1 /*
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $Id: ar5112.c,v 1.1.1.1 2008/12/11 04:46:37 alc Exp $
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ah_eeprom_v3.h"
25 
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29 
30 #define AH_5212_5112
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 struct ar5112State {
36 	RF_HAL_FUNCS	base;		/* public state, must be first */
37 	uint16_t	pcdacTable[PWR_TABLE_SIZE];
38 
39 	uint32_t	Bank1Data[N(ar5212Bank1_5112)];
40 	uint32_t	Bank2Data[N(ar5212Bank2_5112)];
41 	uint32_t	Bank3Data[N(ar5212Bank3_5112)];
42 	uint32_t	Bank6Data[N(ar5212Bank6_5112)];
43 	uint32_t	Bank7Data[N(ar5212Bank7_5112)];
44 };
45 #define	AR5112(ah)	((struct ar5112State *) AH5212(ah)->ah_rfHal)
46 
47 static	void ar5212GetLowerUpperIndex(uint16_t v,
48 		uint16_t *lp, uint16_t listSize,
49 		uint32_t *vlo, uint32_t *vhi);
50 static HAL_BOOL getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs,
51 		int16_t *power, int16_t maxPower, int16_t *retVals);
52 static int16_t getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4,
53 		uint16_t retVals[]);
54 static int16_t getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
55 		int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid);
56 static int16_t interpolate_signed(uint16_t target,
57 		uint16_t srcLeft, uint16_t srcRight,
58 		int16_t targetLeft, int16_t targetRight);
59 
60 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 		uint32_t numBits, uint32_t firstBit, uint32_t column);
62 
63 static void
64 ar5112WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 	int writes)
66 {
67 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5112, modesIndex, writes);
68 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5112, 1, writes);
69 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5112, freqIndex, writes);
70 }
71 
72 /*
73  * Take the MHz channel value and set the Channel value
74  *
75  * ASSUMES: Writes enabled to analog bus
76  */
77 static HAL_BOOL
78 ar5112SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
79 {
80 	uint32_t channelSel  = 0;
81 	uint32_t bModeSynth  = 0;
82 	uint32_t aModeRefSel = 0;
83 	uint32_t reg32       = 0;
84 	uint16_t freq;
85 
86 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
87 
88 	if (chan->channel < 4800) {
89 		uint32_t txctl;
90 
91 		if (((chan->channel - 2192) % 5) == 0) {
92 			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
93 			bModeSynth = 0;
94 		} else if (((chan->channel - 2224) % 5) == 0) {
95 			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
96 			bModeSynth = 1;
97 		} else {
98 			HALDEBUG(ah, HAL_DEBUG_ANY,
99 			    "%s: invalid channel %u MHz\n",
100 			    __func__, chan->channel);
101 			return AH_FALSE;
102 		}
103 
104 		channelSel = (channelSel << 2) & 0xff;
105 		channelSel = ath_hal_reverseBits(channelSel, 8);
106 
107 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 		if (chan->channel == 2484) {
109 			/* Enable channel spreading for channel 14 */
110 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 		} else {
113 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 		}
116 	} else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
117 		freq = chan->channel - 2; /* Align to even 5MHz raster */
118 		channelSel = ath_hal_reverseBits(
119 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120             	aModeRefSel = ath_hal_reverseBits(0, 2);
121 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
122 		channelSel = ath_hal_reverseBits(
123 			((chan->channel - 4800) / 20 << 2), 8);
124 		aModeRefSel = ath_hal_reverseBits(3, 2);
125 	} else if ((chan->channel % 10) == 0) {
126 		channelSel = ath_hal_reverseBits(
127 			((chan->channel - 4800) / 10 << 1), 8);
128 		aModeRefSel = ath_hal_reverseBits(2, 2);
129 	} else if ((chan->channel % 5) == 0) {
130 		channelSel = ath_hal_reverseBits(
131 			(chan->channel - 4800) / 5, 8);
132 		aModeRefSel = ath_hal_reverseBits(1, 2);
133 	} else {
134 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 		    __func__, chan->channel);
136 		return AH_FALSE;
137 	}
138 
139 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 			(1 << 12) | 0x1;
141 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142 
143 	reg32 >>= 8;
144 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145 
146 	AH_PRIVATE(ah)->ah_curchan = chan;
147 	return AH_TRUE;
148 }
149 
150 /*
151  * Return a reference to the requested RF Bank.
152  */
153 static uint32_t *
154 ar5112GetRfBank(struct ath_hal *ah, int bank)
155 {
156 	struct ar5112State *priv = AR5112(ah);
157 
158 	HALASSERT(priv != AH_NULL);
159 	switch (bank) {
160 	case 1: return priv->Bank1Data;
161 	case 2: return priv->Bank2Data;
162 	case 3: return priv->Bank3Data;
163 	case 6: return priv->Bank6Data;
164 	case 7: return priv->Bank7Data;
165 	}
166 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
167 	    __func__, bank);
168 	return AH_NULL;
169 }
170 
171 /*
172  * Reads EEPROM header info from device structure and programs
173  * all rf registers
174  *
175  * REQUIRES: Access to the analog rf device
176  */
177 static HAL_BOOL
178 ar5112SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
179 	uint16_t modesIndex, uint16_t *rfXpdGain)
180 {
181 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
182 	int i;								    \
183 	for (i = 0; i < N(ar5212Bank##_ix##_5112); i++)			    \
184 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5112[i][_col];\
185 } while (0)
186 	struct ath_hal_5212 *ahp = AH5212(ah);
187 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
188 	uint16_t rfXpdSel, gainI;
189 	uint16_t ob5GHz = 0, db5GHz = 0;
190 	uint16_t ob2GHz = 0, db2GHz = 0;
191 	struct ar5112State *priv = AR5112(ah);
192 	GAIN_VALUES *gv = &ahp->ah_gainValues;
193 	int regWrites = 0;
194 
195 	HALASSERT(priv);
196 
197 	/* Setup rf parameters */
198 	switch (chan->channelFlags & CHANNEL_ALL) {
199 	case CHANNEL_A:
200 	case CHANNEL_T:
201 		if (chan->channel > 4000 && chan->channel < 5260) {
202 			ob5GHz = ee->ee_ob1;
203 			db5GHz = ee->ee_db1;
204 		} else if (chan->channel >= 5260 && chan->channel < 5500) {
205 			ob5GHz = ee->ee_ob2;
206 			db5GHz = ee->ee_db2;
207 		} else if (chan->channel >= 5500 && chan->channel < 5725) {
208 			ob5GHz = ee->ee_ob3;
209 			db5GHz = ee->ee_db3;
210 		} else if (chan->channel >= 5725) {
211 			ob5GHz = ee->ee_ob4;
212 			db5GHz = ee->ee_db4;
213 		} else {
214 			/* XXX else */
215 		}
216 		rfXpdSel = ee->ee_xpd[headerInfo11A];
217 		gainI = ee->ee_gainI[headerInfo11A];
218 		break;
219 	case CHANNEL_B:
220 		ob2GHz = ee->ee_ob2GHz[0];
221 		db2GHz = ee->ee_db2GHz[0];
222 		rfXpdSel = ee->ee_xpd[headerInfo11B];
223 		gainI = ee->ee_gainI[headerInfo11B];
224 		break;
225 	case CHANNEL_G:
226 	case CHANNEL_108G:
227 		ob2GHz = ee->ee_ob2GHz[1];
228 		db2GHz = ee->ee_ob2GHz[1];
229 		rfXpdSel = ee->ee_xpd[headerInfo11G];
230 		gainI = ee->ee_gainI[headerInfo11G];
231 		break;
232 	default:
233 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
234 		    __func__, chan->channelFlags);
235 		return AH_FALSE;
236 	}
237 
238 	/* Setup Bank 1 Write */
239 	RF_BANK_SETUP(priv, 1, 1);
240 
241 	/* Setup Bank 2 Write */
242 	RF_BANK_SETUP(priv, 2, modesIndex);
243 
244 	/* Setup Bank 3 Write */
245 	RF_BANK_SETUP(priv, 3, modesIndex);
246 
247 	/* Setup Bank 6 Write */
248 	RF_BANK_SETUP(priv, 6, modesIndex);
249 
250 	ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdSel,     1, 302, 0);
251 
252 	ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[0], 2, 270, 0);
253 	ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[1], 2, 257, 0);
254 
255 	if (IS_CHAN_OFDM(chan)) {
256 		ar5212ModifyRfBuffer(priv->Bank6Data,
257 			gv->currStep->paramVal[GP_PWD_138], 1, 168, 3);
258 		ar5212ModifyRfBuffer(priv->Bank6Data,
259 			gv->currStep->paramVal[GP_PWD_137], 1, 169, 3);
260 		ar5212ModifyRfBuffer(priv->Bank6Data,
261 			gv->currStep->paramVal[GP_PWD_136], 1, 170, 3);
262 		ar5212ModifyRfBuffer(priv->Bank6Data,
263 			gv->currStep->paramVal[GP_PWD_132], 1, 174, 3);
264 		ar5212ModifyRfBuffer(priv->Bank6Data,
265 			gv->currStep->paramVal[GP_PWD_131], 1, 175, 3);
266 		ar5212ModifyRfBuffer(priv->Bank6Data,
267 			gv->currStep->paramVal[GP_PWD_130], 1, 176, 3);
268 	}
269 
270 	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
271 	if (IS_CHAN_2GHZ(chan)) {
272 		ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 287, 0);
273 		ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 290, 0);
274 	} else {
275 		ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 279, 0);
276 		ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 282, 0);
277 	}
278 
279 	/* Lower synth voltage for X112 Rev 2.0 only */
280 	if (IS_RADX112_REV2(ah)) {
281 		/* Non-Reversed analyg registers - so values are pre-reversed */
282 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 90, 2);
283 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 92, 2);
284 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 94, 2);
285 		ar5212ModifyRfBuffer(priv->Bank6Data, 2, 1, 254, 2);
286 	}
287 
288     /* Decrease Power Consumption for 5312/5213 and up */
289     if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
290         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 281, 1);
291         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 1, 3);
292         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 3, 3);
293         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 139, 3);
294         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 140, 3);
295     }
296 
297 	/* Setup Bank 7 Setup */
298 	RF_BANK_SETUP(priv, 7, modesIndex);
299 	if (IS_CHAN_OFDM(chan))
300 		ar5212ModifyRfBuffer(priv->Bank7Data,
301 			gv->currStep->paramVal[GP_MIXGAIN_OVR], 2, 37, 0);
302 
303 	ar5212ModifyRfBuffer(priv->Bank7Data, gainI, 6, 14, 0);
304 
305 	/* Adjust params for Derby TX power control */
306 	if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) {
307         	uint32_t	rfDelay, rfPeriod;
308 
309         	rfDelay = 0xf;
310         	rfPeriod = (IS_CHAN_HALF_RATE(chan)) ?  0x8 : 0xf;
311         	ar5212ModifyRfBuffer(priv->Bank7Data, rfDelay, 4, 58, 0);
312         	ar5212ModifyRfBuffer(priv->Bank7Data, rfPeriod, 4, 70, 0);
313 	}
314 
315 #ifdef notyet
316 	/* Analog registers are setup - EAR can modify */
317 	if (ar5212IsEarEngaged(pDev, chan))
318 		uint32_t modifier;
319 		ar5212EarModify(pDev, EAR_LC_RF_WRITE, chan, &modifier);
320 #endif
321 	/* Write Analog registers */
322 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_5112, priv->Bank1Data, regWrites);
323 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_5112, priv->Bank2Data, regWrites);
324 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_5112, priv->Bank3Data, regWrites);
325 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5112, priv->Bank6Data, regWrites);
326 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5112, priv->Bank7Data, regWrites);
327 
328 	/* Now that we have reprogrammed rfgain value, clear the flag. */
329 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
330 	return AH_TRUE;
331 #undef	RF_BANK_SETUP
332 }
333 
334 /*
335  * Read the transmit power levels from the structures taken from EEPROM
336  * Interpolate read transmit power values for this channel
337  * Organize the transmit power values into a table for writing into the hardware
338  */
339 static HAL_BOOL
340 ar5112SetPowerTable(struct ath_hal *ah,
341 	int16_t *pPowerMin, int16_t *pPowerMax, HAL_CHANNEL_INTERNAL *chan,
342 	uint16_t *rfXpdGain)
343 {
344 	struct ath_hal_5212 *ahp = AH5212(ah);
345 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
346 	uint32_t numXpdGain = IS_RADX112_REV2(ah) ? 2 : 1;
347 	uint32_t    xpdGainMask = 0;
348 	int16_t     powerMid, *pPowerMid = &powerMid;
349 
350 	const EXPN_DATA_PER_CHANNEL_5112 *pRawCh;
351 	const EEPROM_POWER_EXPN_5112     *pPowerExpn = AH_NULL;
352 
353 	uint32_t    ii, jj, kk;
354 	int16_t     minPwr_t4, maxPwr_t4, Pmin, Pmid;
355 
356 	uint32_t    chan_idx_L = 0, chan_idx_R = 0;
357 	uint16_t    chan_L, chan_R;
358 
359 	int16_t     pwr_table0[64];
360 	int16_t     pwr_table1[64];
361 	uint16_t    pcdacs[10];
362 	int16_t     powers[10];
363 	uint16_t    numPcd;
364 	int16_t     powTableLXPD[2][64];
365 	int16_t     powTableHXPD[2][64];
366 	int16_t     tmpPowerTable[64];
367 	uint16_t    xgainList[2];
368 	uint16_t    xpdMask;
369 
370 	switch (chan->channelFlags & CHANNEL_ALL) {
371 	case CHANNEL_A:
372 	case CHANNEL_T:
373 		pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11A];
374 		xpdGainMask = ee->ee_xgain[headerInfo11A];
375 		break;
376 	case CHANNEL_B:
377 		pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11B];
378 		xpdGainMask = ee->ee_xgain[headerInfo11B];
379 		break;
380 	case CHANNEL_G:
381 	case CHANNEL_108G:
382 		pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11G];
383 		xpdGainMask = ee->ee_xgain[headerInfo11G];
384 		break;
385 	default:
386 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown channel flags 0x%x\n",
387 		    __func__, chan->channelFlags & CHANNEL_ALL);
388 		return AH_FALSE;
389 	}
390 
391 	if ((xpdGainMask & pPowerExpn->xpdMask) < 1) {
392 		HALDEBUG(ah, HAL_DEBUG_ANY,
393 		    "%s: desired xpdGainMask 0x%x not supported by "
394 		    "calibrated xpdMask 0x%x\n", __func__,
395 		    xpdGainMask, pPowerExpn->xpdMask);
396 		return AH_FALSE;
397 	}
398 
399 	maxPwr_t4 = (int16_t)(2*(*pPowerMax));	/* pwr_t2 -> pwr_t4 */
400 	minPwr_t4 = (int16_t)(2*(*pPowerMin));	/* pwr_t2 -> pwr_t4 */
401 
402 	xgainList[0] = 0xDEAD;
403 	xgainList[1] = 0xDEAD;
404 
405 	kk = 0;
406 	xpdMask = pPowerExpn->xpdMask;
407 	for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) {
408 		if (((xpdMask >> jj) & 1) > 0) {
409 			if (kk > 1) {
410 				HALDEBUG(ah, HAL_DEBUG_ANY,
411 				    "A maximum of 2 xpdGains supported"
412 				    "in pExpnPower data\n");
413 				return AH_FALSE;
414 			}
415 			xgainList[kk++] = (uint16_t)jj;
416 		}
417 	}
418 
419 	ar5212GetLowerUpperIndex(chan->channel, &pPowerExpn->pChannels[0],
420 		pPowerExpn->numChannels, &chan_idx_L, &chan_idx_R);
421 
422 	kk = 0;
423 	for (ii = chan_idx_L; ii <= chan_idx_R; ii++) {
424 		pRawCh = &(pPowerExpn->pDataPerChannel[ii]);
425 		if (xgainList[1] == 0xDEAD) {
426 			jj = xgainList[0];
427 			numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
428 			OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
429 				numPcd * sizeof(uint16_t));
430 			OS_MEMCPY(&powers[0], &pRawCh->pDataPerXPD[jj].pwr_t4[0],
431 				numPcd * sizeof(int16_t));
432 			if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
433 				pRawCh->maxPower_t4, &tmpPowerTable[0])) {
434 				return AH_FALSE;
435 			}
436 			OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
437 				64*sizeof(int16_t));
438 		} else {
439 			jj = xgainList[0];
440 			numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
441 			OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
442 				numPcd*sizeof(uint16_t));
443 			OS_MEMCPY(&powers[0],
444 				&pRawCh->pDataPerXPD[jj].pwr_t4[0],
445 				numPcd*sizeof(int16_t));
446 			if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
447 				pRawCh->maxPower_t4, &tmpPowerTable[0])) {
448 				return AH_FALSE;
449 			}
450 			OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
451 				64 * sizeof(int16_t));
452 
453 			jj = xgainList[1];
454 			numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
455 			OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
456 				numPcd * sizeof(uint16_t));
457 			OS_MEMCPY(&powers[0],
458 				&pRawCh->pDataPerXPD[jj].pwr_t4[0],
459 				numPcd * sizeof(int16_t));
460 			if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
461 				pRawCh->maxPower_t4, &tmpPowerTable[0])) {
462 				return AH_FALSE;
463 			}
464 			OS_MEMCPY(&powTableHXPD[kk][0], &tmpPowerTable[0],
465 				64 * sizeof(int16_t));
466 		}
467 		kk++;
468 	}
469 
470 	chan_L = pPowerExpn->pChannels[chan_idx_L];
471 	chan_R = pPowerExpn->pChannels[chan_idx_R];
472 	kk = chan_idx_R - chan_idx_L;
473 
474 	if (xgainList[1] == 0xDEAD) {
475 		for (jj = 0; jj < 64; jj++) {
476 			pwr_table0[jj] = interpolate_signed(
477 				chan->channel, chan_L, chan_R,
478 				powTableLXPD[0][jj], powTableLXPD[kk][jj]);
479 		}
480 		Pmin = getPminAndPcdacTableFromPowerTable(&pwr_table0[0],
481 				ahp->ah_pcdacTable);
482 		*pPowerMin = (int16_t) (Pmin / 2);
483 		*pPowerMid = (int16_t) (pwr_table0[63] / 2);
484 		*pPowerMax = (int16_t) (pwr_table0[63] / 2);
485 		rfXpdGain[0] = xgainList[0];
486 		rfXpdGain[1] = rfXpdGain[0];
487 	} else {
488 		for (jj = 0; jj < 64; jj++) {
489 			pwr_table0[jj] = interpolate_signed(
490 				chan->channel, chan_L, chan_R,
491 				powTableLXPD[0][jj], powTableLXPD[kk][jj]);
492 			pwr_table1[jj] = interpolate_signed(
493 				chan->channel, chan_L, chan_R,
494 				powTableHXPD[0][jj], powTableHXPD[kk][jj]);
495 		}
496 		if (numXpdGain == 2) {
497 			Pmin = getPminAndPcdacTableFromTwoPowerTables(
498 				&pwr_table0[0], &pwr_table1[0],
499 				ahp->ah_pcdacTable, &Pmid);
500 			*pPowerMin = (int16_t) (Pmin / 2);
501 			*pPowerMid = (int16_t) (Pmid / 2);
502 			*pPowerMax = (int16_t) (pwr_table0[63] / 2);
503 			rfXpdGain[0] = xgainList[0];
504 			rfXpdGain[1] = xgainList[1];
505 		} else if (minPwr_t4 <= pwr_table1[63] &&
506 			   maxPwr_t4 <= pwr_table1[63]) {
507 			Pmin = getPminAndPcdacTableFromPowerTable(
508 				&pwr_table1[0], ahp->ah_pcdacTable);
509 			rfXpdGain[0] = xgainList[1];
510 			rfXpdGain[1] = rfXpdGain[0];
511 			*pPowerMin = (int16_t) (Pmin / 2);
512 			*pPowerMid = (int16_t) (pwr_table1[63] / 2);
513 			*pPowerMax = (int16_t) (pwr_table1[63] / 2);
514 		} else {
515 			Pmin = getPminAndPcdacTableFromPowerTable(
516 				&pwr_table0[0], ahp->ah_pcdacTable);
517 			rfXpdGain[0] = xgainList[0];
518 			rfXpdGain[1] = rfXpdGain[0];
519 			*pPowerMin = (int16_t) (Pmin/2);
520 			*pPowerMid = (int16_t) (pwr_table0[63] / 2);
521 			*pPowerMax = (int16_t) (pwr_table0[63] / 2);
522 		}
523 	}
524 
525 	/*
526 	 * Move 5112 rates to match power tables where the max
527 	 * power table entry corresponds with maxPower.
528 	 */
529 	HALASSERT(*pPowerMax <= PCDAC_STOP);
530 	ahp->ah_txPowerIndexOffset = PCDAC_STOP - *pPowerMax;
531 
532 	return AH_TRUE;
533 }
534 
535 /*
536  * Returns interpolated or the scaled up interpolated value
537  */
538 static int16_t
539 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
540 	int16_t targetLeft, int16_t targetRight)
541 {
542 	int16_t rv;
543 
544 	if (srcRight != srcLeft) {
545 		rv = ((target - srcLeft)*targetRight +
546 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
547 	} else {
548 		rv = targetLeft;
549 	}
550 	return rv;
551 }
552 
553 /*
554  * Return indices surrounding the value in sorted integer lists.
555  *
556  * NB: the input list is assumed to be sorted in ascending order
557  */
558 static void
559 ar5212GetLowerUpperIndex(uint16_t v, uint16_t *lp, uint16_t listSize,
560                           uint32_t *vlo, uint32_t *vhi)
561 {
562 	uint32_t target = v;
563 	uint16_t *ep = lp+listSize;
564 	uint16_t *tp;
565 
566 	/*
567 	 * Check first and last elements for out-of-bounds conditions.
568 	 */
569 	if (target < lp[0]) {
570 		*vlo = *vhi = 0;
571 		return;
572 	}
573 	if (target >= ep[-1]) {
574 		*vlo = *vhi = listSize - 1;
575 		return;
576 	}
577 
578 	/* look for value being near or between 2 values in list */
579 	for (tp = lp; tp < ep; tp++) {
580 		/*
581 		 * If value is close to the current value of the list
582 		 * then target is not between values, it is one of the values
583 		 */
584 		if (*tp == target) {
585 			*vlo = *vhi = tp - lp;
586 			return;
587 		}
588 		/*
589 		 * Look for value being between current value and next value
590 		 * if so return these 2 values
591 		 */
592 		if (target < tp[1]) {
593 			*vlo = tp - lp;
594 			*vhi = *vlo + 1;
595 			return;
596 		}
597 	}
598 }
599 
600 static HAL_BOOL
601 getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, int16_t *power, int16_t maxPower, int16_t *retVals)
602 {
603 	uint16_t    ii;
604 	uint16_t    idxL = 0;
605 	uint16_t    idxR = 1;
606 
607 	if (numPcdacs < 2) {
608 		HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
609 		     "%s: at least 2 pcdac values needed [%d]\n",
610 		     __func__, numPcdacs);
611 		return AH_FALSE;
612 	}
613 	for (ii = 0; ii < 64; ii++) {
614 		if (ii>pcdacs[idxR] && idxR < numPcdacs-1) {
615 			idxL++;
616 			idxR++;
617 		}
618 		retVals[ii] = interpolate_signed(ii,
619 			pcdacs[idxL], pcdacs[idxR], power[idxL], power[idxR]);
620 		if (retVals[ii] >= maxPower) {
621 			while (ii < 64)
622 				retVals[ii++] = maxPower;
623 		}
624 	}
625 	return AH_TRUE;
626 }
627 
628 /*
629  * Takes a single calibration curve and creates a power table.
630  * Adjusts the new power table so the max power is relative
631  * to the maximum index in the power table.
632  *
633  * WARNING: rates must be adjusted for this relative power table
634  */
635 static int16_t
636 getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, uint16_t retVals[])
637 {
638     int16_t ii, jj, jjMax;
639     int16_t pMin, currPower, pMax;
640 
641     /* If the spread is > 31.5dB, keep the upper 31.5dB range */
642     if ((pwrTableT4[63] - pwrTableT4[0]) > 126) {
643         pMin = pwrTableT4[63] - 126;
644     } else {
645         pMin = pwrTableT4[0];
646     }
647 
648     pMax = pwrTableT4[63];
649     jjMax = 63;
650 
651     /* Search for highest pcdac 0.25dB below maxPower */
652     while ((pwrTableT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)) {
653         jjMax--;
654     }
655 
656     jj = jjMax;
657     currPower = pMax;
658     for (ii = 63; ii >= 0; ii--) {
659         while ((jj < 64) && (jj > 0) && (pwrTableT4[jj] >= currPower)) {
660             jj--;
661         }
662         if (jj == 0) {
663             while (ii >= 0) {
664                 retVals[ii] = retVals[ii + 1];
665                 ii--;
666             }
667             break;
668         }
669         retVals[ii] = jj;
670         currPower -= 2;  // corresponds to a 0.5dB step
671     }
672     return pMin;
673 }
674 
675 /*
676  * Combines the XPD curves from two calibration sets into a single
677  * power table and adjusts the power table so the max power is relative
678  * to the maximum index in the power table
679  *
680  * WARNING: rates must be adjusted for this relative power table
681  */
682 static int16_t
683 getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
684 	int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid)
685 {
686     int16_t     ii, jj, jjMax;
687     int16_t     pMin, pMax, currPower;
688     int16_t     *pwrTableT4;
689     uint16_t    msbFlag = 0x40;  // turns on the 7th bit of the pcdac
690 
691     /* If the spread is > 31.5dB, keep the upper 31.5dB range */
692     if ((pwrTableLXpdT4[63] - pwrTableHXpdT4[0]) > 126) {
693         pMin = pwrTableLXpdT4[63] - 126;
694     } else {
695         pMin = pwrTableHXpdT4[0];
696     }
697 
698     pMax = pwrTableLXpdT4[63];
699     jjMax = 63;
700     /* Search for highest pcdac 0.25dB below maxPower */
701     while ((pwrTableLXpdT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)){
702         jjMax--;
703     }
704 
705     *pMid = pwrTableHXpdT4[63];
706     jj = jjMax;
707     ii = 63;
708     currPower = pMax;
709     pwrTableT4 = &(pwrTableLXpdT4[0]);
710     while (ii >= 0) {
711         if ((currPower <= *pMid) || ( (jj == 0) && (msbFlag == 0x40))){
712             msbFlag = 0x00;
713             pwrTableT4 = &(pwrTableHXpdT4[0]);
714             jj = 63;
715         }
716         while ((jj > 0) && (pwrTableT4[jj] >= currPower)) {
717             jj--;
718         }
719         if ((jj == 0) && (msbFlag == 0x00)) {
720             while (ii >= 0) {
721                 retVals[ii] = retVals[ii+1];
722                 ii--;
723             }
724             break;
725         }
726         retVals[ii] = jj | msbFlag;
727         currPower -= 2;  // corresponds to a 0.5dB step
728         ii--;
729     }
730     return pMin;
731 }
732 
733 static int16_t
734 ar5112GetMinPower(struct ath_hal *ah, const EXPN_DATA_PER_CHANNEL_5112 *data)
735 {
736 	int i, minIndex;
737 	int16_t minGain,minPwr,minPcdac,retVal;
738 
739 	/* Assume NUM_POINTS_XPD0 > 0 */
740 	minGain = data->pDataPerXPD[0].xpd_gain;
741 	for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
742 		if (data->pDataPerXPD[i].xpd_gain < minGain) {
743 			minIndex = i;
744 			minGain = data->pDataPerXPD[i].xpd_gain;
745 		}
746 	}
747 	minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
748 	minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
749 	for (i=1; i<NUM_POINTS_XPD0; i++) {
750 		if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
751 			minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
752 			minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
753 		}
754 	}
755 	retVal = minPwr - (minPcdac*2);
756 	return(retVal);
757 }
758 
759 static HAL_BOOL
760 ar5112GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
761 	int16_t *maxPow, int16_t *minPow)
762 {
763 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
764 	int numChannels=0,i,last;
765 	int totalD, totalF,totalMin;
766 	const EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
767 	const EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
768 
769 	*maxPow = 0;
770 	if (IS_CHAN_A(chan)) {
771 		powerArray = ee->ee_modePowerArray5112;
772 		data = powerArray[headerInfo11A].pDataPerChannel;
773 		numChannels = powerArray[headerInfo11A].numChannels;
774 	} else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
775 		/* XXX - is this correct? Should we also use the same power for turbo G? */
776 		powerArray = ee->ee_modePowerArray5112;
777 		data = powerArray[headerInfo11G].pDataPerChannel;
778 		numChannels = powerArray[headerInfo11G].numChannels;
779 	} else if (IS_CHAN_B(chan)) {
780 		powerArray = ee->ee_modePowerArray5112;
781 		data = powerArray[headerInfo11B].pDataPerChannel;
782 		numChannels = powerArray[headerInfo11B].numChannels;
783 	} else {
784 		return (AH_TRUE);
785 	}
786 	/* Make sure the channel is in the range of the TP values
787 	 *  (freq piers)
788 	 */
789 	if (numChannels < 1)
790 		return(AH_FALSE);
791 
792 	if ((chan->channel < data[0].channelValue) ||
793 	    (chan->channel > data[numChannels-1].channelValue)) {
794 		if (chan->channel < data[0].channelValue) {
795 			*maxPow = data[0].maxPower_t4;
796 			*minPow = ar5112GetMinPower(ah, &data[0]);
797 			return(AH_TRUE);
798 		} else {
799 			*maxPow = data[numChannels - 1].maxPower_t4;
800 			*minPow = ar5112GetMinPower(ah, &data[numChannels - 1]);
801 			return(AH_TRUE);
802 		}
803 	}
804 
805 	/* Linearly interpolate the power value now */
806 	for (last=0,i=0;
807 	     (i<numChannels) && (chan->channel > data[i].channelValue);
808 	     last=i++);
809 	totalD = data[i].channelValue - data[last].channelValue;
810 	if (totalD > 0) {
811 		totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
812 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
813 
814 		totalMin = ar5112GetMinPower(ah,&data[i]) - ar5112GetMinPower(ah, &data[last]);
815 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar5112GetMinPower(ah, &data[last])*totalD)/totalD);
816 		return (AH_TRUE);
817 	} else {
818 		if (chan->channel == data[i].channelValue) {
819 			*maxPow = data[i].maxPower_t4;
820 			*minPow = ar5112GetMinPower(ah, &data[i]);
821 			return(AH_TRUE);
822 		} else
823 			return(AH_FALSE);
824 	}
825 }
826 
827 /*
828  * Free memory for analog bank scratch buffers
829  */
830 static void
831 ar5112RfDetach(struct ath_hal *ah)
832 {
833 	struct ath_hal_5212 *ahp = AH5212(ah);
834 
835 	HALASSERT(ahp->ah_rfHal != AH_NULL);
836 	ath_hal_free(ahp->ah_rfHal);
837 	ahp->ah_rfHal = AH_NULL;
838 }
839 
840 /*
841  * Allocate memory for analog bank scratch buffers
842  * Scratch Buffer will be reinitialized every reset so no need to zero now
843  */
844 static HAL_BOOL
845 ar5112RfAttach(struct ath_hal *ah, HAL_STATUS *status)
846 {
847 	struct ath_hal_5212 *ahp = AH5212(ah);
848 	struct ar5112State *priv;
849 
850 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
851 
852 	HALASSERT(ahp->ah_rfHal == AH_NULL);
853 	priv = ath_hal_malloc(sizeof(struct ar5112State));
854 	if (priv == AH_NULL) {
855 		HALDEBUG(ah, HAL_DEBUG_ANY,
856 		    "%s: cannot allocate private state\n", __func__);
857 		*status = HAL_ENOMEM;		/* XXX */
858 		return AH_FALSE;
859 	}
860 	priv->base.rfDetach		= ar5112RfDetach;
861 	priv->base.writeRegs		= ar5112WriteRegs;
862 	priv->base.getRfBank		= ar5112GetRfBank;
863 	priv->base.setChannel		= ar5112SetChannel;
864 	priv->base.setRfRegs		= ar5112SetRfRegs;
865 	priv->base.setPowerTable	= ar5112SetPowerTable;
866 	priv->base.getChannelMaxMinPower = ar5112GetChannelMaxMinPower;
867 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
868 
869 	ahp->ah_pcdacTable = priv->pcdacTable;
870 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
871 	ahp->ah_rfHal = &priv->base;
872 
873 	return AH_TRUE;
874 }
875 
876 static HAL_BOOL
877 ar5112Probe(struct ath_hal *ah)
878 {
879 	return IS_RAD5112(ah);
880 }
881 AH_RF(RF5112, ar5112Probe, ar5112RfAttach);
882