.
1223  *
1224  * The arguments are:
1225  *
1226  *
1227  *	char *b, int amt
1228  *
1229  *		These describes the raw input SES status data and length.
1230  *
1231  *	uint8_t *ep
1232  *
1233  *		This is a map of the number of types for each element type
1234  *		in the enclosure.
1235  *
1236  *	int elt
1237  *
1238  *		This is the element type being sought. If elt is -1,
1239  *		then overall enclosure status is being sought.
1240  *
1241  *	int elm
1242  *
1243  *		This is the ordinal Mth element of type elt being sought.
1244  *
1245  *	SesComStat *sp
1246  *
1247  *		This is the output area to store the status for
1248  *		the Mth element of type Elt.
1249  */
1250 
1251 static int
1252 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1253 {
1254 	int idx, i;
1255 
1256 	/*
1257 	 * If it's overall enclosure status being sought, get that.
1258 	 * We need at least 2 bytes of status data to get that.
1259 	 */
1260 	if (elt == -1) {
1261 		if (amt < 2)
1262 			return (-1);
1263 		gget8(b, 1, sp->comstatus);
1264 		sp->comstat[0] = 0;
1265 		sp->comstat[1] = 0;
1266 		sp->comstat[2] = 0;
1267 		return (0);
1268 	}
1269 
1270 	/*
1271 	 * Check to make sure that the Mth element is legal for type Elt.
1272 	 */
1273 
1274 	if (elm >= ep[elt])
1275 		return (-1);
1276 
1277 	/*
1278 	 * Starting at offset 8, start skipping over the storage
1279 	 * for the element types we're not interested in.
1280 	 */
1281 	for (idx = 8, i = 0; i < elt; i++) {
1282 		idx += ((ep[i] + 1) * 4);
1283 	}
1284 
1285 	/*
1286 	 * Skip over Overall status for this element type.
1287 	 */
1288 	idx += 4;
1289 
1290 	/*
1291 	 * And skip to the index for the Mth element that we're going for.
1292 	 */
1293 	idx += (4 * elm);
1294 
1295 	/*
1296 	 * Make sure we haven't overflowed the buffer.
1297 	 */
1298 	if (idx+4 > amt)
1299 		return (-1);
1300 
1301 	/*
1302 	 * Retrieve the status.
1303 	 */
1304 	gget8(b, idx++, sp->comstatus);
1305 	gget8(b, idx++, sp->comstat[0]);
1306 	gget8(b, idx++, sp->comstat[1]);
1307 	gget8(b, idx++, sp->comstat[2]);
1308 #if	0
1309 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1310 #endif
1311 	return (0);
1312 }
1313 
1314 /*
1315  * This is the mirror function to ses_decode, but we set the 'select'
1316  * bit for the object which we're interested in. All other objects,
1317  * after a status fetch, should have that bit off. Hmm. It'd be easy
1318  * enough to ensure this, so we will.
1319  */
1320 
1321 static int
1322 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1323 {
1324 	int idx, i;
1325 
1326 	/*
1327 	 * If it's overall enclosure status being sought, get that.
1328 	 * We need at least 2 bytes of status data to get that.
1329 	 */
1330 	if (elt == -1) {
1331 		if (amt < 2)
1332 			return (-1);
1333 		i = 0;
1334 		sset8(b, i, 0);
1335 		sset8(b, i, sp->comstatus & 0xf);
1336 #if	0
1337 		PRINTF("set EncStat %x\n", sp->comstatus);
1338 #endif
1339 		return (0);
1340 	}
1341 
1342 	/*
1343 	 * Check to make sure that the Mth element is legal for type Elt.
1344 	 */
1345 
1346 	if (elm >= ep[elt])
1347 		return (-1);
1348 
1349 	/*
1350 	 * Starting at offset 8, start skipping over the storage
1351 	 * for the element types we're not interested in.
1352 	 */
1353 	for (idx = 8, i = 0; i < elt; i++) {
1354 		idx += ((ep[i] + 1) * 4);
1355 	}
1356 
1357 	/*
1358 	 * Skip over Overall status for this element type.
1359 	 */
1360 	idx += 4;
1361 
1362 	/*
1363 	 * And skip to the index for the Mth element that we're going for.
1364 	 */
1365 	idx += (4 * elm);
1366 
1367 	/*
1368 	 * Make sure we haven't overflowed the buffer.
1369 	 */
1370 	if (idx+4 > amt)
1371 		return (-1);
1372 
1373 	/*
1374 	 * Set the status.
1375 	 */
1376 	sset8(b, idx, sp->comstatus);
1377 	sset8(b, idx, sp->comstat[0]);
1378 	sset8(b, idx, sp->comstat[1]);
1379 	sset8(b, idx, sp->comstat[2]);
1380 	idx -= 4;
1381 
1382 #if	0
1383 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1384 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1385 	    sp->comstat[1], sp->comstat[2]);
1386 #endif
1387 
1388 	/*
1389 	 * Now make sure all other 'Select' bits are off.
1390 	 */
1391 	for (i = 8; i < amt; i += 4) {
1392 		if (i != idx)
1393 			b[i] &= ~0x80;
1394 	}
1395 	/*
1396 	 * And make sure the INVOP bit is clear.
1397 	 */
1398 	b[2] &= ~0x10;
1399 
1400 	return (0);
1401 }
1402 
1403 /*
1404  * SAF-TE Type Device Emulation
1405  */
1406 
1407 static int safte_getconfig(ses_softc_t *);
1408 static int safte_rdstat(ses_softc_t *, int);;
1409 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1410 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1411 static void wrslot_stat(ses_softc_t *, int);
1412 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1413 
1414 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1415 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1416 /*
1417  * SAF-TE specific defines- Mandatory ones only...
1418  */
1419 
1420 /*
1421  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1422  */
1423 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1424 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1425 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1426 
1427 /*
1428  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1429  */
1430 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1431 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1432 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1433 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1434 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1435 
1436 
1437 #define	SAFT_SCRATCH	64
1438 #define	NPSEUDO_THERM	16
1439 #define	NPSEUDO_ALARM	1
1440 struct scfg {
1441 	/*
1442 	 * Cached Configuration
1443 	 */
1444 	uint8_t	Nfans;		/* Number of Fans */
1445 	uint8_t	Npwr;		/* Number of Power Supplies */
1446 	uint8_t	Nslots;		/* Number of Device Slots */
1447 	uint8_t	DoorLock;	/* Door Lock Installed */
1448 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1449 	uint8_t	Nspkrs;		/* Number of Speakers */
1450 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1451 	/*
1452 	 * Cached Flag Bytes for Global Status
1453 	 */
1454 	uint8_t	flag1;
1455 	uint8_t	flag2;
1456 	/*
1457 	 * What object index ID is where various slots start.
1458 	 */
1459 	uint8_t	pwroff;
1460 	uint8_t	slotoff;
1461 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1462 };
1463 
1464 #define	SAFT_FLG1_ALARM		0x1
1465 #define	SAFT_FLG1_GLOBFAIL	0x2
1466 #define	SAFT_FLG1_GLOBWARN	0x4
1467 #define	SAFT_FLG1_ENCPWROFF	0x8
1468 #define	SAFT_FLG1_ENCFANFAIL	0x10
1469 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1470 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1471 #define	SAFT_FLG1_ENCDRVWARN	0x80
1472 
1473 #define	SAFT_FLG2_LOCKDOOR	0x4
1474 #define	SAFT_PRIVATE		sizeof (struct scfg)
1475 
1476 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1477 #define	SAFT_BAIL(r, x, k, l)	\
1478 	if (r >= x) { \
1479 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1480 		SES_FREE(k, l); \
1481 		return (EIO); \
1482 	}
1483 
1484 
1485 int
1486 safte_softc_init(ses_softc_t *ssc, int doinit)
1487 {
1488 	int err, i, r;
1489 	struct scfg *cc;
1490 
1491 	if (doinit == 0) {
1492 		if (ssc->ses_nobjects) {
1493 			if (ssc->ses_objmap) {
1494 				SES_FREE(ssc->ses_objmap,
1495 				    ssc->ses_nobjects * sizeof (encobj));
1496 				ssc->ses_objmap = NULL;
1497 			}
1498 			ssc->ses_nobjects = 0;
1499 		}
1500 		if (ssc->ses_private) {
1501 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1502 			ssc->ses_private = NULL;
1503 		}
1504 		return (0);
1505 	}
1506 
1507 	if (ssc->ses_private == NULL) {
1508 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1509 		if (ssc->ses_private == NULL) {
1510 			return (ENOMEM);
1511 		}
1512 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1513 	}
1514 
1515 	ssc->ses_nobjects = 0;
1516 	ssc->ses_encstat = 0;
1517 
1518 	if ((err = safte_getconfig(ssc)) != 0) {
1519 		return (err);
1520 	}
1521 
1522 	/*
1523 	 * The number of objects here, as well as that reported by the
1524 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1525 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1526 	 */
1527 	cc = ssc->ses_private;
1528 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1529 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1530 	ssc->ses_objmap = (encobj *)
1531 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1532 	if (ssc->ses_objmap == NULL) {
1533 		return (ENOMEM);
1534 	}
1535 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1536 
1537 	r = 0;
1538 	/*
1539 	 * Note that this is all arranged for the convenience
1540 	 * in later fetches of status.
1541 	 */
1542 	for (i = 0; i < cc->Nfans; i++)
1543 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1544 	cc->pwroff = (uint8_t) r;
1545 	for (i = 0; i < cc->Npwr; i++)
1546 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1547 	for (i = 0; i < cc->DoorLock; i++)
1548 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1549 	for (i = 0; i < cc->Nspkrs; i++)
1550 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1551 	for (i = 0; i < cc->Ntherm; i++)
1552 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1553 	for (i = 0; i < NPSEUDO_THERM; i++)
1554 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1555 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1556 	cc->slotoff = (uint8_t) r;
1557 	for (i = 0; i < cc->Nslots; i++)
1558 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1559 	return (0);
1560 }
1561 
1562 int
1563 safte_init_enc(ses_softc_t *ssc)
1564 {
1565 	int err, amt;
1566 	char *sdata;
1567 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1568 	static char cdb[10] =
1569 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1570 
1571 	sdata = SES_MALLOC(SAFT_SCRATCH);
1572 	if (sdata == NULL)
1573 		return (ENOMEM);
1574 
1575 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1576 	if (err) {
1577 		SES_FREE(sdata, SAFT_SCRATCH);
1578 		return (err);
1579 	}
1580 	sdata[0] = SAFTE_WT_GLOBAL;
1581 	MEMZERO(&sdata[1], 15);
1582 	amt = -SAFT_SCRATCH;
1583 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1584 	SES_FREE(sdata, SAFT_SCRATCH);
1585 	return (err);
1586 }
1587 
1588 int
1589 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1590 {
1591 	return (safte_rdstat(ssc, slpflg));
1592 }
1593 
1594 int
1595 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1596 {
1597 	struct scfg *cc = ssc->ses_private;
1598 	if (cc == NULL)
1599 		return (0);
1600 	/*
1601 	 * Since SAF-TE devices aren't necessarily sticky in terms
1602 	 * of state, make our soft copy of enclosure status 'sticky'-
1603 	 * that is, things set in enclosure status stay set (as implied
1604 	 * by conditions set in reading object status) until cleared.
1605 	 */
1606 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1607 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1608 	ssc->ses_encstat |= ENCI_SVALID;
1609 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1610 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1611 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1612 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1613 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1614 	}
1615 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1616 }
1617 
1618 int
1619 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1620 {
1621 	int i = (int)obp->obj_id;
1622 
1623 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1624 	    (ssc->ses_objmap[i].svalid) == 0) {
1625 		int err = safte_rdstat(ssc, slpflg);
1626 		if (err)
1627 			return (err);
1628 	}
1629 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1630 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1631 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1632 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1633 	return (0);
1634 }
1635 
1636 
1637 int
1638 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1639 {
1640 	int idx, err;
1641 	encobj *ep;
1642 	struct scfg *cc;
1643 
1644 
1645 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1646 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1647 	    obp->cstat[3]);
1648 
1649 	/*
1650 	 * If this is clear, we don't do diddly.
1651 	 */
1652 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1653 		return (0);
1654 	}
1655 
1656 	err = 0;
1657 	/*
1658 	 * Check to see if the common bits are set and do them first.
1659 	 */
1660 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1661 		err = set_objstat_sel(ssc, obp, slp);
1662 		if (err)
1663 			return (err);
1664 	}
1665 
1666 	cc = ssc->ses_private;
1667 	if (cc == NULL)
1668 		return (0);
1669 
1670 	idx = (int)obp->obj_id;
1671 	ep = &ssc->ses_objmap[idx];
1672 
1673 	switch (ep->enctype) {
1674 	case SESTYP_DEVICE:
1675 	{
1676 		uint8_t slotop = 0;
1677 		/*
1678 		 * XXX: I should probably cache the previous state
1679 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1680 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1681 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1682 		 */
1683 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1684 			slotop |= 0x2;
1685 		}
1686 		if (obp->cstat[2] & SESCTL_RQSID) {
1687 			slotop |= 0x4;
1688 		}
1689 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1690 		    slotop, slp);
1691 		if (err)
1692 			return (err);
1693 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1694 			ep->priv |= 0x2;
1695 		} else {
1696 			ep->priv &= ~0x2;
1697 		}
1698 		if (ep->priv & 0xc6) {
1699 			ep->priv &= ~0x1;
1700 		} else {
1701 			ep->priv |= 0x1;	/* no errors */
1702 		}
1703 		wrslot_stat(ssc, slp);
1704 		break;
1705 	}
1706 	case SESTYP_POWER:
1707 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1708 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1709 		} else {
1710 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1711 		}
1712 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1713 		    cc->flag2, 0, slp);
1714 		if (err)
1715 			return (err);
1716 		if (obp->cstat[3] & SESCTL_RQSTON) {
1717 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1718 				idx - cc->pwroff, 0, 0, slp);
1719 		} else {
1720 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1721 				idx - cc->pwroff, 0, 1, slp);
1722 		}
1723 		break;
1724 	case SESTYP_FAN:
1725 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1726 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1727 		} else {
1728 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1729 		}
1730 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1731 		    cc->flag2, 0, slp);
1732 		if (err)
1733 			return (err);
1734 		if (obp->cstat[3] & SESCTL_RQSTON) {
1735 			uint8_t fsp;
1736 			if ((obp->cstat[3] & 0x7) == 7) {
1737 				fsp = 4;
1738 			} else if ((obp->cstat[3] & 0x7) == 6) {
1739 				fsp = 3;
1740 			} else if ((obp->cstat[3] & 0x7) == 4) {
1741 				fsp = 2;
1742 			} else {
1743 				fsp = 1;
1744 			}
1745 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1746 		} else {
1747 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1748 		}
1749 		break;
1750 	case SESTYP_DOORLOCK:
1751 		if (obp->cstat[3] & 0x1) {
1752 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1753 		} else {
1754 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1755 		}
1756 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1757 		    cc->flag2, 0, slp);
1758 		break;
1759 	case SESTYP_ALARM:
1760 		/*
1761 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1762 		 */
1763 		obp->cstat[3] &= ~0xa;
1764 		if (obp->cstat[3] & 0x40) {
1765 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1766 		} else if (obp->cstat[3] != 0) {
1767 			cc->flag2 |= SAFT_FLG1_ALARM;
1768 		} else {
1769 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1770 		}
1771 		ep->priv = obp->cstat[3];
1772 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1773 			cc->flag2, 0, slp);
1774 		break;
1775 	default:
1776 		break;
1777 	}
1778 	ep->svalid = 0;
1779 	return (0);
1780 }
1781 
1782 static int
1783 safte_getconfig(ses_softc_t *ssc)
1784 {
1785 	struct scfg *cfg;
1786 	int err, amt;
1787 	char *sdata;
1788 	static char cdb[10] =
1789 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1790 
1791 	cfg = ssc->ses_private;
1792 	if (cfg == NULL)
1793 		return (ENXIO);
1794 
1795 	sdata = SES_MALLOC(SAFT_SCRATCH);
1796 	if (sdata == NULL)
1797 		return (ENOMEM);
1798 
1799 	amt = SAFT_SCRATCH;
1800 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1801 	if (err) {
1802 		SES_FREE(sdata, SAFT_SCRATCH);
1803 		return (err);
1804 	}
1805 	amt = SAFT_SCRATCH - amt;
1806 	if (amt < 6) {
1807 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1808 		SES_FREE(sdata, SAFT_SCRATCH);
1809 		return (EIO);
1810 	}
1811 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1812 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1813 	cfg->Nfans = sdata[0];
1814 	cfg->Npwr = sdata[1];
1815 	cfg->Nslots = sdata[2];
1816 	cfg->DoorLock = sdata[3];
1817 	cfg->Ntherm = sdata[4];
1818 	cfg->Nspkrs = sdata[5];
1819 	cfg->Nalarm = NPSEUDO_ALARM;
1820 	SES_FREE(sdata, SAFT_SCRATCH);
1821 	return (0);
1822 }
1823 
1824 static int
1825 safte_rdstat(ses_softc_t *ssc, int slpflg)
1826 {
1827 	int err, oid, r, i, hiwater, nitems, amt;
1828 	uint16_t tempflags;
1829 	size_t buflen;
1830 	uint8_t status, oencstat;
1831 	char *sdata, cdb[10];
1832 	struct scfg *cc = ssc->ses_private;
1833 
1834 
1835 	/*
1836 	 * The number of objects overstates things a bit,
1837 	 * both for the bogus 'thermometer' entries and
1838 	 * the drive status (which isn't read at the same
1839 	 * time as the enclosure status), but that's okay.
1840 	 */
1841 	buflen = 4 * cc->Nslots;
1842 	if (ssc->ses_nobjects > buflen)
1843 		buflen = ssc->ses_nobjects;
1844 	sdata = SES_MALLOC(buflen);
1845 	if (sdata == NULL)
1846 		return (ENOMEM);
1847 
1848 	cdb[0] = READ_BUFFER;
1849 	cdb[1] = 1;
1850 	cdb[2] = SAFTE_RD_RDESTS;
1851 	cdb[3] = 0;
1852 	cdb[4] = 0;
1853 	cdb[5] = 0;
1854 	cdb[6] = 0;
1855 	cdb[7] = (buflen >> 8) & 0xff;
1856 	cdb[8] = buflen & 0xff;
1857 	cdb[9] = 0;
1858 	amt = buflen;
1859 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1860 	if (err) {
1861 		SES_FREE(sdata, buflen);
1862 		return (err);
1863 	}
1864 	hiwater = buflen - amt;
1865 
1866 
1867 	/*
1868 	 * invalidate all status bits.
1869 	 */
1870 	for (i = 0; i < ssc->ses_nobjects; i++)
1871 		ssc->ses_objmap[i].svalid = 0;
1872 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1873 	ssc->ses_encstat = 0;
1874 
1875 
1876 	/*
1877 	 * Now parse returned buffer.
1878 	 * If we didn't get enough data back,
1879 	 * that's considered a fatal error.
1880 	 */
1881 	oid = r = 0;
1882 
1883 	for (nitems = i = 0; i < cc->Nfans; i++) {
1884 		SAFT_BAIL(r, hiwater, sdata, buflen);
1885 		/*
1886 		 * 0 = Fan Operational
1887 		 * 1 = Fan is malfunctioning
1888 		 * 2 = Fan is not present
1889 		 * 0x80 = Unknown or Not Reportable Status
1890 		 */
1891 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1892 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1893 		switch ((int)(uint8_t)sdata[r]) {
1894 		case 0:
1895 			nitems++;
1896 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1897 			/*
1898 			 * We could get fancier and cache
1899 			 * fan speeds that we have set, but
1900 			 * that isn't done now.
1901 			 */
1902 			ssc->ses_objmap[oid].encstat[3] = 7;
1903 			break;
1904 
1905 		case 1:
1906 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1907 			/*
1908 			 * FAIL and FAN STOPPED synthesized
1909 			 */
1910 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1911 			/*
1912 			 * Enclosure marked with CRITICAL error
1913 			 * if only one fan or no thermometers,
1914 			 * else the NONCRITICAL error is set.
1915 			 */
1916 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1917 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1918 			else
1919 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1920 			break;
1921 		case 2:
1922 			ssc->ses_objmap[oid].encstat[0] =
1923 			    SES_OBJSTAT_NOTINSTALLED;
1924 			ssc->ses_objmap[oid].encstat[3] = 0;
1925 			/*
1926 			 * Enclosure marked with CRITICAL error
1927 			 * if only one fan or no thermometers,
1928 			 * else the NONCRITICAL error is set.
1929 			 */
1930 			if (cc->Nfans == 1)
1931 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1932 			else
1933 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1934 			break;
1935 		case 0x80:
1936 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1937 			ssc->ses_objmap[oid].encstat[3] = 0;
1938 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1939 			break;
1940 		default:
1941 			ssc->ses_objmap[oid].encstat[0] =
1942 			    SES_OBJSTAT_UNSUPPORTED;
1943 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1944 			    sdata[r] & 0xff);
1945 			break;
1946 		}
1947 		ssc->ses_objmap[oid++].svalid = 1;
1948 		r++;
1949 	}
1950 
1951 	/*
1952 	 * No matter how you cut it, no cooling elements when there
1953 	 * should be some there is critical.
1954 	 */
1955 	if (cc->Nfans && nitems == 0) {
1956 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1957 	}
1958 
1959 
1960 	for (i = 0; i < cc->Npwr; i++) {
1961 		SAFT_BAIL(r, hiwater, sdata, buflen);
1962 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1963 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1964 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1965 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1966 		switch ((uint8_t)sdata[r]) {
1967 		case 0x00:	/* pws operational and on */
1968 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1969 			break;
1970 		case 0x01:	/* pws operational and off */
1971 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1972 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1973 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1974 			break;
1975 		case 0x10:	/* pws is malfunctioning and commanded on */
1976 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1977 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1978 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1979 			break;
1980 
1981 		case 0x11:	/* pws is malfunctioning and commanded off */
1982 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1983 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1984 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1985 			break;
1986 		case 0x20:	/* pws is not present */
1987 			ssc->ses_objmap[oid].encstat[0] =
1988 			    SES_OBJSTAT_NOTINSTALLED;
1989 			ssc->ses_objmap[oid].encstat[3] = 0;
1990 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1991 			break;
1992 		case 0x21:	/* pws is present */
1993 			/*
1994 			 * This is for enclosures that cannot tell whether the
1995 			 * device is on or malfunctioning, but know that it is
1996 			 * present. Just fall through.
1997 			 */
1998 			/* FALLTHROUGH */
1999 		case 0x80:	/* Unknown or Not Reportable Status */
2000 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2001 			ssc->ses_objmap[oid].encstat[3] = 0;
2002 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2003 			break;
2004 		default:
2005 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2006 			    i, sdata[r] & 0xff);
2007 			break;
2008 		}
2009 		ssc->ses_objmap[oid++].svalid = 1;
2010 		r++;
2011 	}
2012 
2013 	/*
2014 	 * Skip over Slot SCSI IDs
2015 	 */
2016 	r += cc->Nslots;
2017 
2018 	/*
2019 	 * We always have doorlock status, no matter what,
2020 	 * but we only save the status if we have one.
2021 	 */
2022 	SAFT_BAIL(r, hiwater, sdata, buflen);
2023 	if (cc->DoorLock) {
2024 		/*
2025 		 * 0 = Door Locked
2026 		 * 1 = Door Unlocked, or no Lock Installed
2027 		 * 0x80 = Unknown or Not Reportable Status
2028 		 */
2029 		ssc->ses_objmap[oid].encstat[1] = 0;
2030 		ssc->ses_objmap[oid].encstat[2] = 0;
2031 		switch ((uint8_t)sdata[r]) {
2032 		case 0:
2033 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2034 			ssc->ses_objmap[oid].encstat[3] = 0;
2035 			break;
2036 		case 1:
2037 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2038 			ssc->ses_objmap[oid].encstat[3] = 1;
2039 			break;
2040 		case 0x80:
2041 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2042 			ssc->ses_objmap[oid].encstat[3] = 0;
2043 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2044 			break;
2045 		default:
2046 			ssc->ses_objmap[oid].encstat[0] =
2047 			    SES_OBJSTAT_UNSUPPORTED;
2048 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2049 			    sdata[r] & 0xff);
2050 			break;
2051 		}
2052 		ssc->ses_objmap[oid++].svalid = 1;
2053 	}
2054 	r++;
2055 
2056 	/*
2057 	 * We always have speaker status, no matter what,
2058 	 * but we only save the status if we have one.
2059 	 */
2060 	SAFT_BAIL(r, hiwater, sdata, buflen);
2061 	if (cc->Nspkrs) {
2062 		ssc->ses_objmap[oid].encstat[1] = 0;
2063 		ssc->ses_objmap[oid].encstat[2] = 0;
2064 		if (sdata[r] == 1) {
2065 			/*
2066 			 * We need to cache tone urgency indicators.
2067 			 * Someday.
2068 			 */
2069 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2070 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2071 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2072 		} else if (sdata[r] == 0) {
2073 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2074 			ssc->ses_objmap[oid].encstat[3] = 0;
2075 		} else {
2076 			ssc->ses_objmap[oid].encstat[0] =
2077 			    SES_OBJSTAT_UNSUPPORTED;
2078 			ssc->ses_objmap[oid].encstat[3] = 0;
2079 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2080 			    sdata[r] & 0xff);
2081 		}
2082 		ssc->ses_objmap[oid++].svalid = 1;
2083 	}
2084 	r++;
2085 
2086 	for (i = 0; i < cc->Ntherm; i++) {
2087 		SAFT_BAIL(r, hiwater, sdata, buflen);
2088 		/*
2089 		 * Status is a range from -10 to 245 deg Celsius,
2090 		 * which we need to normalize to -20 to -245 according
2091 		 * to the latest SCSI spec, which makes little
2092 		 * sense since this would overflow an 8bit value.
2093 		 * Well, still, the base normalization is -20,
2094 		 * not -10, so we have to adjust.
2095 		 *
2096 		 * So what's over and under temperature?
2097 		 * Hmm- we'll state that 'normal' operating
2098 		 * is 10 to 40 deg Celsius.
2099 		 */
2100 
2101 		/*
2102 		 * Actually.... All of the units that people out in the world
2103 		 * seem to have do not come even close to setting a value that
2104 		 * complies with this spec.
2105 		 *
2106 		 * The closest explanation I could find was in an
2107 		 * LSI-Logic manual, which seemed to indicate that
2108 		 * this value would be set by whatever the I2C code
2109 		 * would interpolate from the output of an LM75
2110 		 * temperature sensor.
2111 		 *
2112 		 * This means that it is impossible to use the actual
2113 		 * numeric value to predict anything. But we don't want
2114 		 * to lose the value. So, we'll propagate the *uncorrected*
2115 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2116 		 * temperature flags for warnings.
2117 		 */
2118 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2119 		ssc->ses_objmap[oid].encstat[1] = 0;
2120 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2121 		ssc->ses_objmap[oid].encstat[3] = 0;;
2122 		ssc->ses_objmap[oid++].svalid = 1;
2123 		r++;
2124 	}
2125 
2126 	/*
2127 	 * Now, for "pseudo" thermometers, we have two bytes
2128 	 * of information in enclosure status- 16 bits. Actually,
2129 	 * the MSB is a single TEMP ALERT flag indicating whether
2130 	 * any other bits are set, but, thanks to fuzzy thinking,
2131 	 * in the SAF-TE spec, this can also be set even if no
2132 	 * other bits are set, thus making this really another
2133 	 * binary temperature sensor.
2134 	 */
2135 
2136 	SAFT_BAIL(r, hiwater, sdata, buflen);
2137 	tempflags = sdata[r++];
2138 	SAFT_BAIL(r, hiwater, sdata, buflen);
2139 	tempflags |= (tempflags << 8) | sdata[r++];
2140 
2141 	for (i = 0; i < NPSEUDO_THERM; i++) {
2142 		ssc->ses_objmap[oid].encstat[1] = 0;
2143 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2144 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2145 			ssc->ses_objmap[4].encstat[2] = 0xff;
2146 			/*
2147 			 * Set 'over temperature' failure.
2148 			 */
2149 			ssc->ses_objmap[oid].encstat[3] = 8;
2150 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2151 		} else {
2152 			/*
2153 			 * We used to say 'not available' and synthesize a
2154 			 * nominal 30 deg (C)- that was wrong. Actually,
2155 			 * Just say 'OK', and use the reserved value of
2156 			 * zero.
2157 			 */
2158 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2159 			ssc->ses_objmap[oid].encstat[2] = 0;
2160 			ssc->ses_objmap[oid].encstat[3] = 0;
2161 		}
2162 		ssc->ses_objmap[oid++].svalid = 1;
2163 	}
2164 
2165 	/*
2166 	 * Get alarm status.
2167 	 */
2168 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2169 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2170 	ssc->ses_objmap[oid++].svalid = 1;
2171 
2172 	/*
2173 	 * Now get drive slot status
2174 	 */
2175 	cdb[2] = SAFTE_RD_RDDSTS;
2176 	amt = buflen;
2177 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2178 	if (err) {
2179 		SES_FREE(sdata, buflen);
2180 		return (err);
2181 	}
2182 	hiwater = buflen - amt;
2183 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2184 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2185 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2186 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2187 		ssc->ses_objmap[oid].encstat[2] = 0;
2188 		ssc->ses_objmap[oid].encstat[3] = 0;
2189 		status = sdata[r+3];
2190 		if ((status & 0x1) == 0) {	/* no device */
2191 			ssc->ses_objmap[oid].encstat[0] =
2192 			    SES_OBJSTAT_NOTINSTALLED;
2193 		} else {
2194 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2195 		}
2196 		if (status & 0x2) {
2197 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2198 		}
2199 		if ((status & 0x4) == 0) {
2200 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2201 		}
2202 		ssc->ses_objmap[oid++].svalid = 1;
2203 	}
2204 	/* see comment below about sticky enclosure status */
2205 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2206 	SES_FREE(sdata, buflen);
2207 	return (0);
2208 }
2209 
2210 static int
2211 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2212 {
2213 	int idx;
2214 	encobj *ep;
2215 	struct scfg *cc = ssc->ses_private;
2216 
2217 	if (cc == NULL)
2218 		return (0);
2219 
2220 	idx = (int)obp->obj_id;
2221 	ep = &ssc->ses_objmap[idx];
2222 
2223 	switch (ep->enctype) {
2224 	case SESTYP_DEVICE:
2225 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2226 			ep->priv |= 0x40;
2227 		}
2228 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2229 		if (obp->cstat[0] & SESCTL_DISABLE) {
2230 			ep->priv |= 0x80;
2231 			/*
2232 			 * Hmm. Try to set the 'No Drive' flag.
2233 			 * Maybe that will count as a 'disable'.
2234 			 */
2235 		}
2236 		if (ep->priv & 0xc6) {
2237 			ep->priv &= ~0x1;
2238 		} else {
2239 			ep->priv |= 0x1;	/* no errors */
2240 		}
2241 		wrslot_stat(ssc, slp);
2242 		break;
2243 	case SESTYP_POWER:
2244 		/*
2245 		 * Okay- the only one that makes sense here is to
2246 		 * do the 'disable' for a power supply.
2247 		 */
2248 		if (obp->cstat[0] & SESCTL_DISABLE) {
2249 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2250 				idx - cc->pwroff, 0, 0, slp);
2251 		}
2252 		break;
2253 	case SESTYP_FAN:
2254 		/*
2255 		 * Okay- the only one that makes sense here is to
2256 		 * set fan speed to zero on disable.
2257 		 */
2258 		if (obp->cstat[0] & SESCTL_DISABLE) {
2259 			/* remember- fans are the first items, so idx works */
2260 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2261 		}
2262 		break;
2263 	case SESTYP_DOORLOCK:
2264 		/*
2265 		 * Well, we can 'disable' the lock.
2266 		 */
2267 		if (obp->cstat[0] & SESCTL_DISABLE) {
2268 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2269 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2270 				cc->flag2, 0, slp);
2271 		}
2272 		break;
2273 	case SESTYP_ALARM:
2274 		/*
2275 		 * Well, we can 'disable' the alarm.
2276 		 */
2277 		if (obp->cstat[0] & SESCTL_DISABLE) {
2278 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2279 			ep->priv |= 0x40;	/* Muted */
2280 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2281 				cc->flag2, 0, slp);
2282 		}
2283 		break;
2284 	default:
2285 		break;
2286 	}
2287 	ep->svalid = 0;
2288 	return (0);
2289 }
2290 
2291 /*
2292  * This function handles all of the 16 byte WRITE BUFFER commands.
2293  */
2294 static int
2295 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2296     uint8_t b3, int slp)
2297 {
2298 	int err, amt;
2299 	char *sdata;
2300 	struct scfg *cc = ssc->ses_private;
2301 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2302 
2303 	if (cc == NULL)
2304 		return (0);
2305 
2306 	sdata = SES_MALLOC(16);
2307 	if (sdata == NULL)
2308 		return (ENOMEM);
2309 
2310 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2311 
2312 	sdata[0] = op;
2313 	sdata[1] = b1;
2314 	sdata[2] = b2;
2315 	sdata[3] = b3;
2316 	MEMZERO(&sdata[4], 12);
2317 	amt = -16;
2318 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2319 	SES_FREE(sdata, 16);
2320 	return (err);
2321 }
2322 
2323 /*
2324  * This function updates the status byte for the device slot described.
2325  *
2326  * Since this is an optional SAF-TE command, there's no point in
2327  * returning an error.
2328  */
2329 static void
2330 wrslot_stat(ses_softc_t *ssc, int slp)
2331 {
2332 	int i, amt;
2333 	encobj *ep;
2334 	char cdb[10], *sdata;
2335 	struct scfg *cc = ssc->ses_private;
2336 
2337 	if (cc == NULL)
2338 		return;
2339 
2340 	SES_VLOG(ssc, "saf_wrslot\n");
2341 	cdb[0] = WRITE_BUFFER;
2342 	cdb[1] = 1;
2343 	cdb[2] = 0;
2344 	cdb[3] = 0;
2345 	cdb[4] = 0;
2346 	cdb[5] = 0;
2347 	cdb[6] = 0;
2348 	cdb[7] = 0;
2349 	cdb[8] = cc->Nslots * 3 + 1;
2350 	cdb[9] = 0;
2351 
2352 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2353 	if (sdata == NULL)
2354 		return;
2355 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2356 
2357 	sdata[0] = SAFTE_WT_DSTAT;
2358 	for (i = 0; i < cc->Nslots; i++) {
2359 		ep = &ssc->ses_objmap[cc->slotoff + i];
2360 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2361 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2362 	}
2363 	amt = -(cc->Nslots * 3 + 1);
2364 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2365 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2366 }
2367 
2368 /*
2369  * This function issues the "PERFORM SLOT OPERATION" command.
2370  */
2371 static int
2372 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2373 {
2374 	int err, amt;
2375 	char *sdata;
2376 	struct scfg *cc = ssc->ses_private;
2377 	static char cdb[10] =
2378 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2379 
2380 	if (cc == NULL)
2381 		return (0);
2382 
2383 	sdata = SES_MALLOC(SAFT_SCRATCH);
2384 	if (sdata == NULL)
2385 		return (ENOMEM);
2386 	MEMZERO(sdata, SAFT_SCRATCH);
2387 
2388 	sdata[0] = SAFTE_WT_SLTOP;
2389 	sdata[1] = slot;
2390 	sdata[2] = opflag;
2391 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2392 	amt = -SAFT_SCRATCH;
2393 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2394 	SES_FREE(sdata, SAFT_SCRATCH);
2395 	return (err);
2396 }
2397