xref: /netbsd/sys/dev/spi/spiflash.c (revision 6550d01e)
1 /* $NetBSD: spiflash.c,v 1.10 2009/01/13 13:35:54 yamt Exp $ */
2 
3 /*-
4  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5  * Copyright (c) 2006 Garrett D'Amore.
6  * All rights reserved.
7  *
8  * Portions of this code were written by Garrett D'Amore for the
9  * Champaign-Urbana Community Wireless Network Project.
10  *
11  * Redistribution and use in source and binary forms, with or
12  * without modification, are permitted provided that the following
13  * conditions are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above
17  *    copyright notice, this list of conditions and the following
18  *    disclaimer in the documentation and/or other materials provided
19  *    with the distribution.
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgements:
22  *      This product includes software developed by the Urbana-Champaign
23  *      Independent Media Center.
24  *	This product includes software developed by Garrett D'Amore.
25  * 4. Urbana-Champaign Independent Media Center's name and Garrett
26  *    D'Amore's name may not be used to endorse or promote products
27  *    derived from this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.10 2009/01/13 13:35:54 yamt Exp $");
46 
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/device.h>
52 #include <sys/kernel.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/disk.h>
56 #include <sys/disklabel.h>
57 #include <sys/buf.h>
58 #include <sys/bufq.h>
59 #include <sys/uio.h>
60 #include <sys/kthread.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63 
64 #include <dev/spi/spivar.h>
65 #include <dev/spi/spiflash.h>
66 
67 /*
68  * This is an MI block driver for SPI flash devices.  It could probably be
69  * converted to some more generic framework, if someone wanted to create one
70  * for NOR flashes.  Note that some flashes have the ability to handle
71  * interrupts.
72  */
73 
74 struct spiflash_softc {
75 	struct disk		sc_dk;
76 
77 	struct spiflash_hw_if	sc_hw;
78 	void			*sc_cookie;
79 
80 	const char		*sc_name;
81 	struct spi_handle	*sc_handle;
82 	int			sc_device_size;
83 	int			sc_write_size;
84 	int			sc_erase_size;
85 	int			sc_read_size;
86 	int			sc_device_blks;
87 
88 	struct bufq_state	*sc_waitq;
89 	struct bufq_state	*sc_workq;
90 	struct bufq_state	*sc_doneq;
91 	lwp_t			*sc_thread;
92 };
93 
94 #define	sc_getname	sc_hw.sf_getname
95 #define	sc_gethandle	sc_hw.sf_gethandle
96 #define	sc_getsize	sc_hw.sf_getsize
97 #define	sc_getflags	sc_hw.sf_getflags
98 #define	sc_erase	sc_hw.sf_erase
99 #define	sc_write	sc_hw.sf_write
100 #define	sc_read		sc_hw.sf_read
101 #define	sc_getstatus	sc_hw.sf_getstatus
102 #define	sc_setstatus	sc_hw.sf_setstatus
103 
104 struct spiflash_attach_args {
105 	const struct spiflash_hw_if	*hw;
106 	void				*cookie;
107 };
108 
109 #define	STATIC
110 STATIC int spiflash_match(device_t , cfdata_t , void *);
111 STATIC void spiflash_attach(device_t , device_t , void *);
112 STATIC int spiflash_print(void *, const char *);
113 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
114 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
115     const uint8_t *);
116 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
117 STATIC void spiflash_process_done(spiflash_handle_t, int);
118 STATIC void spiflash_process_read(spiflash_handle_t);
119 STATIC void spiflash_process_write(spiflash_handle_t);
120 STATIC void spiflash_thread(void *);
121 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
122 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
123 STATIC int spiflash_sector(spiflash_handle_t, struct buf *);
124 
125 CFATTACH_DECL_NEW(spiflash, sizeof(struct spiflash_softc),
126 	      spiflash_match, spiflash_attach, NULL, NULL);
127 
128 #ifdef	SPIFLASH_DEBUG
129 #define	DPRINTF(x)	do { printf x; } while (0/*CONSTCOND*/)
130 #else
131 #define	DPRINTF(x)	do {  } while (0/*CONSTCOND*/)
132 #endif
133 
134 extern struct cfdriver spiflash_cd;
135 
136 dev_type_open(spiflash_open);
137 dev_type_close(spiflash_close);
138 dev_type_read(spiflash_read);
139 dev_type_write(spiflash_write);
140 dev_type_ioctl(spiflash_ioctl);
141 dev_type_strategy(spiflash_strategy);
142 
143 const struct bdevsw spiflash_bdevsw = {
144 	.d_open = spiflash_open,
145 	.d_close = spiflash_close,
146 	.d_strategy = spiflash_strategy,
147 	.d_ioctl = spiflash_ioctl,
148 	.d_dump = nodump,
149 	.d_psize = nosize,
150 	.d_flag = D_DISK,
151 };
152 
153 const struct cdevsw spiflash_cdevsw = {
154 	.d_open = spiflash_open,
155 	.d_close = spiflash_close,
156 	.d_read = spiflash_read,
157 	.d_write = spiflash_write,
158 	.d_ioctl = spiflash_ioctl,
159 	.d_stop = nostop,
160 	.d_tty = notty,
161 	.d_poll = nopoll,
162 	.d_mmap = nommap,
163 	.d_kqfilter = nokqfilter,
164 	.d_flag = D_DISK,
165 };
166 
167 static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL };
168 
169 spiflash_handle_t
170 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
171     device_t dev)
172 {
173 	struct spiflash_attach_args sfa;
174 	sfa.hw = hw;
175 	sfa.cookie = cookie;
176 
177 	return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
178 }
179 
180 int
181 spiflash_print(void *aux, const char *pnp)
182 {
183 	if (pnp != NULL)
184 		printf("spiflash at %s\n", pnp);
185 
186 	return UNCONF;
187 }
188 
189 int
190 spiflash_match(device_t parent, cfdata_t cf, void *aux)
191 {
192 
193 	return 1;
194 }
195 
196 void
197 spiflash_attach(device_t parent, device_t self, void *aux)
198 {
199 	struct spiflash_softc *sc = device_private(self);
200 	struct spiflash_attach_args *sfa = aux;
201 	void *cookie = sfa->cookie;
202 
203 	sc->sc_hw = *sfa->hw;
204 	sc->sc_cookie = cookie;
205 	sc->sc_name = sc->sc_getname(cookie);
206 	sc->sc_handle = sc->sc_gethandle(cookie);
207 	sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
208 	sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
209 	sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
210 	sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
211 	sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
212 
213 	if (sc->sc_read == NULL)
214 		sc->sc_read = spiflash_common_read;
215 	if (sc->sc_write == NULL)
216 		sc->sc_write = spiflash_common_write;
217 	if (sc->sc_erase == NULL)
218 		sc->sc_erase = spiflash_common_erase;
219 
220 	aprint_naive(": SPI flash\n");
221 	aprint_normal(": %s SPI flash\n", sc->sc_name);
222 	/* XXX: note that this has to change for boot-sectored flash */
223 	aprint_normal_dev(self, "%d KB, %d sectors of %d KB each\n",
224 	    sc->sc_device_size / 1024,
225 	    sc->sc_device_size / sc->sc_erase_size,
226 	    sc->sc_erase_size / 1024);
227 
228 	/* first-come first-served strategy works best for us */
229 	bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK);
230 	bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK);
231 	bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK);
232 
233 	sc->sc_dk.dk_driver = &spiflash_dkdriver;
234 	sc->sc_dk.dk_name = device_xname(self);
235 
236 	disk_attach(&sc->sc_dk);
237 
238 	/* arrange to allocate the kthread */
239 	kthread_create(PRI_NONE, 0, NULL, spiflash_thread, sc,
240 	    &sc->sc_thread, "spiflash");
241 }
242 
243 int
244 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
245 {
246 	spiflash_handle_t sc;
247 
248 	sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
249 	if (sc == NULL)
250 		return ENXIO;
251 
252 	/*
253 	 * XXX: We need to handle partitions here.  The problem is
254 	 * that it isn't entirely clear to me how to deal with this.
255 	 * There are devices that could be used "in the raw" with a
256 	 * NetBSD label, but then you get into devices that have other
257 	 * kinds of data on them -- some have VxWorks data, some have
258 	 * RedBoot data, and some have other contraints -- for example
259 	 * some devices might have a portion that is read-only,
260 	 * whereas others might have a portion that is read-write.
261 	 *
262 	 * For now we just permit access to the entire device.
263 	 */
264 	return 0;
265 }
266 
267 int
268 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
269 {
270 	spiflash_handle_t sc;
271 
272 	sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
273 	if (sc == NULL)
274 		return ENXIO;
275 
276 	return 0;
277 }
278 
279 int
280 spiflash_read(dev_t dev, struct uio *uio, int ioflag)
281 {
282 
283 	return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
284 }
285 
286 int
287 spiflash_write(dev_t dev, struct uio *uio, int ioflag)
288 {
289 
290 	return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
291 }
292 
293 int
294 spiflash_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
295 {
296 	spiflash_handle_t sc;
297 
298 	sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
299 	if (sc == NULL)
300 		return ENXIO;
301 
302 	return EINVAL;
303 }
304 
305 void
306 spiflash_strategy(struct buf *bp)
307 {
308 	spiflash_handle_t sc;
309 	int	s;
310 
311 	sc = device_lookup_private(&spiflash_cd, DISKUNIT(bp->b_dev));
312 	if (sc == NULL) {
313 		bp->b_error = ENXIO;
314 		biodone(bp);
315 		return;
316 	}
317 
318 	if (((bp->b_bcount % sc->sc_write_size) != 0) ||
319 	    (bp->b_blkno < 0)) {
320 		bp->b_error = EINVAL;
321 		biodone(bp);
322 		return;
323 	}
324 
325 	/* no work? */
326 	if (bp->b_bcount == 0) {
327 		biodone(bp);
328 		return;
329 	}
330 
331 	if (bounds_check_with_mediasize(bp, DEV_BSIZE,
332 		sc->sc_device_blks) <= 0) {
333 		biodone(bp);
334 		return;
335 	}
336 
337 	bp->b_resid = bp->b_bcount;
338 
339 	/* all ready, hand off to thread for async processing */
340 	s = splbio();
341 	bufq_put(sc->sc_waitq, bp);
342 	wakeup(&sc->sc_thread);
343 	splx(s);
344 }
345 
346 void
347 spiflash_process_done(spiflash_handle_t sc, int err)
348 {
349 	struct buf	*bp;
350 	int		cnt = 0;
351 	int		flag = 0;
352 
353 	while ((bp = bufq_get(sc->sc_doneq)) != NULL) {
354 		flag = bp->b_flags & B_READ;
355 		if ((bp->b_error = err) == 0)
356 			bp->b_resid = 0;
357 		cnt += bp->b_bcount - bp->b_resid;
358 		biodone(bp);
359 	}
360 	disk_unbusy(&sc->sc_dk, cnt, flag);
361 }
362 
363 void
364 spiflash_process_read(spiflash_handle_t sc)
365 {
366 	struct buf	*bp;
367 	int		err = 0;
368 
369 	disk_busy(&sc->sc_dk);
370 	while ((bp = bufq_get(sc->sc_workq)) != NULL) {
371 		size_t addr = bp->b_blkno * DEV_BSIZE;
372 		uint8_t *data = bp->b_data;
373 		int cnt = bp->b_resid;
374 
375 		bufq_put(sc->sc_doneq, bp);
376 
377 		DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt));
378 
379 		if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) {
380 			/* error occurred, fail all pending workq bufs */
381 			bufq_move(sc->sc_doneq, sc->sc_workq);
382 			break;
383 		}
384 
385 		bp->b_resid -= cnt;
386 		data += cnt;
387 		addr += cnt;
388 	}
389 	spiflash_process_done(sc, err);
390 }
391 
392 void
393 spiflash_process_write(spiflash_handle_t sc)
394 {
395 	int	len;
396 	size_t	base;
397 	daddr_t	blkno;
398 	uint8_t	*save;
399 	int	err = 0, neederase = 0;
400 	struct buf *bp;
401 
402 	/*
403 	 * due to other considerations, we are guaranteed that
404 	 * we will only have multiple buffers if they are all in
405 	 * the same erase sector.  Therefore we never need to look
406 	 * beyond the first block to determine how much data we need
407 	 * to save.
408 	 */
409 
410 	bp = bufq_peek(sc->sc_workq);
411 	len = spiflash_nsectors(sc, bp)  * sc->sc_erase_size;
412 	blkno = bp->b_blkno;
413 	base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1);
414 
415 	/* get ourself a scratch buffer */
416 	save = malloc(len, M_DEVBUF, M_WAITOK);
417 
418 	disk_busy(&sc->sc_dk);
419 	/* read in as much of the data as we need */
420 	DPRINTF(("reading in %d bytes\n", len));
421 	if ((err = sc->sc_read(sc, base, len, save)) != 0) {
422 		bufq_move(sc->sc_doneq, sc->sc_workq);
423 		spiflash_process_done(sc, err);
424 		return;
425 	}
426 
427 	/*
428 	 * now coalesce the writes into the save area, but also
429 	 * check to see if we need to do an erase
430 	 */
431 	while ((bp = bufq_get(sc->sc_workq)) != NULL) {
432 		uint8_t	*data, *dst;
433 		int resid = bp->b_resid;
434 
435 		DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n",
436 			    (unsigned)bp->b_blkno, bp->b_bcount, resid));
437 
438 		data = bp->b_data;
439 		dst = save + (bp->b_blkno - blkno) * DEV_BSIZE;
440 
441 		/*
442 		 * NOR flash bits.  We can clear a bit, but we cannot
443 		 * set a bit, without erasing.  This should help reduce
444 		 * unnecessary erases.
445 		 */
446 		while (resid) {
447 			if ((*data) & ~(*dst))
448 				neederase = 1;
449 			*dst++ = *data++;
450 			resid--;
451 		}
452 
453 		bufq_put(sc->sc_doneq, bp);
454 	}
455 
456 	/*
457 	 * do the erase, if we need to.
458 	 */
459 	if (neederase) {
460 		DPRINTF(("erasing from %x - %x\n", base, base + len));
461 		if ((err = sc->sc_erase(sc, base, len)) != 0) {
462 			spiflash_process_done(sc, err);
463 			return;
464 		}
465 	}
466 
467 	/*
468 	 * now write our save area, and finish up.
469 	 */
470 	DPRINTF(("flashing %d bytes to %x from %x\n", len,
471 		    base, (unsigned)save));
472 	err = sc->sc_write(sc, base, len, save);
473 	spiflash_process_done(sc, err);
474 }
475 
476 
477 int
478 spiflash_nsectors(spiflash_handle_t sc, struct buf *bp)
479 {
480 	unsigned	addr, sector;
481 
482 	addr = bp->b_blkno * DEV_BSIZE;
483 	sector = addr / sc->sc_erase_size;
484 
485 	addr += bp->b_bcount;
486 	addr--;
487 	return (((addr / sc->sc_erase_size)  - sector) + 1);
488 }
489 
490 int
491 spiflash_sector(spiflash_handle_t sc, struct buf *bp)
492 {
493 	unsigned	addr, sector;
494 
495 	addr = bp->b_blkno * DEV_BSIZE;
496 	sector = addr / sc->sc_erase_size;
497 
498 	/* if it spans multiple blocks, error it */
499 	addr += bp->b_bcount;
500 	addr--;
501 	if (sector != (addr / sc->sc_erase_size))
502 		return -1;
503 
504 	return sector;
505 }
506 
507 void
508 spiflash_thread(void *arg)
509 {
510 	spiflash_handle_t sc = arg;
511 	struct buf	*bp;
512 	int		s;
513 	int		sector;
514 
515 	s = splbio();
516 	for (;;) {
517 		if ((bp = bufq_get(sc->sc_waitq)) == NULL) {
518 			tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
519 			continue;
520 		}
521 
522 		bufq_put(sc->sc_workq, bp);
523 
524 		if (bp->b_flags & B_READ) {
525 			/* just do the read */
526 			spiflash_process_read(sc);
527 			continue;
528 		}
529 
530 		/*
531 		 * Because writing a flash filesystem is particularly
532 		 * painful, involving erase, modify, write, we prefer
533 		 * to coalesce writes to the same sector together.
534 		 */
535 
536 		sector = spiflash_sector(sc, bp);
537 
538 		/*
539 		 * if the write spans multiple sectors, skip
540 		 * coalescing.  (It would be nice if we could break
541 		 * these up.  minphys is honored for read/write, but
542 		 * not necessarily for bread.)
543 		 */
544 		if (sector < 0)
545 			goto dowrite;
546 
547 		while ((bp = bufq_peek(sc->sc_waitq)) != NULL) {
548 			/* can't deal with read requests! */
549 			if (bp->b_flags & B_READ)
550 				break;
551 
552 			/* is it for the same sector? */
553 			if (spiflash_sector(sc, bp) != sector)
554 				break;
555 
556 			bp = bufq_get(sc->sc_waitq);
557 			bufq_put(sc->sc_workq, bp);
558 		}
559 
560 	dowrite:
561 		spiflash_process_write(sc);
562 	}
563 }
564 /*
565  * SPI flash common implementation.
566  */
567 
568 /*
569  * Most devices take on the order of 1 second for each block that they
570  * delete.
571  */
572 int
573 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
574 {
575 	int		rv;
576 
577 	if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
578 		return EINVAL;
579 
580 	/* the second test is to test against wrap */
581 	if ((start > sc->sc_device_size) ||
582 	    ((start + size) > sc->sc_device_size))
583 		return EINVAL;
584 
585 	/*
586 	 * XXX: check protection status?  Requires master table mapping
587 	 * sectors to status bits, and so forth.
588 	 */
589 
590 	while (size) {
591 		if ((rv = spiflash_write_enable(sc)) != 0) {
592 			spiflash_write_disable(sc);
593 			return rv;
594 		}
595 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
596 			 NULL, NULL)) != 0) {
597 			spiflash_write_disable(sc);
598 			return rv;
599 		}
600 
601 		/*
602 		 * The devices I have all say typical for sector erase
603 		 * is ~1sec.  We check ten times that often.  (There
604 		 * is no way to interrupt on this.)
605 		 */
606 		if ((rv = spiflash_wait(sc, hz / 10)) != 0)
607 			return rv;
608 
609 		start += sc->sc_erase_size;
610 		size -= sc->sc_erase_size;
611 
612 		/* NB: according to the docs I have, the write enable
613 		 * is automatically cleared upon completion of an erase
614 		 * command, so there is no need to explicitly disable it.
615 		 */
616 	}
617 
618 	return 0;
619 }
620 
621 int
622 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
623     const uint8_t *data)
624 {
625 	int		rv;
626 
627 	if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
628 		return EINVAL;
629 
630 	while (size) {
631 		int cnt;
632 
633 		if ((rv = spiflash_write_enable(sc)) != 0) {
634 			spiflash_write_disable(sc);
635 			return rv;
636 		}
637 
638 		cnt = min(size, sc->sc_write_size);
639 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
640 			 cnt, data, NULL)) != 0) {
641 			spiflash_write_disable(sc);
642 			return rv;
643 		}
644 
645 		/*
646 		 * It seems that most devices can write bits fairly
647 		 * quickly.  For example, one part I have access to
648 		 * takes ~5msec to process the entire 256 byte page.
649 		 * Probably this should be modified to cope with
650 		 * device-specific timing, and maybe also take into
651 		 * account systems with higher values of HZ (which
652 		 * could benefit from sleeping.)
653 		 */
654 		if ((rv = spiflash_wait(sc, 0)) != 0)
655 			return rv;
656 
657 		data += cnt;
658 		start += cnt;
659 		size -= cnt;
660 	}
661 
662 	return 0;
663 }
664 
665 int
666 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
667     uint8_t *data)
668 {
669 	int		rv;
670 
671 	while (size) {
672 		int cnt;
673 
674 		if (sc->sc_read_size > 0)
675 			cnt = min(size, sc->sc_read_size);
676 		else
677 			cnt = size;
678 
679 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
680 			 cnt, NULL, data)) != 0) {
681 			return rv;
682 		}
683 
684 		start += cnt;
685 		size -= cnt;
686 	}
687 
688 	return 0;
689 }
690 
691 /* read status register */
692 int
693 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
694 {
695 
696 	return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
697 }
698 
699 int
700 spiflash_write_enable(spiflash_handle_t sc)
701 {
702 
703 	return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
704 }
705 
706 int
707 spiflash_write_disable(spiflash_handle_t sc)
708 {
709 
710 	return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
711 }
712 
713 int
714 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
715     size_t addrlen, uint32_t addr,
716     size_t cnt, const uint8_t *wdata, uint8_t *rdata)
717 {
718 	struct spi_transfer	trans;
719 	struct spi_chunk	chunk1, chunk2;
720 	char buf[4];
721 	int i;
722 
723 	buf[0] = cmd;
724 
725 	if (addrlen > 3)
726 		return EINVAL;
727 
728 	for (i = addrlen; i > 0; i--) {
729 		buf[i] = addr & 0xff;
730 		addr >>= 8;
731 	}
732 	spi_transfer_init(&trans);
733 	spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
734 	spi_transfer_add(&trans, &chunk1);
735 	if (cnt) {
736 		spi_chunk_init(&chunk2, cnt, wdata, rdata);
737 		spi_transfer_add(&trans, &chunk2);
738 	}
739 
740 	spi_transfer(sc->sc_handle, &trans);
741 	spi_wait(&trans);
742 
743 	if (trans.st_flags & SPI_F_ERROR)
744 		return trans.st_errno;
745 	return 0;
746 }
747 
748 int
749 spiflash_wait(spiflash_handle_t sc, int tmo)
750 {
751 	int	rv;
752 	uint8_t	sr;
753 
754 	for (;;) {
755 		if ((rv = spiflash_read_status(sc, &sr)) != 0)
756 			return rv;
757 
758 		if ((sr & SPIFLASH_SR_BUSY) == 0)
759 			break;
760 		/*
761 		 * The devices I have all say typical for sector
762 		 * erase is ~1sec.  We check time times that often.
763 		 * (There is no way to interrupt on this.)
764 		 */
765 		if (tmo)
766 			tsleep(&sr, PWAIT, "spiflash_wait", tmo);
767 	}
768 	return 0;
769 }
770