xref: /netbsd/sys/dev/usb/if_upgt.c (revision 6550d01e)
1 /*	$NetBSD: if_upgt.c,v 1.3 2010/08/25 12:43:56 tsutsui Exp $	*/
2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3 
4 /*
5  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.3 2010/08/25 12:43:56 tsutsui Exp $");
22 
23 #include <sys/param.h>
24 #include <sys/callout.h>
25 #include <sys/device.h>
26 #include <sys/errno.h>
27 #include <sys/kernel.h>
28 #include <sys/kthread.h>
29 #include <sys/mbuf.h>
30 #include <sys/proc.h>
31 #include <sys/sockio.h>
32 #include <sys/systm.h>
33 #include <sys/vnode.h>
34 
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/intr.h>
38 
39 #include <net/bpf.h>
40 #include <net/if.h>
41 #include <net/if_arp.h>
42 #include <net/if_dl.h>
43 #include <net/if_ether.h>
44 #include <net/if_media.h>
45 #include <net/if_types.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_radiotap.h>
49 
50 #include <dev/firmload.h>
51 
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55 #include <dev/usb/usbdevs.h>
56 
57 #include <dev/usb/if_upgtvar.h>
58 
59 /*
60  * Driver for the USB PrismGT devices.
61  *
62  * For now just USB 2.0 devices with the GW3887 chipset are supported.
63  * The driver has been written based on the firmware version 2.13.1.0_LM87.
64  *
65  * TODO's:
66  * - Fix MONITOR mode (MAC filter).
67  * - Add HOSTAP mode.
68  * - Add IBSS mode.
69  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
70  *
71  * Parts of this driver has been influenced by reading the p54u driver
72  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
73  * Sebastien Bourdeauducq <lekernel@prism54.org>.
74  */
75 
76 #ifdef UPGT_DEBUG
77 int upgt_debug = 2;
78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
79 #else
80 #define DPRINTF(l, x...)
81 #endif
82 
83 /*
84  * Prototypes.
85  */
86 static int	upgt_match(device_t, cfdata_t, void *);
87 static void	upgt_attach(device_t, device_t, void *);
88 static int	upgt_detach(device_t, int);
89 static int	upgt_activate(device_t, devact_t);
90 
91 static void	upgt_attach_hook(device_t);
92 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
93 static int	upgt_device_init(struct upgt_softc *);
94 static int	upgt_mem_init(struct upgt_softc *);
95 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
96 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
97 static int	upgt_fw_alloc(struct upgt_softc *);
98 static void	upgt_fw_free(struct upgt_softc *);
99 static int	upgt_fw_verify(struct upgt_softc *);
100 static int	upgt_fw_load(struct upgt_softc *);
101 static int	upgt_fw_copy(char *, char *, int);
102 static int	upgt_eeprom_read(struct upgt_softc *);
103 static int	upgt_eeprom_parse(struct upgt_softc *);
104 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
105 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
106 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
107 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
108 
109 static int	upgt_ioctl(struct ifnet *, u_long, void *);
110 static int	upgt_init(struct ifnet *);
111 static void	upgt_stop(struct upgt_softc *);
112 static int	upgt_media_change(struct ifnet *);
113 static void	upgt_newassoc(struct ieee80211_node *, int);
114 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
115 		    int);
116 static void	upgt_newstate_task(void *);
117 static void	upgt_next_scan(void *);
118 static void	upgt_start(struct ifnet *);
119 static void	upgt_watchdog(struct ifnet *);
120 static void	upgt_tx_task(void *);
121 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
122 static void	upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status);
123 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
124 static void	upgt_setup_rates(struct upgt_softc *);
125 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
126 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t state);
127 static int	upgt_set_channel(struct upgt_softc *, unsigned);
128 static void	upgt_set_led(struct upgt_softc *, int);
129 static void	upgt_set_led_blink(void *);
130 static int	upgt_get_stats(struct upgt_softc *);
131 
132 static int	upgt_alloc_tx(struct upgt_softc *);
133 static int	upgt_alloc_rx(struct upgt_softc *);
134 static int	upgt_alloc_cmd(struct upgt_softc *);
135 static void	upgt_free_tx(struct upgt_softc *);
136 static void	upgt_free_rx(struct upgt_softc *);
137 static void	upgt_free_cmd(struct upgt_softc *);
138 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
139 		    usbd_pipe_handle, uint32_t *, int);
140 
141 #if 0
142 static void	upgt_hexdump(void *, int);
143 #endif
144 static uint32_t	upgt_crc32_le(const void *, size_t);
145 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
146 
147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
148 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
149 
150 static const struct usb_devno upgt_devs_1[] = {
151 	/* version 1 devices */
152 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G }
153 };
154 
155 static const struct usb_devno upgt_devs_2[] = {
156 	/* version 2 devices */
157 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
158 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
159 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
160 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
161 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
162 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
163 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
164 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
165 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
166 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
167 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
168 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
169 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
170 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
171 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
172 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
173 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
174 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
175 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
176 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
177 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_1 },
178 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_2 },
179 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
180 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
181 };
182 
183 static int
184 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
185     size_t *sizep)
186 {
187 	firmware_handle_t fh;
188 	int error;
189 
190 	if ((error = firmware_open(dname, iname, &fh)) != 0)
191 		return error;
192 	*sizep = firmware_get_size(fh);
193 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
194 		firmware_close(fh);
195 		return ENOMEM;
196 	}
197 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
198 		firmware_free(*ucodep, *sizep);
199 	firmware_close(fh);
200 
201 	return error;
202 }
203 
204 static int
205 upgt_match(device_t parent, cfdata_t match, void *aux)
206 {
207 	struct usb_attach_arg *uaa = aux;
208 
209 	if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
210 		return UMATCH_VENDOR_PRODUCT;
211 
212 	if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
213 		return UMATCH_VENDOR_PRODUCT;
214 
215 	return UMATCH_NONE;
216 }
217 
218 static void
219 upgt_attach(device_t parent, device_t self, void *aux)
220 {
221 	struct upgt_softc *sc = device_private(self);
222 	struct usb_attach_arg *uaa = aux;
223 	usb_interface_descriptor_t *id;
224 	usb_endpoint_descriptor_t *ed;
225 	usbd_status error;
226 	char *devinfop;
227 	int i;
228 
229 	aprint_naive("\n");
230 	aprint_normal("\n");
231 
232 	/*
233 	 * Attach USB device.
234 	 */
235 	sc->sc_dev = self;
236 	sc->sc_udev = uaa->device;
237 
238 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
239 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
240 	usbd_devinfo_free(devinfop);
241 
242 	/* check device type */
243 	if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
244 		return;
245 
246 	/* set configuration number */
247 	if (usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0) != 0) {
248 		aprint_error_dev(sc->sc_dev,
249 		    "could not set configuration no\n");
250 		return;
251 	}
252 
253 	/* get the first interface handle */
254 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
255 	    &sc->sc_iface);
256 	if (error != 0) {
257 		aprint_error_dev(sc->sc_dev,
258 		    "could not get interface handle\n");
259 		return;
260 	}
261 
262 	/* find endpoints */
263 	id = usbd_get_interface_descriptor(sc->sc_iface);
264 	sc->sc_rx_no = sc->sc_tx_no = -1;
265 	for (i = 0; i < id->bNumEndpoints; i++) {
266 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
267 		if (ed == NULL) {
268 			aprint_error_dev(sc->sc_dev,
269 			    "no endpoint descriptor for iface %d\n", i);
270 			return;
271 		}
272 
273 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
274 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
275 			sc->sc_tx_no = ed->bEndpointAddress;
276 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
277 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
278 			sc->sc_rx_no = ed->bEndpointAddress;
279 
280 		/*
281 		 * 0x01 TX pipe
282 		 * 0x81 RX pipe
283 		 *
284 		 * Deprecated scheme (not used with fw version >2.5.6.x):
285 		 * 0x02 TX MGMT pipe
286 		 * 0x82 TX MGMT pipe
287 		 */
288 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
289 			break;
290 	}
291 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
292 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
293 		return;
294 	}
295 
296 	/* setup tasks and timeouts */
297 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc);
298 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc);
299 	callout_init(&sc->scan_to, 0);
300 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
301 	callout_init(&sc->led_to, 0);
302 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
303 
304 	/*
305 	 * Open TX and RX USB bulk pipes.
306 	 */
307 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
308 	    &sc->sc_tx_pipeh);
309 	if (error != 0) {
310 		aprint_error_dev(sc->sc_dev,
311 		    "could not open TX pipe: %s\n", usbd_errstr(error));
312 		goto fail;
313 	}
314 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
315 	    &sc->sc_rx_pipeh);
316 	if (error != 0) {
317 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
318 		    usbd_errstr(error));
319 		goto fail;
320 	}
321 
322 	/*
323 	 * Allocate TX, RX, and CMD xfers.
324 	 */
325 	if (upgt_alloc_tx(sc) != 0)
326 		goto fail;
327 	if (upgt_alloc_rx(sc) != 0)
328 		goto fail;
329 	if (upgt_alloc_cmd(sc) != 0)
330 		goto fail;
331 
332 	/*
333 	 * We need the firmware loaded from file system to complete the attach.
334 	 */
335 	config_mountroot(self, upgt_attach_hook);
336 
337 	return;
338 fail:
339 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
340 }
341 
342 static void
343 upgt_attach_hook(device_t arg)
344 {
345 	struct upgt_softc *sc = device_private(arg);
346 	struct ieee80211com *ic = &sc->sc_ic;
347 	struct ifnet *ifp = &sc->sc_if;
348 	usbd_status error;
349 	int i;
350 
351 	/*
352 	 * Load firmware file into memory.
353 	 */
354 	if (upgt_fw_alloc(sc) != 0)
355 		goto fail;
356 
357 	/*
358 	 * Initialize the device.
359 	 */
360 	if (upgt_device_init(sc) != 0)
361 		goto fail;
362 
363 	/*
364 	 * Verify the firmware.
365 	 */
366 	if (upgt_fw_verify(sc) != 0)
367 		goto fail;
368 
369 	/*
370 	 * Calculate device memory space.
371 	 */
372 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
373 		aprint_error_dev(sc->sc_dev,
374 		    "could not find memory space addresses on FW\n");
375 		goto fail;
376 	}
377 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
378 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
379 
380 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
381 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
382 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
383 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
384 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
385 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
386 
387 	upgt_mem_init(sc);
388 
389 	/*
390 	 * Load the firmware.
391 	 */
392 	if (upgt_fw_load(sc) != 0)
393 		goto fail;
394 
395 	/*
396 	 * Startup the RX pipe.
397 	 */
398 	struct upgt_data *data_rx = &sc->rx_data;
399 
400 	usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
401 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
402 	error = usbd_transfer(data_rx->xfer);
403 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
404 		aprint_error_dev(sc->sc_dev,
405 		    "could not queue RX transfer\n");
406 		goto fail;
407 	}
408 	usbd_delay_ms(sc->sc_udev, 100);
409 
410 	/*
411 	 * Read the whole EEPROM content and parse it.
412 	 */
413 	if (upgt_eeprom_read(sc) != 0)
414 		goto fail;
415 	if (upgt_eeprom_parse(sc) != 0)
416 		goto fail;
417 
418 	/*
419 	 * Setup the 802.11 device.
420 	 */
421 	ic->ic_ifp = ifp;
422 	ic->ic_phytype = IEEE80211_T_OFDM;
423 	ic->ic_opmode = IEEE80211_M_STA;
424 	ic->ic_state = IEEE80211_S_INIT;
425 	ic->ic_caps =
426 	    IEEE80211_C_MONITOR |
427 	    IEEE80211_C_SHPREAMBLE |
428 	    IEEE80211_C_SHSLOT;
429 
430 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
431 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
432 
433 	for (i = 1; i <= 14; i++) {
434 		ic->ic_channels[i].ic_freq =
435 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
436 		ic->ic_channels[i].ic_flags =
437 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
438 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
439 	}
440 
441 	ifp->if_softc = sc;
442 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
443 	ifp->if_init = upgt_init;
444 	ifp->if_ioctl = upgt_ioctl;
445 	ifp->if_start = upgt_start;
446 	ifp->if_watchdog = upgt_watchdog;
447 	IFQ_SET_READY(&ifp->if_snd);
448 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
449 
450 	if_attach(ifp);
451 	ieee80211_ifattach(ic);
452 	ic->ic_newassoc = upgt_newassoc;
453 
454 	sc->sc_newstate = ic->ic_newstate;
455 	ic->ic_newstate = upgt_newstate;
456 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
457 
458 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
459 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
460 	    &sc->sc_drvbpf);
461 
462 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
463 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
464 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
465 
466 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
467 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
468 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
469 
470 	aprint_normal_dev(sc->sc_dev, "address %s\n",
471 	    ether_sprintf(ic->ic_myaddr));
472 
473 	ieee80211_announce(ic);
474 
475 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
476 
477 	/* device attached */
478 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
479 
480 	return;
481 fail:
482 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
483 }
484 
485 static int
486 upgt_detach(device_t self, int flags)
487 {
488 	struct upgt_softc *sc = device_private(self);
489 	struct ifnet *ifp = &sc->sc_if;
490 	struct ieee80211com *ic = &sc->sc_ic;
491 	int s;
492 
493 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
494 
495 	s = splnet();
496 
497 	if (ifp->if_flags & IFF_RUNNING)
498 		upgt_stop(sc);
499 
500 	/* remove tasks and timeouts */
501 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
502 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
503 	callout_destroy(&sc->scan_to);
504 	callout_destroy(&sc->led_to);
505 
506 	/* abort and close TX / RX pipes */
507 	if (sc->sc_tx_pipeh != NULL) {
508 		usbd_abort_pipe(sc->sc_tx_pipeh);
509 		usbd_close_pipe(sc->sc_tx_pipeh);
510 	}
511 	if (sc->sc_rx_pipeh != NULL) {
512 		usbd_abort_pipe(sc->sc_rx_pipeh);
513 		usbd_close_pipe(sc->sc_rx_pipeh);
514 	}
515 
516 	/* free xfers */
517 	upgt_free_tx(sc);
518 	upgt_free_rx(sc);
519 	upgt_free_cmd(sc);
520 
521 	/* free firmware */
522 	upgt_fw_free(sc);
523 
524 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
525 		/* detach interface */
526 		bpf_detach(ifp);
527 		ieee80211_ifdetach(ic);
528 		if_detach(ifp);
529 	}
530 
531 	splx(s);
532 
533 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
534 
535 	return 0;
536 }
537 
538 static int
539 upgt_activate(device_t self, devact_t act)
540 {
541 	struct upgt_softc *sc = device_private(self);
542 
543 	switch (act) {
544 	case DVACT_DEACTIVATE:
545 		if_deactivate(&sc->sc_if);
546 		return 0;
547 	default:
548 		return EOPNOTSUPP;
549 	}
550 }
551 
552 static int
553 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
554 {
555 
556 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
557 		sc->sc_device_type = 1;
558 		/* XXX */
559 		aprint_error_dev(sc->sc_dev,
560 		    "version 1 devices not supported yet\n");
561 		return 1;
562 	} else
563 		sc->sc_device_type = 2;
564 
565 	return 0;
566 }
567 
568 static int
569 upgt_device_init(struct upgt_softc *sc)
570 {
571 	struct upgt_data *data_cmd = &sc->cmd_data;
572 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
573 	int len;
574 
575 	len = sizeof(init_cmd);
576 	memcpy(data_cmd->buf, init_cmd, len);
577 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
578 		aprint_error_dev(sc->sc_dev,
579 		    "could not send device init string\n");
580 		return EIO;
581 	}
582 	usbd_delay_ms(sc->sc_udev, 100);
583 
584 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
585 
586 	return 0;
587 }
588 
589 static int
590 upgt_mem_init(struct upgt_softc *sc)
591 {
592 	int i;
593 
594 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
595 		sc->sc_memory.page[i].used = 0;
596 
597 		if (i == 0) {
598 			/*
599 			 * The first memory page is always reserved for
600 			 * command data.
601 			 */
602 			sc->sc_memory.page[i].addr =
603 			    sc->sc_memaddr_frame_start + MCLBYTES;
604 		} else {
605 			sc->sc_memory.page[i].addr =
606 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
607 		}
608 
609 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
610 		    sc->sc_memaddr_frame_end)
611 			break;
612 
613 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
614 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
615 	}
616 
617 	sc->sc_memory.pages = i;
618 
619 	DPRINTF(2, "%s: memory pages=%d\n",
620 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
621 
622 	return 0;
623 }
624 
625 static uint32_t
626 upgt_mem_alloc(struct upgt_softc *sc)
627 {
628 	int i;
629 
630 	for (i = 0; i < sc->sc_memory.pages; i++) {
631 		if (sc->sc_memory.page[i].used == 0) {
632 			sc->sc_memory.page[i].used = 1;
633 			return sc->sc_memory.page[i].addr;
634 		}
635 	}
636 
637 	return 0;
638 }
639 
640 static void
641 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
642 {
643 	int i;
644 
645 	for (i = 0; i < sc->sc_memory.pages; i++) {
646 		if (sc->sc_memory.page[i].addr == addr) {
647 			sc->sc_memory.page[i].used = 0;
648 			return;
649 		}
650 	}
651 
652 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
653 	    addr);
654 }
655 
656 
657 static int
658 upgt_fw_alloc(struct upgt_softc *sc)
659 {
660 	const char *name = "upgt-gw3887";
661 	int error;
662 
663 	if (sc->sc_fw == NULL) {
664 		error = firmware_load("upgt", name, &sc->sc_fw,
665 		    &sc->sc_fw_size);
666 		if (error != 0) {
667 			if (error == ENOENT) {
668 				/*
669 				 * The firmware file for upgt(4) is not in
670 				 * the default distribution due to its lisence
671 				 * so explicitly notify it if the firmware file
672 				 * is not found.
673 				 */
674 				aprint_error_dev(sc->sc_dev,
675 				    "firmware file %s is not installed\n",
676 				    name);
677 				aprint_error_dev(sc->sc_dev,
678 				    "(it is not included in the default"
679 				    " distribution)\n");
680 				aprint_error_dev(sc->sc_dev,
681 				    "see upgt(4) man page for details about "
682 				    "firmware installation\n");
683 			} else {
684 				aprint_error_dev(sc->sc_dev,
685 				    "could not read firmware %s\n", name);
686 			}
687 			return EIO;
688 		}
689 	}
690 
691 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
692 	    name);
693 
694 	return 0;
695 }
696 
697 static void
698 upgt_fw_free(struct upgt_softc *sc)
699 {
700 
701 	if (sc->sc_fw != NULL) {
702 		firmware_free(sc->sc_fw, sc->sc_fw_size);
703 		sc->sc_fw = NULL;
704 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
705 	}
706 }
707 
708 static int
709 upgt_fw_verify(struct upgt_softc *sc)
710 {
711 	struct upgt_fw_bra_option *bra_option;
712 	uint32_t bra_option_type, bra_option_len;
713 	uint32_t *uc;
714 	int offset, bra_end = 0;
715 
716 	/*
717 	 * Seek to beginning of Boot Record Area (BRA).
718 	 */
719 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
720 		uc = (uint32_t *)(sc->sc_fw + offset);
721 		if (*uc == 0)
722 			break;
723 	}
724 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
725 		uc = (uint32_t *)(sc->sc_fw + offset);
726 		if (*uc != 0)
727 			break;
728 	}
729 	if (offset == sc->sc_fw_size) {
730 		aprint_error_dev(sc->sc_dev,
731 		    "firmware Boot Record Area not found\n");
732 		return EIO;
733 	}
734 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
735 	    device_xname(sc->sc_dev), offset);
736 
737 	/*
738 	 * Parse Boot Record Area (BRA) options.
739 	 */
740 	while (offset < sc->sc_fw_size && bra_end == 0) {
741 		/* get current BRA option */
742 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
743 		bra_option_type = le32toh(bra_option->type);
744 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
745 
746 		switch (bra_option_type) {
747 		case UPGT_BRA_TYPE_FW:
748 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
749 			    device_xname(sc->sc_dev), bra_option_len);
750 
751 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
752 				aprint_error_dev(sc->sc_dev,
753 				    "wrong UPGT_BRA_TYPE_FW len\n");
754 				return EIO;
755 			}
756 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
757 			    bra_option_len) == 0) {
758 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
759 				break;
760 			}
761 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
762 			    bra_option_len) == 0) {
763 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
764 				break;
765 			}
766 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
767 			    bra_option_len) == 0) {
768 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
769 				break;
770 			}
771 			aprint_error_dev(sc->sc_dev,
772 			    "unsupported firmware type\n");
773 			return EIO;
774 		case UPGT_BRA_TYPE_VERSION:
775 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
776 			    device_xname(sc->sc_dev), bra_option_len);
777 			break;
778 		case UPGT_BRA_TYPE_DEPIF:
779 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
780 			    device_xname(sc->sc_dev), bra_option_len);
781 			break;
782 		case UPGT_BRA_TYPE_EXPIF:
783 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
784 			    device_xname(sc->sc_dev), bra_option_len);
785 			break;
786 		case UPGT_BRA_TYPE_DESCR:
787 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
788 			    device_xname(sc->sc_dev), bra_option_len);
789 
790 			struct upgt_fw_bra_descr *descr =
791 				(struct upgt_fw_bra_descr *)bra_option->data;
792 
793 			sc->sc_memaddr_frame_start =
794 			    le32toh(descr->memaddr_space_start);
795 			sc->sc_memaddr_frame_end =
796 			    le32toh(descr->memaddr_space_end);
797 
798 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
799 			    device_xname(sc->sc_dev),
800 			    sc->sc_memaddr_frame_start);
801 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
802 			    device_xname(sc->sc_dev),
803 			    sc->sc_memaddr_frame_end);
804 			break;
805 		case UPGT_BRA_TYPE_END:
806 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
807 			    device_xname(sc->sc_dev), bra_option_len);
808 			bra_end = 1;
809 			break;
810 		default:
811 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
812 			    device_xname(sc->sc_dev), bra_option_len);
813 			return EIO;
814 		}
815 
816 		/* jump to next BRA option */
817 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
818 	}
819 
820 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
821 
822 	return 0;
823 }
824 
825 static int
826 upgt_fw_load(struct upgt_softc *sc)
827 {
828 	struct upgt_data *data_cmd = &sc->cmd_data;
829 	struct upgt_data *data_rx = &sc->rx_data;
830 	struct upgt_fw_x2_header *x2;
831 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
832 	int offset, bsize, n, i, len;
833 	uint32_t crc;
834 
835 	/* send firmware start load command */
836 	len = sizeof(start_fwload_cmd);
837 	memcpy(data_cmd->buf, start_fwload_cmd, len);
838 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
839 		aprint_error_dev(sc->sc_dev,
840 		    "could not send start_firmware_load command\n");
841 		return EIO;
842 	}
843 
844 	/* send X2 header */
845 	len = sizeof(struct upgt_fw_x2_header);
846 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
847 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
848 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
849 	x2->len = htole32(sc->sc_fw_size);
850 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
851 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
852 	    sizeof(uint32_t));
853 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
854 		aprint_error_dev(sc->sc_dev,
855 		    "could not send firmware X2 header\n");
856 		return EIO;
857 	}
858 
859 	/* download firmware */
860 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
861 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
862 			bsize = UPGT_FW_BLOCK_SIZE;
863 		else
864 			bsize = sc->sc_fw_size - offset;
865 
866 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
867 
868 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
869 		    device_xname(sc->sc_dev), offset, n, bsize);
870 
871 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
872 		    != 0) {
873 			aprint_error_dev(sc->sc_dev,
874 			    "error while downloading firmware block\n");
875 			return EIO;
876 		}
877 
878 		bsize = n;
879 	}
880 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
881 
882 	/* load firmware */
883 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
884 	*((uint32_t *)(data_cmd->buf)    ) = crc;
885 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
886 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
887 	len = 6;
888 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
889 		aprint_error_dev(sc->sc_dev,
890 		    "could not send load_firmware command\n");
891 		return EIO;
892 	}
893 
894 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
895 		len = UPGT_FW_BLOCK_SIZE;
896 		memset(data_rx->buf, 0, 2);
897 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
898 		    USBD_SHORT_XFER_OK) != 0) {
899 			aprint_error_dev(sc->sc_dev,
900 			    "could not read firmware response\n");
901 			return EIO;
902 		}
903 
904 		if (memcmp(data_rx->buf, "OK", 2) == 0)
905 			break;	/* firmware load was successful */
906 	}
907 	if (i == UPGT_FIRMWARE_TIMEOUT) {
908 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
909 		return EIO;
910 	}
911 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
912 
913 	return 0;
914 }
915 
916 /*
917  * While copying the version 2 firmware, we need to replace two characters:
918  *
919  * 0x7e -> 0x7d 0x5e
920  * 0x7d -> 0x7d 0x5d
921  */
922 static int
923 upgt_fw_copy(char *src, char *dst, int size)
924 {
925 	int i, j;
926 
927 	for (i = 0, j = 0; i < size && j < size; i++) {
928 		switch (src[i]) {
929 		case 0x7e:
930 			dst[j] = 0x7d;
931 			j++;
932 			dst[j] = 0x5e;
933 			j++;
934 			break;
935 		case 0x7d:
936 			dst[j] = 0x7d;
937 			j++;
938 			dst[j] = 0x5d;
939 			j++;
940 			break;
941 		default:
942 			dst[j] = src[i];
943 			j++;
944 			break;
945 		}
946 	}
947 
948 	return i;
949 }
950 
951 static int
952 upgt_eeprom_read(struct upgt_softc *sc)
953 {
954 	struct upgt_data *data_cmd = &sc->cmd_data;
955 	struct upgt_lmac_mem *mem;
956 	struct upgt_lmac_eeprom	*eeprom;
957 	int offset, block, len;
958 
959 	offset = 0;
960 	block = UPGT_EEPROM_BLOCK_SIZE;
961 	while (offset < UPGT_EEPROM_SIZE) {
962 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
963 		    device_xname(sc->sc_dev), offset, block);
964 
965 		/*
966 		 * Transmit the URB containing the CMD data.
967 		 */
968 		len = sizeof(*mem) + sizeof(*eeprom) + block;
969 
970 		memset(data_cmd->buf, 0, len);
971 
972 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
973 		mem->addr = htole32(sc->sc_memaddr_frame_start +
974 		    UPGT_MEMSIZE_FRAME_HEAD);
975 
976 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
977 		eeprom->header1.flags = 0;
978 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
979 		eeprom->header1.len = htole16((
980 		    sizeof(struct upgt_lmac_eeprom) -
981 		    sizeof(struct upgt_lmac_header)) + block);
982 
983 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
984 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
985 		eeprom->header2.flags = 0;
986 
987 		eeprom->offset = htole16(offset);
988 		eeprom->len = htole16(block);
989 
990 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
991 		    len - sizeof(*mem));
992 
993 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
994 		    USBD_FORCE_SHORT_XFER) != 0) {
995 			aprint_error_dev(sc->sc_dev,
996 			    "could not transmit EEPROM data URB\n");
997 			return EIO;
998 		}
999 		if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1000 			aprint_error_dev(sc->sc_dev,
1001 			    "timeout while waiting for EEPROM data\n");
1002 			return EIO;
1003 		}
1004 
1005 		offset += block;
1006 		if (UPGT_EEPROM_SIZE - offset < block)
1007 			block = UPGT_EEPROM_SIZE - offset;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 static int
1014 upgt_eeprom_parse(struct upgt_softc *sc)
1015 {
1016 	struct ieee80211com *ic = &sc->sc_ic;
1017 	struct upgt_eeprom_header *eeprom_header;
1018 	struct upgt_eeprom_option *eeprom_option;
1019 	uint16_t option_len;
1020 	uint16_t option_type;
1021 	uint16_t preamble_len;
1022 	int option_end = 0;
1023 
1024 	/* calculate eeprom options start offset */
1025 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1026 	preamble_len = le16toh(eeprom_header->preamble_len);
1027 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1028 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
1029 
1030 	while (!option_end) {
1031 		/* the eeprom option length is stored in words */
1032 		option_len =
1033 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1034 		option_type =
1035 		    le16toh(eeprom_option->type);
1036 
1037 		switch (option_type) {
1038 		case UPGT_EEPROM_TYPE_NAME:
1039 			DPRINTF(1, "%s: EEPROM name len=%d\n",
1040 			    device_xname(sc->sc_dev), option_len);
1041 			break;
1042 		case UPGT_EEPROM_TYPE_SERIAL:
1043 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
1044 			    device_xname(sc->sc_dev), option_len);
1045 			break;
1046 		case UPGT_EEPROM_TYPE_MAC:
1047 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
1048 			    device_xname(sc->sc_dev), option_len);
1049 
1050 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1051 			break;
1052 		case UPGT_EEPROM_TYPE_HWRX:
1053 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1054 			    device_xname(sc->sc_dev), option_len);
1055 
1056 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1057 			break;
1058 		case UPGT_EEPROM_TYPE_CHIP:
1059 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
1060 			    device_xname(sc->sc_dev), option_len);
1061 			break;
1062 		case UPGT_EEPROM_TYPE_FREQ3:
1063 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1064 			    device_xname(sc->sc_dev), option_len);
1065 
1066 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1067 			    option_len);
1068 			break;
1069 		case UPGT_EEPROM_TYPE_FREQ4:
1070 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1071 			    device_xname(sc->sc_dev), option_len);
1072 
1073 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1074 			    option_len);
1075 			break;
1076 		case UPGT_EEPROM_TYPE_FREQ5:
1077 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1078 			    device_xname(sc->sc_dev), option_len);
1079 			break;
1080 		case UPGT_EEPROM_TYPE_FREQ6:
1081 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1082 			    device_xname(sc->sc_dev), option_len);
1083 
1084 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1085 			    option_len);
1086 			break;
1087 		case UPGT_EEPROM_TYPE_END:
1088 			DPRINTF(1, "%s: EEPROM end len=%d\n",
1089 			    device_xname(sc->sc_dev), option_len);
1090 			option_end = 1;
1091 			break;
1092 		case UPGT_EEPROM_TYPE_OFF:
1093 			DPRINTF(1, "%s: EEPROM off without end option\n",
1094 			    device_xname(sc->sc_dev));
1095 			return EIO;
1096 		default:
1097 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1098 			    device_xname(sc->sc_dev), option_type, option_len);
1099 			break;
1100 		}
1101 
1102 		/* jump to next EEPROM option */
1103 		eeprom_option = (struct upgt_eeprom_option *)
1104 		    (eeprom_option->data + option_len);
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 static void
1111 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1112 {
1113 	struct upgt_eeprom_option_hwrx *option_hwrx;
1114 
1115 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1116 
1117 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1118 
1119 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1120 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1121 }
1122 
1123 static void
1124 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1125 {
1126 	struct upgt_eeprom_freq3_header *freq3_header;
1127 	struct upgt_lmac_freq3 *freq3;
1128 	int i, elements, flags;
1129 	unsigned channel;
1130 
1131 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1132 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1133 
1134 	flags = freq3_header->flags;
1135 	elements = freq3_header->elements;
1136 
1137 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1138 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1139 
1140 	for (i = 0; i < elements; i++) {
1141 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1142 
1143 		sc->sc_eeprom_freq3[channel] = freq3[i];
1144 
1145 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1146 		    device_xname(sc->sc_dev),
1147 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1148 	}
1149 }
1150 
1151 static void
1152 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1153 {
1154 	struct upgt_eeprom_freq4_header *freq4_header;
1155 	struct upgt_eeprom_freq4_1 *freq4_1;
1156 	struct upgt_eeprom_freq4_2 *freq4_2;
1157 	int i, j, elements, settings, flags;
1158 	unsigned channel;
1159 
1160 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1161 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1162 
1163 	flags = freq4_header->flags;
1164 	elements = freq4_header->elements;
1165 	settings = freq4_header->settings;
1166 
1167 	/* we need this value later */
1168 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1169 
1170 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1171 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1172 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1173 
1174 	for (i = 0; i < elements; i++) {
1175 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1176 
1177 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1178 
1179 		for (j = 0; j < settings; j++) {
1180 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1181 			sc->sc_eeprom_freq4[channel][j].pad = 0;
1182 		}
1183 
1184 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1185 		    device_xname(sc->sc_dev),
1186 		    le16toh(freq4_1[i].freq), channel);
1187 	}
1188 }
1189 
1190 static void
1191 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1192 {
1193 	struct upgt_lmac_freq6 *freq6;
1194 	int i, elements;
1195 	unsigned channel;
1196 
1197 	freq6 = (struct upgt_lmac_freq6 *)data;
1198 
1199 	elements = len / sizeof(struct upgt_lmac_freq6);
1200 
1201 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1202 
1203 	for (i = 0; i < elements; i++) {
1204 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1205 
1206 		sc->sc_eeprom_freq6[channel] = freq6[i];
1207 
1208 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1209 		    device_xname(sc->sc_dev),
1210 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1211 	}
1212 }
1213 
1214 static int
1215 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1216 {
1217 	struct upgt_softc *sc = ifp->if_softc;
1218 	struct ieee80211com *ic = &sc->sc_ic;
1219 	int s, error = 0;
1220 
1221 	s = splnet();
1222 
1223 	switch (cmd) {
1224 	case SIOCSIFFLAGS:
1225 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1226 			break;
1227 		if (ifp->if_flags & IFF_UP) {
1228 			if ((ifp->if_flags & IFF_RUNNING) == 0)
1229 				upgt_init(ifp);
1230 		} else {
1231 			if (ifp->if_flags & IFF_RUNNING)
1232 				upgt_stop(sc);
1233 		}
1234 		break;
1235 	case SIOCADDMULTI:
1236 	case SIOCDELMULTI:
1237 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1238 			/* setup multicast filter, etc */
1239 			error = 0;
1240 		}
1241 		break;
1242 	default:
1243 		error = ieee80211_ioctl(ic, cmd, data);
1244 		break;
1245 	}
1246 
1247 	if (error == ENETRESET) {
1248 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1249 		    (IFF_UP | IFF_RUNNING))
1250 			upgt_init(ifp);
1251 		error = 0;
1252 	}
1253 
1254 	splx(s);
1255 
1256 	return error;
1257 }
1258 
1259 static int
1260 upgt_init(struct ifnet *ifp)
1261 {
1262 	struct upgt_softc *sc = ifp->if_softc;
1263 	struct ieee80211com *ic = &sc->sc_ic;
1264 
1265 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1266 
1267 	if (ifp->if_flags & IFF_RUNNING)
1268 		upgt_stop(sc);
1269 
1270 	ifp->if_flags |= IFF_RUNNING;
1271 	ifp->if_flags &= ~IFF_OACTIVE;
1272 
1273 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1274 
1275 	/* setup device rates */
1276 	upgt_setup_rates(sc);
1277 
1278 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1279 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1280 	else
1281 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1282 
1283 	return 0;
1284 }
1285 
1286 static void
1287 upgt_stop(struct upgt_softc *sc)
1288 {
1289 	struct ieee80211com *ic = &sc->sc_ic;
1290 	struct ifnet *ifp = &sc->sc_if;
1291 
1292 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1293 
1294 	/* device down */
1295 	ifp->if_timer = 0;
1296 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1297 
1298 	/* change device back to initial state */
1299 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1300 }
1301 
1302 static int
1303 upgt_media_change(struct ifnet *ifp)
1304 {
1305 	struct upgt_softc *sc = ifp->if_softc;
1306 	int error;
1307 
1308 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1309 
1310 	if ((error = ieee80211_media_change(ifp) != ENETRESET))
1311 		return error;
1312 
1313 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1314 	    (IFF_UP | IFF_RUNNING)) {
1315 		/* give pending USB transfers a chance to finish */
1316 		usbd_delay_ms(sc->sc_udev, 100);
1317 		upgt_init(ifp);
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 static void
1324 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1325 {
1326 
1327 	ni->ni_txrate = 0;
1328 }
1329 
1330 static int
1331 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1332 {
1333 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
1334 
1335 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1336 	callout_stop(&sc->scan_to);
1337 
1338 	/* do it in a process context */
1339 	sc->sc_state = nstate;
1340 	sc->sc_arg = arg;
1341 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1342 
1343 	return 0;
1344 }
1345 
1346 static void
1347 upgt_newstate_task(void *arg)
1348 {
1349 	struct upgt_softc *sc = arg;
1350 	struct ieee80211com *ic = &sc->sc_ic;
1351 	struct ieee80211_node *ni;
1352 	unsigned channel;
1353 
1354 	mutex_enter(&sc->sc_mtx);
1355 
1356 	switch (sc->sc_state) {
1357 	case IEEE80211_S_INIT:
1358 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1359 		    device_xname(sc->sc_dev));
1360 
1361 		/* do not accept any frames if the device is down */
1362 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
1363 		upgt_set_led(sc, UPGT_LED_OFF);
1364 		break;
1365 	case IEEE80211_S_SCAN:
1366 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1367 		    device_xname(sc->sc_dev));
1368 
1369 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1370 		upgt_set_channel(sc, channel);
1371 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1372 		callout_schedule(&sc->scan_to, hz / 5);
1373 		break;
1374 	case IEEE80211_S_AUTH:
1375 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1376 		    device_xname(sc->sc_dev));
1377 
1378 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1379 		upgt_set_channel(sc, channel);
1380 		break;
1381 	case IEEE80211_S_ASSOC:
1382 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1383 		    device_xname(sc->sc_dev));
1384 
1385 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1386 		upgt_set_channel(sc, channel);
1387 		break;
1388 	case IEEE80211_S_RUN:
1389 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1390 		    device_xname(sc->sc_dev));
1391 
1392 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1393 		upgt_set_channel(sc, channel);
1394 
1395 		ni = ic->ic_bss;
1396 
1397 		/*
1398 		 * TX rate control is done by the firmware.
1399 		 * Report the maximum rate which is available therefore.
1400 		 */
1401 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1402 
1403 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1404 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
1405 		upgt_set_led(sc, UPGT_LED_ON);
1406 		break;
1407 	}
1408 
1409 	mutex_exit(&sc->sc_mtx);
1410 
1411 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1412 }
1413 
1414 static void
1415 upgt_next_scan(void *arg)
1416 {
1417 	struct upgt_softc *sc = arg;
1418 	struct ieee80211com *ic = &sc->sc_ic;
1419 
1420 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1421 
1422 	if (ic->ic_state == IEEE80211_S_SCAN)
1423 		ieee80211_next_scan(ic);
1424 }
1425 
1426 static void
1427 upgt_start(struct ifnet *ifp)
1428 {
1429 	struct upgt_softc *sc = ifp->if_softc;
1430 	struct ieee80211com *ic = &sc->sc_ic;
1431 	struct ether_header *eh;
1432 	struct ieee80211_node *ni;
1433 	struct mbuf *m;
1434 	int i;
1435 
1436 	/* don't transmit packets if interface is busy or down */
1437 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1438 		return;
1439 
1440 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1441 
1442 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1443 		struct upgt_data *data_tx = &sc->tx_data[i];
1444 
1445 		if (data_tx->m != NULL)
1446 			continue;
1447 
1448 		IF_POLL(&ic->ic_mgtq, m);
1449 		if (m != NULL) {
1450 			/* management frame */
1451 			IF_DEQUEUE(&ic->ic_mgtq, m);
1452 
1453 			ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1454 			m->m_pkthdr.rcvif = NULL;
1455 
1456 			bpf_mtap3(ic->ic_rawbpf, m);
1457 
1458 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1459 				aprint_error_dev(sc->sc_dev,
1460 				    "no free prism memory\n");
1461 				m_freem(m);
1462 				ifp->if_oerrors++;
1463 				break;
1464 			}
1465 			data_tx->ni = ni;
1466 			data_tx->m = m;
1467 			sc->tx_queued++;
1468 		} else {
1469 			/* data frame */
1470 			if (ic->ic_state != IEEE80211_S_RUN)
1471 				break;
1472 
1473 			IFQ_POLL(&ifp->if_snd, m);
1474 			if (m == NULL)
1475 				break;
1476 
1477 			IFQ_DEQUEUE(&ifp->if_snd, m);
1478 			if (m->m_len < sizeof(struct ether_header) &&
1479 			    !(m = m_pullup(m, sizeof(struct ether_header))))
1480 				continue;
1481 
1482 			eh = mtod(m, struct ether_header *);
1483 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1484 			if (ni == NULL) {
1485 				m_freem(m);
1486 				continue;
1487 			}
1488 
1489 			bpf_mtap(ifp, m);
1490 
1491 			m = ieee80211_encap(ic, m, ni);
1492 			if (m == NULL) {
1493 				ieee80211_free_node(ni);
1494 				continue;
1495 			}
1496 
1497 			bpf_mtap3(ic->ic_rawbpf, m);
1498 
1499 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1500 				aprint_error_dev(sc->sc_dev,
1501 				    "no free prism memory\n");
1502 				m_freem(m);
1503 				ieee80211_free_node(ni);
1504 				ifp->if_oerrors++;
1505 				break;
1506 			}
1507 			data_tx->ni = ni;
1508 			data_tx->m = m;
1509 			sc->tx_queued++;
1510 		}
1511 	}
1512 
1513 	if (sc->tx_queued > 0) {
1514 		DPRINTF(2, "%s: tx_queued=%d\n",
1515 		    device_xname(sc->sc_dev), sc->tx_queued);
1516 		/* process the TX queue in process context */
1517 		ifp->if_timer = 5;
1518 		ifp->if_flags |= IFF_OACTIVE;
1519 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1520 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1521 	}
1522 }
1523 
1524 static void
1525 upgt_watchdog(struct ifnet *ifp)
1526 {
1527 	struct upgt_softc *sc = ifp->if_softc;
1528 	struct ieee80211com *ic = &sc->sc_ic;
1529 
1530 	if (ic->ic_state == IEEE80211_S_INIT)
1531 		return;
1532 
1533 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1534 
1535 	/* TODO: what shall we do on TX timeout? */
1536 
1537 	ieee80211_watchdog(ic);
1538 }
1539 
1540 static void
1541 upgt_tx_task(void *arg)
1542 {
1543 	struct upgt_softc *sc = arg;
1544 	struct ieee80211com *ic = &sc->sc_ic;
1545 	struct ieee80211_frame *wh;
1546 	struct ieee80211_key *k;
1547 	struct ifnet *ifp = &sc->sc_if;
1548 	struct upgt_lmac_mem *mem;
1549 	struct upgt_lmac_tx_desc *txdesc;
1550 	struct mbuf *m;
1551 	uint32_t addr;
1552 	int i, len, pad, s;
1553 	usbd_status error;
1554 
1555 	mutex_enter(&sc->sc_mtx);
1556 	upgt_set_led(sc, UPGT_LED_BLINK);
1557 	mutex_exit(&sc->sc_mtx);
1558 
1559 	s = splnet();
1560 
1561 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1562 		struct upgt_data *data_tx = &sc->tx_data[i];
1563 
1564 		if (data_tx->m == NULL)
1565 			continue;
1566 
1567 		m = data_tx->m;
1568 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1569 
1570 		/*
1571 		 * Software crypto.
1572 		 */
1573 		wh = mtod(m, struct ieee80211_frame *);
1574 
1575 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1576 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1577 			if (k == NULL) {
1578 				m_freem(m);
1579 				data_tx->m = NULL;
1580 				ieee80211_free_node(data_tx->ni);
1581 				data_tx->ni = NULL;
1582 				ifp->if_oerrors++;
1583 				break;
1584 			}
1585 
1586 			/* in case packet header moved, reset pointer */
1587 			wh = mtod(m, struct ieee80211_frame *);
1588 		}
1589 
1590 		/*
1591 		 * Transmit the URB containing the TX data.
1592 		 */
1593 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1594 
1595 		mem = (struct upgt_lmac_mem *)data_tx->buf;
1596 		mem->addr = htole32(addr);
1597 
1598 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1599 
1600 		/* XXX differ between data and mgmt frames? */
1601 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1602 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1603 		txdesc->header1.len = htole16(m->m_pkthdr.len);
1604 
1605 		txdesc->header2.reqid = htole32(data_tx->addr);
1606 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1607 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1608 
1609 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1610 		    IEEE80211_FC0_TYPE_MGT) {
1611 			/* always send mgmt frames at lowest rate (DS1) */
1612 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1613 		} else {
1614 			memcpy(txdesc->rates, sc->sc_cur_rateset,
1615 			    sizeof(txdesc->rates));
1616 		}
1617 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1618 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1619 
1620 		if (sc->sc_drvbpf != NULL) {
1621 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1622 
1623 			tap->wt_flags = 0;
1624 			tap->wt_rate = 0;	/* TODO: where to get from? */
1625 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1626 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1627 
1628 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1629 		}
1630 
1631 		/* copy frame below our TX descriptor header */
1632 		m_copydata(m, 0, m->m_pkthdr.len,
1633 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1634 
1635 		/* calculate frame size */
1636 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1637 
1638 		if (len & 3) {
1639 			/* we need to align the frame to a 4 byte boundary */
1640 			pad = 4 - (len & 3);
1641 			memset(data_tx->buf + len, 0, pad);
1642 			len += pad;
1643 		}
1644 
1645 		/* calculate frame checksum */
1646 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1647 		    len - sizeof(*mem));
1648 
1649 		/* we do not need the mbuf anymore */
1650 		m_freem(m);
1651 		data_tx->m = NULL;
1652 
1653 		ieee80211_free_node(data_tx->ni);
1654 		data_tx->ni = NULL;
1655 
1656 		DPRINTF(2, "%s: TX start data sending\n",
1657 		    device_xname(sc->sc_dev));
1658 
1659 		usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
1660 		    data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1661 		    UPGT_USB_TIMEOUT, NULL);
1662 		error = usbd_transfer(data_tx->xfer);
1663 		if (error != USBD_NORMAL_COMPLETION &&
1664 		    error != USBD_IN_PROGRESS) {
1665 			aprint_error_dev(sc->sc_dev,
1666 			    "could not transmit TX data URB\n");
1667 			ifp->if_oerrors++;
1668 			break;
1669 		}
1670 
1671 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
1672 		    device_xname(sc->sc_dev), len);
1673 	}
1674 
1675 	splx(s);
1676 
1677 	/*
1678 	 * If we don't regulary read the device statistics, the RX queue
1679 	 * will stall.  It's strange, but it works, so we keep reading
1680 	 * the statistics here.  *shrug*
1681 	 */
1682 	mutex_enter(&sc->sc_mtx);
1683 	upgt_get_stats(sc);
1684 	mutex_exit(&sc->sc_mtx);
1685 }
1686 
1687 static void
1688 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1689 {
1690 	struct ifnet *ifp = &sc->sc_if;
1691 	struct upgt_lmac_tx_done_desc *desc;
1692 	int i, s;
1693 
1694 	s = splnet();
1695 
1696 	desc = (struct upgt_lmac_tx_done_desc *)data;
1697 
1698 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1699 		struct upgt_data *data_tx = &sc->tx_data[i];
1700 
1701 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
1702 			upgt_mem_free(sc, data_tx->addr);
1703 			data_tx->addr = 0;
1704 
1705 			sc->tx_queued--;
1706 			ifp->if_opackets++;
1707 
1708 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1709 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1710 			    le32toh(desc->header2.reqid),
1711 			    le16toh(desc->status),
1712 			    le16toh(desc->rssi));
1713 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1714 			break;
1715 		}
1716 	}
1717 
1718 	if (sc->tx_queued == 0) {
1719 		/* TX queued was processed, continue */
1720 		ifp->if_timer = 0;
1721 		ifp->if_flags &= ~IFF_OACTIVE;
1722 		upgt_start(ifp);
1723 	}
1724 
1725 	splx(s);
1726 }
1727 
1728 static void
1729 upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1730 {
1731 	struct upgt_data *data_rx = priv;
1732 	struct upgt_softc *sc = data_rx->sc;
1733 	int len;
1734 	struct upgt_lmac_header *header;
1735 	struct upgt_lmac_eeprom *eeprom;
1736 	uint8_t h1_type;
1737 	uint16_t h2_type;
1738 
1739 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1740 
1741 	if (status != USBD_NORMAL_COMPLETION) {
1742 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1743 			return;
1744 		if (status == USBD_STALLED)
1745 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1746 		goto skip;
1747 	}
1748 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1749 
1750 	/*
1751 	 * Check what type of frame came in.
1752 	 */
1753 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1754 
1755 	h1_type = header->header1.type;
1756 	h2_type = le16toh(header->header2.type);
1757 
1758 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1759 	    h2_type == UPGT_H2_TYPE_EEPROM) {
1760 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1761 		uint16_t eeprom_offset = le16toh(eeprom->offset);
1762 		uint16_t eeprom_len = le16toh(eeprom->len);
1763 
1764 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1765 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1766 
1767 		memcpy(sc->sc_eeprom + eeprom_offset,
1768 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1769 		    eeprom_len);
1770 
1771 		/* EEPROM data has arrived in time, wakeup tsleep() */
1772 		wakeup(sc);
1773 	} else
1774 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1775 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1776 		DPRINTF(2, "%s: received 802.11 TX done\n",
1777 		    device_xname(sc->sc_dev));
1778 
1779 		upgt_tx_done(sc, data_rx->buf + 4);
1780 	} else
1781 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1782 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1783 		DPRINTF(3, "%s: received 802.11 RX data\n",
1784 		    device_xname(sc->sc_dev));
1785 
1786 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1787 	} else
1788 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1789 	    h2_type == UPGT_H2_TYPE_STATS) {
1790 		DPRINTF(2, "%s: received statistic data\n",
1791 		    device_xname(sc->sc_dev));
1792 
1793 		/* TODO: what could we do with the statistic data? */
1794 	} else {
1795 		/* ignore unknown frame types */
1796 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1797 		    device_xname(sc->sc_dev), header->header1.type);
1798 	}
1799 
1800 skip:	/* setup new transfer */
1801 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
1802 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1803 	(void)usbd_transfer(xfer);
1804 }
1805 
1806 static void
1807 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1808 {
1809 	struct ieee80211com *ic = &sc->sc_ic;
1810 	struct ifnet *ifp = &sc->sc_if;
1811 	struct upgt_lmac_rx_desc *rxdesc;
1812 	struct ieee80211_frame *wh;
1813 	struct ieee80211_node *ni;
1814 	struct mbuf *m;
1815 	int s;
1816 
1817 	/* access RX packet descriptor */
1818 	rxdesc = (struct upgt_lmac_rx_desc *)data;
1819 
1820 	/* create mbuf which is suitable for strict alignment archs */
1821 #define ETHER_ALIGN	0
1822 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1823 	if (m == NULL) {
1824 		DPRINTF(1, "%s: could not create RX mbuf\n",
1825 		   device_xname(sc->sc_dev));
1826 		ifp->if_ierrors++;
1827 		return;
1828 	}
1829 
1830 	s = splnet();
1831 
1832 	if (sc->sc_drvbpf != NULL) {
1833 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1834 
1835 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1836 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1837 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1838 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1839 		tap->wr_antsignal = rxdesc->rssi;
1840 
1841 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1842 	}
1843 
1844 	/* trim FCS */
1845 	m_adj(m, -IEEE80211_CRC_LEN);
1846 
1847 	wh = mtod(m, struct ieee80211_frame *);
1848 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1849 
1850 	/* push the frame up to the 802.11 stack */
1851 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1852 
1853 	/* node is no longer needed */
1854 	ieee80211_free_node(ni);
1855 
1856 	splx(s);
1857 
1858 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1859 }
1860 
1861 static void
1862 upgt_setup_rates(struct upgt_softc *sc)
1863 {
1864 	struct ieee80211com *ic = &sc->sc_ic;
1865 
1866 	/*
1867 	 * 0x01 = OFMD6   0x10 = DS1
1868 	 * 0x04 = OFDM9   0x11 = DS2
1869 	 * 0x06 = OFDM12  0x12 = DS5
1870 	 * 0x07 = OFDM18  0x13 = DS11
1871 	 * 0x08 = OFDM24
1872 	 * 0x09 = OFDM36
1873 	 * 0x0a = OFDM48
1874 	 * 0x0b = OFDM54
1875 	 */
1876 	const uint8_t rateset_auto_11b[] =
1877 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1878 	const uint8_t rateset_auto_11g[] =
1879 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1880 	const uint8_t rateset_fix_11bg[] =
1881 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1882 	      0x08, 0x09, 0x0a, 0x0b };
1883 
1884 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1885 		/*
1886 		 * Automatic rate control is done by the device.
1887 		 * We just pass the rateset from which the device
1888 		 * will pickup a rate.
1889 		 */
1890 		if (ic->ic_curmode == IEEE80211_MODE_11B)
1891 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1892 			    sizeof(sc->sc_cur_rateset));
1893 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
1894 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
1895 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1896 			    sizeof(sc->sc_cur_rateset));
1897 	} else {
1898 		/* set a fixed rate */
1899 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1900 		    sizeof(sc->sc_cur_rateset));
1901 	}
1902 }
1903 
1904 static uint8_t
1905 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1906 {
1907 	struct ieee80211com *ic = &sc->sc_ic;
1908 
1909 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1910 		if (rate < 0 || rate > 3)
1911 			/* invalid rate */
1912 			return 0;
1913 
1914 		switch (rate) {
1915 		case 0:
1916 			return 2;
1917 		case 1:
1918 			return 4;
1919 		case 2:
1920 			return 11;
1921 		case 3:
1922 			return 22;
1923 		default:
1924 			return 0;
1925 		}
1926 	}
1927 
1928 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1929 		if (rate < 0 || rate > 11)
1930 			/* invalid rate */
1931 			return 0;
1932 
1933 		switch (rate) {
1934 		case 0:
1935 			return 2;
1936 		case 1:
1937 			return 4;
1938 		case 2:
1939 			return 11;
1940 		case 3:
1941 			return 22;
1942 		case 4:
1943 			return 12;
1944 		case 5:
1945 			return 18;
1946 		case 6:
1947 			return 24;
1948 		case 7:
1949 			return 36;
1950 		case 8:
1951 			return 48;
1952 		case 9:
1953 			return 72;
1954 		case 10:
1955 			return 96;
1956 		case 11:
1957 			return 108;
1958 		default:
1959 			return 0;
1960 		}
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 static int
1967 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1968 {
1969 	struct ieee80211com *ic = &sc->sc_ic;
1970 	struct ieee80211_node *ni = ic->ic_bss;
1971 	struct upgt_data *data_cmd = &sc->cmd_data;
1972 	struct upgt_lmac_mem *mem;
1973 	struct upgt_lmac_filter *filter;
1974 	int len;
1975 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1976 
1977 	/*
1978 	 * Transmit the URB containing the CMD data.
1979 	 */
1980 	len = sizeof(*mem) + sizeof(*filter);
1981 
1982 	memset(data_cmd->buf, 0, len);
1983 
1984 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
1985 	mem->addr = htole32(sc->sc_memaddr_frame_start +
1986 	    UPGT_MEMSIZE_FRAME_HEAD);
1987 
1988 	filter = (struct upgt_lmac_filter *)(mem + 1);
1989 
1990 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1991 	filter->header1.type = UPGT_H1_TYPE_CTRL;
1992 	filter->header1.len = htole16(
1993 	    sizeof(struct upgt_lmac_filter) -
1994 	    sizeof(struct upgt_lmac_header));
1995 
1996 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1997 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
1998 	filter->header2.flags = 0;
1999 
2000 	switch (state) {
2001 	case IEEE80211_S_INIT:
2002 		DPRINTF(1, "%s: set MAC filter to INIT\n",
2003 		    device_xname(sc->sc_dev));
2004 
2005 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2006 		break;
2007 	case IEEE80211_S_SCAN:
2008 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2009 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
2010 
2011 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2012 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2013 		IEEE80211_ADDR_COPY(filter->src, broadcast);
2014 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2015 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2016 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2017 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2018 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2019 		break;
2020 	case IEEE80211_S_RUN:
2021 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2022 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2023 
2024 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
2025 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2026 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2027 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2028 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2029 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2030 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2031 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2032 		break;
2033 	default:
2034 		aprint_error_dev(sc->sc_dev,
2035 		    "MAC filter does not know that state\n");
2036 		break;
2037 	}
2038 
2039 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2040 
2041 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2042 		aprint_error_dev(sc->sc_dev,
2043 		    "could not transmit macfilter CMD data URB\n");
2044 		return EIO;
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 static int
2051 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2052 {
2053 	struct upgt_data *data_cmd = &sc->cmd_data;
2054 	struct upgt_lmac_mem *mem;
2055 	struct upgt_lmac_channel *chan;
2056 	int len;
2057 
2058 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2059 	    channel);
2060 
2061 	/*
2062 	 * Transmit the URB containing the CMD data.
2063 	 */
2064 	len = sizeof(*mem) + sizeof(*chan);
2065 
2066 	memset(data_cmd->buf, 0, len);
2067 
2068 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2069 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2070 	    UPGT_MEMSIZE_FRAME_HEAD);
2071 
2072 	chan = (struct upgt_lmac_channel *)(mem + 1);
2073 
2074 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2075 	chan->header1.type = UPGT_H1_TYPE_CTRL;
2076 	chan->header1.len = htole16(
2077 	    sizeof(struct upgt_lmac_channel) -
2078 	    sizeof(struct upgt_lmac_header));
2079 
2080 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2081 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2082 	chan->header2.flags = 0;
2083 
2084 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2085 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2086 	chan->freq6 = sc->sc_eeprom_freq6[channel];
2087 	chan->settings = sc->sc_eeprom_freq6_settings;
2088 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2089 
2090 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2091 	    sizeof(chan->freq3_1));
2092 
2093 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2094 	    sizeof(sc->sc_eeprom_freq4[channel]));
2095 
2096 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2097 	    sizeof(chan->freq3_2));
2098 
2099 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2100 
2101 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2102 		aprint_error_dev(sc->sc_dev,
2103 		    "could not transmit channel CMD data URB\n");
2104 		return EIO;
2105 	}
2106 
2107 	return 0;
2108 }
2109 
2110 static void
2111 upgt_set_led(struct upgt_softc *sc, int action)
2112 {
2113 	struct ieee80211com *ic = &sc->sc_ic;
2114 	struct upgt_data *data_cmd = &sc->cmd_data;
2115 	struct upgt_lmac_mem *mem;
2116 	struct upgt_lmac_led *led;
2117 	struct timeval t;
2118 	int len;
2119 
2120 	/*
2121 	 * Transmit the URB containing the CMD data.
2122 	 */
2123 	len = sizeof(*mem) + sizeof(*led);
2124 
2125 	memset(data_cmd->buf, 0, len);
2126 
2127 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2128 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2129 	    UPGT_MEMSIZE_FRAME_HEAD);
2130 
2131 	led = (struct upgt_lmac_led *)(mem + 1);
2132 
2133 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2134 	led->header1.type = UPGT_H1_TYPE_CTRL;
2135 	led->header1.len = htole16(
2136 	    sizeof(struct upgt_lmac_led) -
2137 	    sizeof(struct upgt_lmac_header));
2138 
2139 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2140 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
2141 	led->header2.flags = 0;
2142 
2143 	switch (action) {
2144 	case UPGT_LED_OFF:
2145 		led->mode = htole16(UPGT_LED_MODE_SET);
2146 		led->action_fix = 0;
2147 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2148 		led->action_tmp_dur = 0;
2149 		break;
2150 	case UPGT_LED_ON:
2151 		led->mode = htole16(UPGT_LED_MODE_SET);
2152 		led->action_fix = 0;
2153 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2154 		led->action_tmp_dur = 0;
2155 		break;
2156 	case UPGT_LED_BLINK:
2157 		if (ic->ic_state != IEEE80211_S_RUN)
2158 			return;
2159 		if (sc->sc_led_blink)
2160 			/* previous blink was not finished */
2161 			return;
2162 		led->mode = htole16(UPGT_LED_MODE_SET);
2163 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2164 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2165 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2166 		/* lock blink */
2167 		sc->sc_led_blink = 1;
2168 		t.tv_sec = 0;
2169 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2170 		callout_schedule(&sc->led_to, tvtohz(&t));
2171 		break;
2172 	default:
2173 		return;
2174 	}
2175 
2176 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2177 
2178 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2179 		aprint_error_dev(sc->sc_dev,
2180 		    "could not transmit led CMD URB\n");
2181 	}
2182 }
2183 
2184 static void
2185 upgt_set_led_blink(void *arg)
2186 {
2187 	struct upgt_softc *sc = arg;
2188 
2189 	/* blink finished, we are ready for a next one */
2190 	sc->sc_led_blink = 0;
2191 	callout_stop(&sc->led_to);
2192 }
2193 
2194 static int
2195 upgt_get_stats(struct upgt_softc *sc)
2196 {
2197 	struct upgt_data *data_cmd = &sc->cmd_data;
2198 	struct upgt_lmac_mem *mem;
2199 	struct upgt_lmac_stats *stats;
2200 	int len;
2201 
2202 	/*
2203 	 * Transmit the URB containing the CMD data.
2204 	 */
2205 	len = sizeof(*mem) + sizeof(*stats);
2206 
2207 	memset(data_cmd->buf, 0, len);
2208 
2209 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2210 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2211 	    UPGT_MEMSIZE_FRAME_HEAD);
2212 
2213 	stats = (struct upgt_lmac_stats *)(mem + 1);
2214 
2215 	stats->header1.flags = 0;
2216 	stats->header1.type = UPGT_H1_TYPE_CTRL;
2217 	stats->header1.len = htole16(
2218 	    sizeof(struct upgt_lmac_stats) -
2219 	    sizeof(struct upgt_lmac_header));
2220 
2221 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2222 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2223 	stats->header2.flags = 0;
2224 
2225 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2226 
2227 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2228 		aprint_error_dev(sc->sc_dev,
2229 		    "could not transmit statistics CMD data URB\n");
2230 		return EIO;
2231 	}
2232 
2233 	return 0;
2234 
2235 }
2236 
2237 static int
2238 upgt_alloc_tx(struct upgt_softc *sc)
2239 {
2240 	int i;
2241 
2242 	sc->tx_queued = 0;
2243 
2244 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2245 		struct upgt_data *data_tx = &sc->tx_data[i];
2246 
2247 		data_tx->sc = sc;
2248 
2249 		data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
2250 		if (data_tx->xfer == NULL) {
2251 			aprint_error_dev(sc->sc_dev,
2252 			    "could not allocate TX xfer\n");
2253 			return ENOMEM;
2254 		}
2255 
2256 		data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
2257 		if (data_tx->buf == NULL) {
2258 			aprint_error_dev(sc->sc_dev,
2259 			    "could not allocate TX buffer\n");
2260 			return ENOMEM;
2261 		}
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 static int
2268 upgt_alloc_rx(struct upgt_softc *sc)
2269 {
2270 	struct upgt_data *data_rx = &sc->rx_data;
2271 
2272 	data_rx->sc = sc;
2273 
2274 	data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
2275 	if (data_rx->xfer == NULL) {
2276 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2277 		return ENOMEM;
2278 	}
2279 
2280 	data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
2281 	if (data_rx->buf == NULL) {
2282 		aprint_error_dev(sc->sc_dev,
2283 		    "could not allocate RX buffer\n");
2284 		return ENOMEM;
2285 	}
2286 
2287 	return 0;
2288 }
2289 
2290 static int
2291 upgt_alloc_cmd(struct upgt_softc *sc)
2292 {
2293 	struct upgt_data *data_cmd = &sc->cmd_data;
2294 
2295 	data_cmd->sc = sc;
2296 
2297 	data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
2298 	if (data_cmd->xfer == NULL) {
2299 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2300 		return ENOMEM;
2301 	}
2302 
2303 	data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
2304 	if (data_cmd->buf == NULL) {
2305 		aprint_error_dev(sc->sc_dev,
2306 		    "could not allocate RX buffer\n");
2307 		return ENOMEM;
2308 	}
2309 
2310 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
2311 
2312 	return 0;
2313 }
2314 
2315 static void
2316 upgt_free_tx(struct upgt_softc *sc)
2317 {
2318 	int i;
2319 
2320 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2321 		struct upgt_data *data_tx = &sc->tx_data[i];
2322 
2323 		if (data_tx->xfer != NULL) {
2324 			usbd_free_xfer(data_tx->xfer);
2325 			data_tx->xfer = NULL;
2326 		}
2327 
2328 		data_tx->ni = NULL;
2329 	}
2330 }
2331 
2332 static void
2333 upgt_free_rx(struct upgt_softc *sc)
2334 {
2335 	struct upgt_data *data_rx = &sc->rx_data;
2336 
2337 	if (data_rx->xfer != NULL) {
2338 		usbd_free_xfer(data_rx->xfer);
2339 		data_rx->xfer = NULL;
2340 	}
2341 
2342 	data_rx->ni = NULL;
2343 }
2344 
2345 static void
2346 upgt_free_cmd(struct upgt_softc *sc)
2347 {
2348 	struct upgt_data *data_cmd = &sc->cmd_data;
2349 
2350 	if (data_cmd->xfer != NULL) {
2351 		usbd_free_xfer(data_cmd->xfer);
2352 		data_cmd->xfer = NULL;
2353 	}
2354 
2355 	mutex_destroy(&sc->sc_mtx);
2356 }
2357 
2358 static int
2359 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2360     usbd_pipe_handle pipeh, uint32_t *size, int flags)
2361 {
2362         usbd_status status;
2363 
2364 	status = usbd_bulk_transfer(data->xfer, pipeh,
2365 	    USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size,
2366 	    "upgt_bulk_xmit");
2367 	if (status != USBD_NORMAL_COMPLETION) {
2368 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2369 		    usbd_errstr(status));
2370 		return EIO;
2371 	}
2372 
2373 	return 0;
2374 }
2375 
2376 #if 0
2377 static void
2378 upgt_hexdump(void *buf, int len)
2379 {
2380 	int i;
2381 
2382 	for (i = 0; i < len; i++) {
2383 		if (i % 16 == 0)
2384 			printf("%s%5i:", i ? "\n" : "", i);
2385 		if (i % 4 == 0)
2386 			printf(" ");
2387 		printf("%02x", (int)*((uint8_t *)buf + i));
2388 	}
2389 	printf("\n");
2390 }
2391 #endif
2392 
2393 static uint32_t
2394 upgt_crc32_le(const void *buf, size_t size)
2395 {
2396 	uint32_t crc;
2397 
2398 	crc = ether_crc32_le(buf, size);
2399 
2400 	/* apply final XOR value as common for CRC-32 */
2401 	crc = htole32(crc ^ 0xffffffffU);
2402 
2403 	return crc;
2404 }
2405 
2406 /*
2407  * The firmware awaits a checksum for each frame we send to it.
2408  * The algorithm used therefor is uncommon but somehow similar to CRC32.
2409  */
2410 static uint32_t
2411 upgt_chksum_le(const uint32_t *buf, size_t size)
2412 {
2413 	int i;
2414 	uint32_t crc = 0;
2415 
2416 	for (i = 0; i < size; i += sizeof(uint32_t)) {
2417 		crc = htole32(crc ^ *buf++);
2418 		crc = htole32((crc >> 5) ^ (crc << 3));
2419 	}
2420 
2421 	return crc;
2422 }
2423