xref: /netbsd/sys/dev/usb/if_rum.c (revision 758ba73e)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.55 2016/06/10 13:27:15 ozaki-r Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.55 2016/06/10 13:27:15 ozaki-r Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/module.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42 #include <sys/intr.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/if_dl.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 
57 #include <net80211/ieee80211_netbsd.h>
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <dev/firmload.h>
63 
64 #include <dev/usb/usb.h>
65 #include <dev/usb/usbdi.h>
66 #include <dev/usb/usbdi_util.h>
67 #include <dev/usb/usbdevs.h>
68 
69 #include <dev/usb/if_rumreg.h>
70 #include <dev/usb/if_rumvar.h>
71 
72 #ifdef RUM_DEBUG
73 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
74 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
75 int rum_debug = 1;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80 
81 /* various supported device vendors/products */
82 static const struct usb_devno rum_devs[] = {
83 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
84 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
85 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
86 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
87 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
88 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
89 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
90 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
91 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
92 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
93 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
94 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
95 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
96 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
97 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
98 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
99 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
100 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
101 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
102 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
103 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
104 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
105 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
106 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
107 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
108 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
109 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
110 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
111 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
112 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
113 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
114 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
115 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
116 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
117 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
118 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
119 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
120 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
121 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
122 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
123 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
124 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
125 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
126 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
127 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
128 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
129 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
130 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
131 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
132 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
133 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
134 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
135 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
136 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
137 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
138 };
139 
140 static int		rum_attachhook(void *);
141 static int		rum_alloc_tx_list(struct rum_softc *);
142 static void		rum_free_tx_list(struct rum_softc *);
143 static int		rum_alloc_rx_list(struct rum_softc *);
144 static void		rum_free_rx_list(struct rum_softc *);
145 static int		rum_media_change(struct ifnet *);
146 static void		rum_next_scan(void *);
147 static void		rum_task(void *);
148 static int		rum_newstate(struct ieee80211com *,
149 			    enum ieee80211_state, int);
150 static void		rum_txeof(struct usbd_xfer *, void *,
151 			    usbd_status);
152 static void		rum_rxeof(struct usbd_xfer *, void *,
153 			    usbd_status);
154 static uint8_t		rum_rxrate(const struct rum_rx_desc *);
155 static int		rum_ack_rate(struct ieee80211com *, int);
156 static uint16_t		rum_txtime(int, int, uint32_t);
157 static uint8_t		rum_plcp_signal(int);
158 static void		rum_setup_tx_desc(struct rum_softc *,
159 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
160 			    int);
161 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
162 			    struct ieee80211_node *);
163 static void		rum_start(struct ifnet *);
164 static void		rum_watchdog(struct ifnet *);
165 static int		rum_ioctl(struct ifnet *, u_long, void *);
166 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
167 			    int);
168 static uint32_t		rum_read(struct rum_softc *, uint16_t);
169 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
170 			    int);
171 static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
172 static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
173 			    size_t);
174 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
175 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
176 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
177 static void		rum_select_antenna(struct rum_softc *);
178 static void		rum_enable_mrr(struct rum_softc *);
179 static void		rum_set_txpreamble(struct rum_softc *);
180 static void		rum_set_basicrates(struct rum_softc *);
181 static void		rum_select_band(struct rum_softc *,
182 			    struct ieee80211_channel *);
183 static void		rum_set_chan(struct rum_softc *,
184 			    struct ieee80211_channel *);
185 static void		rum_enable_tsf_sync(struct rum_softc *);
186 static void		rum_update_slot(struct rum_softc *);
187 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
188 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
189 static void		rum_update_promisc(struct rum_softc *);
190 static const char	*rum_get_rf(int);
191 static void		rum_read_eeprom(struct rum_softc *);
192 static int		rum_bbp_init(struct rum_softc *);
193 static int		rum_init(struct ifnet *);
194 static void		rum_stop(struct ifnet *, int);
195 static int		rum_load_microcode(struct rum_softc *, const u_char *,
196 			    size_t);
197 static int		rum_prepare_beacon(struct rum_softc *);
198 static void		rum_newassoc(struct ieee80211_node *, int);
199 static void		rum_amrr_start(struct rum_softc *,
200 			    struct ieee80211_node *);
201 static void		rum_amrr_timeout(void *);
202 static void		rum_amrr_update(struct usbd_xfer *, void *,
203 			    usbd_status);
204 
205 /*
206  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
207  */
208 static const struct ieee80211_rateset rum_rateset_11a =
209 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
210 
211 static const struct ieee80211_rateset rum_rateset_11b =
212 	{ 4, { 2, 4, 11, 22 } };
213 
214 static const struct ieee80211_rateset rum_rateset_11g =
215 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
216 
217 static const struct {
218 	uint32_t	reg;
219 	uint32_t	val;
220 } rum_def_mac[] = {
221 	RT2573_DEF_MAC
222 };
223 
224 static const struct {
225 	uint8_t	reg;
226 	uint8_t	val;
227 } rum_def_bbp[] = {
228 	RT2573_DEF_BBP
229 };
230 
231 static const struct rfprog {
232 	uint8_t		chan;
233 	uint32_t	r1, r2, r3, r4;
234 }  rum_rf5226[] = {
235 	RT2573_RF5226
236 }, rum_rf5225[] = {
237 	RT2573_RF5225
238 };
239 
240 static int rum_match(device_t, cfdata_t, void *);
241 static void rum_attach(device_t, device_t, void *);
242 static int rum_detach(device_t, int);
243 static int rum_activate(device_t, enum devact);
244 extern struct cfdriver rum_cd;
245 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
246     rum_detach, rum_activate);
247 
248 static int
249 rum_match(device_t parent, cfdata_t match, void *aux)
250 {
251 	struct usb_attach_arg *uaa = aux;
252 
253 	return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
254 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
255 }
256 
257 static int
258 rum_attachhook(void *xsc)
259 {
260 	struct rum_softc *sc = xsc;
261 	firmware_handle_t fwh;
262 	const char *name = "rum-rt2573";
263 	u_char *ucode;
264 	size_t size;
265 	int error;
266 
267 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
268 		printf("%s: failed firmware_open of file %s (error %d)\n",
269 		    device_xname(sc->sc_dev), name, error);
270 		return error;
271 	}
272 	size = firmware_get_size(fwh);
273 	ucode = firmware_malloc(size);
274 	if (ucode == NULL) {
275 		printf("%s: failed to allocate firmware memory\n",
276 		    device_xname(sc->sc_dev));
277 		firmware_close(fwh);
278 		return ENOMEM;
279 	}
280 	error = firmware_read(fwh, 0, ucode, size);
281 	firmware_close(fwh);
282 	if (error != 0) {
283 		printf("%s: failed to read firmware (error %d)\n",
284 		    device_xname(sc->sc_dev), error);
285 		firmware_free(ucode, size);
286 		return error;
287 	}
288 
289 	if (rum_load_microcode(sc, ucode, size) != 0) {
290 		printf("%s: could not load 8051 microcode\n",
291 		    device_xname(sc->sc_dev));
292 		firmware_free(ucode, size);
293 		return ENXIO;
294 	}
295 
296 	firmware_free(ucode, size);
297 	sc->sc_flags |= RT2573_FWLOADED;
298 
299 	return 0;
300 }
301 
302 static void
303 rum_attach(device_t parent, device_t self, void *aux)
304 {
305 	struct rum_softc *sc = device_private(self);
306 	struct usb_attach_arg *uaa = aux;
307 	struct ieee80211com *ic = &sc->sc_ic;
308 	struct ifnet *ifp = &sc->sc_if;
309 	usb_interface_descriptor_t *id;
310 	usb_endpoint_descriptor_t *ed;
311 	usbd_status error;
312 	char *devinfop;
313 	int i, ntries;
314 	uint32_t tmp;
315 
316 	sc->sc_dev = self;
317 	sc->sc_udev = uaa->uaa_device;
318 	sc->sc_flags = 0;
319 
320 	aprint_naive("\n");
321 	aprint_normal("\n");
322 
323 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
324 	aprint_normal_dev(self, "%s\n", devinfop);
325 	usbd_devinfo_free(devinfop);
326 
327 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
328 	if (error != 0) {
329 		aprint_error_dev(self, "failed to set configuration"
330 		    ", err=%s\n", usbd_errstr(error));
331 		return;
332 	}
333 
334 	/* get the first interface handle */
335 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
336 	    &sc->sc_iface);
337 	if (error != 0) {
338 		aprint_error_dev(self, "could not get interface handle\n");
339 		return;
340 	}
341 
342 	/*
343 	 * Find endpoints.
344 	 */
345 	id = usbd_get_interface_descriptor(sc->sc_iface);
346 
347 	sc->sc_rx_no = sc->sc_tx_no = -1;
348 	for (i = 0; i < id->bNumEndpoints; i++) {
349 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
350 		if (ed == NULL) {
351 			aprint_error_dev(self,
352 			    "no endpoint descriptor for iface %d\n", i);
353 			return;
354 		}
355 
356 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
357 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
358 			sc->sc_rx_no = ed->bEndpointAddress;
359 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
360 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
361 			sc->sc_tx_no = ed->bEndpointAddress;
362 	}
363 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
364 		aprint_error_dev(self, "missing endpoint\n");
365 		return;
366 	}
367 
368 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
369 	callout_init(&sc->sc_scan_ch, 0);
370 
371 	sc->amrr.amrr_min_success_threshold =  1;
372 	sc->amrr.amrr_max_success_threshold = 10;
373 	callout_init(&sc->sc_amrr_ch, 0);
374 
375 	/* retrieve RT2573 rev. no */
376 	for (ntries = 0; ntries < 1000; ntries++) {
377 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
378 			break;
379 		DELAY(1000);
380 	}
381 	if (ntries == 1000) {
382 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
383 		return;
384 	}
385 
386 	/* retrieve MAC address and various other things from EEPROM */
387 	rum_read_eeprom(sc);
388 
389 	aprint_normal_dev(self,
390 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
391 	    sc->macbbp_rev, tmp,
392 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
393 
394 	ic->ic_ifp = ifp;
395 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
396 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
397 	ic->ic_state = IEEE80211_S_INIT;
398 
399 	/* set device capabilities */
400 	ic->ic_caps =
401 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
402 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
403 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
404 	    IEEE80211_C_TXPMGT |	/* tx power management */
405 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
406 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
407 	    IEEE80211_C_WPA;		/* 802.11i */
408 
409 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
410 		/* set supported .11a rates */
411 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
412 
413 		/* set supported .11a channels */
414 		for (i = 34; i <= 46; i += 4) {
415 			ic->ic_channels[i].ic_freq =
416 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 		}
419 		for (i = 36; i <= 64; i += 4) {
420 			ic->ic_channels[i].ic_freq =
421 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 		}
424 		for (i = 100; i <= 140; i += 4) {
425 			ic->ic_channels[i].ic_freq =
426 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428 		}
429 		for (i = 149; i <= 165; i += 4) {
430 			ic->ic_channels[i].ic_freq =
431 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
432 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
433 		}
434 	}
435 
436 	/* set supported .11b and .11g rates */
437 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
438 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
439 
440 	/* set supported .11b and .11g channels (1 through 14) */
441 	for (i = 1; i <= 14; i++) {
442 		ic->ic_channels[i].ic_freq =
443 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
444 		ic->ic_channels[i].ic_flags =
445 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
446 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
447 	}
448 
449 	ifp->if_softc = sc;
450 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
451 	ifp->if_init = rum_init;
452 	ifp->if_ioctl = rum_ioctl;
453 	ifp->if_start = rum_start;
454 	ifp->if_watchdog = rum_watchdog;
455 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
456 	IFQ_SET_READY(&ifp->if_snd);
457 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
458 
459 	if_attach(ifp);
460 	ieee80211_ifattach(ic);
461 	ic->ic_newassoc = rum_newassoc;
462 
463 	/* override state transition machine */
464 	sc->sc_newstate = ic->ic_newstate;
465 	ic->ic_newstate = rum_newstate;
466 	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
467 
468 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
469 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
470 	    &sc->sc_drvbpf);
471 
472 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
473 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
474 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
475 
476 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
477 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
478 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
479 
480 	ieee80211_announce(ic);
481 
482 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
483 	    sc->sc_dev);
484 
485 	if (!pmf_device_register(self, NULL, NULL))
486 		aprint_error_dev(self, "couldn't establish power handler\n");
487 
488 	return;
489 }
490 
491 static int
492 rum_detach(device_t self, int flags)
493 {
494 	struct rum_softc *sc = device_private(self);
495 	struct ieee80211com *ic = &sc->sc_ic;
496 	struct ifnet *ifp = &sc->sc_if;
497 	int s;
498 
499 	if (!ifp->if_softc)
500 		return 0;
501 
502 	pmf_device_deregister(self);
503 
504 	s = splusb();
505 
506 	rum_stop(ifp, 1);
507 	usb_rem_task(sc->sc_udev, &sc->sc_task);
508 	callout_stop(&sc->sc_scan_ch);
509 	callout_stop(&sc->sc_amrr_ch);
510 
511 	bpf_detach(ifp);
512 	ieee80211_ifdetach(ic);	/* free all nodes */
513 	if_detach(ifp);
514 
515 	splx(s);
516 
517 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
518 
519 	return 0;
520 }
521 
522 static int
523 rum_alloc_tx_list(struct rum_softc *sc)
524 {
525 	struct rum_tx_data *data;
526 	int i, error;
527 
528 	sc->tx_cur = sc->tx_queued = 0;
529 
530 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
531 		data = &sc->tx_data[i];
532 
533 		data->sc = sc;
534 
535 		error = usbd_create_xfer(sc->sc_tx_pipeh,
536 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
537 		    USBD_FORCE_SHORT_XFER, 0, &data->xfer);
538 		if (error) {
539 			printf("%s: could not allocate tx xfer\n",
540 			    device_xname(sc->sc_dev));
541 			goto fail;
542 		}
543 		data->buf = usbd_get_buffer(data->xfer);
544 
545 		/* clean Tx descriptor */
546 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
547 	}
548 
549 	return 0;
550 
551 fail:	rum_free_tx_list(sc);
552 	return error;
553 }
554 
555 static void
556 rum_free_tx_list(struct rum_softc *sc)
557 {
558 	struct rum_tx_data *data;
559 	int i;
560 
561 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
562 		data = &sc->tx_data[i];
563 
564 		if (data->xfer != NULL) {
565 			usbd_destroy_xfer(data->xfer);
566 			data->xfer = NULL;
567 		}
568 
569 		if (data->ni != NULL) {
570 			ieee80211_free_node(data->ni);
571 			data->ni = NULL;
572 		}
573 	}
574 }
575 
576 static int
577 rum_alloc_rx_list(struct rum_softc *sc)
578 {
579 	struct rum_rx_data *data;
580 	int i, error;
581 
582 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
583 		data = &sc->rx_data[i];
584 
585 		data->sc = sc;
586 
587 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
588 		    USBD_SHORT_XFER_OK, 0, &data->xfer);
589 		if (error) {
590 			printf("%s: could not allocate rx xfer\n",
591 			    device_xname(sc->sc_dev));
592 			goto fail;
593 		}
594 
595 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
596 		if (data->m == NULL) {
597 			printf("%s: could not allocate rx mbuf\n",
598 			    device_xname(sc->sc_dev));
599 			error = ENOMEM;
600 			goto fail;
601 		}
602 
603 		MCLGET(data->m, M_DONTWAIT);
604 		if (!(data->m->m_flags & M_EXT)) {
605 			printf("%s: could not allocate rx mbuf cluster\n",
606 			    device_xname(sc->sc_dev));
607 			error = ENOMEM;
608 			goto fail;
609 		}
610 
611 		data->buf = mtod(data->m, uint8_t *);
612 	}
613 
614 	return 0;
615 
616 fail:	rum_free_rx_list(sc);
617 	return error;
618 }
619 
620 static void
621 rum_free_rx_list(struct rum_softc *sc)
622 {
623 	struct rum_rx_data *data;
624 	int i;
625 
626 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
627 		data = &sc->rx_data[i];
628 
629 		if (data->xfer != NULL) {
630 			usbd_destroy_xfer(data->xfer);
631 			data->xfer = NULL;
632 		}
633 
634 		if (data->m != NULL) {
635 			m_freem(data->m);
636 			data->m = NULL;
637 		}
638 	}
639 }
640 
641 static int
642 rum_media_change(struct ifnet *ifp)
643 {
644 	int error;
645 
646 	error = ieee80211_media_change(ifp);
647 	if (error != ENETRESET)
648 		return error;
649 
650 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
651 		rum_init(ifp);
652 
653 	return 0;
654 }
655 
656 /*
657  * This function is called periodically (every 200ms) during scanning to
658  * switch from one channel to another.
659  */
660 static void
661 rum_next_scan(void *arg)
662 {
663 	struct rum_softc *sc = arg;
664 	struct ieee80211com *ic = &sc->sc_ic;
665 	int s;
666 
667 	s = splnet();
668 	if (ic->ic_state == IEEE80211_S_SCAN)
669 		ieee80211_next_scan(ic);
670 	splx(s);
671 }
672 
673 static void
674 rum_task(void *arg)
675 {
676 	struct rum_softc *sc = arg;
677 	struct ieee80211com *ic = &sc->sc_ic;
678 	enum ieee80211_state ostate;
679 	struct ieee80211_node *ni;
680 	uint32_t tmp;
681 
682 	ostate = ic->ic_state;
683 
684 	switch (sc->sc_state) {
685 	case IEEE80211_S_INIT:
686 		if (ostate == IEEE80211_S_RUN) {
687 			/* abort TSF synchronization */
688 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
689 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
690 		}
691 		break;
692 
693 	case IEEE80211_S_SCAN:
694 		rum_set_chan(sc, ic->ic_curchan);
695 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
696 		break;
697 
698 	case IEEE80211_S_AUTH:
699 		rum_set_chan(sc, ic->ic_curchan);
700 		break;
701 
702 	case IEEE80211_S_ASSOC:
703 		rum_set_chan(sc, ic->ic_curchan);
704 		break;
705 
706 	case IEEE80211_S_RUN:
707 		rum_set_chan(sc, ic->ic_curchan);
708 
709 		ni = ic->ic_bss;
710 
711 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
712 			rum_update_slot(sc);
713 			rum_enable_mrr(sc);
714 			rum_set_txpreamble(sc);
715 			rum_set_basicrates(sc);
716 			rum_set_bssid(sc, ni->ni_bssid);
717 		}
718 
719 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
720 		    ic->ic_opmode == IEEE80211_M_IBSS)
721 			rum_prepare_beacon(sc);
722 
723 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
724 			rum_enable_tsf_sync(sc);
725 
726 		if (ic->ic_opmode == IEEE80211_M_STA) {
727 			/* fake a join to init the tx rate */
728 			rum_newassoc(ic->ic_bss, 1);
729 
730 			/* enable automatic rate adaptation in STA mode */
731 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
732 				rum_amrr_start(sc, ni);
733 		}
734 
735 		break;
736 	}
737 
738 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
739 }
740 
741 static int
742 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
743 {
744 	struct rum_softc *sc = ic->ic_ifp->if_softc;
745 
746 	usb_rem_task(sc->sc_udev, &sc->sc_task);
747 	callout_stop(&sc->sc_scan_ch);
748 	callout_stop(&sc->sc_amrr_ch);
749 
750 	/* do it in a process context */
751 	sc->sc_state = nstate;
752 	sc->sc_arg = arg;
753 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
754 
755 	return 0;
756 }
757 
758 /* quickly determine if a given rate is CCK or OFDM */
759 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
760 
761 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
762 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
763 
764 static void
765 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
766 {
767 	struct rum_tx_data *data = priv;
768 	struct rum_softc *sc = data->sc;
769 	struct ifnet *ifp = &sc->sc_if;
770 	int s;
771 
772 	if (status != USBD_NORMAL_COMPLETION) {
773 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
774 			return;
775 
776 		printf("%s: could not transmit buffer: %s\n",
777 		    device_xname(sc->sc_dev), usbd_errstr(status));
778 
779 		if (status == USBD_STALLED)
780 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
781 
782 		ifp->if_oerrors++;
783 		return;
784 	}
785 
786 	s = splnet();
787 
788 	ieee80211_free_node(data->ni);
789 	data->ni = NULL;
790 
791 	sc->tx_queued--;
792 	ifp->if_opackets++;
793 
794 	DPRINTFN(10, ("tx done\n"));
795 
796 	sc->sc_tx_timer = 0;
797 	ifp->if_flags &= ~IFF_OACTIVE;
798 	rum_start(ifp);
799 
800 	splx(s);
801 }
802 
803 static void
804 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
805 {
806 	struct rum_rx_data *data = priv;
807 	struct rum_softc *sc = data->sc;
808 	struct ieee80211com *ic = &sc->sc_ic;
809 	struct ifnet *ifp = &sc->sc_if;
810 	struct rum_rx_desc *desc;
811 	struct ieee80211_frame *wh;
812 	struct ieee80211_node *ni;
813 	struct mbuf *mnew, *m;
814 	int s, len;
815 
816 	if (status != USBD_NORMAL_COMPLETION) {
817 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
818 			return;
819 
820 		if (status == USBD_STALLED)
821 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
822 		goto skip;
823 	}
824 
825 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
826 
827 	if (len < (int)(RT2573_RX_DESC_SIZE +
828 		        sizeof(struct ieee80211_frame_min))) {
829 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
830 		    len));
831 		ifp->if_ierrors++;
832 		goto skip;
833 	}
834 
835 	desc = (struct rum_rx_desc *)data->buf;
836 
837 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
838 		/*
839 		 * This should not happen since we did not request to receive
840 		 * those frames when we filled RT2573_TXRX_CSR0.
841 		 */
842 		DPRINTFN(5, ("CRC error\n"));
843 		ifp->if_ierrors++;
844 		goto skip;
845 	}
846 
847 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
848 	if (mnew == NULL) {
849 		printf("%s: could not allocate rx mbuf\n",
850 		    device_xname(sc->sc_dev));
851 		ifp->if_ierrors++;
852 		goto skip;
853 	}
854 
855 	MCLGET(mnew, M_DONTWAIT);
856 	if (!(mnew->m_flags & M_EXT)) {
857 		printf("%s: could not allocate rx mbuf cluster\n",
858 		    device_xname(sc->sc_dev));
859 		m_freem(mnew);
860 		ifp->if_ierrors++;
861 		goto skip;
862 	}
863 
864 	m = data->m;
865 	data->m = mnew;
866 	data->buf = mtod(data->m, uint8_t *);
867 
868 	/* finalize mbuf */
869 	m_set_rcvif(m, ifp);
870 	m->m_data = (void *)(desc + 1);
871 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
872 
873 	s = splnet();
874 
875 	if (sc->sc_drvbpf != NULL) {
876 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
877 
878 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
879 		tap->wr_rate = rum_rxrate(desc);
880 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
881 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
882 		tap->wr_antenna = sc->rx_ant;
883 		tap->wr_antsignal = desc->rssi;
884 
885 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
886 	}
887 
888 	wh = mtod(m, struct ieee80211_frame *);
889 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
890 
891 	/* send the frame to the 802.11 layer */
892 	ieee80211_input(ic, m, ni, desc->rssi, 0);
893 
894 	/* node is no longer needed */
895 	ieee80211_free_node(ni);
896 
897 	splx(s);
898 
899 	DPRINTFN(15, ("rx done\n"));
900 
901 skip:	/* setup a new transfer */
902 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
903 	    USBD_NO_TIMEOUT, rum_rxeof);
904 	usbd_transfer(xfer);
905 }
906 
907 /*
908  * This function is only used by the Rx radiotap code. It returns the rate at
909  * which a given frame was received.
910  */
911 static uint8_t
912 rum_rxrate(const struct rum_rx_desc *desc)
913 {
914 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
915 		/* reverse function of rum_plcp_signal */
916 		switch (desc->rate) {
917 		case 0xb:	return 12;
918 		case 0xf:	return 18;
919 		case 0xa:	return 24;
920 		case 0xe:	return 36;
921 		case 0x9:	return 48;
922 		case 0xd:	return 72;
923 		case 0x8:	return 96;
924 		case 0xc:	return 108;
925 		}
926 	} else {
927 		if (desc->rate == 10)
928 			return 2;
929 		if (desc->rate == 20)
930 			return 4;
931 		if (desc->rate == 55)
932 			return 11;
933 		if (desc->rate == 110)
934 			return 22;
935 	}
936 	return 2;	/* should not get there */
937 }
938 
939 /*
940  * Return the expected ack rate for a frame transmitted at rate `rate'.
941  * XXX: this should depend on the destination node basic rate set.
942  */
943 static int
944 rum_ack_rate(struct ieee80211com *ic, int rate)
945 {
946 	switch (rate) {
947 	/* CCK rates */
948 	case 2:
949 		return 2;
950 	case 4:
951 	case 11:
952 	case 22:
953 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
954 
955 	/* OFDM rates */
956 	case 12:
957 	case 18:
958 		return 12;
959 	case 24:
960 	case 36:
961 		return 24;
962 	case 48:
963 	case 72:
964 	case 96:
965 	case 108:
966 		return 48;
967 	}
968 
969 	/* default to 1Mbps */
970 	return 2;
971 }
972 
973 /*
974  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
975  * The function automatically determines the operating mode depending on the
976  * given rate. `flags' indicates whether short preamble is in use or not.
977  */
978 static uint16_t
979 rum_txtime(int len, int rate, uint32_t flags)
980 {
981 	uint16_t txtime;
982 
983 	if (RUM_RATE_IS_OFDM(rate)) {
984 		/* IEEE Std 802.11a-1999, pp. 37 */
985 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
986 		txtime = 16 + 4 + 4 * txtime + 6;
987 	} else {
988 		/* IEEE Std 802.11b-1999, pp. 28 */
989 		txtime = (16 * len + rate - 1) / rate;
990 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
991 			txtime +=  72 + 24;
992 		else
993 			txtime += 144 + 48;
994 	}
995 	return txtime;
996 }
997 
998 static uint8_t
999 rum_plcp_signal(int rate)
1000 {
1001 	switch (rate) {
1002 	/* CCK rates (returned values are device-dependent) */
1003 	case 2:		return 0x0;
1004 	case 4:		return 0x1;
1005 	case 11:	return 0x2;
1006 	case 22:	return 0x3;
1007 
1008 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1009 	case 12:	return 0xb;
1010 	case 18:	return 0xf;
1011 	case 24:	return 0xa;
1012 	case 36:	return 0xe;
1013 	case 48:	return 0x9;
1014 	case 72:	return 0xd;
1015 	case 96:	return 0x8;
1016 	case 108:	return 0xc;
1017 
1018 	/* unsupported rates (should not get there) */
1019 	default:	return 0xff;
1020 	}
1021 }
1022 
1023 static void
1024 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1025     uint32_t flags, uint16_t xflags, int len, int rate)
1026 {
1027 	struct ieee80211com *ic = &sc->sc_ic;
1028 	uint16_t plcp_length;
1029 	int remainder;
1030 
1031 	desc->flags = htole32(flags);
1032 	desc->flags |= htole32(RT2573_TX_VALID);
1033 	desc->flags |= htole32(len << 16);
1034 
1035 	desc->xflags = htole16(xflags);
1036 
1037 	desc->wme = htole16(
1038 	    RT2573_QID(0) |
1039 	    RT2573_AIFSN(2) |
1040 	    RT2573_LOGCWMIN(4) |
1041 	    RT2573_LOGCWMAX(10));
1042 
1043 	/* setup PLCP fields */
1044 	desc->plcp_signal  = rum_plcp_signal(rate);
1045 	desc->plcp_service = 4;
1046 
1047 	len += IEEE80211_CRC_LEN;
1048 	if (RUM_RATE_IS_OFDM(rate)) {
1049 		desc->flags |= htole32(RT2573_TX_OFDM);
1050 
1051 		plcp_length = len & 0xfff;
1052 		desc->plcp_length_hi = plcp_length >> 6;
1053 		desc->plcp_length_lo = plcp_length & 0x3f;
1054 	} else {
1055 		plcp_length = (16 * len + rate - 1) / rate;
1056 		if (rate == 22) {
1057 			remainder = (16 * len) % 22;
1058 			if (remainder != 0 && remainder < 7)
1059 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1060 		}
1061 		desc->plcp_length_hi = plcp_length >> 8;
1062 		desc->plcp_length_lo = plcp_length & 0xff;
1063 
1064 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1065 			desc->plcp_signal |= 0x08;
1066 	}
1067 }
1068 
1069 #define RUM_TX_TIMEOUT	5000
1070 
1071 static int
1072 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1073 {
1074 	struct ieee80211com *ic = &sc->sc_ic;
1075 	struct rum_tx_desc *desc;
1076 	struct rum_tx_data *data;
1077 	struct ieee80211_frame *wh;
1078 	struct ieee80211_key *k;
1079 	uint32_t flags = 0;
1080 	uint16_t dur;
1081 	usbd_status error;
1082 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1083 
1084 	wh = mtod(m0, struct ieee80211_frame *);
1085 
1086 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1087 		k = ieee80211_crypto_encap(ic, ni, m0);
1088 		if (k == NULL) {
1089 			m_freem(m0);
1090 			return ENOBUFS;
1091 		}
1092 
1093 		/* packet header may have moved, reset our local pointer */
1094 		wh = mtod(m0, struct ieee80211_frame *);
1095 	}
1096 
1097 	/* compute actual packet length (including CRC and crypto overhead) */
1098 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1099 
1100 	/* pickup a rate */
1101 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1102 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1103 	     IEEE80211_FC0_TYPE_MGT)) {
1104 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1105 		rate = ni->ni_rates.rs_rates[0];
1106 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1107 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1108 	} else
1109 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1110 	if (rate == 0)
1111 		rate = 2;	/* XXX should not happen */
1112 	rate &= IEEE80211_RATE_VAL;
1113 
1114 	/* check if RTS/CTS or CTS-to-self protection must be used */
1115 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1116 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1117 		if (pktlen > ic->ic_rtsthreshold) {
1118 			needrts = 1;	/* RTS/CTS based on frame length */
1119 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1120 		    RUM_RATE_IS_OFDM(rate)) {
1121 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1122 				needcts = 1;	/* CTS-to-self */
1123 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1124 				needrts = 1;	/* RTS/CTS */
1125 		}
1126 	}
1127 	if (needrts || needcts) {
1128 		struct mbuf *mprot;
1129 		int protrate, ackrate;
1130 
1131 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1132 		ackrate  = rum_ack_rate(ic, rate);
1133 
1134 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1135 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1136 		      2 * sc->sifs;
1137 		if (needrts) {
1138 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1139 			    protrate), ic->ic_flags) + sc->sifs;
1140 			mprot = ieee80211_get_rts(ic, wh, dur);
1141 		} else {
1142 			mprot = ieee80211_get_cts_to_self(ic, dur);
1143 		}
1144 		if (mprot == NULL) {
1145 			aprint_error_dev(sc->sc_dev,
1146 			    "couldn't allocate protection frame\n");
1147 			m_freem(m0);
1148 			return ENOBUFS;
1149 		}
1150 
1151 		data = &sc->tx_data[sc->tx_cur];
1152 		desc = (struct rum_tx_desc *)data->buf;
1153 
1154 		/* avoid multiple free() of the same node for each fragment */
1155 		data->ni = ieee80211_ref_node(ni);
1156 
1157 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1158 		    data->buf + RT2573_TX_DESC_SIZE);
1159 		rum_setup_tx_desc(sc, desc,
1160 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1161 		    0, mprot->m_pkthdr.len, protrate);
1162 
1163 		/* no roundup necessary here */
1164 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1165 
1166 		/* XXX may want to pass the protection frame to BPF */
1167 
1168 		/* mbuf is no longer needed */
1169 		m_freem(mprot);
1170 
1171 		usbd_setup_xfer(data->xfer, data, data->buf,
1172 		    xferlen, USBD_FORCE_SHORT_XFER,
1173 		    RUM_TX_TIMEOUT, rum_txeof);
1174 		error = usbd_transfer(data->xfer);
1175 		if (error != USBD_NORMAL_COMPLETION &&
1176 		    error != USBD_IN_PROGRESS) {
1177 			m_freem(m0);
1178 			return error;
1179 		}
1180 
1181 		sc->tx_queued++;
1182 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1183 
1184 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1185 	}
1186 
1187 	data = &sc->tx_data[sc->tx_cur];
1188 	desc = (struct rum_tx_desc *)data->buf;
1189 
1190 	data->ni = ni;
1191 
1192 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1193 		flags |= RT2573_TX_NEED_ACK;
1194 
1195 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1196 		    ic->ic_flags) + sc->sifs;
1197 		*(uint16_t *)wh->i_dur = htole16(dur);
1198 
1199 		/* tell hardware to set timestamp in probe responses */
1200 		if ((wh->i_fc[0] &
1201 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1202 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1203 			flags |= RT2573_TX_TIMESTAMP;
1204 	}
1205 
1206 	if (sc->sc_drvbpf != NULL) {
1207 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1208 
1209 		tap->wt_flags = 0;
1210 		tap->wt_rate = rate;
1211 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1212 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1213 		tap->wt_antenna = sc->tx_ant;
1214 
1215 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1216 	}
1217 
1218 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1219 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1220 
1221 	/* align end on a 4-bytes boundary */
1222 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1223 
1224 	/*
1225 	 * No space left in the last URB to store the extra 4 bytes, force
1226 	 * sending of another URB.
1227 	 */
1228 	if ((xferlen % 64) == 0)
1229 		xferlen += 4;
1230 
1231 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1232 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1233 	    rate, xferlen));
1234 
1235 	/* mbuf is no longer needed */
1236 	m_freem(m0);
1237 
1238 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1239 	    USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1240 	error = usbd_transfer(data->xfer);
1241 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1242 		return error;
1243 
1244 	sc->tx_queued++;
1245 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1246 
1247 	return 0;
1248 }
1249 
1250 static void
1251 rum_start(struct ifnet *ifp)
1252 {
1253 	struct rum_softc *sc = ifp->if_softc;
1254 	struct ieee80211com *ic = &sc->sc_ic;
1255 	struct ether_header *eh;
1256 	struct ieee80211_node *ni;
1257 	struct mbuf *m0;
1258 
1259 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1260 		return;
1261 
1262 	for (;;) {
1263 		IF_POLL(&ic->ic_mgtq, m0);
1264 		if (m0 != NULL) {
1265 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1266 				ifp->if_flags |= IFF_OACTIVE;
1267 				break;
1268 			}
1269 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1270 
1271 			ni = M_GETCTX(m0, struct ieee80211_node *);
1272 			M_CLEARCTX(m0);
1273 			bpf_mtap3(ic->ic_rawbpf, m0);
1274 			if (rum_tx_data(sc, m0, ni) != 0)
1275 				break;
1276 
1277 		} else {
1278 			if (ic->ic_state != IEEE80211_S_RUN)
1279 				break;
1280 			IFQ_POLL(&ifp->if_snd, m0);
1281 			if (m0 == NULL)
1282 				break;
1283 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1284 				ifp->if_flags |= IFF_OACTIVE;
1285 				break;
1286 			}
1287 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1288 			if (m0->m_len < (int)sizeof(struct ether_header) &&
1289 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1290 				continue;
1291 
1292 			eh = mtod(m0, struct ether_header *);
1293 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1294 			if (ni == NULL) {
1295 				m_freem(m0);
1296 				continue;
1297 			}
1298 			bpf_mtap(ifp, m0);
1299 			m0 = ieee80211_encap(ic, m0, ni);
1300 			if (m0 == NULL) {
1301 				ieee80211_free_node(ni);
1302 				continue;
1303 			}
1304 			bpf_mtap3(ic->ic_rawbpf, m0);
1305 			if (rum_tx_data(sc, m0, ni) != 0) {
1306 				ieee80211_free_node(ni);
1307 				ifp->if_oerrors++;
1308 				break;
1309 			}
1310 		}
1311 
1312 		sc->sc_tx_timer = 5;
1313 		ifp->if_timer = 1;
1314 	}
1315 }
1316 
1317 static void
1318 rum_watchdog(struct ifnet *ifp)
1319 {
1320 	struct rum_softc *sc = ifp->if_softc;
1321 	struct ieee80211com *ic = &sc->sc_ic;
1322 
1323 	ifp->if_timer = 0;
1324 
1325 	if (sc->sc_tx_timer > 0) {
1326 		if (--sc->sc_tx_timer == 0) {
1327 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1328 			/*rum_init(ifp); XXX needs a process context! */
1329 			ifp->if_oerrors++;
1330 			return;
1331 		}
1332 		ifp->if_timer = 1;
1333 	}
1334 
1335 	ieee80211_watchdog(ic);
1336 }
1337 
1338 static int
1339 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1340 {
1341 #define IS_RUNNING(ifp) \
1342 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1343 
1344 	struct rum_softc *sc = ifp->if_softc;
1345 	struct ieee80211com *ic = &sc->sc_ic;
1346 	int s, error = 0;
1347 
1348 	s = splnet();
1349 
1350 	switch (cmd) {
1351 	case SIOCSIFFLAGS:
1352 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1353 			break;
1354 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1355 		case IFF_UP|IFF_RUNNING:
1356 			rum_update_promisc(sc);
1357 			break;
1358 		case IFF_UP:
1359 			rum_init(ifp);
1360 			break;
1361 		case IFF_RUNNING:
1362 			rum_stop(ifp, 1);
1363 			break;
1364 		case 0:
1365 			break;
1366 		}
1367 		break;
1368 
1369 	case SIOCADDMULTI:
1370 	case SIOCDELMULTI:
1371 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1372 			error = 0;
1373 		}
1374 		break;
1375 
1376 	default:
1377 		error = ieee80211_ioctl(ic, cmd, data);
1378 	}
1379 
1380 	if (error == ENETRESET) {
1381 		if (IS_RUNNING(ifp) &&
1382 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1383 			rum_init(ifp);
1384 		error = 0;
1385 	}
1386 
1387 	splx(s);
1388 
1389 	return error;
1390 #undef IS_RUNNING
1391 }
1392 
1393 static void
1394 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1395 {
1396 	usb_device_request_t req;
1397 	usbd_status error;
1398 
1399 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1400 	req.bRequest = RT2573_READ_EEPROM;
1401 	USETW(req.wValue, 0);
1402 	USETW(req.wIndex, addr);
1403 	USETW(req.wLength, len);
1404 
1405 	error = usbd_do_request(sc->sc_udev, &req, buf);
1406 	if (error != 0) {
1407 		printf("%s: could not read EEPROM: %s\n",
1408 		    device_xname(sc->sc_dev), usbd_errstr(error));
1409 	}
1410 }
1411 
1412 static uint32_t
1413 rum_read(struct rum_softc *sc, uint16_t reg)
1414 {
1415 	uint32_t val;
1416 
1417 	rum_read_multi(sc, reg, &val, sizeof(val));
1418 
1419 	return le32toh(val);
1420 }
1421 
1422 static void
1423 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1424 {
1425 	usb_device_request_t req;
1426 	usbd_status error;
1427 
1428 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1429 	req.bRequest = RT2573_READ_MULTI_MAC;
1430 	USETW(req.wValue, 0);
1431 	USETW(req.wIndex, reg);
1432 	USETW(req.wLength, len);
1433 
1434 	error = usbd_do_request(sc->sc_udev, &req, buf);
1435 	if (error != 0) {
1436 		printf("%s: could not multi read MAC register: %s\n",
1437 		    device_xname(sc->sc_dev), usbd_errstr(error));
1438 	}
1439 }
1440 
1441 static void
1442 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1443 {
1444 	uint32_t tmp = htole32(val);
1445 
1446 	rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1447 }
1448 
1449 static void
1450 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1451 {
1452 	usb_device_request_t req;
1453 	usbd_status error;
1454 	int offset;
1455 
1456 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1457 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1458 	USETW(req.wValue, 0);
1459 
1460 	/* write at most 64 bytes at a time */
1461 	for (offset = 0; offset < len; offset += 64) {
1462 		USETW(req.wIndex, reg + offset);
1463 		USETW(req.wLength, MIN(len - offset, 64));
1464 
1465 		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1466 		if (error != 0) {
1467 			printf("%s: could not multi write MAC register: %s\n",
1468 			    device_xname(sc->sc_dev), usbd_errstr(error));
1469 		}
1470 	}
1471 }
1472 
1473 static void
1474 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1475 {
1476 	uint32_t tmp;
1477 	int ntries;
1478 
1479 	for (ntries = 0; ntries < 5; ntries++) {
1480 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1481 			break;
1482 	}
1483 	if (ntries == 5) {
1484 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1485 		return;
1486 	}
1487 
1488 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1489 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1490 }
1491 
1492 static uint8_t
1493 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1494 {
1495 	uint32_t val;
1496 	int ntries;
1497 
1498 	for (ntries = 0; ntries < 5; ntries++) {
1499 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1500 			break;
1501 	}
1502 	if (ntries == 5) {
1503 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1504 		return 0;
1505 	}
1506 
1507 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1508 	rum_write(sc, RT2573_PHY_CSR3, val);
1509 
1510 	for (ntries = 0; ntries < 100; ntries++) {
1511 		val = rum_read(sc, RT2573_PHY_CSR3);
1512 		if (!(val & RT2573_BBP_BUSY))
1513 			return val & 0xff;
1514 		DELAY(1);
1515 	}
1516 
1517 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1518 	return 0;
1519 }
1520 
1521 static void
1522 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1523 {
1524 	uint32_t tmp;
1525 	int ntries;
1526 
1527 	for (ntries = 0; ntries < 5; ntries++) {
1528 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1529 			break;
1530 	}
1531 	if (ntries == 5) {
1532 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1533 		return;
1534 	}
1535 
1536 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1537 	    (reg & 3);
1538 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1539 
1540 	/* remember last written value in sc */
1541 	sc->rf_regs[reg] = val;
1542 
1543 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1544 }
1545 
1546 static void
1547 rum_select_antenna(struct rum_softc *sc)
1548 {
1549 	uint8_t bbp4, bbp77;
1550 	uint32_t tmp;
1551 
1552 	bbp4  = rum_bbp_read(sc, 4);
1553 	bbp77 = rum_bbp_read(sc, 77);
1554 
1555 	/* TBD */
1556 
1557 	/* make sure Rx is disabled before switching antenna */
1558 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1559 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1560 
1561 	rum_bbp_write(sc,  4, bbp4);
1562 	rum_bbp_write(sc, 77, bbp77);
1563 
1564 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1565 }
1566 
1567 /*
1568  * Enable multi-rate retries for frames sent at OFDM rates.
1569  * In 802.11b/g mode, allow fallback to CCK rates.
1570  */
1571 static void
1572 rum_enable_mrr(struct rum_softc *sc)
1573 {
1574 	struct ieee80211com *ic = &sc->sc_ic;
1575 	uint32_t tmp;
1576 
1577 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1578 
1579 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1580 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1581 		tmp |= RT2573_MRR_CCK_FALLBACK;
1582 	tmp |= RT2573_MRR_ENABLED;
1583 
1584 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1585 }
1586 
1587 static void
1588 rum_set_txpreamble(struct rum_softc *sc)
1589 {
1590 	uint32_t tmp;
1591 
1592 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1593 
1594 	tmp &= ~RT2573_SHORT_PREAMBLE;
1595 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1596 		tmp |= RT2573_SHORT_PREAMBLE;
1597 
1598 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1599 }
1600 
1601 static void
1602 rum_set_basicrates(struct rum_softc *sc)
1603 {
1604 	struct ieee80211com *ic = &sc->sc_ic;
1605 
1606 	/* update basic rate set */
1607 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1608 		/* 11b basic rates: 1, 2Mbps */
1609 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1610 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1611 		/* 11a basic rates: 6, 12, 24Mbps */
1612 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1613 	} else {
1614 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1615 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1616 	}
1617 }
1618 
1619 /*
1620  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1621  * driver.
1622  */
1623 static void
1624 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1625 {
1626 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1627 	uint32_t tmp;
1628 
1629 	/* update all BBP registers that depend on the band */
1630 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1631 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1632 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1633 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1634 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1635 	}
1636 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1637 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1638 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1639 	}
1640 
1641 	sc->bbp17 = bbp17;
1642 	rum_bbp_write(sc,  17, bbp17);
1643 	rum_bbp_write(sc,  96, bbp96);
1644 	rum_bbp_write(sc, 104, bbp104);
1645 
1646 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1647 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1648 		rum_bbp_write(sc, 75, 0x80);
1649 		rum_bbp_write(sc, 86, 0x80);
1650 		rum_bbp_write(sc, 88, 0x80);
1651 	}
1652 
1653 	rum_bbp_write(sc, 35, bbp35);
1654 	rum_bbp_write(sc, 97, bbp97);
1655 	rum_bbp_write(sc, 98, bbp98);
1656 
1657 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1658 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1659 	if (IEEE80211_IS_CHAN_2GHZ(c))
1660 		tmp |= RT2573_PA_PE_2GHZ;
1661 	else
1662 		tmp |= RT2573_PA_PE_5GHZ;
1663 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1664 
1665 	/* 802.11a uses a 16 microseconds short interframe space */
1666 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1667 }
1668 
1669 static void
1670 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1671 {
1672 	struct ieee80211com *ic = &sc->sc_ic;
1673 	const struct rfprog *rfprog;
1674 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1675 	int8_t power;
1676 	u_int i, chan;
1677 
1678 	chan = ieee80211_chan2ieee(ic, c);
1679 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1680 		return;
1681 
1682 	/* select the appropriate RF settings based on what EEPROM says */
1683 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1684 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1685 
1686 	/* find the settings for this channel (we know it exists) */
1687 	for (i = 0; rfprog[i].chan != chan; i++);
1688 
1689 	power = sc->txpow[i];
1690 	if (power < 0) {
1691 		bbp94 += power;
1692 		power = 0;
1693 	} else if (power > 31) {
1694 		bbp94 += power - 31;
1695 		power = 31;
1696 	}
1697 
1698 	/*
1699 	 * If we are switching from the 2GHz band to the 5GHz band or
1700 	 * vice-versa, BBP registers need to be reprogrammed.
1701 	 */
1702 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1703 		rum_select_band(sc, c);
1704 		rum_select_antenna(sc);
1705 	}
1706 	ic->ic_curchan = c;
1707 
1708 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1709 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1710 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1711 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1712 
1713 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1714 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1715 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1716 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1717 
1718 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1719 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1720 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1721 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1722 
1723 	DELAY(10);
1724 
1725 	/* enable smart mode for MIMO-capable RFs */
1726 	bbp3 = rum_bbp_read(sc, 3);
1727 
1728 	bbp3 &= ~RT2573_SMART_MODE;
1729 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1730 		bbp3 |= RT2573_SMART_MODE;
1731 
1732 	rum_bbp_write(sc, 3, bbp3);
1733 
1734 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1735 		rum_bbp_write(sc, 94, bbp94);
1736 }
1737 
1738 /*
1739  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1740  * and HostAP operating modes.
1741  */
1742 static void
1743 rum_enable_tsf_sync(struct rum_softc *sc)
1744 {
1745 	struct ieee80211com *ic = &sc->sc_ic;
1746 	uint32_t tmp;
1747 
1748 	if (ic->ic_opmode != IEEE80211_M_STA) {
1749 		/*
1750 		 * Change default 16ms TBTT adjustment to 8ms.
1751 		 * Must be done before enabling beacon generation.
1752 		 */
1753 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1754 	}
1755 
1756 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1757 
1758 	/* set beacon interval (in 1/16ms unit) */
1759 	tmp |= ic->ic_bss->ni_intval * 16;
1760 
1761 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1762 	if (ic->ic_opmode == IEEE80211_M_STA)
1763 		tmp |= RT2573_TSF_MODE(1);
1764 	else
1765 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1766 
1767 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1768 }
1769 
1770 static void
1771 rum_update_slot(struct rum_softc *sc)
1772 {
1773 	struct ieee80211com *ic = &sc->sc_ic;
1774 	uint8_t slottime;
1775 	uint32_t tmp;
1776 
1777 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1778 
1779 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1780 	tmp = (tmp & ~0xff) | slottime;
1781 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1782 
1783 	DPRINTF(("setting slot time to %uus\n", slottime));
1784 }
1785 
1786 static void
1787 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1788 {
1789 	uint32_t tmp;
1790 
1791 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1792 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1793 
1794 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1795 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1796 }
1797 
1798 static void
1799 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1800 {
1801 	uint32_t tmp;
1802 
1803 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1804 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1805 
1806 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1807 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1808 }
1809 
1810 static void
1811 rum_update_promisc(struct rum_softc *sc)
1812 {
1813 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1814 	uint32_t tmp;
1815 
1816 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1817 
1818 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1819 	if (!(ifp->if_flags & IFF_PROMISC))
1820 		tmp |= RT2573_DROP_NOT_TO_ME;
1821 
1822 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1823 
1824 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1825 	    "entering" : "leaving"));
1826 }
1827 
1828 static const char *
1829 rum_get_rf(int rev)
1830 {
1831 	switch (rev) {
1832 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1833 	case RT2573_RF_2528:	return "RT2528";
1834 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1835 	case RT2573_RF_5226:	return "RT5226";
1836 	default:		return "unknown";
1837 	}
1838 }
1839 
1840 static void
1841 rum_read_eeprom(struct rum_softc *sc)
1842 {
1843 	struct ieee80211com *ic = &sc->sc_ic;
1844 	uint16_t val;
1845 #ifdef RUM_DEBUG
1846 	int i;
1847 #endif
1848 
1849 	/* read MAC/BBP type */
1850 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1851 	sc->macbbp_rev = le16toh(val);
1852 
1853 	/* read MAC address */
1854 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1855 
1856 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1857 	val = le16toh(val);
1858 	sc->rf_rev =   (val >> 11) & 0x1f;
1859 	sc->hw_radio = (val >> 10) & 0x1;
1860 	sc->rx_ant =   (val >> 4)  & 0x3;
1861 	sc->tx_ant =   (val >> 2)  & 0x3;
1862 	sc->nb_ant =   val & 0x3;
1863 
1864 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1865 
1866 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1867 	val = le16toh(val);
1868 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1869 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1870 
1871 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1872 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1873 
1874 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1875 	val = le16toh(val);
1876 	if ((val & 0xff) != 0xff)
1877 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1878 
1879 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1880 	val = le16toh(val);
1881 	if ((val & 0xff) != 0xff)
1882 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1883 
1884 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1885 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1886 
1887 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1888 	val = le16toh(val);
1889 	if ((val & 0xff) != 0xff)
1890 		sc->rffreq = val & 0xff;
1891 
1892 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1893 
1894 	/* read Tx power for all a/b/g channels */
1895 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1896 	/* XXX default Tx power for 802.11a channels */
1897 	memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1898 #ifdef RUM_DEBUG
1899 	for (i = 0; i < 14; i++)
1900 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1901 #endif
1902 
1903 	/* read default values for BBP registers */
1904 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1905 #ifdef RUM_DEBUG
1906 	for (i = 0; i < 14; i++) {
1907 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1908 			continue;
1909 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1910 		    sc->bbp_prom[i].val));
1911 	}
1912 #endif
1913 }
1914 
1915 static int
1916 rum_bbp_init(struct rum_softc *sc)
1917 {
1918 	unsigned int i, ntries;
1919 	uint8_t val;
1920 
1921 	/* wait for BBP to be ready */
1922 	for (ntries = 0; ntries < 100; ntries++) {
1923 		val = rum_bbp_read(sc, 0);
1924 		if (val != 0 && val != 0xff)
1925 			break;
1926 		DELAY(1000);
1927 	}
1928 	if (ntries == 100) {
1929 		printf("%s: timeout waiting for BBP\n",
1930 		    device_xname(sc->sc_dev));
1931 		return EIO;
1932 	}
1933 
1934 	/* initialize BBP registers to default values */
1935 	for (i = 0; i < __arraycount(rum_def_bbp); i++)
1936 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1937 
1938 	/* write vendor-specific BBP values (from EEPROM) */
1939 	for (i = 0; i < 16; i++) {
1940 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1941 			continue;
1942 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 static int
1949 rum_init(struct ifnet *ifp)
1950 {
1951 	struct rum_softc *sc = ifp->if_softc;
1952 	struct ieee80211com *ic = &sc->sc_ic;
1953 	uint32_t tmp;
1954 	usbd_status error = 0;
1955 	unsigned int i, ntries;
1956 
1957 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1958 		if (rum_attachhook(sc))
1959 			goto fail;
1960 	}
1961 
1962 	rum_stop(ifp, 0);
1963 
1964 	/* initialize MAC registers to default values */
1965 	for (i = 0; i < __arraycount(rum_def_mac); i++)
1966 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1967 
1968 	/* set host ready */
1969 	rum_write(sc, RT2573_MAC_CSR1, 3);
1970 	rum_write(sc, RT2573_MAC_CSR1, 0);
1971 
1972 	/* wait for BBP/RF to wakeup */
1973 	for (ntries = 0; ntries < 1000; ntries++) {
1974 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1975 			break;
1976 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1977 		DELAY(1000);
1978 	}
1979 	if (ntries == 1000) {
1980 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1981 		    device_xname(sc->sc_dev));
1982 		goto fail;
1983 	}
1984 
1985 	if ((error = rum_bbp_init(sc)) != 0)
1986 		goto fail;
1987 
1988 	/* select default channel */
1989 	rum_select_band(sc, ic->ic_curchan);
1990 	rum_select_antenna(sc);
1991 	rum_set_chan(sc, ic->ic_curchan);
1992 
1993 	/* clear STA registers */
1994 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1995 
1996 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1997 	rum_set_macaddr(sc, ic->ic_myaddr);
1998 
1999 	/* initialize ASIC */
2000 	rum_write(sc, RT2573_MAC_CSR1, 4);
2001 
2002 	/*
2003 	 * Allocate xfer for AMRR statistics requests.
2004 	 */
2005 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2006 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2007 	    &sc->amrr_xfer);
2008 	if (error) {
2009 		printf("%s: could not allocate AMRR xfer\n",
2010 		    device_xname(sc->sc_dev));
2011 		goto fail;
2012 	}
2013 
2014 	/*
2015 	 * Open Tx and Rx USB bulk pipes.
2016 	 */
2017 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2018 	    &sc->sc_tx_pipeh);
2019 	if (error != 0) {
2020 		printf("%s: could not open Tx pipe: %s\n",
2021 		    device_xname(sc->sc_dev), usbd_errstr(error));
2022 		goto fail;
2023 	}
2024 
2025 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2026 	    &sc->sc_rx_pipeh);
2027 	if (error != 0) {
2028 		printf("%s: could not open Rx pipe: %s\n",
2029 		    device_xname(sc->sc_dev), usbd_errstr(error));
2030 		goto fail;
2031 	}
2032 
2033 	/*
2034 	 * Allocate Tx and Rx xfer queues.
2035 	 */
2036 	error = rum_alloc_tx_list(sc);
2037 	if (error != 0) {
2038 		printf("%s: could not allocate Tx list\n",
2039 		    device_xname(sc->sc_dev));
2040 		goto fail;
2041 	}
2042 
2043 	error = rum_alloc_rx_list(sc);
2044 	if (error != 0) {
2045 		printf("%s: could not allocate Rx list\n",
2046 		    device_xname(sc->sc_dev));
2047 		goto fail;
2048 	}
2049 
2050 	/*
2051 	 * Start up the receive pipe.
2052 	 */
2053 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2054 		struct rum_rx_data *data;
2055 
2056 		data = &sc->rx_data[i];
2057 
2058 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2059 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2060 		error = usbd_transfer(data->xfer);
2061 		if (error != USBD_NORMAL_COMPLETION &&
2062 		    error != USBD_IN_PROGRESS) {
2063 			printf("%s: could not queue Rx transfer\n",
2064 			    device_xname(sc->sc_dev));
2065 			goto fail;
2066 		}
2067 	}
2068 
2069 	/* update Rx filter */
2070 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2071 
2072 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2073 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2074 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2075 		       RT2573_DROP_ACKCTS;
2076 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2077 			tmp |= RT2573_DROP_TODS;
2078 		if (!(ifp->if_flags & IFF_PROMISC))
2079 			tmp |= RT2573_DROP_NOT_TO_ME;
2080 	}
2081 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2082 
2083 	ifp->if_flags &= ~IFF_OACTIVE;
2084 	ifp->if_flags |= IFF_RUNNING;
2085 
2086 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2087 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2088 	else
2089 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2090 
2091 	return 0;
2092 
2093 fail:	rum_stop(ifp, 1);
2094 	return error;
2095 }
2096 
2097 static void
2098 rum_stop(struct ifnet *ifp, int disable)
2099 {
2100 	struct rum_softc *sc = ifp->if_softc;
2101 	struct ieee80211com *ic = &sc->sc_ic;
2102 	uint32_t tmp;
2103 
2104 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2105 
2106 	sc->sc_tx_timer = 0;
2107 	ifp->if_timer = 0;
2108 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2109 
2110 	/* disable Rx */
2111 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2112 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2113 
2114 	/* reset ASIC */
2115 	rum_write(sc, RT2573_MAC_CSR1, 3);
2116 	rum_write(sc, RT2573_MAC_CSR1, 0);
2117 
2118 	if (sc->amrr_xfer != NULL) {
2119 		usbd_destroy_xfer(sc->amrr_xfer);
2120 		sc->amrr_xfer = NULL;
2121 	}
2122 
2123 	if (sc->sc_rx_pipeh != NULL) {
2124 		usbd_abort_pipe(sc->sc_rx_pipeh);
2125 	}
2126 
2127 	if (sc->sc_tx_pipeh != NULL) {
2128 		usbd_abort_pipe(sc->sc_tx_pipeh);
2129 	}
2130 
2131 	rum_free_rx_list(sc);
2132 	rum_free_tx_list(sc);
2133 
2134 	if (sc->sc_rx_pipeh != NULL) {
2135 		usbd_close_pipe(sc->sc_rx_pipeh);
2136 		sc->sc_rx_pipeh = NULL;
2137 	}
2138 
2139 	if (sc->sc_tx_pipeh != NULL) {
2140 		usbd_close_pipe(sc->sc_tx_pipeh);
2141 		sc->sc_tx_pipeh = NULL;
2142 	}
2143 }
2144 
2145 static int
2146 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2147 {
2148 	usb_device_request_t req;
2149 	uint16_t reg = RT2573_MCU_CODE_BASE;
2150 	usbd_status error;
2151 
2152 	/* copy firmware image into NIC */
2153 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2154 		rum_write(sc, reg, UGETDW(ucode));
2155 
2156 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2157 	req.bRequest = RT2573_MCU_CNTL;
2158 	USETW(req.wValue, RT2573_MCU_RUN);
2159 	USETW(req.wIndex, 0);
2160 	USETW(req.wLength, 0);
2161 
2162 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2163 	if (error != 0) {
2164 		printf("%s: could not run firmware: %s\n",
2165 		    device_xname(sc->sc_dev), usbd_errstr(error));
2166 	}
2167 	return error;
2168 }
2169 
2170 static int
2171 rum_prepare_beacon(struct rum_softc *sc)
2172 {
2173 	struct ieee80211com *ic = &sc->sc_ic;
2174 	struct rum_tx_desc desc;
2175 	struct mbuf *m0;
2176 	int rate;
2177 
2178 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2179 	if (m0 == NULL) {
2180 		aprint_error_dev(sc->sc_dev,
2181 		    "could not allocate beacon frame\n");
2182 		return ENOBUFS;
2183 	}
2184 
2185 	/* send beacons at the lowest available rate */
2186 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2187 
2188 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2189 	    m0->m_pkthdr.len, rate);
2190 
2191 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2192 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2193 
2194 	/* copy beacon header and payload into NIC memory */
2195 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2196 	    m0->m_pkthdr.len);
2197 
2198 	m_freem(m0);
2199 
2200 	return 0;
2201 }
2202 
2203 static void
2204 rum_newassoc(struct ieee80211_node *ni, int isnew)
2205 {
2206 	/* start with lowest Tx rate */
2207 	ni->ni_txrate = 0;
2208 }
2209 
2210 static void
2211 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2212 {
2213 	int i;
2214 
2215 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2216 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2217 
2218 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2219 
2220 	/* set rate to some reasonable initial value */
2221 	for (i = ni->ni_rates.rs_nrates - 1;
2222 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2223 	     i--);
2224 	ni->ni_txrate = i;
2225 
2226 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2227 }
2228 
2229 static void
2230 rum_amrr_timeout(void *arg)
2231 {
2232 	struct rum_softc *sc = arg;
2233 	usb_device_request_t req;
2234 
2235 	/*
2236 	 * Asynchronously read statistic registers (cleared by read).
2237 	 */
2238 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2239 	req.bRequest = RT2573_READ_MULTI_MAC;
2240 	USETW(req.wValue, 0);
2241 	USETW(req.wIndex, RT2573_STA_CSR0);
2242 	USETW(req.wLength, sizeof(sc->sta));
2243 
2244 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2245 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2246 	    rum_amrr_update);
2247 	(void)usbd_transfer(sc->amrr_xfer);
2248 }
2249 
2250 static void
2251 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2252     usbd_status status)
2253 {
2254 	struct rum_softc *sc = (struct rum_softc *)priv;
2255 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2256 
2257 	if (status != USBD_NORMAL_COMPLETION) {
2258 		printf("%s: could not retrieve Tx statistics - cancelling "
2259 		    "automatic rate control\n", device_xname(sc->sc_dev));
2260 		return;
2261 	}
2262 
2263 	/* count TX retry-fail as Tx errors */
2264 	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2265 
2266 	sc->amn.amn_retrycnt =
2267 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2268 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2269 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2270 
2271 	sc->amn.amn_txcnt =
2272 	    sc->amn.amn_retrycnt +
2273 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2274 
2275 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2276 
2277 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2278 }
2279 
2280 static int
2281 rum_activate(device_t self, enum devact act)
2282 {
2283 	switch (act) {
2284 	case DVACT_DEACTIVATE:
2285 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2286 		return 0;
2287 	default:
2288 		return 0;
2289 	}
2290 }
2291 
2292 MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2293 
2294 #ifdef _MODULE
2295 #include "ioconf.c"
2296 #endif
2297 
2298 static int
2299 if_rum_modcmd(modcmd_t cmd, void *aux)
2300 {
2301 	int error = 0;
2302 
2303 	switch (cmd) {
2304 	case MODULE_CMD_INIT:
2305 #ifdef _MODULE
2306 		error = config_init_component(cfdriver_ioconf_rum,
2307 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2308 #endif
2309 		return error;
2310 	case MODULE_CMD_FINI:
2311 #ifdef _MODULE
2312 		error = config_fini_component(cfdriver_ioconf_rum,
2313 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2314 #endif
2315 		return error;
2316 	default:
2317 		return ENOTTY;
2318 	}
2319 }
2320