xref: /netbsd/sys/dev/usb/if_rum.c (revision eeae2d6a)
1 /*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2 /*	$NetBSD: if_rum.c,v 1.70 2022/08/12 19:13:36 riastradh Exp $	*/
3 
4 /*-
5  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com.tw/
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.70 2022/08/12 19:13:36 riastradh Exp $");
28 
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/module.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/firmload.h>
67 
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72 
73 #include <dev/usb/if_rumreg.h>
74 #include <dev/usb/if_rumvar.h>
75 
76 #ifdef RUM_DEBUG
77 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
78 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
79 int rum_debug = 1;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84 
85 /* various supported device vendors/products */
86 static const struct usb_devno rum_devs[] = {
87 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
88 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
89 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
90 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
91 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
92 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
93 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
94 	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
95 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
96 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
97 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
98 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
99 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
103 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
104 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
105 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
106 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
107 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
108 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
109 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
110 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
111 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
112 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
113 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
114 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
115 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
116 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
117 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
118 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
119 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
120 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
121 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
122 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
123 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
124 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
125 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
126 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
127 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
128 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
129 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
130 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
131 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
132 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
133 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
134 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
135 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
136 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
137 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
138 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
139 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
140 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
141 	{ USB_VENDOR_SYNET,		USB_PRODUCT_SYNET_MWP54SS },
142 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
143 };
144 
145 static int		rum_attachhook(void *);
146 static int		rum_alloc_tx_list(struct rum_softc *);
147 static void		rum_free_tx_list(struct rum_softc *);
148 static int		rum_alloc_rx_list(struct rum_softc *);
149 static void		rum_free_rx_list(struct rum_softc *);
150 static int		rum_media_change(struct ifnet *);
151 static void		rum_next_scan(void *);
152 static void		rum_task(void *);
153 static int		rum_newstate(struct ieee80211com *,
154 			    enum ieee80211_state, int);
155 static void		rum_txeof(struct usbd_xfer *, void *,
156 			    usbd_status);
157 static void		rum_rxeof(struct usbd_xfer *, void *,
158 			    usbd_status);
159 static uint8_t		rum_rxrate(const struct rum_rx_desc *);
160 static int		rum_ack_rate(struct ieee80211com *, int);
161 static uint16_t		rum_txtime(int, int, uint32_t);
162 static uint8_t		rum_plcp_signal(int);
163 static void		rum_setup_tx_desc(struct rum_softc *,
164 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
165 			    int);
166 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
167 			    struct ieee80211_node *);
168 static void		rum_start(struct ifnet *);
169 static void		rum_watchdog(struct ifnet *);
170 static int		rum_ioctl(struct ifnet *, u_long, void *);
171 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
172 			    int);
173 static uint32_t		rum_read(struct rum_softc *, uint16_t);
174 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
175 			    int);
176 static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
177 static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
178 			    size_t);
179 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
180 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
181 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
182 static void		rum_select_antenna(struct rum_softc *);
183 static void		rum_enable_mrr(struct rum_softc *);
184 static void		rum_set_txpreamble(struct rum_softc *);
185 static void		rum_set_basicrates(struct rum_softc *);
186 static void		rum_select_band(struct rum_softc *,
187 			    struct ieee80211_channel *);
188 static void		rum_set_chan(struct rum_softc *,
189 			    struct ieee80211_channel *);
190 static void		rum_enable_tsf_sync(struct rum_softc *);
191 static void		rum_update_slot(struct rum_softc *);
192 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
193 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
194 static void		rum_update_promisc(struct rum_softc *);
195 static const char	*rum_get_rf(int);
196 static void		rum_read_eeprom(struct rum_softc *);
197 static int		rum_bbp_init(struct rum_softc *);
198 static int		rum_init(struct ifnet *);
199 static void		rum_stop(struct ifnet *, int);
200 static int		rum_load_microcode(struct rum_softc *, const u_char *,
201 			    size_t);
202 static int		rum_prepare_beacon(struct rum_softc *);
203 static void		rum_newassoc(struct ieee80211_node *, int);
204 static void		rum_amrr_start(struct rum_softc *,
205 			    struct ieee80211_node *);
206 static void		rum_amrr_timeout(void *);
207 static void		rum_amrr_update(struct usbd_xfer *, void *,
208 			    usbd_status);
209 
210 static const struct {
211 	uint32_t	reg;
212 	uint32_t	val;
213 } rum_def_mac[] = {
214 	RT2573_DEF_MAC
215 };
216 
217 static const struct {
218 	uint8_t	reg;
219 	uint8_t	val;
220 } rum_def_bbp[] = {
221 	RT2573_DEF_BBP
222 };
223 
224 static const struct rfprog {
225 	uint8_t		chan;
226 	uint32_t	r1, r2, r3, r4;
227 }  rum_rf5226[] = {
228 	RT2573_RF5226
229 }, rum_rf5225[] = {
230 	RT2573_RF5225
231 };
232 
233 static int rum_match(device_t, cfdata_t, void *);
234 static void rum_attach(device_t, device_t, void *);
235 static int rum_detach(device_t, int);
236 static int rum_activate(device_t, enum devact);
237 
238 CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
239     rum_detach, rum_activate);
240 
241 static int
rum_match(device_t parent,cfdata_t match,void * aux)242 rum_match(device_t parent, cfdata_t match, void *aux)
243 {
244 	struct usb_attach_arg *uaa = aux;
245 
246 	return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
247 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
248 }
249 
250 static int
rum_attachhook(void * xsc)251 rum_attachhook(void *xsc)
252 {
253 	struct rum_softc *sc = xsc;
254 	firmware_handle_t fwh;
255 	const char *name = "rum-rt2573";
256 	u_char *ucode;
257 	size_t size;
258 	int error;
259 
260 	if ((error = firmware_open("rum", name, &fwh)) != 0) {
261 		printf("%s: failed firmware_open of file %s (error %d)\n",
262 		    device_xname(sc->sc_dev), name, error);
263 		return error;
264 	}
265 	size = firmware_get_size(fwh);
266 	ucode = firmware_malloc(size);
267 	if (ucode == NULL) {
268 		printf("%s: failed to allocate firmware memory\n",
269 		    device_xname(sc->sc_dev));
270 		firmware_close(fwh);
271 		return ENOMEM;
272 	}
273 	error = firmware_read(fwh, 0, ucode, size);
274 	firmware_close(fwh);
275 	if (error != 0) {
276 		printf("%s: failed to read firmware (error %d)\n",
277 		    device_xname(sc->sc_dev), error);
278 		firmware_free(ucode, size);
279 		return error;
280 	}
281 
282 	if (rum_load_microcode(sc, ucode, size) != 0) {
283 		printf("%s: could not load 8051 microcode\n",
284 		    device_xname(sc->sc_dev));
285 		firmware_free(ucode, size);
286 		return ENXIO;
287 	}
288 
289 	firmware_free(ucode, size);
290 	sc->sc_flags |= RT2573_FWLOADED;
291 
292 	return 0;
293 }
294 
295 static void
rum_attach(device_t parent,device_t self,void * aux)296 rum_attach(device_t parent, device_t self, void *aux)
297 {
298 	struct rum_softc *sc = device_private(self);
299 	struct usb_attach_arg *uaa = aux;
300 	struct ieee80211com *ic = &sc->sc_ic;
301 	struct ifnet *ifp = &sc->sc_if;
302 	usb_interface_descriptor_t *id;
303 	usb_endpoint_descriptor_t *ed;
304 	usbd_status error;
305 	char *devinfop;
306 	int i, ntries;
307 	uint32_t tmp;
308 
309 	sc->sc_dev = self;
310 	sc->sc_udev = uaa->uaa_device;
311 	sc->sc_flags = 0;
312 
313 	aprint_naive("\n");
314 	aprint_normal("\n");
315 
316 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
317 	aprint_normal_dev(self, "%s\n", devinfop);
318 	usbd_devinfo_free(devinfop);
319 
320 	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
321 	if (error != 0) {
322 		aprint_error_dev(self, "failed to set configuration"
323 		    ", err=%s\n", usbd_errstr(error));
324 		return;
325 	}
326 
327 	/* get the first interface handle */
328 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
329 	    &sc->sc_iface);
330 	if (error != 0) {
331 		aprint_error_dev(self, "could not get interface handle\n");
332 		return;
333 	}
334 
335 	/*
336 	 * Find endpoints.
337 	 */
338 	id = usbd_get_interface_descriptor(sc->sc_iface);
339 
340 	sc->sc_rx_no = sc->sc_tx_no = -1;
341 	for (i = 0; i < id->bNumEndpoints; i++) {
342 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
343 		if (ed == NULL) {
344 			aprint_error_dev(self,
345 			    "no endpoint descriptor for iface %d\n", i);
346 			return;
347 		}
348 
349 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
350 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
351 			sc->sc_rx_no = ed->bEndpointAddress;
352 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
353 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
354 			sc->sc_tx_no = ed->bEndpointAddress;
355 	}
356 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
357 		aprint_error_dev(self, "missing endpoint\n");
358 		return;
359 	}
360 
361 	usb_init_task(&sc->sc_task, rum_task, sc, 0);
362 	callout_init(&sc->sc_scan_ch, 0);
363 
364 	sc->amrr.amrr_min_success_threshold =  1;
365 	sc->amrr.amrr_max_success_threshold = 10;
366 	callout_init(&sc->sc_amrr_ch, 0);
367 
368 	/* retrieve RT2573 rev. no */
369 	for (ntries = 0; ntries < 1000; ntries++) {
370 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
371 			break;
372 		DELAY(1000);
373 	}
374 	if (ntries == 1000) {
375 		aprint_error_dev(self, "timeout waiting for chip to settle\n");
376 		return;
377 	}
378 
379 	/* retrieve MAC address and various other things from EEPROM */
380 	rum_read_eeprom(sc);
381 
382 	aprint_normal_dev(self,
383 	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
384 	    sc->macbbp_rev, tmp,
385 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
386 
387 	ic->ic_ifp = ifp;
388 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
389 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
390 	ic->ic_state = IEEE80211_S_INIT;
391 
392 	/* set device capabilities */
393 	ic->ic_caps =
394 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
395 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
396 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
397 	    IEEE80211_C_TXPMGT |	/* tx power management */
398 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
399 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
400 	    IEEE80211_C_WPA;		/* 802.11i */
401 
402 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
403 		/* set supported .11a rates */
404 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
405 
406 		/* set supported .11a channels */
407 		for (i = 34; i <= 46; i += 4) {
408 			ic->ic_channels[i].ic_freq =
409 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
410 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
411 		}
412 		for (i = 36; i <= 64; i += 4) {
413 			ic->ic_channels[i].ic_freq =
414 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
415 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
416 		}
417 		for (i = 100; i <= 140; i += 4) {
418 			ic->ic_channels[i].ic_freq =
419 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
420 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
421 		}
422 		for (i = 149; i <= 165; i += 4) {
423 			ic->ic_channels[i].ic_freq =
424 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
425 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
426 		}
427 	}
428 
429 	/* set supported .11b and .11g rates */
430 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
431 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
432 
433 	/* set supported .11b and .11g channels (1 through 14) */
434 	for (i = 1; i <= 14; i++) {
435 		ic->ic_channels[i].ic_freq =
436 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
437 		ic->ic_channels[i].ic_flags =
438 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
439 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
440 	}
441 
442 	ifp->if_softc = sc;
443 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 	ifp->if_init = rum_init;
445 	ifp->if_ioctl = rum_ioctl;
446 	ifp->if_start = rum_start;
447 	ifp->if_watchdog = rum_watchdog;
448 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
449 	IFQ_SET_READY(&ifp->if_snd);
450 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
451 
452 	if_attach(ifp);
453 	ieee80211_ifattach(ic);
454 	ic->ic_newassoc = rum_newassoc;
455 
456 	/* override state transition machine */
457 	sc->sc_newstate = ic->ic_newstate;
458 	ic->ic_newstate = rum_newstate;
459 
460 	/* XXX media locking needs revisiting */
461 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
462 	ieee80211_media_init_with_lock(ic,
463 	    rum_media_change, ieee80211_media_status, &sc->sc_media_mtx);
464 
465 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
466 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
467 	    &sc->sc_drvbpf);
468 
469 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
470 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
471 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
472 
473 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
474 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
475 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
476 
477 	ieee80211_announce(ic);
478 
479 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
480 
481 	if (!pmf_device_register(self, NULL, NULL))
482 		aprint_error_dev(self, "couldn't establish power handler\n");
483 
484 	return;
485 }
486 
487 static int
rum_detach(device_t self,int flags)488 rum_detach(device_t self, int flags)
489 {
490 	struct rum_softc *sc = device_private(self);
491 	struct ieee80211com *ic = &sc->sc_ic;
492 	struct ifnet *ifp = &sc->sc_if;
493 	int s;
494 
495 	if (!ifp->if_softc)
496 		return 0;
497 
498 	pmf_device_deregister(self);
499 
500 	s = splusb();
501 
502 	rum_stop(ifp, 1);
503 	callout_halt(&sc->sc_scan_ch, NULL);
504 	callout_halt(&sc->sc_amrr_ch, NULL);
505 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
506 
507 	bpf_detach(ifp);
508 	ieee80211_ifdetach(ic);	/* free all nodes */
509 	if_detach(ifp);
510 
511 	splx(s);
512 
513 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
514 
515 	return 0;
516 }
517 
518 static int
rum_alloc_tx_list(struct rum_softc * sc)519 rum_alloc_tx_list(struct rum_softc *sc)
520 {
521 	struct rum_tx_data *data;
522 	int i, error;
523 
524 	sc->tx_cur = sc->tx_queued = 0;
525 
526 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
527 		data = &sc->tx_data[i];
528 
529 		data->sc = sc;
530 
531 		error = usbd_create_xfer(sc->sc_tx_pipeh,
532 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
533 		    USBD_FORCE_SHORT_XFER, 0, &data->xfer);
534 		if (error) {
535 			printf("%s: could not allocate tx xfer\n",
536 			    device_xname(sc->sc_dev));
537 			goto fail;
538 		}
539 		data->buf = usbd_get_buffer(data->xfer);
540 
541 		/* clean Tx descriptor */
542 		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
543 	}
544 
545 	return 0;
546 
547 fail:	rum_free_tx_list(sc);
548 	return error;
549 }
550 
551 static void
rum_free_tx_list(struct rum_softc * sc)552 rum_free_tx_list(struct rum_softc *sc)
553 {
554 	struct rum_tx_data *data;
555 	int i;
556 
557 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
558 		data = &sc->tx_data[i];
559 
560 		if (data->xfer != NULL) {
561 			usbd_destroy_xfer(data->xfer);
562 			data->xfer = NULL;
563 		}
564 
565 		if (data->ni != NULL) {
566 			ieee80211_free_node(data->ni);
567 			data->ni = NULL;
568 		}
569 	}
570 }
571 
572 static int
rum_alloc_rx_list(struct rum_softc * sc)573 rum_alloc_rx_list(struct rum_softc *sc)
574 {
575 	struct rum_rx_data *data;
576 	int i, error;
577 
578 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
579 		data = &sc->rx_data[i];
580 
581 		data->sc = sc;
582 
583 		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
584 		    0, 0, &data->xfer);
585 		if (error) {
586 			printf("%s: could not allocate rx xfer\n",
587 			    device_xname(sc->sc_dev));
588 			goto fail;
589 		}
590 
591 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
592 		if (data->m == NULL) {
593 			printf("%s: could not allocate rx mbuf\n",
594 			    device_xname(sc->sc_dev));
595 			error = ENOMEM;
596 			goto fail;
597 		}
598 
599 		MCLGET(data->m, M_DONTWAIT);
600 		if (!(data->m->m_flags & M_EXT)) {
601 			printf("%s: could not allocate rx mbuf cluster\n",
602 			    device_xname(sc->sc_dev));
603 			error = ENOMEM;
604 			goto fail;
605 		}
606 
607 		data->buf = mtod(data->m, uint8_t *);
608 	}
609 
610 	return 0;
611 
612 fail:	rum_free_rx_list(sc);
613 	return error;
614 }
615 
616 static void
rum_free_rx_list(struct rum_softc * sc)617 rum_free_rx_list(struct rum_softc *sc)
618 {
619 	struct rum_rx_data *data;
620 	int i;
621 
622 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
623 		data = &sc->rx_data[i];
624 
625 		if (data->xfer != NULL) {
626 			usbd_destroy_xfer(data->xfer);
627 			data->xfer = NULL;
628 		}
629 
630 		if (data->m != NULL) {
631 			m_freem(data->m);
632 			data->m = NULL;
633 		}
634 	}
635 }
636 
637 static int
rum_media_change(struct ifnet * ifp)638 rum_media_change(struct ifnet *ifp)
639 {
640 	int error;
641 
642 	error = ieee80211_media_change(ifp);
643 	if (error != ENETRESET)
644 		return error;
645 
646 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
647 		rum_init(ifp);
648 
649 	return 0;
650 }
651 
652 /*
653  * This function is called periodically (every 200ms) during scanning to
654  * switch from one channel to another.
655  */
656 static void
rum_next_scan(void * arg)657 rum_next_scan(void *arg)
658 {
659 	struct rum_softc *sc = arg;
660 	struct ieee80211com *ic = &sc->sc_ic;
661 	int s;
662 
663 	s = splnet();
664 	if (ic->ic_state == IEEE80211_S_SCAN)
665 		ieee80211_next_scan(ic);
666 	splx(s);
667 }
668 
669 static void
rum_task(void * arg)670 rum_task(void *arg)
671 {
672 	struct rum_softc *sc = arg;
673 	struct ieee80211com *ic = &sc->sc_ic;
674 	enum ieee80211_state ostate;
675 	struct ieee80211_node *ni;
676 	uint32_t tmp;
677 
678 	ostate = ic->ic_state;
679 
680 	switch (sc->sc_state) {
681 	case IEEE80211_S_INIT:
682 		if (ostate == IEEE80211_S_RUN) {
683 			/* abort TSF synchronization */
684 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
685 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
686 		}
687 		break;
688 
689 	case IEEE80211_S_SCAN:
690 		rum_set_chan(sc, ic->ic_curchan);
691 		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
692 		break;
693 
694 	case IEEE80211_S_AUTH:
695 		rum_set_chan(sc, ic->ic_curchan);
696 		break;
697 
698 	case IEEE80211_S_ASSOC:
699 		rum_set_chan(sc, ic->ic_curchan);
700 		break;
701 
702 	case IEEE80211_S_RUN:
703 		rum_set_chan(sc, ic->ic_curchan);
704 
705 		ni = ic->ic_bss;
706 
707 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
708 			rum_update_slot(sc);
709 			rum_enable_mrr(sc);
710 			rum_set_txpreamble(sc);
711 			rum_set_basicrates(sc);
712 			rum_set_bssid(sc, ni->ni_bssid);
713 		}
714 
715 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
716 		    ic->ic_opmode == IEEE80211_M_IBSS)
717 			rum_prepare_beacon(sc);
718 
719 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
720 			rum_enable_tsf_sync(sc);
721 
722 		if (ic->ic_opmode == IEEE80211_M_STA) {
723 			/* fake a join to init the tx rate */
724 			rum_newassoc(ic->ic_bss, 1);
725 
726 			/* enable automatic rate adaptation in STA mode */
727 			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
728 				rum_amrr_start(sc, ni);
729 		}
730 
731 		break;
732 	}
733 
734 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
735 }
736 
737 static int
rum_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)738 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
739 {
740 	struct rum_softc *sc = ic->ic_ifp->if_softc;
741 
742 	/*
743 	 * XXXSMP: This does not wait for the task, if it is in flight,
744 	 * to complete.  If this code works at all, it must rely on the
745 	 * kernel lock to serialize with the USB task thread.
746 	 */
747 	usb_rem_task(sc->sc_udev, &sc->sc_task);
748 	callout_stop(&sc->sc_scan_ch);
749 	callout_stop(&sc->sc_amrr_ch);
750 
751 	/* do it in a process context */
752 	sc->sc_state = nstate;
753 	sc->sc_arg = arg;
754 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
755 
756 	return 0;
757 }
758 
759 /* quickly determine if a given rate is CCK or OFDM */
760 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
761 
762 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
763 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
764 
765 static void
rum_txeof(struct usbd_xfer * xfer,void * priv,usbd_status status)766 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
767 {
768 	struct rum_tx_data *data = priv;
769 	struct rum_softc *sc = data->sc;
770 	struct ifnet *ifp = &sc->sc_if;
771 	int s;
772 
773 	if (status != USBD_NORMAL_COMPLETION) {
774 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
775 			return;
776 
777 		printf("%s: could not transmit buffer: %s\n",
778 		    device_xname(sc->sc_dev), usbd_errstr(status));
779 
780 		if (status == USBD_STALLED)
781 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
782 
783 		if_statinc(ifp, if_oerrors);
784 		return;
785 	}
786 
787 	s = splnet();
788 
789 	ieee80211_free_node(data->ni);
790 	data->ni = NULL;
791 
792 	sc->tx_queued--;
793 	if_statinc(ifp, if_opackets);
794 
795 	DPRINTFN(10, ("tx done\n"));
796 
797 	sc->sc_tx_timer = 0;
798 	ifp->if_flags &= ~IFF_OACTIVE;
799 	rum_start(ifp);
800 
801 	splx(s);
802 }
803 
804 static void
rum_rxeof(struct usbd_xfer * xfer,void * priv,usbd_status status)805 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
806 {
807 	struct rum_rx_data *data = priv;
808 	struct rum_softc *sc = data->sc;
809 	struct ieee80211com *ic = &sc->sc_ic;
810 	struct ifnet *ifp = &sc->sc_if;
811 	struct rum_rx_desc *desc;
812 	struct ieee80211_frame *wh;
813 	struct ieee80211_node *ni;
814 	struct mbuf *mnew, *m;
815 	int s, len;
816 
817 	if (status != USBD_NORMAL_COMPLETION) {
818 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
819 			return;
820 
821 		if (status == USBD_STALLED)
822 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
823 		goto skip;
824 	}
825 
826 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
827 
828 	if (len < (int)(RT2573_RX_DESC_SIZE +
829 		        sizeof(struct ieee80211_frame_min))) {
830 		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
831 		    len));
832 		if_statinc(ifp, if_ierrors);
833 		goto skip;
834 	}
835 
836 	desc = (struct rum_rx_desc *)data->buf;
837 
838 	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
839 		/*
840 		 * This should not happen since we did not request to receive
841 		 * those frames when we filled RT2573_TXRX_CSR0.
842 		 */
843 		DPRINTFN(5, ("CRC error\n"));
844 		if_statinc(ifp, if_ierrors);
845 		goto skip;
846 	}
847 
848 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
849 	if (mnew == NULL) {
850 		printf("%s: could not allocate rx mbuf\n",
851 		    device_xname(sc->sc_dev));
852 		if_statinc(ifp, if_ierrors);
853 		goto skip;
854 	}
855 
856 	MCLGET(mnew, M_DONTWAIT);
857 	if (!(mnew->m_flags & M_EXT)) {
858 		printf("%s: could not allocate rx mbuf cluster\n",
859 		    device_xname(sc->sc_dev));
860 		m_freem(mnew);
861 		if_statinc(ifp, if_ierrors);
862 		goto skip;
863 	}
864 
865 	m = data->m;
866 	data->m = mnew;
867 	data->buf = mtod(data->m, uint8_t *);
868 
869 	/* finalize mbuf */
870 	m_set_rcvif(m, ifp);
871 	m->m_data = (void *)(desc + 1);
872 	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
873 
874 	s = splnet();
875 
876 	if (sc->sc_drvbpf != NULL) {
877 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
878 
879 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
880 		tap->wr_rate = rum_rxrate(desc);
881 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
882 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
883 		tap->wr_antenna = sc->rx_ant;
884 		tap->wr_antsignal = desc->rssi;
885 
886 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
887 	}
888 
889 	wh = mtod(m, struct ieee80211_frame *);
890 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
891 
892 	/* send the frame to the 802.11 layer */
893 	ieee80211_input(ic, m, ni, desc->rssi, 0);
894 
895 	/* node is no longer needed */
896 	ieee80211_free_node(ni);
897 
898 	splx(s);
899 
900 	DPRINTFN(15, ("rx done\n"));
901 
902 skip:	/* setup a new transfer */
903 	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
904 	    USBD_NO_TIMEOUT, rum_rxeof);
905 	usbd_transfer(xfer);
906 }
907 
908 /*
909  * This function is only used by the Rx radiotap code. It returns the rate at
910  * which a given frame was received.
911  */
912 static uint8_t
rum_rxrate(const struct rum_rx_desc * desc)913 rum_rxrate(const struct rum_rx_desc *desc)
914 {
915 	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
916 		/* reverse function of rum_plcp_signal */
917 		switch (desc->rate) {
918 		case 0xb:	return 12;
919 		case 0xf:	return 18;
920 		case 0xa:	return 24;
921 		case 0xe:	return 36;
922 		case 0x9:	return 48;
923 		case 0xd:	return 72;
924 		case 0x8:	return 96;
925 		case 0xc:	return 108;
926 		}
927 	} else {
928 		if (desc->rate == 10)
929 			return 2;
930 		if (desc->rate == 20)
931 			return 4;
932 		if (desc->rate == 55)
933 			return 11;
934 		if (desc->rate == 110)
935 			return 22;
936 	}
937 	return 2;	/* should not get there */
938 }
939 
940 /*
941  * Return the expected ack rate for a frame transmitted at rate `rate'.
942  * XXX: this should depend on the destination node basic rate set.
943  */
944 static int
rum_ack_rate(struct ieee80211com * ic,int rate)945 rum_ack_rate(struct ieee80211com *ic, int rate)
946 {
947 	switch (rate) {
948 	/* CCK rates */
949 	case 2:
950 		return 2;
951 	case 4:
952 	case 11:
953 	case 22:
954 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
955 
956 	/* OFDM rates */
957 	case 12:
958 	case 18:
959 		return 12;
960 	case 24:
961 	case 36:
962 		return 24;
963 	case 48:
964 	case 72:
965 	case 96:
966 	case 108:
967 		return 48;
968 	}
969 
970 	/* default to 1Mbps */
971 	return 2;
972 }
973 
974 /*
975  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
976  * The function automatically determines the operating mode depending on the
977  * given rate. `flags' indicates whether short preamble is in use or not.
978  */
979 static uint16_t
rum_txtime(int len,int rate,uint32_t flags)980 rum_txtime(int len, int rate, uint32_t flags)
981 {
982 	uint16_t txtime;
983 
984 	if (RUM_RATE_IS_OFDM(rate)) {
985 		/* IEEE Std 802.11a-1999, pp. 37 */
986 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
987 		txtime = 16 + 4 + 4 * txtime + 6;
988 	} else {
989 		/* IEEE Std 802.11b-1999, pp. 28 */
990 		txtime = (16 * len + rate - 1) / rate;
991 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
992 			txtime +=  72 + 24;
993 		else
994 			txtime += 144 + 48;
995 	}
996 	return txtime;
997 }
998 
999 static uint8_t
rum_plcp_signal(int rate)1000 rum_plcp_signal(int rate)
1001 {
1002 	switch (rate) {
1003 	/* CCK rates (returned values are device-dependent) */
1004 	case 2:		return 0x0;
1005 	case 4:		return 0x1;
1006 	case 11:	return 0x2;
1007 	case 22:	return 0x3;
1008 
1009 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1010 	case 12:	return 0xb;
1011 	case 18:	return 0xf;
1012 	case 24:	return 0xa;
1013 	case 36:	return 0xe;
1014 	case 48:	return 0x9;
1015 	case 72:	return 0xd;
1016 	case 96:	return 0x8;
1017 	case 108:	return 0xc;
1018 
1019 	/* unsupported rates (should not get there) */
1020 	default:	return 0xff;
1021 	}
1022 }
1023 
1024 static void
rum_setup_tx_desc(struct rum_softc * sc,struct rum_tx_desc * desc,uint32_t flags,uint16_t xflags,int len,int rate)1025 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1026     uint32_t flags, uint16_t xflags, int len, int rate)
1027 {
1028 	struct ieee80211com *ic = &sc->sc_ic;
1029 	uint16_t plcp_length;
1030 	int remainder;
1031 
1032 	desc->flags = htole32(flags);
1033 	desc->flags |= htole32(RT2573_TX_VALID);
1034 	desc->flags |= htole32(len << 16);
1035 
1036 	desc->xflags = htole16(xflags);
1037 
1038 	desc->wme = htole16(
1039 	    RT2573_QID(0) |
1040 	    RT2573_AIFSN(2) |
1041 	    RT2573_LOGCWMIN(4) |
1042 	    RT2573_LOGCWMAX(10));
1043 
1044 	/* setup PLCP fields */
1045 	desc->plcp_signal  = rum_plcp_signal(rate);
1046 	desc->plcp_service = 4;
1047 
1048 	len += IEEE80211_CRC_LEN;
1049 	if (RUM_RATE_IS_OFDM(rate)) {
1050 		desc->flags |= htole32(RT2573_TX_OFDM);
1051 
1052 		plcp_length = len & 0xfff;
1053 		desc->plcp_length_hi = plcp_length >> 6;
1054 		desc->plcp_length_lo = plcp_length & 0x3f;
1055 	} else {
1056 		plcp_length = (16 * len + rate - 1) / rate;
1057 		if (rate == 22) {
1058 			remainder = (16 * len) % 22;
1059 			if (remainder != 0 && remainder < 7)
1060 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1061 		}
1062 		desc->plcp_length_hi = plcp_length >> 8;
1063 		desc->plcp_length_lo = plcp_length & 0xff;
1064 
1065 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1066 			desc->plcp_signal |= 0x08;
1067 	}
1068 }
1069 
1070 #define RUM_TX_TIMEOUT	5000
1071 
1072 static int
rum_tx_data(struct rum_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)1073 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1074 {
1075 	struct ieee80211com *ic = &sc->sc_ic;
1076 	struct rum_tx_desc *desc;
1077 	struct rum_tx_data *data;
1078 	struct ieee80211_frame *wh;
1079 	struct ieee80211_key *k;
1080 	uint32_t flags = 0;
1081 	uint16_t dur;
1082 	usbd_status error;
1083 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1084 
1085 	wh = mtod(m0, struct ieee80211_frame *);
1086 
1087 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1088 		k = ieee80211_crypto_encap(ic, ni, m0);
1089 		if (k == NULL) {
1090 			m_freem(m0);
1091 			return ENOBUFS;
1092 		}
1093 
1094 		/* packet header may have moved, reset our local pointer */
1095 		wh = mtod(m0, struct ieee80211_frame *);
1096 	}
1097 
1098 	/* compute actual packet length (including CRC and crypto overhead) */
1099 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1100 
1101 	/* pickup a rate */
1102 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1103 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1104 	     IEEE80211_FC0_TYPE_MGT)) {
1105 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1106 		rate = ni->ni_rates.rs_rates[0];
1107 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1108 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1109 	} else
1110 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1111 	if (rate == 0)
1112 		rate = 2;	/* XXX should not happen */
1113 	rate &= IEEE80211_RATE_VAL;
1114 
1115 	/* check if RTS/CTS or CTS-to-self protection must be used */
1116 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1117 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1118 		if (pktlen > ic->ic_rtsthreshold) {
1119 			needrts = 1;	/* RTS/CTS based on frame length */
1120 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1121 		    RUM_RATE_IS_OFDM(rate)) {
1122 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1123 				needcts = 1;	/* CTS-to-self */
1124 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1125 				needrts = 1;	/* RTS/CTS */
1126 		}
1127 	}
1128 	if (needrts || needcts) {
1129 		struct mbuf *mprot;
1130 		int protrate, ackrate;
1131 
1132 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1133 		ackrate  = rum_ack_rate(ic, rate);
1134 
1135 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1136 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1137 		      2 * sc->sifs;
1138 		if (needrts) {
1139 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1140 			    protrate), ic->ic_flags) + sc->sifs;
1141 			mprot = ieee80211_get_rts(ic, wh, dur);
1142 		} else {
1143 			mprot = ieee80211_get_cts_to_self(ic, dur);
1144 		}
1145 		if (mprot == NULL) {
1146 			aprint_error_dev(sc->sc_dev,
1147 			    "couldn't allocate protection frame\n");
1148 			m_freem(m0);
1149 			return ENOBUFS;
1150 		}
1151 
1152 		data = &sc->tx_data[sc->tx_cur];
1153 		desc = (struct rum_tx_desc *)data->buf;
1154 
1155 		/* avoid multiple free() of the same node for each fragment */
1156 		data->ni = ieee80211_ref_node(ni);
1157 
1158 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1159 		    data->buf + RT2573_TX_DESC_SIZE);
1160 		rum_setup_tx_desc(sc, desc,
1161 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1162 		    0, mprot->m_pkthdr.len, protrate);
1163 
1164 		/* no roundup necessary here */
1165 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1166 
1167 		/* XXX may want to pass the protection frame to BPF */
1168 
1169 		/* mbuf is no longer needed */
1170 		m_freem(mprot);
1171 
1172 		usbd_setup_xfer(data->xfer, data, data->buf,
1173 		    xferlen, USBD_FORCE_SHORT_XFER,
1174 		    RUM_TX_TIMEOUT, rum_txeof);
1175 		error = usbd_transfer(data->xfer);
1176 		if (error != USBD_NORMAL_COMPLETION &&
1177 		    error != USBD_IN_PROGRESS) {
1178 			m_freem(m0);
1179 			return error;
1180 		}
1181 
1182 		sc->tx_queued++;
1183 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1184 
1185 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1186 	}
1187 
1188 	data = &sc->tx_data[sc->tx_cur];
1189 	desc = (struct rum_tx_desc *)data->buf;
1190 
1191 	data->ni = ni;
1192 
1193 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1194 		flags |= RT2573_TX_NEED_ACK;
1195 
1196 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1197 		    ic->ic_flags) + sc->sifs;
1198 		*(uint16_t *)wh->i_dur = htole16(dur);
1199 
1200 		/* tell hardware to set timestamp in probe responses */
1201 		if ((wh->i_fc[0] &
1202 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1203 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1204 			flags |= RT2573_TX_TIMESTAMP;
1205 	}
1206 
1207 	if (sc->sc_drvbpf != NULL) {
1208 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1209 
1210 		tap->wt_flags = 0;
1211 		tap->wt_rate = rate;
1212 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1213 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1214 		tap->wt_antenna = sc->tx_ant;
1215 
1216 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1217 	}
1218 
1219 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1220 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1221 
1222 	/* align end on a 4-bytes boundary */
1223 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1224 
1225 	/*
1226 	 * No space left in the last URB to store the extra 4 bytes, force
1227 	 * sending of another URB.
1228 	 */
1229 	if ((xferlen % 64) == 0)
1230 		xferlen += 4;
1231 
1232 	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1233 	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1234 	    rate, xferlen));
1235 
1236 	/* mbuf is no longer needed */
1237 	m_freem(m0);
1238 
1239 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1240 	    USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1241 	error = usbd_transfer(data->xfer);
1242 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1243 		return error;
1244 
1245 	sc->tx_queued++;
1246 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1247 
1248 	return 0;
1249 }
1250 
1251 static void
rum_start(struct ifnet * ifp)1252 rum_start(struct ifnet *ifp)
1253 {
1254 	struct rum_softc *sc = ifp->if_softc;
1255 	struct ieee80211com *ic = &sc->sc_ic;
1256 	struct ether_header *eh;
1257 	struct ieee80211_node *ni;
1258 	struct mbuf *m0;
1259 
1260 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1261 		return;
1262 
1263 	for (;;) {
1264 		IF_POLL(&ic->ic_mgtq, m0);
1265 		if (m0 != NULL) {
1266 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1267 				ifp->if_flags |= IFF_OACTIVE;
1268 				break;
1269 			}
1270 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1271 
1272 			ni = M_GETCTX(m0, struct ieee80211_node *);
1273 			M_CLEARCTX(m0);
1274 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1275 			if (rum_tx_data(sc, m0, ni) != 0)
1276 				break;
1277 
1278 		} else {
1279 			if (ic->ic_state != IEEE80211_S_RUN)
1280 				break;
1281 			IFQ_POLL(&ifp->if_snd, m0);
1282 			if (m0 == NULL)
1283 				break;
1284 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1285 				ifp->if_flags |= IFF_OACTIVE;
1286 				break;
1287 			}
1288 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1289 			if (m0->m_len < (int)sizeof(struct ether_header) &&
1290 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1291 				continue;
1292 
1293 			eh = mtod(m0, struct ether_header *);
1294 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1295 			if (ni == NULL) {
1296 				m_freem(m0);
1297 				continue;
1298 			}
1299 			bpf_mtap(ifp, m0, BPF_D_OUT);
1300 			m0 = ieee80211_encap(ic, m0, ni);
1301 			if (m0 == NULL) {
1302 				ieee80211_free_node(ni);
1303 				continue;
1304 			}
1305 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1306 			if (rum_tx_data(sc, m0, ni) != 0) {
1307 				ieee80211_free_node(ni);
1308 				if_statinc(ifp, if_oerrors);
1309 				break;
1310 			}
1311 		}
1312 
1313 		sc->sc_tx_timer = 5;
1314 		ifp->if_timer = 1;
1315 	}
1316 }
1317 
1318 static void
rum_watchdog(struct ifnet * ifp)1319 rum_watchdog(struct ifnet *ifp)
1320 {
1321 	struct rum_softc *sc = ifp->if_softc;
1322 	struct ieee80211com *ic = &sc->sc_ic;
1323 
1324 	ifp->if_timer = 0;
1325 
1326 	if (sc->sc_tx_timer > 0) {
1327 		if (--sc->sc_tx_timer == 0) {
1328 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1329 			/*rum_init(ifp); XXX needs a process context! */
1330 			if_statinc(ifp, if_oerrors);
1331 			return;
1332 		}
1333 		ifp->if_timer = 1;
1334 	}
1335 
1336 	ieee80211_watchdog(ic);
1337 }
1338 
1339 static int
rum_ioctl(struct ifnet * ifp,u_long cmd,void * data)1340 rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1341 {
1342 #define IS_RUNNING(ifp) \
1343 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1344 
1345 	struct rum_softc *sc = ifp->if_softc;
1346 	struct ieee80211com *ic = &sc->sc_ic;
1347 	int s, error = 0;
1348 
1349 	s = splnet();
1350 
1351 	switch (cmd) {
1352 	case SIOCSIFFLAGS:
1353 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1354 			break;
1355 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1356 		case IFF_UP|IFF_RUNNING:
1357 			rum_update_promisc(sc);
1358 			break;
1359 		case IFF_UP:
1360 			rum_init(ifp);
1361 			break;
1362 		case IFF_RUNNING:
1363 			rum_stop(ifp, 1);
1364 			break;
1365 		case 0:
1366 			break;
1367 		}
1368 		break;
1369 
1370 	case SIOCADDMULTI:
1371 	case SIOCDELMULTI:
1372 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1373 			error = 0;
1374 		}
1375 		break;
1376 
1377 	default:
1378 		error = ieee80211_ioctl(ic, cmd, data);
1379 	}
1380 
1381 	if (error == ENETRESET) {
1382 		if (IS_RUNNING(ifp) &&
1383 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1384 			rum_init(ifp);
1385 		error = 0;
1386 	}
1387 
1388 	splx(s);
1389 
1390 	return error;
1391 #undef IS_RUNNING
1392 }
1393 
1394 static void
rum_eeprom_read(struct rum_softc * sc,uint16_t addr,void * buf,int len)1395 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1396 {
1397 	usb_device_request_t req;
1398 	usbd_status error;
1399 
1400 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1401 	req.bRequest = RT2573_READ_EEPROM;
1402 	USETW(req.wValue, 0);
1403 	USETW(req.wIndex, addr);
1404 	USETW(req.wLength, len);
1405 
1406 	error = usbd_do_request(sc->sc_udev, &req, buf);
1407 	if (error != 0) {
1408 		printf("%s: could not read EEPROM: %s\n",
1409 		    device_xname(sc->sc_dev), usbd_errstr(error));
1410 		memset(buf, 0, len);
1411 	}
1412 }
1413 
1414 static uint32_t
rum_read(struct rum_softc * sc,uint16_t reg)1415 rum_read(struct rum_softc *sc, uint16_t reg)
1416 {
1417 	uint32_t val;
1418 
1419 	rum_read_multi(sc, reg, &val, sizeof(val));
1420 
1421 	return le32toh(val);
1422 }
1423 
1424 static void
rum_read_multi(struct rum_softc * sc,uint16_t reg,void * buf,int len)1425 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1426 {
1427 	usb_device_request_t req;
1428 	usbd_status error;
1429 
1430 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1431 	req.bRequest = RT2573_READ_MULTI_MAC;
1432 	USETW(req.wValue, 0);
1433 	USETW(req.wIndex, reg);
1434 	USETW(req.wLength, len);
1435 
1436 	error = usbd_do_request(sc->sc_udev, &req, buf);
1437 	if (error != 0) {
1438 		printf("%s: could not multi read MAC register: %s\n",
1439 		    device_xname(sc->sc_dev), usbd_errstr(error));
1440 		memset(buf, 0, len);
1441 	}
1442 }
1443 
1444 static void
rum_write(struct rum_softc * sc,uint16_t reg,uint32_t val)1445 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1446 {
1447 	uint32_t tmp = htole32(val);
1448 
1449 	rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1450 }
1451 
1452 static void
rum_write_multi(struct rum_softc * sc,uint16_t reg,void * buf,size_t len)1453 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1454 {
1455 	usb_device_request_t req;
1456 	usbd_status error;
1457 	int offset;
1458 
1459 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1460 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1461 	USETW(req.wValue, 0);
1462 
1463 	/* write at most 64 bytes at a time */
1464 	for (offset = 0; offset < len; offset += 64) {
1465 		USETW(req.wIndex, reg + offset);
1466 		USETW(req.wLength, MIN(len - offset, 64));
1467 
1468 		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1469 		if (error != 0) {
1470 			printf("%s: could not multi write MAC register: %s\n",
1471 			    device_xname(sc->sc_dev), usbd_errstr(error));
1472 		}
1473 	}
1474 }
1475 
1476 static void
rum_bbp_write(struct rum_softc * sc,uint8_t reg,uint8_t val)1477 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1478 {
1479 	uint32_t tmp;
1480 	int ntries;
1481 
1482 	for (ntries = 0; ntries < 5; ntries++) {
1483 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1484 			break;
1485 	}
1486 	if (ntries == 5) {
1487 		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1488 		return;
1489 	}
1490 
1491 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1492 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1493 }
1494 
1495 static uint8_t
rum_bbp_read(struct rum_softc * sc,uint8_t reg)1496 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1497 {
1498 	uint32_t val;
1499 	int ntries;
1500 
1501 	for (ntries = 0; ntries < 5; ntries++) {
1502 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1503 			break;
1504 	}
1505 	if (ntries == 5) {
1506 		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1507 		return 0;
1508 	}
1509 
1510 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1511 	rum_write(sc, RT2573_PHY_CSR3, val);
1512 
1513 	for (ntries = 0; ntries < 100; ntries++) {
1514 		val = rum_read(sc, RT2573_PHY_CSR3);
1515 		if (!(val & RT2573_BBP_BUSY))
1516 			return val & 0xff;
1517 		DELAY(1);
1518 	}
1519 
1520 	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1521 	return 0;
1522 }
1523 
1524 static void
rum_rf_write(struct rum_softc * sc,uint8_t reg,uint32_t val)1525 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1526 {
1527 	uint32_t tmp;
1528 	int ntries;
1529 
1530 	for (ntries = 0; ntries < 5; ntries++) {
1531 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1532 			break;
1533 	}
1534 	if (ntries == 5) {
1535 		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1536 		return;
1537 	}
1538 
1539 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1540 	    (reg & 3);
1541 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1542 
1543 	/* remember last written value in sc */
1544 	sc->rf_regs[reg] = val;
1545 
1546 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1547 }
1548 
1549 static void
rum_select_antenna(struct rum_softc * sc)1550 rum_select_antenna(struct rum_softc *sc)
1551 {
1552 	uint8_t bbp4, bbp77;
1553 	uint32_t tmp;
1554 
1555 	bbp4  = rum_bbp_read(sc, 4);
1556 	bbp77 = rum_bbp_read(sc, 77);
1557 
1558 	/* TBD */
1559 
1560 	/* make sure Rx is disabled before switching antenna */
1561 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1562 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1563 
1564 	rum_bbp_write(sc,  4, bbp4);
1565 	rum_bbp_write(sc, 77, bbp77);
1566 
1567 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1568 }
1569 
1570 /*
1571  * Enable multi-rate retries for frames sent at OFDM rates.
1572  * In 802.11b/g mode, allow fallback to CCK rates.
1573  */
1574 static void
rum_enable_mrr(struct rum_softc * sc)1575 rum_enable_mrr(struct rum_softc *sc)
1576 {
1577 	struct ieee80211com *ic = &sc->sc_ic;
1578 	uint32_t tmp;
1579 
1580 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1581 
1582 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1583 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1584 		tmp |= RT2573_MRR_CCK_FALLBACK;
1585 	tmp |= RT2573_MRR_ENABLED;
1586 
1587 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1588 }
1589 
1590 static void
rum_set_txpreamble(struct rum_softc * sc)1591 rum_set_txpreamble(struct rum_softc *sc)
1592 {
1593 	uint32_t tmp;
1594 
1595 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1596 
1597 	tmp &= ~RT2573_SHORT_PREAMBLE;
1598 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1599 		tmp |= RT2573_SHORT_PREAMBLE;
1600 
1601 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1602 }
1603 
1604 static void
rum_set_basicrates(struct rum_softc * sc)1605 rum_set_basicrates(struct rum_softc *sc)
1606 {
1607 	struct ieee80211com *ic = &sc->sc_ic;
1608 
1609 	/* update basic rate set */
1610 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1611 		/* 11b basic rates: 1, 2Mbps */
1612 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1613 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1614 		/* 11a basic rates: 6, 12, 24Mbps */
1615 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1616 	} else {
1617 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1618 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1619 	}
1620 }
1621 
1622 /*
1623  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1624  * driver.
1625  */
1626 static void
rum_select_band(struct rum_softc * sc,struct ieee80211_channel * c)1627 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1628 {
1629 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1630 	uint32_t tmp;
1631 
1632 	/* update all BBP registers that depend on the band */
1633 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1634 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1635 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1636 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1637 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1638 	}
1639 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1640 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1641 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1642 	}
1643 
1644 	sc->bbp17 = bbp17;
1645 	rum_bbp_write(sc,  17, bbp17);
1646 	rum_bbp_write(sc,  96, bbp96);
1647 	rum_bbp_write(sc, 104, bbp104);
1648 
1649 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1650 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1651 		rum_bbp_write(sc, 75, 0x80);
1652 		rum_bbp_write(sc, 86, 0x80);
1653 		rum_bbp_write(sc, 88, 0x80);
1654 	}
1655 
1656 	rum_bbp_write(sc, 35, bbp35);
1657 	rum_bbp_write(sc, 97, bbp97);
1658 	rum_bbp_write(sc, 98, bbp98);
1659 
1660 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1661 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1662 	if (IEEE80211_IS_CHAN_2GHZ(c))
1663 		tmp |= RT2573_PA_PE_2GHZ;
1664 	else
1665 		tmp |= RT2573_PA_PE_5GHZ;
1666 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1667 
1668 	/* 802.11a uses a 16 microseconds short interframe space */
1669 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1670 }
1671 
1672 static void
rum_set_chan(struct rum_softc * sc,struct ieee80211_channel * c)1673 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1674 {
1675 	struct ieee80211com *ic = &sc->sc_ic;
1676 	const struct rfprog *rfprog;
1677 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1678 	int8_t power;
1679 	u_int i, chan;
1680 
1681 	chan = ieee80211_chan2ieee(ic, c);
1682 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1683 		return;
1684 
1685 	/* select the appropriate RF settings based on what EEPROM says */
1686 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1687 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1688 
1689 	/* find the settings for this channel (we know it exists) */
1690 	for (i = 0; rfprog[i].chan != chan; i++);
1691 
1692 	power = sc->txpow[i];
1693 	if (power < 0) {
1694 		bbp94 += power;
1695 		power = 0;
1696 	} else if (power > 31) {
1697 		bbp94 += power - 31;
1698 		power = 31;
1699 	}
1700 
1701 	/*
1702 	 * If we are switching from the 2GHz band to the 5GHz band or
1703 	 * vice-versa, BBP registers need to be reprogrammed.
1704 	 */
1705 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1706 		rum_select_band(sc, c);
1707 		rum_select_antenna(sc);
1708 	}
1709 	ic->ic_curchan = c;
1710 
1711 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1712 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1713 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1714 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1715 
1716 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1717 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1718 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1719 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1720 
1721 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1722 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1723 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1724 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1725 
1726 	DELAY(10);
1727 
1728 	/* enable smart mode for MIMO-capable RFs */
1729 	bbp3 = rum_bbp_read(sc, 3);
1730 
1731 	bbp3 &= ~RT2573_SMART_MODE;
1732 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1733 		bbp3 |= RT2573_SMART_MODE;
1734 
1735 	rum_bbp_write(sc, 3, bbp3);
1736 
1737 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1738 		rum_bbp_write(sc, 94, bbp94);
1739 }
1740 
1741 /*
1742  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1743  * and HostAP operating modes.
1744  */
1745 static void
rum_enable_tsf_sync(struct rum_softc * sc)1746 rum_enable_tsf_sync(struct rum_softc *sc)
1747 {
1748 	struct ieee80211com *ic = &sc->sc_ic;
1749 	uint32_t tmp;
1750 
1751 	if (ic->ic_opmode != IEEE80211_M_STA) {
1752 		/*
1753 		 * Change default 16ms TBTT adjustment to 8ms.
1754 		 * Must be done before enabling beacon generation.
1755 		 */
1756 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1757 	}
1758 
1759 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1760 
1761 	/* set beacon interval (in 1/16ms unit) */
1762 	tmp |= ic->ic_bss->ni_intval * 16;
1763 
1764 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1765 	if (ic->ic_opmode == IEEE80211_M_STA)
1766 		tmp |= RT2573_TSF_MODE(1);
1767 	else
1768 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1769 
1770 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1771 }
1772 
1773 static void
rum_update_slot(struct rum_softc * sc)1774 rum_update_slot(struct rum_softc *sc)
1775 {
1776 	struct ieee80211com *ic = &sc->sc_ic;
1777 	uint8_t slottime;
1778 	uint32_t tmp;
1779 
1780 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1781 
1782 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1783 	tmp = (tmp & ~0xff) | slottime;
1784 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1785 
1786 	DPRINTF(("setting slot time to %uus\n", slottime));
1787 }
1788 
1789 static void
rum_set_bssid(struct rum_softc * sc,const uint8_t * bssid)1790 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1791 {
1792 	uint32_t tmp;
1793 
1794 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1795 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1796 
1797 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1798 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1799 }
1800 
1801 static void
rum_set_macaddr(struct rum_softc * sc,const uint8_t * addr)1802 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1803 {
1804 	uint32_t tmp;
1805 
1806 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1807 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1808 
1809 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1810 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1811 }
1812 
1813 static void
rum_update_promisc(struct rum_softc * sc)1814 rum_update_promisc(struct rum_softc *sc)
1815 {
1816 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1817 	uint32_t tmp;
1818 
1819 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1820 
1821 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1822 	if (!(ifp->if_flags & IFF_PROMISC))
1823 		tmp |= RT2573_DROP_NOT_TO_ME;
1824 
1825 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1826 
1827 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1828 	    "entering" : "leaving"));
1829 }
1830 
1831 static const char *
rum_get_rf(int rev)1832 rum_get_rf(int rev)
1833 {
1834 	switch (rev) {
1835 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1836 	case RT2573_RF_2528:	return "RT2528";
1837 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1838 	case RT2573_RF_5226:	return "RT5226";
1839 	default:		return "unknown";
1840 	}
1841 }
1842 
1843 static void
rum_read_eeprom(struct rum_softc * sc)1844 rum_read_eeprom(struct rum_softc *sc)
1845 {
1846 	struct ieee80211com *ic = &sc->sc_ic;
1847 	uint16_t val;
1848 #ifdef RUM_DEBUG
1849 	int i;
1850 #endif
1851 
1852 	/* read MAC/BBP type */
1853 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1854 	sc->macbbp_rev = le16toh(val);
1855 
1856 	/* read MAC address */
1857 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1858 
1859 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1860 	val = le16toh(val);
1861 	sc->rf_rev =   (val >> 11) & 0x1f;
1862 	sc->hw_radio = (val >> 10) & 0x1;
1863 	sc->rx_ant =   (val >> 4)  & 0x3;
1864 	sc->tx_ant =   (val >> 2)  & 0x3;
1865 	sc->nb_ant =   val & 0x3;
1866 
1867 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1868 
1869 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1870 	val = le16toh(val);
1871 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1872 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1873 
1874 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1875 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1876 
1877 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1878 	val = le16toh(val);
1879 	if ((val & 0xff) != 0xff)
1880 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1881 
1882 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1883 	val = le16toh(val);
1884 	if ((val & 0xff) != 0xff)
1885 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1886 
1887 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1888 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1889 
1890 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1891 	val = le16toh(val);
1892 	if ((val & 0xff) != 0xff)
1893 		sc->rffreq = val & 0xff;
1894 
1895 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1896 
1897 	/* read Tx power for all a/b/g channels */
1898 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1899 	/* XXX default Tx power for 802.11a channels */
1900 	memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1901 #ifdef RUM_DEBUG
1902 	for (i = 0; i < 14; i++)
1903 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1904 #endif
1905 
1906 	/* read default values for BBP registers */
1907 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1908 #ifdef RUM_DEBUG
1909 	for (i = 0; i < 14; i++) {
1910 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1911 			continue;
1912 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1913 		    sc->bbp_prom[i].val));
1914 	}
1915 #endif
1916 }
1917 
1918 static int
rum_bbp_init(struct rum_softc * sc)1919 rum_bbp_init(struct rum_softc *sc)
1920 {
1921 	unsigned int i, ntries;
1922 	uint8_t val;
1923 
1924 	/* wait for BBP to be ready */
1925 	for (ntries = 0; ntries < 100; ntries++) {
1926 		val = rum_bbp_read(sc, 0);
1927 		if (val != 0 && val != 0xff)
1928 			break;
1929 		DELAY(1000);
1930 	}
1931 	if (ntries == 100) {
1932 		printf("%s: timeout waiting for BBP\n",
1933 		    device_xname(sc->sc_dev));
1934 		return EIO;
1935 	}
1936 
1937 	/* initialize BBP registers to default values */
1938 	for (i = 0; i < __arraycount(rum_def_bbp); i++)
1939 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1940 
1941 	/* write vendor-specific BBP values (from EEPROM) */
1942 	for (i = 0; i < 16; i++) {
1943 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1944 			continue;
1945 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1946 	}
1947 
1948 	return 0;
1949 }
1950 
1951 static int
rum_init(struct ifnet * ifp)1952 rum_init(struct ifnet *ifp)
1953 {
1954 	struct rum_softc *sc = ifp->if_softc;
1955 	struct ieee80211com *ic = &sc->sc_ic;
1956 	uint32_t tmp;
1957 	usbd_status error = 0;
1958 	unsigned int i, ntries;
1959 
1960 	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1961 		if (rum_attachhook(sc))
1962 			goto fail;
1963 	}
1964 
1965 	rum_stop(ifp, 0);
1966 
1967 	/* initialize MAC registers to default values */
1968 	for (i = 0; i < __arraycount(rum_def_mac); i++)
1969 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1970 
1971 	/* set host ready */
1972 	rum_write(sc, RT2573_MAC_CSR1, 3);
1973 	rum_write(sc, RT2573_MAC_CSR1, 0);
1974 
1975 	/* wait for BBP/RF to wakeup */
1976 	for (ntries = 0; ntries < 1000; ntries++) {
1977 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1978 			break;
1979 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1980 		DELAY(1000);
1981 	}
1982 	if (ntries == 1000) {
1983 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1984 		    device_xname(sc->sc_dev));
1985 		goto fail;
1986 	}
1987 
1988 	if ((error = rum_bbp_init(sc)) != 0)
1989 		goto fail;
1990 
1991 	/* select default channel */
1992 	rum_select_band(sc, ic->ic_curchan);
1993 	rum_select_antenna(sc);
1994 	rum_set_chan(sc, ic->ic_curchan);
1995 
1996 	/* clear STA registers */
1997 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1998 
1999 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2000 	rum_set_macaddr(sc, ic->ic_myaddr);
2001 
2002 	/* initialize ASIC */
2003 	rum_write(sc, RT2573_MAC_CSR1, 4);
2004 
2005 	/*
2006 	 * Allocate xfer for AMRR statistics requests.
2007 	 */
2008 	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2009 	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2010 	    &sc->amrr_xfer);
2011 	if (error) {
2012 		printf("%s: could not allocate AMRR xfer\n",
2013 		    device_xname(sc->sc_dev));
2014 		goto fail;
2015 	}
2016 
2017 	/*
2018 	 * Open Tx and Rx USB bulk pipes.
2019 	 */
2020 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2021 	    &sc->sc_tx_pipeh);
2022 	if (error != 0) {
2023 		printf("%s: could not open Tx pipe: %s\n",
2024 		    device_xname(sc->sc_dev), usbd_errstr(error));
2025 		goto fail;
2026 	}
2027 
2028 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2029 	    &sc->sc_rx_pipeh);
2030 	if (error != 0) {
2031 		printf("%s: could not open Rx pipe: %s\n",
2032 		    device_xname(sc->sc_dev), usbd_errstr(error));
2033 		goto fail;
2034 	}
2035 
2036 	/*
2037 	 * Allocate Tx and Rx xfer queues.
2038 	 */
2039 	error = rum_alloc_tx_list(sc);
2040 	if (error != 0) {
2041 		printf("%s: could not allocate Tx list\n",
2042 		    device_xname(sc->sc_dev));
2043 		goto fail;
2044 	}
2045 
2046 	error = rum_alloc_rx_list(sc);
2047 	if (error != 0) {
2048 		printf("%s: could not allocate Rx list\n",
2049 		    device_xname(sc->sc_dev));
2050 		goto fail;
2051 	}
2052 
2053 	/*
2054 	 * Start up the receive pipe.
2055 	 */
2056 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2057 		struct rum_rx_data *data;
2058 
2059 		data = &sc->rx_data[i];
2060 
2061 		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2062 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2063 		error = usbd_transfer(data->xfer);
2064 		if (error != USBD_NORMAL_COMPLETION &&
2065 		    error != USBD_IN_PROGRESS) {
2066 			printf("%s: could not queue Rx transfer\n",
2067 			    device_xname(sc->sc_dev));
2068 			goto fail;
2069 		}
2070 	}
2071 
2072 	/* update Rx filter */
2073 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2074 
2075 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2076 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2077 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2078 		       RT2573_DROP_ACKCTS;
2079 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2080 			tmp |= RT2573_DROP_TODS;
2081 		if (!(ifp->if_flags & IFF_PROMISC))
2082 			tmp |= RT2573_DROP_NOT_TO_ME;
2083 	}
2084 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2085 
2086 	ifp->if_flags &= ~IFF_OACTIVE;
2087 	ifp->if_flags |= IFF_RUNNING;
2088 
2089 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2090 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2091 	else
2092 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2093 
2094 	return 0;
2095 
2096 fail:	rum_stop(ifp, 1);
2097 	return error;
2098 }
2099 
2100 static void
rum_stop(struct ifnet * ifp,int disable)2101 rum_stop(struct ifnet *ifp, int disable)
2102 {
2103 	struct rum_softc *sc = ifp->if_softc;
2104 	struct ieee80211com *ic = &sc->sc_ic;
2105 	uint32_t tmp;
2106 
2107 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2108 
2109 	sc->sc_tx_timer = 0;
2110 	ifp->if_timer = 0;
2111 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2112 
2113 	/* disable Rx */
2114 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2115 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2116 
2117 	/* reset ASIC */
2118 	rum_write(sc, RT2573_MAC_CSR1, 3);
2119 	rum_write(sc, RT2573_MAC_CSR1, 0);
2120 
2121 	if (sc->amrr_xfer != NULL) {
2122 		usbd_destroy_xfer(sc->amrr_xfer);
2123 		sc->amrr_xfer = NULL;
2124 	}
2125 
2126 	if (sc->sc_rx_pipeh != NULL) {
2127 		usbd_abort_pipe(sc->sc_rx_pipeh);
2128 	}
2129 
2130 	if (sc->sc_tx_pipeh != NULL) {
2131 		usbd_abort_pipe(sc->sc_tx_pipeh);
2132 	}
2133 
2134 	rum_free_rx_list(sc);
2135 	rum_free_tx_list(sc);
2136 
2137 	if (sc->sc_rx_pipeh != NULL) {
2138 		usbd_close_pipe(sc->sc_rx_pipeh);
2139 		sc->sc_rx_pipeh = NULL;
2140 	}
2141 
2142 	if (sc->sc_tx_pipeh != NULL) {
2143 		usbd_close_pipe(sc->sc_tx_pipeh);
2144 		sc->sc_tx_pipeh = NULL;
2145 	}
2146 }
2147 
2148 static int
rum_load_microcode(struct rum_softc * sc,const u_char * ucode,size_t size)2149 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2150 {
2151 	usb_device_request_t req;
2152 	uint16_t reg = RT2573_MCU_CODE_BASE;
2153 	usbd_status error;
2154 
2155 	/* copy firmware image into NIC */
2156 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2157 		rum_write(sc, reg, UGETDW(ucode));
2158 
2159 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2160 	req.bRequest = RT2573_MCU_CNTL;
2161 	USETW(req.wValue, RT2573_MCU_RUN);
2162 	USETW(req.wIndex, 0);
2163 	USETW(req.wLength, 0);
2164 
2165 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2166 	if (error != 0) {
2167 		printf("%s: could not run firmware: %s\n",
2168 		    device_xname(sc->sc_dev), usbd_errstr(error));
2169 	}
2170 	return error;
2171 }
2172 
2173 static int
rum_prepare_beacon(struct rum_softc * sc)2174 rum_prepare_beacon(struct rum_softc *sc)
2175 {
2176 	struct ieee80211com *ic = &sc->sc_ic;
2177 	struct rum_tx_desc desc;
2178 	struct mbuf *m0;
2179 	int rate;
2180 
2181 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2182 	if (m0 == NULL) {
2183 		aprint_error_dev(sc->sc_dev,
2184 		    "could not allocate beacon frame\n");
2185 		return ENOBUFS;
2186 	}
2187 
2188 	/* send beacons at the lowest available rate */
2189 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2190 
2191 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2192 	    m0->m_pkthdr.len, rate);
2193 
2194 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2195 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2196 
2197 	/* copy beacon header and payload into NIC memory */
2198 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2199 	    m0->m_pkthdr.len);
2200 
2201 	m_freem(m0);
2202 
2203 	return 0;
2204 }
2205 
2206 static void
rum_newassoc(struct ieee80211_node * ni,int isnew)2207 rum_newassoc(struct ieee80211_node *ni, int isnew)
2208 {
2209 	/* start with lowest Tx rate */
2210 	ni->ni_txrate = 0;
2211 }
2212 
2213 static void
rum_amrr_start(struct rum_softc * sc,struct ieee80211_node * ni)2214 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2215 {
2216 	int i;
2217 
2218 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2219 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2220 
2221 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2222 
2223 	/* set rate to some reasonable initial value */
2224 	for (i = ni->ni_rates.rs_nrates - 1;
2225 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2226 	     i--);
2227 	ni->ni_txrate = i;
2228 
2229 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2230 }
2231 
2232 static void
rum_amrr_timeout(void * arg)2233 rum_amrr_timeout(void *arg)
2234 {
2235 	struct rum_softc *sc = arg;
2236 	usb_device_request_t req;
2237 
2238 	/*
2239 	 * Asynchronously read statistic registers (cleared by read).
2240 	 */
2241 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2242 	req.bRequest = RT2573_READ_MULTI_MAC;
2243 	USETW(req.wValue, 0);
2244 	USETW(req.wIndex, RT2573_STA_CSR0);
2245 	USETW(req.wLength, sizeof(sc->sta));
2246 
2247 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2248 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2249 	    rum_amrr_update);
2250 	(void)usbd_transfer(sc->amrr_xfer);
2251 }
2252 
2253 static void
rum_amrr_update(struct usbd_xfer * xfer,void * priv,usbd_status status)2254 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2255     usbd_status status)
2256 {
2257 	struct rum_softc *sc = (struct rum_softc *)priv;
2258 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2259 
2260 	if (status != USBD_NORMAL_COMPLETION) {
2261 		printf("%s: could not retrieve Tx statistics - cancelling "
2262 		    "automatic rate control\n", device_xname(sc->sc_dev));
2263 		return;
2264 	}
2265 
2266 	/* count TX retry-fail as Tx errors */
2267 	if_statadd(ifp, if_oerrors, le32toh(sc->sta[5]) >> 16);
2268 
2269 	sc->amn.amn_retrycnt =
2270 	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2271 	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2272 	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2273 
2274 	sc->amn.amn_txcnt =
2275 	    sc->amn.amn_retrycnt +
2276 	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2277 
2278 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2279 
2280 	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2281 }
2282 
2283 static int
rum_activate(device_t self,enum devact act)2284 rum_activate(device_t self, enum devact act)
2285 {
2286 	switch (act) {
2287 	case DVACT_DEACTIVATE:
2288 		/*if_deactivate(&sc->sc_ic.ic_if);*/
2289 		return 0;
2290 	default:
2291 		return 0;
2292 	}
2293 }
2294 
2295 MODULE(MODULE_CLASS_DRIVER, if_rum, NULL);
2296 
2297 #ifdef _MODULE
2298 #include "ioconf.c"
2299 #endif
2300 
2301 static int
if_rum_modcmd(modcmd_t cmd,void * aux)2302 if_rum_modcmd(modcmd_t cmd, void *aux)
2303 {
2304 	int error = 0;
2305 
2306 	switch (cmd) {
2307 	case MODULE_CMD_INIT:
2308 #ifdef _MODULE
2309 		error = config_init_component(cfdriver_ioconf_rum,
2310 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2311 #endif
2312 		return error;
2313 	case MODULE_CMD_FINI:
2314 #ifdef _MODULE
2315 		error = config_fini_component(cfdriver_ioconf_rum,
2316 		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2317 #endif
2318 		return error;
2319 	default:
2320 		return ENOTTY;
2321 	}
2322 }
2323