1 /*	$NetBSD: amdgpu_ppatomctrl.c,v 1.1.1.1 2021/12/18 20:15:19 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2015 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ppatomctrl.c,v 1.1.1.1 2021/12/18 20:15:19 riastradh Exp $");
27 
28 #include "pp_debug.h"
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include "atom.h"
33 #include "ppatomctrl.h"
34 #include "atombios.h"
35 #include "cgs_common.h"
36 #include "ppevvmath.h"
37 
38 #define MEM_ID_MASK           0xff000000
39 #define MEM_ID_SHIFT          24
40 #define CLOCK_RANGE_MASK      0x00ffffff
41 #define CLOCK_RANGE_SHIFT     0
42 #define LOW_NIBBLE_MASK       0xf
43 #define DATA_EQU_PREV         0
44 #define DATA_FROM_TABLE       4
45 
46 union voltage_object_info {
47 	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
48 	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
49 	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
50 };
51 
52 static int atomctrl_retrieve_ac_timing(
53 		uint8_t index,
54 		ATOM_INIT_REG_BLOCK *reg_block,
55 		pp_atomctrl_mc_reg_table *table)
56 {
57 	uint32_t i, j;
58 	uint8_t tmem_id;
59 	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
60 		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
61 
62 	uint8_t num_ranges = 0;
63 
64 	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
65 			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
66 		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
67 
68 		if (index == tmem_id) {
69 			table->mc_reg_table_entry[num_ranges].mclk_max =
70 				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
71 						CLOCK_RANGE_SHIFT);
72 
73 			for (i = 0, j = 1; i < table->last; i++) {
74 				if ((table->mc_reg_address[i].uc_pre_reg_data &
75 							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
76 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
77 						(uint32_t)*((uint32_t *)reg_data + j);
78 					j++;
79 				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
80 							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
81 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
82 						table->mc_reg_table_entry[num_ranges].mc_data[i-1];
83 				}
84 			}
85 			num_ranges++;
86 		}
87 
88 		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
89 			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
90 	}
91 
92 	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
93 			"Invalid VramInfo table.", return -1);
94 	table->num_entries = num_ranges;
95 
96 	return 0;
97 }
98 
99 /**
100  * Get memory clock AC timing registers index from VBIOS table
101  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
102  * @param    reg_block the address ATOM_INIT_REG_BLOCK
103  * @param    table the address of MCRegTable
104  * @return   0
105  */
106 static int atomctrl_set_mc_reg_address_table(
107 		ATOM_INIT_REG_BLOCK *reg_block,
108 		pp_atomctrl_mc_reg_table *table)
109 {
110 	uint8_t i = 0;
111 	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
112 			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
113 	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
114 
115 	num_entries--;        /* subtract 1 data end mark entry */
116 
117 	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
118 			"Invalid VramInfo table.", return -1);
119 
120 	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
121 	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
122 			(i < num_entries)) {
123 		table->mc_reg_address[i].s1 =
124 			(uint16_t)(le16_to_cpu(format->usRegIndex));
125 		table->mc_reg_address[i].uc_pre_reg_data =
126 			format->ucPreRegDataLength;
127 
128 		i++;
129 		format = (ATOM_INIT_REG_INDEX_FORMAT *)
130 			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
131 	}
132 
133 	table->last = i;
134 	return 0;
135 }
136 
137 int atomctrl_initialize_mc_reg_table(
138 		struct pp_hwmgr *hwmgr,
139 		uint8_t module_index,
140 		pp_atomctrl_mc_reg_table *table)
141 {
142 	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
143 	ATOM_INIT_REG_BLOCK *reg_block;
144 	int result = 0;
145 	u8 frev, crev;
146 	u16 size;
147 
148 	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
149 		smu_atom_get_data_table(hwmgr->adev,
150 				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
151 
152 	if (module_index >= vram_info->ucNumOfVRAMModule) {
153 		pr_err("Invalid VramInfo table.");
154 		result = -1;
155 	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
156 		pr_err("Invalid VramInfo table.");
157 		result = -1;
158 	}
159 
160 	if (0 == result) {
161 		reg_block = (ATOM_INIT_REG_BLOCK *)
162 			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
163 		result = atomctrl_set_mc_reg_address_table(reg_block, table);
164 	}
165 
166 	if (0 == result) {
167 		result = atomctrl_retrieve_ac_timing(module_index,
168 					reg_block, table);
169 	}
170 
171 	return result;
172 }
173 
174 /**
175  * Set DRAM timings based on engine clock and memory clock.
176  */
177 int atomctrl_set_engine_dram_timings_rv770(
178 		struct pp_hwmgr *hwmgr,
179 		uint32_t engine_clock,
180 		uint32_t memory_clock)
181 {
182 	struct amdgpu_device *adev = hwmgr->adev;
183 
184 	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
185 
186 	/* They are both in 10KHz Units. */
187 	engine_clock_parameters.ulTargetEngineClock =
188 		cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
189 			    ((COMPUTE_ENGINE_PLL_PARAM << 24)));
190 
191 	/* in 10 khz units.*/
192 	engine_clock_parameters.sReserved.ulClock =
193 		cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
194 
195 	return amdgpu_atom_execute_table(adev->mode_info.atom_context,
196 			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
197 			(uint32_t *)&engine_clock_parameters);
198 }
199 
200 /**
201  * Private Function to get the PowerPlay Table Address.
202  * WARNING: The tabled returned by this function is in
203  * dynamically allocated memory.
204  * The caller has to release if by calling kfree.
205  */
206 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
207 {
208 	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
209 	u8 frev, crev;
210 	u16 size;
211 	union voltage_object_info *voltage_info;
212 
213 	voltage_info = (union voltage_object_info *)
214 		smu_atom_get_data_table(device, index,
215 			&size, &frev, &crev);
216 
217 	if (voltage_info != NULL)
218 		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
219 	else
220 		return NULL;
221 }
222 
223 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
224 		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
225 		uint8_t voltage_type, uint8_t voltage_mode)
226 {
227 	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
228 	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
229 	uint8_t *start = (uint8_t *)voltage_object_info_table;
230 
231 	while (offset < size) {
232 		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
233 			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
234 
235 		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
236 			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
237 			return voltage_object;
238 
239 		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
240 	}
241 
242 	return NULL;
243 }
244 
245 /** atomctrl_get_memory_pll_dividers_si().
246  *
247  * @param hwmgr                 input parameter: pointer to HwMgr
248  * @param clock_value             input parameter: memory clock
249  * @param dividers                 output parameter: memory PLL dividers
250  * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
251  */
252 int atomctrl_get_memory_pll_dividers_si(
253 		struct pp_hwmgr *hwmgr,
254 		uint32_t clock_value,
255 		pp_atomctrl_memory_clock_param *mpll_param,
256 		bool strobe_mode)
257 {
258 	struct amdgpu_device *adev = hwmgr->adev;
259 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
260 	int result;
261 
262 	mpll_parameters.ulClock = cpu_to_le32(clock_value);
263 	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
264 
265 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
266 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
267 		(uint32_t *)&mpll_parameters);
268 
269 	if (0 == result) {
270 		mpll_param->mpll_fb_divider.clk_frac =
271 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
272 		mpll_param->mpll_fb_divider.cl_kf =
273 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
274 		mpll_param->mpll_post_divider =
275 			(uint32_t)mpll_parameters.ucPostDiv;
276 		mpll_param->vco_mode =
277 			(uint32_t)(mpll_parameters.ucPllCntlFlag &
278 					MPLL_CNTL_FLAG_VCO_MODE_MASK);
279 		mpll_param->yclk_sel =
280 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
281 						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
282 		mpll_param->qdr =
283 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
284 						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
285 		mpll_param->half_rate =
286 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
287 						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
288 		mpll_param->dll_speed =
289 			(uint32_t)(mpll_parameters.ucDllSpeed);
290 		mpll_param->bw_ctrl =
291 			(uint32_t)(mpll_parameters.ucBWCntl);
292 	}
293 
294 	return result;
295 }
296 
297 /** atomctrl_get_memory_pll_dividers_vi().
298  *
299  * @param hwmgr                 input parameter: pointer to HwMgr
300  * @param clock_value             input parameter: memory clock
301  * @param dividers               output parameter: memory PLL dividers
302  */
303 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
304 		uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
305 {
306 	struct amdgpu_device *adev = hwmgr->adev;
307 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
308 	int result;
309 
310 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
311 
312 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
313 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
314 			(uint32_t *)&mpll_parameters);
315 
316 	if (!result)
317 		mpll_param->mpll_post_divider =
318 				(uint32_t)mpll_parameters.ulClock.ucPostDiv;
319 
320 	return result;
321 }
322 
323 int atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr *hwmgr,
324 					uint32_t clock_value,
325 					pp_atomctrl_memory_clock_param_ai *mpll_param)
326 {
327 	struct amdgpu_device *adev = hwmgr->adev;
328 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_3 mpll_parameters = {{0}, 0, 0};
329 	int result;
330 
331 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
332 
333 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
334 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
335 			(uint32_t *)&mpll_parameters);
336 
337 	/* VEGAM's mpll takes sometime to finish computing */
338 	udelay(10);
339 
340 	if (!result) {
341 		mpll_param->ulMclk_fcw_int =
342 			le16_to_cpu(mpll_parameters.usMclk_fcw_int);
343 		mpll_param->ulMclk_fcw_frac =
344 			le16_to_cpu(mpll_parameters.usMclk_fcw_frac);
345 		mpll_param->ulClock =
346 			le32_to_cpu(mpll_parameters.ulClock.ulClock);
347 		mpll_param->ulPostDiv = mpll_parameters.ulClock.ucPostDiv;
348 	}
349 
350 	return result;
351 }
352 
353 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
354 					  uint32_t clock_value,
355 					  pp_atomctrl_clock_dividers_kong *dividers)
356 {
357 	struct amdgpu_device *adev = hwmgr->adev;
358 	COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
359 	int result;
360 
361 	pll_parameters.ulClock = cpu_to_le32(clock_value);
362 
363 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
364 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
365 		(uint32_t *)&pll_parameters);
366 
367 	if (0 == result) {
368 		dividers->pll_post_divider = pll_parameters.ucPostDiv;
369 		dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
370 	}
371 
372 	return result;
373 }
374 
375 int atomctrl_get_engine_pll_dividers_vi(
376 		struct pp_hwmgr *hwmgr,
377 		uint32_t clock_value,
378 		pp_atomctrl_clock_dividers_vi *dividers)
379 {
380 	struct amdgpu_device *adev = hwmgr->adev;
381 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
382 	int result;
383 
384 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
385 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
386 
387 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
388 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
389 		(uint32_t *)&pll_patameters);
390 
391 	if (0 == result) {
392 		dividers->pll_post_divider =
393 			pll_patameters.ulClock.ucPostDiv;
394 		dividers->real_clock =
395 			le32_to_cpu(pll_patameters.ulClock.ulClock);
396 
397 		dividers->ul_fb_div.ul_fb_div_frac =
398 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
399 		dividers->ul_fb_div.ul_fb_div =
400 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
401 
402 		dividers->uc_pll_ref_div =
403 			pll_patameters.ucPllRefDiv;
404 		dividers->uc_pll_post_div =
405 			pll_patameters.ucPllPostDiv;
406 		dividers->uc_pll_cntl_flag =
407 			pll_patameters.ucPllCntlFlag;
408 	}
409 
410 	return result;
411 }
412 
413 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
414 		uint32_t clock_value,
415 		pp_atomctrl_clock_dividers_ai *dividers)
416 {
417 	struct amdgpu_device *adev = hwmgr->adev;
418 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
419 	int result;
420 
421 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
422 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
423 
424 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
425 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
426 		(uint32_t *)&pll_patameters);
427 
428 	if (0 == result) {
429 		dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
430 		dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
431 		dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
432 		dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
433 		dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
434 		dividers->ucSscEnable         = pll_patameters.ucSscEnable;
435 		dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
436 		dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
437 		dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
438 		dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
439 		dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
440 	}
441 	return result;
442 }
443 
444 int atomctrl_get_dfs_pll_dividers_vi(
445 		struct pp_hwmgr *hwmgr,
446 		uint32_t clock_value,
447 		pp_atomctrl_clock_dividers_vi *dividers)
448 {
449 	struct amdgpu_device *adev = hwmgr->adev;
450 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
451 	int result;
452 
453 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
454 	pll_patameters.ulClock.ucPostDiv =
455 		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
456 
457 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
458 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
459 		(uint32_t *)&pll_patameters);
460 
461 	if (0 == result) {
462 		dividers->pll_post_divider =
463 			pll_patameters.ulClock.ucPostDiv;
464 		dividers->real_clock =
465 			le32_to_cpu(pll_patameters.ulClock.ulClock);
466 
467 		dividers->ul_fb_div.ul_fb_div_frac =
468 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
469 		dividers->ul_fb_div.ul_fb_div =
470 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
471 
472 		dividers->uc_pll_ref_div =
473 			pll_patameters.ucPllRefDiv;
474 		dividers->uc_pll_post_div =
475 			pll_patameters.ucPllPostDiv;
476 		dividers->uc_pll_cntl_flag =
477 			pll_patameters.ucPllCntlFlag;
478 	}
479 
480 	return result;
481 }
482 
483 /**
484  * Get the reference clock in 10KHz
485  */
486 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
487 {
488 	ATOM_FIRMWARE_INFO *fw_info;
489 	u8 frev, crev;
490 	u16 size;
491 	uint32_t clock;
492 
493 	fw_info = (ATOM_FIRMWARE_INFO *)
494 		smu_atom_get_data_table(hwmgr->adev,
495 			GetIndexIntoMasterTable(DATA, FirmwareInfo),
496 			&size, &frev, &crev);
497 
498 	if (fw_info == NULL)
499 		clock = 2700;
500 	else
501 		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
502 
503 	return clock;
504 }
505 
506 /**
507  * Returns true if the given voltage type is controlled by GPIO pins.
508  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
509  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
510  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
511  */
512 bool atomctrl_is_voltage_controlled_by_gpio_v3(
513 		struct pp_hwmgr *hwmgr,
514 		uint8_t voltage_type,
515 		uint8_t voltage_mode)
516 {
517 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
518 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
519 	bool ret;
520 
521 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
522 			"Could not find Voltage Table in BIOS.", return false;);
523 
524 	ret = (NULL != atomctrl_lookup_voltage_type_v3
525 			(voltage_info, voltage_type, voltage_mode)) ? true : false;
526 
527 	return ret;
528 }
529 
530 int atomctrl_get_voltage_table_v3(
531 		struct pp_hwmgr *hwmgr,
532 		uint8_t voltage_type,
533 		uint8_t voltage_mode,
534 		pp_atomctrl_voltage_table *voltage_table)
535 {
536 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
537 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
538 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
539 	unsigned int i;
540 
541 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
542 			"Could not find Voltage Table in BIOS.", return -1;);
543 
544 	voltage_object = atomctrl_lookup_voltage_type_v3
545 		(voltage_info, voltage_type, voltage_mode);
546 
547 	if (voltage_object == NULL)
548 		return -1;
549 
550 	PP_ASSERT_WITH_CODE(
551 			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
552 			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
553 			"Too many voltage entries!",
554 			return -1;
555 			);
556 
557 	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
558 		voltage_table->entries[i].value =
559 			le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
560 		voltage_table->entries[i].smio_low =
561 			le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
562 	}
563 
564 	voltage_table->mask_low    =
565 		le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
566 	voltage_table->count      =
567 		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
568 	voltage_table->phase_delay =
569 		voltage_object->asGpioVoltageObj.ucPhaseDelay;
570 
571 	return 0;
572 }
573 
574 static bool atomctrl_lookup_gpio_pin(
575 		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
576 		const uint32_t pinId,
577 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
578 {
579 	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
580 	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
581 	uint8_t *start = (uint8_t *)gpio_lookup_table;
582 
583 	while (offset < size) {
584 		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
585 			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
586 
587 		if (pinId == pin_assignment->ucGPIO_ID) {
588 			gpio_pin_assignment->uc_gpio_pin_bit_shift =
589 				pin_assignment->ucGpioPinBitShift;
590 			gpio_pin_assignment->us_gpio_pin_aindex =
591 				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
592 			return true;
593 		}
594 
595 		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
596 	}
597 
598 	return false;
599 }
600 
601 /**
602  * Private Function to get the PowerPlay Table Address.
603  * WARNING: The tabled returned by this function is in
604  * dynamically allocated memory.
605  * The caller has to release if by calling kfree.
606  */
607 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
608 {
609 	u8 frev, crev;
610 	u16 size;
611 	void *table_address;
612 
613 	table_address = (ATOM_GPIO_PIN_LUT *)
614 		smu_atom_get_data_table(device,
615 				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
616 				&size, &frev, &crev);
617 
618 	PP_ASSERT_WITH_CODE((NULL != table_address),
619 			"Error retrieving BIOS Table Address!", return NULL;);
620 
621 	return (ATOM_GPIO_PIN_LUT *)table_address;
622 }
623 
624 /**
625  * Returns 1 if the given pin id find in lookup table.
626  */
627 bool atomctrl_get_pp_assign_pin(
628 		struct pp_hwmgr *hwmgr,
629 		const uint32_t pinId,
630 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
631 {
632 	bool bRet = false;
633 	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
634 		get_gpio_lookup_table(hwmgr->adev);
635 
636 	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
637 			"Could not find GPIO lookup Table in BIOS.", return false);
638 
639 	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
640 		gpio_pin_assignment);
641 
642 	return bRet;
643 }
644 
645 int atomctrl_calculate_voltage_evv_on_sclk(
646 		struct pp_hwmgr *hwmgr,
647 		uint8_t voltage_type,
648 		uint32_t sclk,
649 		uint16_t virtual_voltage_Id,
650 		uint16_t *voltage,
651 		uint16_t dpm_level,
652 		bool debug)
653 {
654 	ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
655 	struct amdgpu_device *adev = hwmgr->adev;
656 	EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
657 	EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
658 	EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
659 	EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
660 	EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
661 	EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
662 	EFUSE_INPUT_PARAMETER sInput_FuseValues;
663 	READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
664 
665 	uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
666 	fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
667 	fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
668 	fInt fLkg_FT, repeat;
669 	fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
670 	fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
671 	fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
672 	fInt fSclk_margin, fSclk, fEVV_V;
673 	fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
674 	uint32_t ul_FT_Lkg_V0NORM;
675 	fInt fLn_MaxDivMin, fMin, fAverage, fRange;
676 	fInt fRoots[2];
677 	fInt fStepSize = GetScaledFraction(625, 100000);
678 
679 	int result;
680 
681 	getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
682 			smu_atom_get_data_table(hwmgr->adev,
683 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
684 					NULL, NULL, NULL);
685 
686 	if (!getASICProfilingInfo)
687 		return -1;
688 
689 	if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
690 	    (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
691 	     getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
692 		return -1;
693 
694 	/*-----------------------------------------------------------
695 	 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
696 	 *-----------------------------------------------------------
697 	 */
698 	fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
699 
700 	switch (dpm_level) {
701 	case 1:
702 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
703 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
704 		break;
705 	case 2:
706 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
707 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
708 		break;
709 	case 3:
710 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
711 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
712 		break;
713 	case 4:
714 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
715 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
716 		break;
717 	case 5:
718 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
719 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
720 		break;
721 	case 6:
722 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
723 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
724 		break;
725 	case 7:
726 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
727 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
728 		break;
729 	default:
730 		pr_err("DPM Level not supported\n");
731 		fPowerDPMx = Convert_ULONG_ToFraction(1);
732 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
733 	}
734 
735 	/*-------------------------
736 	 * DECODING FUSE VALUES
737 	 * ------------------------
738 	 */
739 	/*Decode RO_Fused*/
740 	sRO_fuse = getASICProfilingInfo->sRoFuse;
741 
742 	sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
743 	sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
744 	sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
745 
746 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
747 
748 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
749 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
750 			(uint32_t *)&sOutput_FuseValues);
751 
752 	if (result)
753 		return result;
754 
755 	/* Finally, the actual fuse value */
756 	ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
757 	fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
758 	fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
759 	fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
760 
761 	sCACm_fuse = getASICProfilingInfo->sCACm;
762 
763 	sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
764 	sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
765 	sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
766 
767 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
768 
769 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
770 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
771 			(uint32_t *)&sOutput_FuseValues);
772 
773 	if (result)
774 		return result;
775 
776 	ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
777 	fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
778 	fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
779 
780 	fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
781 
782 	sCACb_fuse = getASICProfilingInfo->sCACb;
783 
784 	sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
785 	sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
786 	sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
787 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
788 
789 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
790 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
791 			(uint32_t *)&sOutput_FuseValues);
792 
793 	if (result)
794 		return result;
795 
796 	ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
797 	fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
798 	fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
799 
800 	fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
801 
802 	sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
803 
804 	sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
805 	sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
806 	sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
807 
808 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
809 
810 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
811 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
812 			(uint32_t *)&sOutput_FuseValues);
813 
814 	if (result)
815 		return result;
816 
817 	ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
818 	fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
819 	fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
820 
821 	fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
822 			fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
823 
824 	sKv_m_fuse = getASICProfilingInfo->sKv_m;
825 
826 	sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
827 	sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
828 	sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
829 
830 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
831 
832 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
833 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
834 			(uint32_t *)&sOutput_FuseValues);
835 	if (result)
836 		return result;
837 
838 	ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
839 	fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
840 	fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
841 	fRange = fMultiply(fRange, ConvertToFraction(-1));
842 
843 	fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
844 			fAverage, fRange, sKv_m_fuse.ucEfuseLength);
845 
846 	sKv_b_fuse = getASICProfilingInfo->sKv_b;
847 
848 	sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
849 	sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
850 	sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
851 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
852 
853 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
854 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
855 			(uint32_t *)&sOutput_FuseValues);
856 
857 	if (result)
858 		return result;
859 
860 	ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
861 	fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
862 	fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
863 
864 	fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
865 			fAverage, fRange, sKv_b_fuse.ucEfuseLength);
866 
867 	/* Decoding the Leakage - No special struct container */
868 	/*
869 	 * usLkgEuseIndex=56
870 	 * ucLkgEfuseBitLSB=6
871 	 * ucLkgEfuseLength=10
872 	 * ulLkgEncodeLn_MaxDivMin=69077
873 	 * ulLkgEncodeMax=1000000
874 	 * ulLkgEncodeMin=1000
875 	 * ulEfuseLogisticAlpha=13
876 	 */
877 
878 	sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
879 	sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
880 	sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
881 
882 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
883 
884 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
885 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
886 			(uint32_t *)&sOutput_FuseValues);
887 
888 	if (result)
889 		return result;
890 
891 	ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
892 	fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
893 	fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
894 
895 	fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
896 			fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
897 	fLkg_FT = fFT_Lkg_V0NORM;
898 
899 	/*-------------------------------------------
900 	 * PART 2 - Grabbing all required values
901 	 *-------------------------------------------
902 	 */
903 	fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
904 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
905 	fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
906 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
907 	fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
908 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
909 	fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
910 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
911 	fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
912 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
913 	fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
914 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
915 	fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
916 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
917 	fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
918 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
919 
920 	fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
921 	fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
922 	fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
923 
924 	fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
925 
926 	fMargin_FMAX_mean = GetScaledFraction(
927 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
928 	fMargin_Plat_mean = GetScaledFraction(
929 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
930 	fMargin_FMAX_sigma = GetScaledFraction(
931 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
932 	fMargin_Plat_sigma = GetScaledFraction(
933 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
934 
935 	fMargin_DC_sigma = GetScaledFraction(
936 		le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
937 	fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
938 
939 	fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
940 	fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
941 	fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
942 	fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
943 	fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
944 
945 	fSclk = GetScaledFraction(sclk, 100);
946 
947 	fV_max = fDivide(GetScaledFraction(
948 				 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
949 	fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
950 	fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
951 	fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
952 	fV_FT = fDivide(GetScaledFraction(
953 				le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
954 	fV_min = fDivide(GetScaledFraction(
955 				 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
956 
957 	/*-----------------------
958 	 * PART 3
959 	 *-----------------------
960 	 */
961 
962 	fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
963 	fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
964 	fC_Term = fAdd(fMargin_RO_c,
965 			fAdd(fMultiply(fSM_A0, fLkg_FT),
966 			fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
967 			fAdd(fMultiply(fSM_A3, fSclk),
968 			fSubtract(fSM_A7, fRO_fused)))));
969 
970 	fVDDC_base = fSubtract(fRO_fused,
971 			fSubtract(fMargin_RO_c,
972 					fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
973 	fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
974 
975 	repeat = fSubtract(fVDDC_base,
976 			fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
977 
978 	fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
979 			fGetSquare(repeat)),
980 			fAdd(fMultiply(fMargin_RO_b, repeat),
981 			fMargin_RO_c));
982 
983 	fDC_SCLK = fSubtract(fRO_fused,
984 			fSubtract(fRO_DC_margin,
985 			fSubtract(fSM_A3,
986 			fMultiply(fSM_A2, repeat))));
987 	fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
988 
989 	fSigma_DC = fSubtract(fSclk, fDC_SCLK);
990 
991 	fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
992 	fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
993 	fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
994 	fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
995 
996 	fSquared_Sigma_DC = fGetSquare(fSigma_DC);
997 	fSquared_Sigma_CR = fGetSquare(fSigma_CR);
998 	fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
999 
1000 	fSclk_margin = fAdd(fMicro_FMAX,
1001 			fAdd(fMicro_CR,
1002 			fAdd(fMargin_fixed,
1003 			fSqrt(fAdd(fSquared_Sigma_FMAX,
1004 			fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
1005 	/*
1006 	 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
1007 	 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
1008 	 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
1009 	 */
1010 
1011 	fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
1012 	fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
1013 	fC_Term = fAdd(fRO_DC_margin,
1014 			fAdd(fMultiply(fSM_A0, fLkg_FT),
1015 			fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
1016 			fAdd(fSclk, fSclk_margin)),
1017 			fAdd(fMultiply(fSM_A3,
1018 			fAdd(fSclk, fSclk_margin)),
1019 			fSubtract(fSM_A7, fRO_fused)))));
1020 
1021 	SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
1022 
1023 	if (GreaterThan(fRoots[0], fRoots[1]))
1024 		fEVV_V = fRoots[1];
1025 	else
1026 		fEVV_V = fRoots[0];
1027 
1028 	if (GreaterThan(fV_min, fEVV_V))
1029 		fEVV_V = fV_min;
1030 	else if (GreaterThan(fEVV_V, fV_max))
1031 		fEVV_V = fSubtract(fV_max, fStepSize);
1032 
1033 	fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
1034 
1035 	/*-----------------
1036 	 * PART 4
1037 	 *-----------------
1038 	 */
1039 
1040 	fV_x = fV_min;
1041 
1042 	while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1043 		fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1044 				fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1045 				fGetSquare(fV_x)), fDerateTDP);
1046 
1047 		fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1048 				fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1049 				fT_prod), fKv_b_fused), fV_x)), fV_x)));
1050 		fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1051 				fKt_Beta_fused, fT_prod)));
1052 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1053 				fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1054 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1055 				fKt_Beta_fused, fT_FT)));
1056 
1057 		fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1058 
1059 		fTDP_Current = fDivide(fTDP_Power, fV_x);
1060 
1061 		fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1062 				ConvertToFraction(10)));
1063 
1064 		fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1065 
1066 		if (GreaterThan(fV_max, fV_NL) &&
1067 			(GreaterThan(fV_NL, fEVV_V) ||
1068 			Equal(fV_NL, fEVV_V))) {
1069 			fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1070 
1071 			*voltage = (uint16_t)fV_NL.partial.real;
1072 			break;
1073 		} else
1074 			fV_x = fAdd(fV_x, fStepSize);
1075 	}
1076 
1077 	return result;
1078 }
1079 
1080 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1081  * @param hwmgr	input: pointer to hwManager
1082  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1083  * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1084  *		which is define in PPTable SCLK/VDDC dependence
1085  *				table associated with this virtual_voltage_Id
1086  * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1087  * @param voltage		       output: real voltage level in unit of mv
1088  */
1089 int atomctrl_get_voltage_evv_on_sclk(
1090 		struct pp_hwmgr *hwmgr,
1091 		uint8_t voltage_type,
1092 		uint32_t sclk, uint16_t virtual_voltage_Id,
1093 		uint16_t *voltage)
1094 {
1095 	struct amdgpu_device *adev = hwmgr->adev;
1096 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1097 	int result;
1098 
1099 	get_voltage_info_param_space.ucVoltageType   =
1100 		voltage_type;
1101 	get_voltage_info_param_space.ucVoltageMode   =
1102 		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1103 	get_voltage_info_param_space.usVoltageLevel  =
1104 		cpu_to_le16(virtual_voltage_Id);
1105 	get_voltage_info_param_space.ulSCLKFreq      =
1106 		cpu_to_le32(sclk);
1107 
1108 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1109 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1110 			(uint32_t *)&get_voltage_info_param_space);
1111 
1112 	*voltage = result ? 0 :
1113 			le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1114 				(&get_voltage_info_param_space))->usVoltageLevel);
1115 
1116 	return result;
1117 }
1118 
1119 /**
1120  * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
1121  * @param hwmgr	input: pointer to hwManager
1122  * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1123  * @param voltage		       output: real voltage level in unit of mv
1124  */
1125 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1126 			     uint16_t virtual_voltage_id,
1127 			     uint16_t *voltage)
1128 {
1129 	struct amdgpu_device *adev = hwmgr->adev;
1130 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1131 	int result;
1132 	int entry_id;
1133 
1134 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1135 	for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1136 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1137 			/* found */
1138 			break;
1139 		}
1140 	}
1141 
1142 	if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
1143 	        pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
1144 	        return -EINVAL;
1145 	}
1146 
1147 	get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1148 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1149 	get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1150 	get_voltage_info_param_space.ulSCLKFreq =
1151 		cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1152 
1153 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1154 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1155 			(uint32_t *)&get_voltage_info_param_space);
1156 
1157 	if (0 != result)
1158 		return result;
1159 
1160 	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1161 				(&get_voltage_info_param_space))->usVoltageLevel);
1162 
1163 	return result;
1164 }
1165 
1166 /**
1167  * Get the mpll reference clock in 10KHz
1168  */
1169 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1170 {
1171 	ATOM_COMMON_TABLE_HEADER *fw_info;
1172 	uint32_t clock;
1173 	u8 frev, crev;
1174 	u16 size;
1175 
1176 	fw_info = (ATOM_COMMON_TABLE_HEADER *)
1177 		smu_atom_get_data_table(hwmgr->adev,
1178 				GetIndexIntoMasterTable(DATA, FirmwareInfo),
1179 				&size, &frev, &crev);
1180 
1181 	if (fw_info == NULL)
1182 		clock = 2700;
1183 	else {
1184 		if ((fw_info->ucTableFormatRevision == 2) &&
1185 			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1186 			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1187 				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1188 			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1189 		} else {
1190 			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1191 				(ATOM_FIRMWARE_INFO *)fw_info;
1192 			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1193 		}
1194 	}
1195 
1196 	return clock;
1197 }
1198 
1199 /**
1200  * Get the asic internal spread spectrum table
1201  */
1202 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1203 {
1204 	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1205 	u8 frev, crev;
1206 	u16 size;
1207 
1208 	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1209 		smu_atom_get_data_table(device,
1210 			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1211 			&size, &frev, &crev);
1212 
1213 	return table;
1214 }
1215 
1216 /**
1217  * Get the asic internal spread spectrum assignment
1218  */
1219 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1220 		const uint8_t clockSource,
1221 		const uint32_t clockSpeed,
1222 		pp_atomctrl_internal_ss_info *ssEntry)
1223 {
1224 	ATOM_ASIC_INTERNAL_SS_INFO *table;
1225 	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1226 	int entry_found = 0;
1227 
1228 	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1229 
1230 	table = asic_internal_ss_get_ss_table(hwmgr->adev);
1231 
1232 	if (NULL == table)
1233 		return -1;
1234 
1235 	ssInfo = &table->asSpreadSpectrum[0];
1236 
1237 	while (((uint8_t *)ssInfo - (uint8_t *)table) <
1238 		le16_to_cpu(table->sHeader.usStructureSize)) {
1239 		if ((clockSource == ssInfo->ucClockIndication) &&
1240 			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1241 			entry_found = 1;
1242 			break;
1243 		}
1244 
1245 		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1246 				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1247 	}
1248 
1249 	if (entry_found) {
1250 		ssEntry->speed_spectrum_percentage =
1251 			le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1252 		ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1253 
1254 		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1255 			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1256 			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1257 			ssEntry->speed_spectrum_rate /= 100;
1258 		}
1259 
1260 		switch (ssInfo->ucSpreadSpectrumMode) {
1261 		case 0:
1262 			ssEntry->speed_spectrum_mode =
1263 				pp_atomctrl_spread_spectrum_mode_down;
1264 			break;
1265 		case 1:
1266 			ssEntry->speed_spectrum_mode =
1267 				pp_atomctrl_spread_spectrum_mode_center;
1268 			break;
1269 		default:
1270 			ssEntry->speed_spectrum_mode =
1271 				pp_atomctrl_spread_spectrum_mode_down;
1272 			break;
1273 		}
1274 	}
1275 
1276 	return entry_found ? 0 : 1;
1277 }
1278 
1279 /**
1280  * Get the memory clock spread spectrum info
1281  */
1282 int atomctrl_get_memory_clock_spread_spectrum(
1283 		struct pp_hwmgr *hwmgr,
1284 		const uint32_t memory_clock,
1285 		pp_atomctrl_internal_ss_info *ssInfo)
1286 {
1287 	return asic_internal_ss_get_ss_asignment(hwmgr,
1288 			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1289 }
1290 /**
1291  * Get the engine clock spread spectrum info
1292  */
1293 int atomctrl_get_engine_clock_spread_spectrum(
1294 		struct pp_hwmgr *hwmgr,
1295 		const uint32_t engine_clock,
1296 		pp_atomctrl_internal_ss_info *ssInfo)
1297 {
1298 	return asic_internal_ss_get_ss_asignment(hwmgr,
1299 			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1300 }
1301 
1302 int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
1303 		uint16_t end_index, uint32_t mask, uint32_t *efuse)
1304 {
1305 	struct amdgpu_device *adev = hwmgr->adev;
1306 	int result;
1307 	READ_EFUSE_VALUE_PARAMETER efuse_param;
1308 
1309 	efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1310 	efuse_param.sEfuse.ucBitShift = (uint8_t)
1311 			(start_index - ((start_index / 32) * 32));
1312 	efuse_param.sEfuse.ucBitLength  = (uint8_t)
1313 			((end_index - start_index) + 1);
1314 
1315 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1316 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1317 			(uint32_t *)&efuse_param);
1318 	*efuse = result ? 0 : le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1319 
1320 	return result;
1321 }
1322 
1323 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1324 			      uint8_t level)
1325 {
1326 	struct amdgpu_device *adev = hwmgr->adev;
1327 	DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1328 	int result;
1329 
1330 	memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1331 		memory_clock & SET_CLOCK_FREQ_MASK;
1332 	memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1333 		ADJUST_MC_SETTING_PARAM;
1334 	memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1335 
1336 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1337 		 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1338 		(uint32_t *)&memory_clock_parameters);
1339 
1340 	return result;
1341 }
1342 
1343 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1344 				uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1345 {
1346 	struct amdgpu_device *adev = hwmgr->adev;
1347 	int result;
1348 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1349 
1350 	get_voltage_info_param_space.ucVoltageType = voltage_type;
1351 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1352 	get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1353 	get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1354 
1355 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1356 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1357 			(uint32_t *)&get_voltage_info_param_space);
1358 
1359 	*voltage = result ? 0 :
1360 		le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1361 
1362 	return result;
1363 }
1364 
1365 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1366 {
1367 
1368 	int i;
1369 	u8 frev, crev;
1370 	u16 size;
1371 
1372 	ATOM_SMU_INFO_V2_1 *psmu_info =
1373 		(ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1374 			GetIndexIntoMasterTable(DATA, SMU_Info),
1375 			&size, &frev, &crev);
1376 
1377 
1378 	for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1379 		table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1380 		table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1381 		table->entry[i].usFcw_pcc =
1382 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1383 		table->entry[i].usFcw_trans_upper =
1384 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1385 		table->entry[i].usRcw_trans_lower =
1386 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1393 				  struct pp_atom_ctrl__avfs_parameters *param)
1394 {
1395 	ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1396 
1397 	if (param == NULL)
1398 		return -EINVAL;
1399 
1400 	profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1401 			smu_atom_get_data_table(hwmgr->adev,
1402 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1403 					NULL, NULL, NULL);
1404 	if (!profile)
1405 		return -1;
1406 
1407 	param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1408 	param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1409 	param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1410 	param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1411 	param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1412 	param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1413 	param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1414 	param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1415 	param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1416 	param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1417 	param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1418 	param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1419 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1420 	param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1421 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1422 	param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1423 	param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1424 	param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1425 	param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1426 	param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1427 	param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1428 	param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1429 	param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1430 	param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1431 	param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1432 
1433 	return 0;
1434 }
1435 
1436 int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1437 				uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1438 				uint16_t *load_line)
1439 {
1440 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1441 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
1442 
1443 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1444 
1445 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
1446 			"Could not find Voltage Table in BIOS.", return -EINVAL);
1447 
1448 	voltage_object = atomctrl_lookup_voltage_type_v3
1449 		(voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
1450 
1451 	*svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1452 	*svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1453 	*load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1454 
1455 	return 0;
1456 }
1457 
1458 int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1459 {
1460 	struct amdgpu_device *adev = hwmgr->adev;
1461 	SET_VOLTAGE_PS_ALLOCATION allocation;
1462 	SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1463 			(SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1464 	int result;
1465 
1466 	voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1467 
1468 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1469 			GetIndexIntoMasterTable(COMMAND, SetVoltage),
1470 			(uint32_t *)voltage_parameters);
1471 
1472 	*virtual_voltage_id = voltage_parameters->usVoltageLevel;
1473 
1474 	return result;
1475 }
1476 
1477 int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1478 					uint16_t *vddc, uint16_t *vddci,
1479 					uint16_t virtual_voltage_id,
1480 					uint16_t efuse_voltage_id)
1481 {
1482 	int i, j;
1483 	int ix;
1484 	u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1485 	ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1486 
1487 	*vddc = 0;
1488 	*vddci = 0;
1489 
1490 	ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1491 
1492 	profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1493 			smu_atom_get_data_table(hwmgr->adev,
1494 					ix,
1495 					NULL, NULL, NULL);
1496 	if (!profile)
1497 		return -EINVAL;
1498 
1499 	if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1500 		(profile->asHeader.ucTableContentRevision >= 1) &&
1501 		(profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1502 		leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1503 		vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1504 		vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1505 		if (profile->ucElbVDDC_Num > 0) {
1506 			for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1507 				if (vddc_id_buf[i] == virtual_voltage_id) {
1508 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1509 						if (efuse_voltage_id <= leakage_bin[j]) {
1510 							*vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1511 							break;
1512 						}
1513 					}
1514 					break;
1515 				}
1516 			}
1517 		}
1518 
1519 		vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1520 		vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1521 		if (profile->ucElbVDDCI_Num > 0) {
1522 			for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1523 				if (vddci_id_buf[i] == virtual_voltage_id) {
1524 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1525 						if (efuse_voltage_id <= leakage_bin[j]) {
1526 							*vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1527 							break;
1528 						}
1529 					}
1530 					break;
1531 				}
1532 			}
1533 		}
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 void atomctrl_get_voltage_range(struct pp_hwmgr *hwmgr, uint32_t *max_vddc,
1540 							uint32_t *min_vddc)
1541 {
1542 	void *profile;
1543 
1544 	profile = smu_atom_get_data_table(hwmgr->adev,
1545 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1546 					NULL, NULL, NULL);
1547 
1548 	if (profile) {
1549 		switch (hwmgr->chip_id) {
1550 		case CHIP_TONGA:
1551 		case CHIP_FIJI:
1552 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMaxVddc) / 4;
1553 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMinVddc) / 4;
1554 			return;
1555 		case CHIP_POLARIS11:
1556 		case CHIP_POLARIS10:
1557 		case CHIP_POLARIS12:
1558 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMaxVddc) / 100;
1559 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMinVddc) / 100;
1560 			return;
1561 		default:
1562 			break;
1563 		}
1564 	}
1565 	*max_vddc = 0;
1566 	*min_vddc = 0;
1567 }
1568