xref: /netbsd/sys/dev/scsipi/ses.c (revision c4a72b64)
1 /*	$NetBSD: ses.c,v 1.18 2002/10/23 09:13:50 jdolecek Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.18 2002/10/23 09:13:50 jdolecek Exp $");
30 
31 #include "opt_scsi.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51 
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsipi_disk.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsiconf.h>
57 #include <dev/scsipi/ses.h>
58 
59 /*
60  * Platform Independent Driver Internal Definitions for SES devices.
61  */
62 typedef enum {
63 	SES_NONE,
64 	SES_SES_SCSI2,
65 	SES_SES,
66 	SES_SES_PASSTHROUGH,
67 	SES_SEN,
68 	SES_SAFT
69 } enctyp;
70 
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 	int (*softc_init) 	__P((ses_softc_t *, int));
75 	int (*init_enc)		__P((ses_softc_t *));
76 	int (*get_encstat)	__P((ses_softc_t *, int));
77 	int (*set_encstat)	__P((ses_softc_t *, ses_encstat, int));
78 	int (*get_objstat)	__P((ses_softc_t *, ses_objstat *, int));
79 	int (*set_objstat)	__P((ses_softc_t *, ses_objstat *, int));
80 } encvec;
81 
82 #define	ENCI_SVALID	0x80
83 
84 typedef struct {
85 	uint32_t
86 		enctype	: 8,		/* enclosure type */
87 		subenclosure : 8,	/* subenclosure id */
88 		svalid	: 1,		/* enclosure information valid */
89 		priv	: 15;		/* private data, per object */
90 	uint8_t	encstat[4];	/* state && stats */
91 } encobj;
92 
93 #define	SEN_ID		"UNISYS           SUN_SEN"
94 #define	SEN_ID_LEN	24
95 
96 static enctyp ses_type __P((struct scsipi_inquiry_data *));
97 
98 
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init __P((ses_softc_t *, int));
101 static int ses_init_enc __P((ses_softc_t *));
102 static int ses_get_encstat __P((ses_softc_t *, int));
103 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
104 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
105 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
106 
107 static int safte_softc_init __P((ses_softc_t *, int));
108 static int safte_init_enc __P((ses_softc_t *));
109 static int safte_get_encstat __P((ses_softc_t *, int));
110 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
111 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
112 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
113 
114 /*
115  * Platform implementation defines/functions for SES internal kernel stuff
116  */
117 
118 #define	STRNCMP			strncmp
119 #define	PRINTF			printf
120 #define	SES_LOG			ses_log
121 #if	defined(DEBUG) || defined(SCSIDEBUG)
122 #define	SES_VLOG		ses_log
123 #else
124 #define	SES_VLOG		if (0) ses_log
125 #endif
126 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
128 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
129 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
130 #define	RECEIVE_DIAGNOSTIC	0x1c
131 #define	SEND_DIAGNOSTIC		0x1d
132 #define	WRITE_BUFFER		0x3b
133 #define	READ_BUFFER		0x3c
134 
135 dev_type_open(sesopen);
136 dev_type_close(sesclose);
137 dev_type_ioctl(sesioctl);
138 
139 const struct cdevsw ses_cdevsw = {
140 	sesopen, sesclose, noread, nowrite, sesioctl,
141 	nostop, notty, nopoll, nommap, nokqfilter,
142 };
143 
144 static int ses_runcmd	__P((struct ses_softc *, char *, int, char *, int *));
145 static void ses_log	__P((struct ses_softc *, const char *, ...))
146      __attribute__((__format__(__printf__, 2, 3)));
147 
148 /*
149  * General NetBSD kernel stuff.
150  */
151 
152 struct ses_softc {
153 	struct device	sc_device;
154 	struct scsipi_periph *sc_periph;
155 	enctyp		ses_type;	/* type of enclosure */
156 	encvec		ses_vec;	/* vector to handlers */
157 	void *		ses_private;	/* per-type private data */
158 	encobj *	ses_objmap;	/* objects */
159 	u_int32_t	ses_nobjects;	/* number of objects */
160 	ses_encstat	ses_encstat;	/* overall status */
161 	u_int8_t	ses_flags;
162 };
163 #define	SES_FLAG_INVALID	0x01
164 #define	SES_FLAG_OPEN		0x02
165 #define	SES_FLAG_INITIALIZED	0x04
166 
167 #define SESUNIT(x)       (minor((x)))
168 
169 static int ses_match __P((struct device *, struct cfdata *, void *));
170 static void ses_attach __P((struct device *, struct device *, void *));
171 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
172 
173 CFATTACH_DECL(ses, sizeof (struct ses_softc),
174     ses_match, ses_attach, NULL, NULL);
175 
176 extern struct cfdriver ses_cd;
177 
178 const struct scsipi_periphsw ses_switch = {
179 	NULL,
180 	NULL,
181 	NULL,
182 	NULL
183 };
184 
185 
186 int
187 ses_match(parent, match, aux)
188 	struct device *parent;
189 	struct cfdata *match;
190 	void *aux;
191 {
192 	struct scsipibus_attach_args *sa = aux;
193 
194 	switch (ses_device_type(sa)) {
195 	case SES_SES:
196 	case SES_SES_SCSI2:
197 	case SES_SEN:
198 	case SES_SAFT:
199 	case SES_SES_PASSTHROUGH:
200 		/*
201 		 * For these devices, it's a perfect match.
202 		 */
203 		return (24);
204 	default:
205 		return (0);
206 	}
207 }
208 
209 
210 /*
211  * Complete the attachment.
212  *
213  * We have to repeat the rerun of INQUIRY data as above because
214  * it's not until the return from the match routine that we have
215  * the softc available to set stuff in.
216  */
217 void
218 ses_attach(parent, self, aux)
219 	struct device *parent;
220 	struct device *self;
221 	void *aux;
222 {
223 	char *tname;
224 	struct ses_softc *softc = (void *)self;
225 	struct scsipibus_attach_args *sa = aux;
226 	struct scsipi_periph *periph = sa->sa_periph;
227 
228 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
229 	softc->sc_periph = periph;
230 	periph->periph_dev = &softc->sc_device;
231 	periph->periph_switch = &ses_switch;
232 	periph->periph_openings = 1;
233 
234 	softc->ses_type = ses_device_type(sa);
235 	switch (softc->ses_type) {
236 	case SES_SES:
237 	case SES_SES_SCSI2:
238         case SES_SES_PASSTHROUGH:
239 		softc->ses_vec.softc_init = ses_softc_init;
240 		softc->ses_vec.init_enc = ses_init_enc;
241 		softc->ses_vec.get_encstat = ses_get_encstat;
242 		softc->ses_vec.set_encstat = ses_set_encstat;
243 		softc->ses_vec.get_objstat = ses_get_objstat;
244 		softc->ses_vec.set_objstat = ses_set_objstat;
245 		break;
246         case SES_SAFT:
247 		softc->ses_vec.softc_init = safte_softc_init;
248 		softc->ses_vec.init_enc = safte_init_enc;
249 		softc->ses_vec.get_encstat = safte_get_encstat;
250 		softc->ses_vec.set_encstat = safte_set_encstat;
251 		softc->ses_vec.get_objstat = safte_get_objstat;
252 		softc->ses_vec.set_objstat = safte_set_objstat;
253 		break;
254         case SES_SEN:
255 		break;
256 	case SES_NONE:
257 	default:
258 		break;
259 	}
260 
261 	switch (softc->ses_type) {
262 	default:
263 	case SES_NONE:
264 		tname = "No SES device";
265 		break;
266 	case SES_SES_SCSI2:
267 		tname = "SCSI-2 SES Device";
268 		break;
269 	case SES_SES:
270 		tname = "SCSI-3 SES Device";
271 		break;
272         case SES_SES_PASSTHROUGH:
273 		tname = "SES Passthrough Device";
274 		break;
275         case SES_SEN:
276 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
277 		break;
278         case SES_SAFT:
279 		tname = "SAF-TE Compliant Device";
280 		break;
281 	}
282 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
283 }
284 
285 
286 static enctyp
287 ses_device_type(sa)
288 	struct scsipibus_attach_args *sa;
289 {
290 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
291 
292 	if (inqp == NULL)
293 		return (SES_NONE);
294 
295 	return (ses_type(inqp));
296 }
297 
298 int
299 sesopen(dev, flags, fmt, p)
300 	dev_t dev;
301 	int flags;
302 	int fmt;
303 	struct proc *p;
304 {
305 	struct ses_softc *softc;
306 	int error, unit;
307 
308 	unit = SESUNIT(dev);
309 	if (unit >= ses_cd.cd_ndevs)
310 		return (ENXIO);
311 	softc = ses_cd.cd_devs[unit];
312 	if (softc == NULL)
313 		return (ENXIO);
314 
315 	if (softc->ses_flags & SES_FLAG_INVALID) {
316 		error = ENXIO;
317 		goto out;
318 	}
319 	if (softc->ses_flags & SES_FLAG_OPEN) {
320 		error = EBUSY;
321 		goto out;
322 	}
323 	if (softc->ses_vec.softc_init == NULL) {
324 		error = ENXIO;
325 		goto out;
326 	}
327 	error = scsipi_adapter_addref(
328 	    softc->sc_periph->periph_channel->chan_adapter);
329 	if (error != 0)
330                 goto out;
331 
332 
333 	softc->ses_flags |= SES_FLAG_OPEN;
334 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
335 		error = (*softc->ses_vec.softc_init)(softc, 1);
336 		if (error)
337 			softc->ses_flags &= ~SES_FLAG_OPEN;
338 		else
339 			softc->ses_flags |= SES_FLAG_INITIALIZED;
340 	}
341 
342 out:
343 	return (error);
344 }
345 
346 int
347 sesclose(dev, flags, fmt, p)
348 	dev_t dev;
349 	int flags;
350 	int fmt;
351 	struct proc *p;
352 {
353 	struct ses_softc *softc;
354 	int unit;
355 
356 	unit = SESUNIT(dev);
357 	if (unit >= ses_cd.cd_ndevs)
358 		return (ENXIO);
359 	softc = ses_cd.cd_devs[unit];
360 	if (softc == NULL)
361 		return (ENXIO);
362 
363 	scsipi_wait_drain(softc->sc_periph);
364 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
365 	softc->ses_flags &= ~SES_FLAG_OPEN;
366 	return (0);
367 }
368 
369 int
370 sesioctl(dev, cmd, arg_addr, flag, p)
371 	dev_t dev;
372 	u_long cmd;
373 	caddr_t arg_addr;
374 	int flag;
375 	struct proc *p;
376 {
377 	ses_encstat tmp;
378 	ses_objstat objs;
379 	ses_object obj, *uobj;
380 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
381 	void *addr;
382 	int error, i;
383 
384 
385 	if (arg_addr)
386 		addr = *((caddr_t *) arg_addr);
387 	else
388 		addr = NULL;
389 
390 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
391 
392 	/*
393 	 * Now check to see whether we're initialized or not.
394 	 */
395 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
396 		return (ENODEV);
397 	}
398 
399 	error = 0;
400 
401 	/*
402 	 * If this command can change the device's state,
403 	 * we must have the device open for writing.
404 	 */
405 	switch (cmd) {
406 	case SESIOC_GETNOBJ:
407 	case SESIOC_GETOBJMAP:
408 	case SESIOC_GETENCSTAT:
409 	case SESIOC_GETOBJSTAT:
410 		break;
411 	default:
412 		if ((flag & FWRITE) == 0) {
413 			return (EBADF);
414 		}
415 	}
416 
417 	switch (cmd) {
418 	case SESIOC_GETNOBJ:
419 		error = copyout(&ssc->ses_nobjects, addr,
420 		    sizeof (ssc->ses_nobjects));
421 		break;
422 
423 	case SESIOC_GETOBJMAP:
424 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
425 			obj.obj_id = i;
426 			obj.subencid = ssc->ses_objmap[i].subenclosure;
427 			obj.object_type = ssc->ses_objmap[i].enctype;
428 			error = copyout(&obj, uobj, sizeof (ses_object));
429 			if (error) {
430 				break;
431 			}
432 		}
433 		break;
434 
435 	case SESIOC_GETENCSTAT:
436 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
437 		if (error)
438 			break;
439 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
440 		error = copyout(&tmp, addr, sizeof (ses_encstat));
441 		ssc->ses_encstat = tmp;
442 		break;
443 
444 	case SESIOC_SETENCSTAT:
445 		error = copyin(addr, &tmp, sizeof (ses_encstat));
446 		if (error)
447 			break;
448 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
449 		break;
450 
451 	case SESIOC_GETOBJSTAT:
452 		error = copyin(addr, &objs, sizeof (ses_objstat));
453 		if (error)
454 			break;
455 		if (objs.obj_id >= ssc->ses_nobjects) {
456 			error = EINVAL;
457 			break;
458 		}
459 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
460 		if (error)
461 			break;
462 		error = copyout(&objs, addr, sizeof (ses_objstat));
463 		/*
464 		 * Always (for now) invalidate entry.
465 		 */
466 		ssc->ses_objmap[objs.obj_id].svalid = 0;
467 		break;
468 
469 	case SESIOC_SETOBJSTAT:
470 		error = copyin(addr, &objs, sizeof (ses_objstat));
471 		if (error)
472 			break;
473 
474 		if (objs.obj_id >= ssc->ses_nobjects) {
475 			error = EINVAL;
476 			break;
477 		}
478 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
479 
480 		/*
481 		 * Always (for now) invalidate entry.
482 		 */
483 		ssc->ses_objmap[objs.obj_id].svalid = 0;
484 		break;
485 
486 	case SESIOC_INIT:
487 
488 		error = (*ssc->ses_vec.init_enc)(ssc);
489 		break;
490 
491 	default:
492 		error = scsipi_do_ioctl(ssc->sc_periph,
493 			    dev, cmd, addr, flag, p);
494 		break;
495 	}
496 	return (error);
497 }
498 
499 static int
500 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
501 {
502 	struct scsipi_generic sgen;
503 	int dl, flg, error;
504 
505 	if (dptr) {
506 		if ((dl = *dlenp) < 0) {
507 			dl = -dl;
508 			flg = XS_CTL_DATA_OUT;
509 		} else {
510 			flg = XS_CTL_DATA_IN;
511 		}
512 	} else {
513 		dl = 0;
514 		flg = 0;
515 	}
516 
517 	if (cdbl > sizeof (struct scsipi_generic)) {
518 		cdbl = sizeof (struct scsipi_generic);
519 	}
520 	memcpy(&sgen, cdb, cdbl);
521 #ifndef	SCSIDEBUG
522 	flg |= XS_CTL_SILENT;
523 #endif
524 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
525 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
526 
527 	if (error == 0 && dptr)
528 		*dlenp = 0;
529 
530 	return (error);
531 }
532 
533 #ifdef	__STDC__
534 static void
535 ses_log(struct ses_softc *ssc, const char *fmt, ...)
536 {
537 	va_list ap;
538 
539 	printf("%s: ", ssc->sc_device.dv_xname);
540 	va_start(ap, fmt);
541 	vprintf(fmt, ap);
542 	va_end(ap);
543 }
544 #else
545 static void
546 ses_log(ssc, fmt, va_alist)
547 	struct ses_softc *ssc;
548 	char *fmt;
549 	va_dcl
550 {
551 	va_list ap;
552 
553 	printf("%s: ", ssc->sc_device.dv_xname);
554 	va_start(ap, fmt);
555 	vprintf(fmt, ap);
556 	va_end(ap);
557 }
558 #endif
559 
560 /*
561  * The code after this point runs on many platforms,
562  * so forgive the slightly awkward and nonconforming
563  * appearance.
564  */
565 
566 /*
567  * Is this a device that supports enclosure services?
568  *
569  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
570  * an SES device. If it happens to be an old UNISYS SEN device, we can
571  * handle that too.
572  */
573 
574 #define	SAFTE_START	44
575 #define	SAFTE_END	50
576 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
577 
578 static enctyp
579 ses_type(inqp)
580 	struct scsipi_inquiry_data *inqp;
581 {
582 	size_t	given_len = inqp->additional_length + 4;
583 
584 	if (given_len < 8+SEN_ID_LEN)
585 		return (SES_NONE);
586 
587 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
588 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
589 			return (SES_SEN);
590 		} else if ((inqp->version & SID_ANSII) > 2) {
591 			return (SES_SES);
592 		} else {
593 			return (SES_SES_SCSI2);
594 		}
595 		return (SES_NONE);
596 	}
597 
598 #ifdef	SES_ENABLE_PASSTHROUGH
599 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
600 		/*
601 		 * PassThrough Device.
602 		 */
603 		return (SES_SES_PASSTHROUGH);
604 	}
605 #endif
606 
607 	/*
608 	 * The comparison is short for a reason-
609 	 * some vendors were chopping it short.
610 	 */
611 
612 	if (given_len < SAFTE_END - 2) {
613 		return (SES_NONE);
614 	}
615 
616 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
617 			SAFTE_LEN - 2) == 0) {
618 		return (SES_SAFT);
619 	}
620 
621 	return (SES_NONE);
622 }
623 
624 /*
625  * SES Native Type Device Support
626  */
627 
628 /*
629  * SES Diagnostic Page Codes
630  */
631 
632 typedef enum {
633 	SesConfigPage = 0x1,
634 	SesControlPage,
635 #define	SesStatusPage SesControlPage
636 	SesHelpTxt,
637 	SesStringOut,
638 #define	SesStringIn	SesStringOut
639 	SesThresholdOut,
640 #define	SesThresholdIn SesThresholdOut
641 	SesArrayControl,
642 #define	SesArrayStatus	SesArrayControl
643 	SesElementDescriptor,
644 	SesShortStatus
645 } SesDiagPageCodes;
646 
647 /*
648  * minimal amounts
649  */
650 
651 /*
652  * Minimum amount of data, starting from byte 0, to have
653  * the config header.
654  */
655 #define	SES_CFGHDR_MINLEN	12
656 
657 /*
658  * Minimum amount of data, starting from byte 0, to have
659  * the config header and one enclosure header.
660  */
661 #define	SES_ENCHDR_MINLEN	48
662 
663 /*
664  * Take this value, subtract it from VEnclen and you know
665  * the length of the vendor unique bytes.
666  */
667 #define	SES_ENCHDR_VMIN		36
668 
669 /*
670  * SES Data Structures
671  */
672 
673 typedef struct {
674 	uint32_t GenCode;	/* Generation Code */
675 	uint8_t	Nsubenc;	/* Number of Subenclosures */
676 } SesCfgHdr;
677 
678 typedef struct {
679 	uint8_t	Subencid;	/* SubEnclosure Identifier */
680 	uint8_t	Ntypes;		/* # of supported types */
681 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
682 } SesEncHdr;
683 
684 typedef struct {
685 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
686 	uint8_t	encVid[8];
687 	uint8_t	encPid[16];
688 	uint8_t	encRev[4];
689 	uint8_t	encVen[1];
690 } SesEncDesc;
691 
692 typedef struct {
693 	uint8_t	enc_type;		/* type of element */
694 	uint8_t	enc_maxelt;		/* maximum supported */
695 	uint8_t	enc_subenc;		/* in SubEnc # N */
696 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
697 } SesThdr;
698 
699 typedef struct {
700 	uint8_t	comstatus;
701 	uint8_t	comstat[3];
702 } SesComStat;
703 
704 struct typidx {
705 	int ses_tidx;
706 	int ses_oidx;
707 };
708 
709 struct sscfg {
710 	uint8_t ses_ntypes;	/* total number of types supported */
711 
712 	/*
713 	 * We need to keep a type index as well as an
714 	 * object index for each object in an enclosure.
715 	 */
716 	struct typidx *ses_typidx;
717 
718 	/*
719 	 * We also need to keep track of the number of elements
720 	 * per type of element. This is needed later so that we
721 	 * can find precisely in the returned status data the
722 	 * status for the Nth element of the Kth type.
723 	 */
724 	uint8_t *	ses_eltmap;
725 };
726 
727 
728 /*
729  * (de)canonicalization defines
730  */
731 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
732 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
733 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
734 
735 #define	sset16(outp, idx, sval)	\
736 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
737 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
738 
739 
740 #define	sset24(outp, idx, sval)	\
741 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
742 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
743 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
744 
745 
746 #define	sset32(outp, idx, sval)	\
747 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
748 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
749 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
750 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
751 
752 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
753 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
754 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
755 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
756 
757 #define	sget16(inp, idx, lval)	\
758 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
759 		(((uint8_t *)(inp))[idx+1]), idx += 2
760 
761 #define	gget16(inp, idx, lval)	\
762 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
763 		(((uint8_t *)(inp))[idx+1])
764 
765 #define	sget24(inp, idx, lval)	\
766 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
767 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
768 			(((uint8_t *)(inp))[idx+2]), idx += 3
769 
770 #define	gget24(inp, idx, lval)	\
771 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
772 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
773 			(((uint8_t *)(inp))[idx+2])
774 
775 #define	sget32(inp, idx, lval)	\
776 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
777 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
778 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
779 			(((uint8_t *)(inp))[idx+3]), idx += 4
780 
781 #define	gget32(inp, idx, lval)	\
782 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
783 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
784 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
785 			(((uint8_t *)(inp))[idx+3])
786 
787 #define	SCSZ	0x2000
788 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
789 
790 /*
791  * Routines specific && private to SES only
792  */
793 
794 static int ses_getconfig(ses_softc_t *);
795 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
796 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
797 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
798 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
799 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
800 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
801 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
802 
803 static int
804 ses_softc_init(ses_softc_t *ssc, int doinit)
805 {
806 	if (doinit == 0) {
807 		struct sscfg *cc;
808 		if (ssc->ses_nobjects) {
809 			SES_FREE(ssc->ses_objmap,
810 			    ssc->ses_nobjects * sizeof (encobj));
811 			ssc->ses_objmap = NULL;
812 		}
813 		if ((cc = ssc->ses_private) != NULL) {
814 			if (cc->ses_eltmap && cc->ses_ntypes) {
815 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
816 				cc->ses_eltmap = NULL;
817 				cc->ses_ntypes = 0;
818 			}
819 			if (cc->ses_typidx && ssc->ses_nobjects) {
820 				SES_FREE(cc->ses_typidx,
821 				    ssc->ses_nobjects * sizeof (struct typidx));
822 				cc->ses_typidx = NULL;
823 			}
824 			SES_FREE(cc, sizeof (struct sscfg));
825 			ssc->ses_private = NULL;
826 		}
827 		ssc->ses_nobjects = 0;
828 		return (0);
829 	}
830 	if (ssc->ses_private == NULL) {
831 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
832 	}
833 	if (ssc->ses_private == NULL) {
834 		return (ENOMEM);
835 	}
836 	ssc->ses_nobjects = 0;
837 	ssc->ses_encstat = 0;
838 	return (ses_getconfig(ssc));
839 }
840 
841 static int
842 ses_init_enc(ses_softc_t *ssc)
843 {
844 	return (0);
845 }
846 
847 static int
848 ses_get_encstat(ses_softc_t *ssc, int slpflag)
849 {
850 	SesComStat ComStat;
851 	int status;
852 
853 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
854 		return (status);
855 	}
856 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
857 	return (0);
858 }
859 
860 static int
861 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
862 {
863 	SesComStat ComStat;
864 	int status;
865 
866 	ComStat.comstatus = encstat & 0xf;
867 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
868 		return (status);
869 	}
870 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
871 	return (0);
872 }
873 
874 static int
875 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
876 {
877 	int i = (int)obp->obj_id;
878 
879 	if (ssc->ses_objmap[i].svalid == 0) {
880 		SesComStat ComStat;
881 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
882 		if (err)
883 			return (err);
884 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
885 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
886 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
887 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
888 		ssc->ses_objmap[i].svalid = 1;
889 	}
890 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
891 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
892 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
893 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
894 	return (0);
895 }
896 
897 static int
898 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
899 {
900 	SesComStat ComStat;
901 	int err;
902 	/*
903 	 * If this is clear, we don't do diddly.
904 	 */
905 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
906 		return (0);
907 	}
908 	ComStat.comstatus = obp->cstat[0];
909 	ComStat.comstat[0] = obp->cstat[1];
910 	ComStat.comstat[1] = obp->cstat[2];
911 	ComStat.comstat[2] = obp->cstat[3];
912 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
913 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
914 	return (err);
915 }
916 
917 static int
918 ses_getconfig(ses_softc_t *ssc)
919 {
920 	struct sscfg *cc;
921 	SesCfgHdr cf;
922 	SesEncHdr hd;
923 	SesEncDesc *cdp;
924 	SesThdr thdr;
925 	int err, amt, i, nobj, ntype, maxima;
926 	char storage[CFLEN], *sdata;
927 	static char cdb[6] = {
928 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
929 	};
930 
931 	cc = ssc->ses_private;
932 	if (cc == NULL) {
933 		return (ENXIO);
934 	}
935 
936 	sdata = SES_MALLOC(SCSZ);
937 	if (sdata == NULL)
938 		return (ENOMEM);
939 
940 	amt = SCSZ;
941 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
942 	if (err) {
943 		SES_FREE(sdata, SCSZ);
944 		return (err);
945 	}
946 	amt = SCSZ - amt;
947 
948 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
949 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
950 		SES_FREE(sdata, SCSZ);
951 		return (EIO);
952 	}
953 	if (amt < SES_ENCHDR_MINLEN) {
954 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
955 		SES_FREE(sdata, SCSZ);
956 		return (EIO);
957 	}
958 
959 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
960 
961 	/*
962 	 * Now waltz through all the subenclosures toting up the
963 	 * number of types available in each. For this, we only
964 	 * really need the enclosure header. However, we get the
965 	 * enclosure descriptor for debug purposes, as well
966 	 * as self-consistency checking purposes.
967 	 */
968 
969 	maxima = cf.Nsubenc + 1;
970 	cdp = (SesEncDesc *) storage;
971 	for (ntype = i = 0; i < maxima; i++) {
972 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
973 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
974 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
975 			SES_FREE(sdata, SCSZ);
976 			return (EIO);
977 		}
978 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
979 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
980 
981 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
982 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
983 			SES_FREE(sdata, SCSZ);
984 			return (EIO);
985 		}
986 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
987 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
988 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
989 		    cdp->encWWN[6], cdp->encWWN[7]);
990 		ntype += hd.Ntypes;
991 	}
992 
993 	/*
994 	 * Now waltz through all the types that are available, getting
995 	 * the type header so we can start adding up the number of
996 	 * objects available.
997 	 */
998 	for (nobj = i = 0; i < ntype; i++) {
999 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1000 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1001 			SES_FREE(sdata, SCSZ);
1002 			return (EIO);
1003 		}
1004 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1005 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1006 		    thdr.enc_subenc, thdr.enc_tlen);
1007 		nobj += thdr.enc_maxelt;
1008 	}
1009 
1010 
1011 	/*
1012 	 * Now allocate the object array and type map.
1013 	 */
1014 
1015 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1016 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1017 	cc->ses_eltmap = SES_MALLOC(ntype);
1018 
1019 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1020 	    cc->ses_eltmap == NULL) {
1021 		if (ssc->ses_objmap) {
1022 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1023 			ssc->ses_objmap = NULL;
1024 		}
1025 		if (cc->ses_typidx) {
1026 			SES_FREE(cc->ses_typidx,
1027 			    (nobj * sizeof (struct typidx)));
1028 			cc->ses_typidx = NULL;
1029 		}
1030 		if (cc->ses_eltmap) {
1031 			SES_FREE(cc->ses_eltmap, ntype);
1032 			cc->ses_eltmap = NULL;
1033 		}
1034 		SES_FREE(sdata, SCSZ);
1035 		return (ENOMEM);
1036 	}
1037 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1038 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1039 	MEMZERO(cc->ses_eltmap, ntype);
1040 	cc->ses_ntypes = (uint8_t) ntype;
1041 	ssc->ses_nobjects = nobj;
1042 
1043 	/*
1044 	 * Now waltz through the # of types again to fill in the types
1045 	 * (and subenclosure ids) of the allocated objects.
1046 	 */
1047 	nobj = 0;
1048 	for (i = 0; i < ntype; i++) {
1049 		int j;
1050 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1051 			continue;
1052 		}
1053 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1054 		for (j = 0; j < thdr.enc_maxelt; j++) {
1055 			cc->ses_typidx[nobj].ses_tidx = i;
1056 			cc->ses_typidx[nobj].ses_oidx = j;
1057 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1058 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1059 		}
1060 	}
1061 	SES_FREE(sdata, SCSZ);
1062 	return (0);
1063 }
1064 
1065 static int
1066 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1067 {
1068 	struct sscfg *cc;
1069 	int err, amt, bufsiz, tidx, oidx;
1070 	char cdb[6], *sdata;
1071 
1072 	cc = ssc->ses_private;
1073 	if (cc == NULL) {
1074 		return (ENXIO);
1075 	}
1076 
1077 	/*
1078 	 * If we're just getting overall enclosure status,
1079 	 * we only need 2 bytes of data storage.
1080 	 *
1081 	 * If we're getting anything else, we know how much
1082 	 * storage we need by noting that starting at offset
1083 	 * 8 in returned data, all object status bytes are 4
1084 	 * bytes long, and are stored in chunks of types(M)
1085 	 * and nth+1 instances of type M.
1086 	 */
1087 	if (objid == -1) {
1088 		bufsiz = 2;
1089 	} else {
1090 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1091 	}
1092 	sdata = SES_MALLOC(bufsiz);
1093 	if (sdata == NULL)
1094 		return (ENOMEM);
1095 
1096 	cdb[0] = RECEIVE_DIAGNOSTIC;
1097 	cdb[1] = 1;
1098 	cdb[2] = SesStatusPage;
1099 	cdb[3] = bufsiz >> 8;
1100 	cdb[4] = bufsiz & 0xff;
1101 	cdb[5] = 0;
1102 	amt = bufsiz;
1103 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1104 	if (err) {
1105 		SES_FREE(sdata, bufsiz);
1106 		return (err);
1107 	}
1108 	amt = bufsiz - amt;
1109 
1110 	if (objid == -1) {
1111 		tidx = -1;
1112 		oidx = -1;
1113 	} else {
1114 		tidx = cc->ses_typidx[objid].ses_tidx;
1115 		oidx = cc->ses_typidx[objid].ses_oidx;
1116 	}
1117 	if (in) {
1118 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1119 			err = ENODEV;
1120 		}
1121 	} else {
1122 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1123 			err = ENODEV;
1124 		} else {
1125 			cdb[0] = SEND_DIAGNOSTIC;
1126 			cdb[1] = 0x10;
1127 			cdb[2] = 0;
1128 			cdb[3] = bufsiz >> 8;
1129 			cdb[4] = bufsiz & 0xff;
1130 			cdb[5] = 0;
1131 			amt = -bufsiz;
1132 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1133 		}
1134 	}
1135 	SES_FREE(sdata, bufsiz);
1136 	return (0);
1137 }
1138 
1139 
1140 /*
1141  * Routines to parse returned SES data structures.
1142  * Architecture and compiler independent.
1143  */
1144 
1145 static int
1146 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1147 {
1148 	if (buflen < SES_CFGHDR_MINLEN) {
1149 		return (-1);
1150 	}
1151 	gget8(buffer, 1, cfp->Nsubenc);
1152 	gget32(buffer, 4, cfp->GenCode);
1153 	return (0);
1154 }
1155 
1156 static int
1157 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1158 {
1159 	int s, off = 8;
1160 	for (s = 0; s < SubEncId; s++) {
1161 		if (off + 3 > amt)
1162 			return (-1);
1163 		off += buffer[off+3] + 4;
1164 	}
1165 	if (off + 3 > amt) {
1166 		return (-1);
1167 	}
1168 	gget8(buffer, off+1, chp->Subencid);
1169 	gget8(buffer, off+2, chp->Ntypes);
1170 	gget8(buffer, off+3, chp->VEnclen);
1171 	return (0);
1172 }
1173 
1174 static int
1175 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1176 {
1177 	int s, e, enclen, off = 8;
1178 	for (s = 0; s < SubEncId; s++) {
1179 		if (off + 3 > amt)
1180 			return (-1);
1181 		off += buffer[off+3] + 4;
1182 	}
1183 	if (off + 3 > amt) {
1184 		return (-1);
1185 	}
1186 	gget8(buffer, off+3, enclen);
1187 	off += 4;
1188 	if (off  >= amt)
1189 		return (-1);
1190 
1191 	e = off + enclen;
1192 	if (e > amt) {
1193 		e = amt;
1194 	}
1195 	MEMCPY(cdp, &buffer[off], e - off);
1196 	return (0);
1197 }
1198 
1199 static int
1200 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1201 {
1202 	int s, off = 8;
1203 
1204 	if (amt < SES_CFGHDR_MINLEN) {
1205 		return (-1);
1206 	}
1207 	for (s = 0; s < buffer[1]; s++) {
1208 		if (off + 3 > amt)
1209 			return (-1);
1210 		off += buffer[off+3] + 4;
1211 	}
1212 	if (off + 3 > amt) {
1213 		return (-1);
1214 	}
1215 	off += buffer[off+3] + 4 + (nth * 4);
1216 	if (amt < (off + 4))
1217 		return (-1);
1218 
1219 	gget8(buffer, off++, thp->enc_type);
1220 	gget8(buffer, off++, thp->enc_maxelt);
1221 	gget8(buffer, off++, thp->enc_subenc);
1222 	gget8(buffer, off, thp->enc_tlen);
1223 	return (0);
1224 }
1225 
1226 /*
1227  * This function needs a little explanation.
1228  *
1229  * The arguments are:
1230  *
1231  *
1232  *	char *b, int amt
1233  *
1234  *		These describes the raw input SES status data and length.
1235  *
1236  *	uint8_t *ep
1237  *
1238  *		This is a map of the number of types for each element type
1239  *		in the enclosure.
1240  *
1241  *	int elt
1242  *
1243  *		This is the element type being sought. If elt is -1,
1244  *		then overall enclosure status is being sought.
1245  *
1246  *	int elm
1247  *
1248  *		This is the ordinal Mth element of type elt being sought.
1249  *
1250  *	SesComStat *sp
1251  *
1252  *		This is the output area to store the status for
1253  *		the Mth element of type Elt.
1254  */
1255 
1256 static int
1257 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1258 {
1259 	int idx, i;
1260 
1261 	/*
1262 	 * If it's overall enclosure status being sought, get that.
1263 	 * We need at least 2 bytes of status data to get that.
1264 	 */
1265 	if (elt == -1) {
1266 		if (amt < 2)
1267 			return (-1);
1268 		gget8(b, 1, sp->comstatus);
1269 		sp->comstat[0] = 0;
1270 		sp->comstat[1] = 0;
1271 		sp->comstat[2] = 0;
1272 		return (0);
1273 	}
1274 
1275 	/*
1276 	 * Check to make sure that the Mth element is legal for type Elt.
1277 	 */
1278 
1279 	if (elm >= ep[elt])
1280 		return (-1);
1281 
1282 	/*
1283 	 * Starting at offset 8, start skipping over the storage
1284 	 * for the element types we're not interested in.
1285 	 */
1286 	for (idx = 8, i = 0; i < elt; i++) {
1287 		idx += ((ep[i] + 1) * 4);
1288 	}
1289 
1290 	/*
1291 	 * Skip over Overall status for this element type.
1292 	 */
1293 	idx += 4;
1294 
1295 	/*
1296 	 * And skip to the index for the Mth element that we're going for.
1297 	 */
1298 	idx += (4 * elm);
1299 
1300 	/*
1301 	 * Make sure we haven't overflowed the buffer.
1302 	 */
1303 	if (idx+4 > amt)
1304 		return (-1);
1305 
1306 	/*
1307 	 * Retrieve the status.
1308 	 */
1309 	gget8(b, idx++, sp->comstatus);
1310 	gget8(b, idx++, sp->comstat[0]);
1311 	gget8(b, idx++, sp->comstat[1]);
1312 	gget8(b, idx++, sp->comstat[2]);
1313 #if	0
1314 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1315 #endif
1316 	return (0);
1317 }
1318 
1319 /*
1320  * This is the mirror function to ses_decode, but we set the 'select'
1321  * bit for the object which we're interested in. All other objects,
1322  * after a status fetch, should have that bit off. Hmm. It'd be easy
1323  * enough to ensure this, so we will.
1324  */
1325 
1326 static int
1327 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1328 {
1329 	int idx, i;
1330 
1331 	/*
1332 	 * If it's overall enclosure status being sought, get that.
1333 	 * We need at least 2 bytes of status data to get that.
1334 	 */
1335 	if (elt == -1) {
1336 		if (amt < 2)
1337 			return (-1);
1338 		i = 0;
1339 		sset8(b, i, 0);
1340 		sset8(b, i, sp->comstatus & 0xf);
1341 #if	0
1342 		PRINTF("set EncStat %x\n", sp->comstatus);
1343 #endif
1344 		return (0);
1345 	}
1346 
1347 	/*
1348 	 * Check to make sure that the Mth element is legal for type Elt.
1349 	 */
1350 
1351 	if (elm >= ep[elt])
1352 		return (-1);
1353 
1354 	/*
1355 	 * Starting at offset 8, start skipping over the storage
1356 	 * for the element types we're not interested in.
1357 	 */
1358 	for (idx = 8, i = 0; i < elt; i++) {
1359 		idx += ((ep[i] + 1) * 4);
1360 	}
1361 
1362 	/*
1363 	 * Skip over Overall status for this element type.
1364 	 */
1365 	idx += 4;
1366 
1367 	/*
1368 	 * And skip to the index for the Mth element that we're going for.
1369 	 */
1370 	idx += (4 * elm);
1371 
1372 	/*
1373 	 * Make sure we haven't overflowed the buffer.
1374 	 */
1375 	if (idx+4 > amt)
1376 		return (-1);
1377 
1378 	/*
1379 	 * Set the status.
1380 	 */
1381 	sset8(b, idx, sp->comstatus);
1382 	sset8(b, idx, sp->comstat[0]);
1383 	sset8(b, idx, sp->comstat[1]);
1384 	sset8(b, idx, sp->comstat[2]);
1385 	idx -= 4;
1386 
1387 #if	0
1388 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1389 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1390 	    sp->comstat[1], sp->comstat[2]);
1391 #endif
1392 
1393 	/*
1394 	 * Now make sure all other 'Select' bits are off.
1395 	 */
1396 	for (i = 8; i < amt; i += 4) {
1397 		if (i != idx)
1398 			b[i] &= ~0x80;
1399 	}
1400 	/*
1401 	 * And make sure the INVOP bit is clear.
1402 	 */
1403 	b[2] &= ~0x10;
1404 
1405 	return (0);
1406 }
1407 
1408 /*
1409  * SAF-TE Type Device Emulation
1410  */
1411 
1412 static int safte_getconfig(ses_softc_t *);
1413 static int safte_rdstat(ses_softc_t *, int);;
1414 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1415 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1416 static void wrslot_stat(ses_softc_t *, int);
1417 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1418 
1419 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1420 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1421 /*
1422  * SAF-TE specific defines- Mandatory ones only...
1423  */
1424 
1425 /*
1426  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1427  */
1428 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1429 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1430 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1431 
1432 /*
1433  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1434  */
1435 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1436 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1437 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1438 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1439 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1440 
1441 
1442 #define	SAFT_SCRATCH	64
1443 #define	NPSEUDO_THERM	16
1444 #define	NPSEUDO_ALARM	1
1445 struct scfg {
1446 	/*
1447 	 * Cached Configuration
1448 	 */
1449 	uint8_t	Nfans;		/* Number of Fans */
1450 	uint8_t	Npwr;		/* Number of Power Supplies */
1451 	uint8_t	Nslots;		/* Number of Device Slots */
1452 	uint8_t	DoorLock;	/* Door Lock Installed */
1453 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1454 	uint8_t	Nspkrs;		/* Number of Speakers */
1455 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1456 	/*
1457 	 * Cached Flag Bytes for Global Status
1458 	 */
1459 	uint8_t	flag1;
1460 	uint8_t	flag2;
1461 	/*
1462 	 * What object index ID is where various slots start.
1463 	 */
1464 	uint8_t	pwroff;
1465 	uint8_t	slotoff;
1466 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1467 };
1468 
1469 #define	SAFT_FLG1_ALARM		0x1
1470 #define	SAFT_FLG1_GLOBFAIL	0x2
1471 #define	SAFT_FLG1_GLOBWARN	0x4
1472 #define	SAFT_FLG1_ENCPWROFF	0x8
1473 #define	SAFT_FLG1_ENCFANFAIL	0x10
1474 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1475 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1476 #define	SAFT_FLG1_ENCDRVWARN	0x80
1477 
1478 #define	SAFT_FLG2_LOCKDOOR	0x4
1479 #define	SAFT_PRIVATE		sizeof (struct scfg)
1480 
1481 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1482 #define	SAFT_BAIL(r, x, k, l)	\
1483 	if (r >= x) { \
1484 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1485 		SES_FREE(k, l); \
1486 		return (EIO); \
1487 	}
1488 
1489 
1490 int
1491 safte_softc_init(ses_softc_t *ssc, int doinit)
1492 {
1493 	int err, i, r;
1494 	struct scfg *cc;
1495 
1496 	if (doinit == 0) {
1497 		if (ssc->ses_nobjects) {
1498 			if (ssc->ses_objmap) {
1499 				SES_FREE(ssc->ses_objmap,
1500 				    ssc->ses_nobjects * sizeof (encobj));
1501 				ssc->ses_objmap = NULL;
1502 			}
1503 			ssc->ses_nobjects = 0;
1504 		}
1505 		if (ssc->ses_private) {
1506 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1507 			ssc->ses_private = NULL;
1508 		}
1509 		return (0);
1510 	}
1511 
1512 	if (ssc->ses_private == NULL) {
1513 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1514 		if (ssc->ses_private == NULL) {
1515 			return (ENOMEM);
1516 		}
1517 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1518 	}
1519 
1520 	ssc->ses_nobjects = 0;
1521 	ssc->ses_encstat = 0;
1522 
1523 	if ((err = safte_getconfig(ssc)) != 0) {
1524 		return (err);
1525 	}
1526 
1527 	/*
1528 	 * The number of objects here, as well as that reported by the
1529 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1530 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1531 	 */
1532 	cc = ssc->ses_private;
1533 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1534 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1535 	ssc->ses_objmap = (encobj *)
1536 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1537 	if (ssc->ses_objmap == NULL) {
1538 		return (ENOMEM);
1539 	}
1540 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1541 
1542 	r = 0;
1543 	/*
1544 	 * Note that this is all arranged for the convenience
1545 	 * in later fetches of status.
1546 	 */
1547 	for (i = 0; i < cc->Nfans; i++)
1548 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1549 	cc->pwroff = (uint8_t) r;
1550 	for (i = 0; i < cc->Npwr; i++)
1551 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1552 	for (i = 0; i < cc->DoorLock; i++)
1553 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1554 	for (i = 0; i < cc->Nspkrs; i++)
1555 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1556 	for (i = 0; i < cc->Ntherm; i++)
1557 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1558 	for (i = 0; i < NPSEUDO_THERM; i++)
1559 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1560 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1561 	cc->slotoff = (uint8_t) r;
1562 	for (i = 0; i < cc->Nslots; i++)
1563 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1564 	return (0);
1565 }
1566 
1567 int
1568 safte_init_enc(ses_softc_t *ssc)
1569 {
1570 	int err, amt;
1571 	char *sdata;
1572 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1573 	static char cdb[10] =
1574 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1575 
1576 	sdata = SES_MALLOC(SAFT_SCRATCH);
1577 	if (sdata == NULL)
1578 		return (ENOMEM);
1579 
1580 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1581 	if (err) {
1582 		SES_FREE(sdata, SAFT_SCRATCH);
1583 		return (err);
1584 	}
1585 	sdata[0] = SAFTE_WT_GLOBAL;
1586 	MEMZERO(&sdata[1], 15);
1587 	amt = -SAFT_SCRATCH;
1588 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1589 	SES_FREE(sdata, SAFT_SCRATCH);
1590 	return (err);
1591 }
1592 
1593 int
1594 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1595 {
1596 	return (safte_rdstat(ssc, slpflg));
1597 }
1598 
1599 int
1600 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1601 {
1602 	struct scfg *cc = ssc->ses_private;
1603 	if (cc == NULL)
1604 		return (0);
1605 	/*
1606 	 * Since SAF-TE devices aren't necessarily sticky in terms
1607 	 * of state, make our soft copy of enclosure status 'sticky'-
1608 	 * that is, things set in enclosure status stay set (as implied
1609 	 * by conditions set in reading object status) until cleared.
1610 	 */
1611 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1612 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1613 	ssc->ses_encstat |= ENCI_SVALID;
1614 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1615 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1616 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1617 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1618 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1619 	}
1620 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1621 }
1622 
1623 int
1624 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1625 {
1626 	int i = (int)obp->obj_id;
1627 
1628 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1629 	    (ssc->ses_objmap[i].svalid) == 0) {
1630 		int err = safte_rdstat(ssc, slpflg);
1631 		if (err)
1632 			return (err);
1633 	}
1634 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1635 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1636 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1637 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1638 	return (0);
1639 }
1640 
1641 
1642 int
1643 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1644 {
1645 	int idx, err;
1646 	encobj *ep;
1647 	struct scfg *cc;
1648 
1649 
1650 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1651 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1652 	    obp->cstat[3]);
1653 
1654 	/*
1655 	 * If this is clear, we don't do diddly.
1656 	 */
1657 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1658 		return (0);
1659 	}
1660 
1661 	err = 0;
1662 	/*
1663 	 * Check to see if the common bits are set and do them first.
1664 	 */
1665 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1666 		err = set_objstat_sel(ssc, obp, slp);
1667 		if (err)
1668 			return (err);
1669 	}
1670 
1671 	cc = ssc->ses_private;
1672 	if (cc == NULL)
1673 		return (0);
1674 
1675 	idx = (int)obp->obj_id;
1676 	ep = &ssc->ses_objmap[idx];
1677 
1678 	switch (ep->enctype) {
1679 	case SESTYP_DEVICE:
1680 	{
1681 		uint8_t slotop = 0;
1682 		/*
1683 		 * XXX: I should probably cache the previous state
1684 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1685 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1686 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1687 		 */
1688 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1689 			slotop |= 0x2;
1690 		}
1691 		if (obp->cstat[2] & SESCTL_RQSID) {
1692 			slotop |= 0x4;
1693 		}
1694 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1695 		    slotop, slp);
1696 		if (err)
1697 			return (err);
1698 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1699 			ep->priv |= 0x2;
1700 		} else {
1701 			ep->priv &= ~0x2;
1702 		}
1703 		if (ep->priv & 0xc6) {
1704 			ep->priv &= ~0x1;
1705 		} else {
1706 			ep->priv |= 0x1;	/* no errors */
1707 		}
1708 		wrslot_stat(ssc, slp);
1709 		break;
1710 	}
1711 	case SESTYP_POWER:
1712 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1713 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1714 		} else {
1715 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1716 		}
1717 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1718 		    cc->flag2, 0, slp);
1719 		if (err)
1720 			return (err);
1721 		if (obp->cstat[3] & SESCTL_RQSTON) {
1722 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1723 				idx - cc->pwroff, 0, 0, slp);
1724 		} else {
1725 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1726 				idx - cc->pwroff, 0, 1, slp);
1727 		}
1728 		break;
1729 	case SESTYP_FAN:
1730 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1731 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1732 		} else {
1733 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1734 		}
1735 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1736 		    cc->flag2, 0, slp);
1737 		if (err)
1738 			return (err);
1739 		if (obp->cstat[3] & SESCTL_RQSTON) {
1740 			uint8_t fsp;
1741 			if ((obp->cstat[3] & 0x7) == 7) {
1742 				fsp = 4;
1743 			} else if ((obp->cstat[3] & 0x7) == 6) {
1744 				fsp = 3;
1745 			} else if ((obp->cstat[3] & 0x7) == 4) {
1746 				fsp = 2;
1747 			} else {
1748 				fsp = 1;
1749 			}
1750 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1751 		} else {
1752 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1753 		}
1754 		break;
1755 	case SESTYP_DOORLOCK:
1756 		if (obp->cstat[3] & 0x1) {
1757 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1758 		} else {
1759 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1760 		}
1761 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1762 		    cc->flag2, 0, slp);
1763 		break;
1764 	case SESTYP_ALARM:
1765 		/*
1766 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1767 		 */
1768 		obp->cstat[3] &= ~0xa;
1769 		if (obp->cstat[3] & 0x40) {
1770 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1771 		} else if (obp->cstat[3] != 0) {
1772 			cc->flag2 |= SAFT_FLG1_ALARM;
1773 		} else {
1774 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1775 		}
1776 		ep->priv = obp->cstat[3];
1777 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1778 			cc->flag2, 0, slp);
1779 		break;
1780 	default:
1781 		break;
1782 	}
1783 	ep->svalid = 0;
1784 	return (0);
1785 }
1786 
1787 static int
1788 safte_getconfig(ses_softc_t *ssc)
1789 {
1790 	struct scfg *cfg;
1791 	int err, amt;
1792 	char *sdata;
1793 	static char cdb[10] =
1794 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1795 
1796 	cfg = ssc->ses_private;
1797 	if (cfg == NULL)
1798 		return (ENXIO);
1799 
1800 	sdata = SES_MALLOC(SAFT_SCRATCH);
1801 	if (sdata == NULL)
1802 		return (ENOMEM);
1803 
1804 	amt = SAFT_SCRATCH;
1805 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1806 	if (err) {
1807 		SES_FREE(sdata, SAFT_SCRATCH);
1808 		return (err);
1809 	}
1810 	amt = SAFT_SCRATCH - amt;
1811 	if (amt < 6) {
1812 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1813 		SES_FREE(sdata, SAFT_SCRATCH);
1814 		return (EIO);
1815 	}
1816 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1817 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1818 	cfg->Nfans = sdata[0];
1819 	cfg->Npwr = sdata[1];
1820 	cfg->Nslots = sdata[2];
1821 	cfg->DoorLock = sdata[3];
1822 	cfg->Ntherm = sdata[4];
1823 	cfg->Nspkrs = sdata[5];
1824 	cfg->Nalarm = NPSEUDO_ALARM;
1825 	SES_FREE(sdata, SAFT_SCRATCH);
1826 	return (0);
1827 }
1828 
1829 static int
1830 safte_rdstat(ses_softc_t *ssc, int slpflg)
1831 {
1832 	int err, oid, r, i, hiwater, nitems, amt;
1833 	uint16_t tempflags;
1834 	size_t buflen;
1835 	uint8_t status, oencstat;
1836 	char *sdata, cdb[10];
1837 	struct scfg *cc = ssc->ses_private;
1838 
1839 
1840 	/*
1841 	 * The number of objects overstates things a bit,
1842 	 * both for the bogus 'thermometer' entries and
1843 	 * the drive status (which isn't read at the same
1844 	 * time as the enclosure status), but that's okay.
1845 	 */
1846 	buflen = 4 * cc->Nslots;
1847 	if (ssc->ses_nobjects > buflen)
1848 		buflen = ssc->ses_nobjects;
1849 	sdata = SES_MALLOC(buflen);
1850 	if (sdata == NULL)
1851 		return (ENOMEM);
1852 
1853 	cdb[0] = READ_BUFFER;
1854 	cdb[1] = 1;
1855 	cdb[2] = SAFTE_RD_RDESTS;
1856 	cdb[3] = 0;
1857 	cdb[4] = 0;
1858 	cdb[5] = 0;
1859 	cdb[6] = 0;
1860 	cdb[7] = (buflen >> 8) & 0xff;
1861 	cdb[8] = buflen & 0xff;
1862 	cdb[9] = 0;
1863 	amt = buflen;
1864 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1865 	if (err) {
1866 		SES_FREE(sdata, buflen);
1867 		return (err);
1868 	}
1869 	hiwater = buflen - amt;
1870 
1871 
1872 	/*
1873 	 * invalidate all status bits.
1874 	 */
1875 	for (i = 0; i < ssc->ses_nobjects; i++)
1876 		ssc->ses_objmap[i].svalid = 0;
1877 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1878 	ssc->ses_encstat = 0;
1879 
1880 
1881 	/*
1882 	 * Now parse returned buffer.
1883 	 * If we didn't get enough data back,
1884 	 * that's considered a fatal error.
1885 	 */
1886 	oid = r = 0;
1887 
1888 	for (nitems = i = 0; i < cc->Nfans; i++) {
1889 		SAFT_BAIL(r, hiwater, sdata, buflen);
1890 		/*
1891 		 * 0 = Fan Operational
1892 		 * 1 = Fan is malfunctioning
1893 		 * 2 = Fan is not present
1894 		 * 0x80 = Unknown or Not Reportable Status
1895 		 */
1896 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1897 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1898 		switch ((int)(uint8_t)sdata[r]) {
1899 		case 0:
1900 			nitems++;
1901 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1902 			/*
1903 			 * We could get fancier and cache
1904 			 * fan speeds that we have set, but
1905 			 * that isn't done now.
1906 			 */
1907 			ssc->ses_objmap[oid].encstat[3] = 7;
1908 			break;
1909 
1910 		case 1:
1911 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1912 			/*
1913 			 * FAIL and FAN STOPPED synthesized
1914 			 */
1915 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1916 			/*
1917 			 * Enclosure marked with CRITICAL error
1918 			 * if only one fan or no thermometers,
1919 			 * else the NONCRITICAL error is set.
1920 			 */
1921 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1922 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1923 			else
1924 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1925 			break;
1926 		case 2:
1927 			ssc->ses_objmap[oid].encstat[0] =
1928 			    SES_OBJSTAT_NOTINSTALLED;
1929 			ssc->ses_objmap[oid].encstat[3] = 0;
1930 			/*
1931 			 * Enclosure marked with CRITICAL error
1932 			 * if only one fan or no thermometers,
1933 			 * else the NONCRITICAL error is set.
1934 			 */
1935 			if (cc->Nfans == 1)
1936 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1937 			else
1938 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1939 			break;
1940 		case 0x80:
1941 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1942 			ssc->ses_objmap[oid].encstat[3] = 0;
1943 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1944 			break;
1945 		default:
1946 			ssc->ses_objmap[oid].encstat[0] =
1947 			    SES_OBJSTAT_UNSUPPORTED;
1948 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1949 			    sdata[r] & 0xff);
1950 			break;
1951 		}
1952 		ssc->ses_objmap[oid++].svalid = 1;
1953 		r++;
1954 	}
1955 
1956 	/*
1957 	 * No matter how you cut it, no cooling elements when there
1958 	 * should be some there is critical.
1959 	 */
1960 	if (cc->Nfans && nitems == 0) {
1961 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1962 	}
1963 
1964 
1965 	for (i = 0; i < cc->Npwr; i++) {
1966 		SAFT_BAIL(r, hiwater, sdata, buflen);
1967 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1968 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1969 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1970 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1971 		switch ((uint8_t)sdata[r]) {
1972 		case 0x00:	/* pws operational and on */
1973 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1974 			break;
1975 		case 0x01:	/* pws operational and off */
1976 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1977 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1978 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1979 			break;
1980 		case 0x10:	/* pws is malfunctioning and commanded on */
1981 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1982 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1983 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1984 			break;
1985 
1986 		case 0x11:	/* pws is malfunctioning and commanded off */
1987 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1988 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1989 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1990 			break;
1991 		case 0x20:	/* pws is not present */
1992 			ssc->ses_objmap[oid].encstat[0] =
1993 			    SES_OBJSTAT_NOTINSTALLED;
1994 			ssc->ses_objmap[oid].encstat[3] = 0;
1995 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1996 			break;
1997 		case 0x21:	/* pws is present */
1998 			/*
1999 			 * This is for enclosures that cannot tell whether the
2000 			 * device is on or malfunctioning, but know that it is
2001 			 * present. Just fall through.
2002 			 */
2003 			/* FALLTHROUGH */
2004 		case 0x80:	/* Unknown or Not Reportable Status */
2005 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2006 			ssc->ses_objmap[oid].encstat[3] = 0;
2007 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2008 			break;
2009 		default:
2010 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2011 			    i, sdata[r] & 0xff);
2012 			break;
2013 		}
2014 		ssc->ses_objmap[oid++].svalid = 1;
2015 		r++;
2016 	}
2017 
2018 	/*
2019 	 * Skip over Slot SCSI IDs
2020 	 */
2021 	r += cc->Nslots;
2022 
2023 	/*
2024 	 * We always have doorlock status, no matter what,
2025 	 * but we only save the status if we have one.
2026 	 */
2027 	SAFT_BAIL(r, hiwater, sdata, buflen);
2028 	if (cc->DoorLock) {
2029 		/*
2030 		 * 0 = Door Locked
2031 		 * 1 = Door Unlocked, or no Lock Installed
2032 		 * 0x80 = Unknown or Not Reportable Status
2033 		 */
2034 		ssc->ses_objmap[oid].encstat[1] = 0;
2035 		ssc->ses_objmap[oid].encstat[2] = 0;
2036 		switch ((uint8_t)sdata[r]) {
2037 		case 0:
2038 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2039 			ssc->ses_objmap[oid].encstat[3] = 0;
2040 			break;
2041 		case 1:
2042 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2043 			ssc->ses_objmap[oid].encstat[3] = 1;
2044 			break;
2045 		case 0x80:
2046 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2047 			ssc->ses_objmap[oid].encstat[3] = 0;
2048 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2049 			break;
2050 		default:
2051 			ssc->ses_objmap[oid].encstat[0] =
2052 			    SES_OBJSTAT_UNSUPPORTED;
2053 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2054 			    sdata[r] & 0xff);
2055 			break;
2056 		}
2057 		ssc->ses_objmap[oid++].svalid = 1;
2058 	}
2059 	r++;
2060 
2061 	/*
2062 	 * We always have speaker status, no matter what,
2063 	 * but we only save the status if we have one.
2064 	 */
2065 	SAFT_BAIL(r, hiwater, sdata, buflen);
2066 	if (cc->Nspkrs) {
2067 		ssc->ses_objmap[oid].encstat[1] = 0;
2068 		ssc->ses_objmap[oid].encstat[2] = 0;
2069 		if (sdata[r] == 1) {
2070 			/*
2071 			 * We need to cache tone urgency indicators.
2072 			 * Someday.
2073 			 */
2074 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2075 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2076 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2077 		} else if (sdata[r] == 0) {
2078 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2079 			ssc->ses_objmap[oid].encstat[3] = 0;
2080 		} else {
2081 			ssc->ses_objmap[oid].encstat[0] =
2082 			    SES_OBJSTAT_UNSUPPORTED;
2083 			ssc->ses_objmap[oid].encstat[3] = 0;
2084 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2085 			    sdata[r] & 0xff);
2086 		}
2087 		ssc->ses_objmap[oid++].svalid = 1;
2088 	}
2089 	r++;
2090 
2091 	for (i = 0; i < cc->Ntherm; i++) {
2092 		SAFT_BAIL(r, hiwater, sdata, buflen);
2093 		/*
2094 		 * Status is a range from -10 to 245 deg Celsius,
2095 		 * which we need to normalize to -20 to -245 according
2096 		 * to the latest SCSI spec, which makes little
2097 		 * sense since this would overflow an 8bit value.
2098 		 * Well, still, the base normalization is -20,
2099 		 * not -10, so we have to adjust.
2100 		 *
2101 		 * So what's over and under temperature?
2102 		 * Hmm- we'll state that 'normal' operating
2103 		 * is 10 to 40 deg Celsius.
2104 		 */
2105 
2106 		/*
2107 		 * Actually.... All of the units that people out in the world
2108 		 * seem to have do not come even close to setting a value that
2109 		 * complies with this spec.
2110 		 *
2111 		 * The closest explanation I could find was in an
2112 		 * LSI-Logic manual, which seemed to indicate that
2113 		 * this value would be set by whatever the I2C code
2114 		 * would interpolate from the output of an LM75
2115 		 * temperature sensor.
2116 		 *
2117 		 * This means that it is impossible to use the actual
2118 		 * numeric value to predict anything. But we don't want
2119 		 * to lose the value. So, we'll propagate the *uncorrected*
2120 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2121 		 * temperature flags for warnings.
2122 		 */
2123 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2124 		ssc->ses_objmap[oid].encstat[1] = 0;
2125 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2126 		ssc->ses_objmap[oid].encstat[3] = 0;;
2127 		ssc->ses_objmap[oid++].svalid = 1;
2128 		r++;
2129 	}
2130 
2131 	/*
2132 	 * Now, for "pseudo" thermometers, we have two bytes
2133 	 * of information in enclosure status- 16 bits. Actually,
2134 	 * the MSB is a single TEMP ALERT flag indicating whether
2135 	 * any other bits are set, but, thanks to fuzzy thinking,
2136 	 * in the SAF-TE spec, this can also be set even if no
2137 	 * other bits are set, thus making this really another
2138 	 * binary temperature sensor.
2139 	 */
2140 
2141 	SAFT_BAIL(r, hiwater, sdata, buflen);
2142 	tempflags = sdata[r++];
2143 	SAFT_BAIL(r, hiwater, sdata, buflen);
2144 	tempflags |= (tempflags << 8) | sdata[r++];
2145 
2146 	for (i = 0; i < NPSEUDO_THERM; i++) {
2147 		ssc->ses_objmap[oid].encstat[1] = 0;
2148 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2149 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2150 			ssc->ses_objmap[4].encstat[2] = 0xff;
2151 			/*
2152 			 * Set 'over temperature' failure.
2153 			 */
2154 			ssc->ses_objmap[oid].encstat[3] = 8;
2155 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2156 		} else {
2157 			/*
2158 			 * We used to say 'not available' and synthesize a
2159 			 * nominal 30 deg (C)- that was wrong. Actually,
2160 			 * Just say 'OK', and use the reserved value of
2161 			 * zero.
2162 			 */
2163 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2164 			ssc->ses_objmap[oid].encstat[2] = 0;
2165 			ssc->ses_objmap[oid].encstat[3] = 0;
2166 		}
2167 		ssc->ses_objmap[oid++].svalid = 1;
2168 	}
2169 
2170 	/*
2171 	 * Get alarm status.
2172 	 */
2173 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2174 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2175 	ssc->ses_objmap[oid++].svalid = 1;
2176 
2177 	/*
2178 	 * Now get drive slot status
2179 	 */
2180 	cdb[2] = SAFTE_RD_RDDSTS;
2181 	amt = buflen;
2182 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2183 	if (err) {
2184 		SES_FREE(sdata, buflen);
2185 		return (err);
2186 	}
2187 	hiwater = buflen - amt;
2188 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2189 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2190 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2191 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2192 		ssc->ses_objmap[oid].encstat[2] = 0;
2193 		ssc->ses_objmap[oid].encstat[3] = 0;
2194 		status = sdata[r+3];
2195 		if ((status & 0x1) == 0) {	/* no device */
2196 			ssc->ses_objmap[oid].encstat[0] =
2197 			    SES_OBJSTAT_NOTINSTALLED;
2198 		} else {
2199 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2200 		}
2201 		if (status & 0x2) {
2202 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2203 		}
2204 		if ((status & 0x4) == 0) {
2205 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2206 		}
2207 		ssc->ses_objmap[oid++].svalid = 1;
2208 	}
2209 	/* see comment below about sticky enclosure status */
2210 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2211 	SES_FREE(sdata, buflen);
2212 	return (0);
2213 }
2214 
2215 static int
2216 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2217 {
2218 	int idx;
2219 	encobj *ep;
2220 	struct scfg *cc = ssc->ses_private;
2221 
2222 	if (cc == NULL)
2223 		return (0);
2224 
2225 	idx = (int)obp->obj_id;
2226 	ep = &ssc->ses_objmap[idx];
2227 
2228 	switch (ep->enctype) {
2229 	case SESTYP_DEVICE:
2230 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2231 			ep->priv |= 0x40;
2232 		}
2233 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2234 		if (obp->cstat[0] & SESCTL_DISABLE) {
2235 			ep->priv |= 0x80;
2236 			/*
2237 			 * Hmm. Try to set the 'No Drive' flag.
2238 			 * Maybe that will count as a 'disable'.
2239 			 */
2240 		}
2241 		if (ep->priv & 0xc6) {
2242 			ep->priv &= ~0x1;
2243 		} else {
2244 			ep->priv |= 0x1;	/* no errors */
2245 		}
2246 		wrslot_stat(ssc, slp);
2247 		break;
2248 	case SESTYP_POWER:
2249 		/*
2250 		 * Okay- the only one that makes sense here is to
2251 		 * do the 'disable' for a power supply.
2252 		 */
2253 		if (obp->cstat[0] & SESCTL_DISABLE) {
2254 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2255 				idx - cc->pwroff, 0, 0, slp);
2256 		}
2257 		break;
2258 	case SESTYP_FAN:
2259 		/*
2260 		 * Okay- the only one that makes sense here is to
2261 		 * set fan speed to zero on disable.
2262 		 */
2263 		if (obp->cstat[0] & SESCTL_DISABLE) {
2264 			/* remember- fans are the first items, so idx works */
2265 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2266 		}
2267 		break;
2268 	case SESTYP_DOORLOCK:
2269 		/*
2270 		 * Well, we can 'disable' the lock.
2271 		 */
2272 		if (obp->cstat[0] & SESCTL_DISABLE) {
2273 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2274 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2275 				cc->flag2, 0, slp);
2276 		}
2277 		break;
2278 	case SESTYP_ALARM:
2279 		/*
2280 		 * Well, we can 'disable' the alarm.
2281 		 */
2282 		if (obp->cstat[0] & SESCTL_DISABLE) {
2283 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2284 			ep->priv |= 0x40;	/* Muted */
2285 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2286 				cc->flag2, 0, slp);
2287 		}
2288 		break;
2289 	default:
2290 		break;
2291 	}
2292 	ep->svalid = 0;
2293 	return (0);
2294 }
2295 
2296 /*
2297  * This function handles all of the 16 byte WRITE BUFFER commands.
2298  */
2299 static int
2300 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2301     uint8_t b3, int slp)
2302 {
2303 	int err, amt;
2304 	char *sdata;
2305 	struct scfg *cc = ssc->ses_private;
2306 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2307 
2308 	if (cc == NULL)
2309 		return (0);
2310 
2311 	sdata = SES_MALLOC(16);
2312 	if (sdata == NULL)
2313 		return (ENOMEM);
2314 
2315 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2316 
2317 	sdata[0] = op;
2318 	sdata[1] = b1;
2319 	sdata[2] = b2;
2320 	sdata[3] = b3;
2321 	MEMZERO(&sdata[4], 12);
2322 	amt = -16;
2323 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2324 	SES_FREE(sdata, 16);
2325 	return (err);
2326 }
2327 
2328 /*
2329  * This function updates the status byte for the device slot described.
2330  *
2331  * Since this is an optional SAF-TE command, there's no point in
2332  * returning an error.
2333  */
2334 static void
2335 wrslot_stat(ses_softc_t *ssc, int slp)
2336 {
2337 	int i, amt;
2338 	encobj *ep;
2339 	char cdb[10], *sdata;
2340 	struct scfg *cc = ssc->ses_private;
2341 
2342 	if (cc == NULL)
2343 		return;
2344 
2345 	SES_VLOG(ssc, "saf_wrslot\n");
2346 	cdb[0] = WRITE_BUFFER;
2347 	cdb[1] = 1;
2348 	cdb[2] = 0;
2349 	cdb[3] = 0;
2350 	cdb[4] = 0;
2351 	cdb[5] = 0;
2352 	cdb[6] = 0;
2353 	cdb[7] = 0;
2354 	cdb[8] = cc->Nslots * 3 + 1;
2355 	cdb[9] = 0;
2356 
2357 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2358 	if (sdata == NULL)
2359 		return;
2360 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2361 
2362 	sdata[0] = SAFTE_WT_DSTAT;
2363 	for (i = 0; i < cc->Nslots; i++) {
2364 		ep = &ssc->ses_objmap[cc->slotoff + i];
2365 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2366 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2367 	}
2368 	amt = -(cc->Nslots * 3 + 1);
2369 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2370 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2371 }
2372 
2373 /*
2374  * This function issues the "PERFORM SLOT OPERATION" command.
2375  */
2376 static int
2377 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2378 {
2379 	int err, amt;
2380 	char *sdata;
2381 	struct scfg *cc = ssc->ses_private;
2382 	static char cdb[10] =
2383 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2384 
2385 	if (cc == NULL)
2386 		return (0);
2387 
2388 	sdata = SES_MALLOC(SAFT_SCRATCH);
2389 	if (sdata == NULL)
2390 		return (ENOMEM);
2391 	MEMZERO(sdata, SAFT_SCRATCH);
2392 
2393 	sdata[0] = SAFTE_WT_SLTOP;
2394 	sdata[1] = slot;
2395 	sdata[2] = opflag;
2396 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2397 	amt = -SAFT_SCRATCH;
2398 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2399 	SES_FREE(sdata, SAFT_SCRATCH);
2400 	return (err);
2401 }
2402