xref: /netbsd/sys/fs/udf/udf_strat_sequential.c (revision 6550d01e)
1 /* $NetBSD: udf_strat_sequential.c,v 1.11 2011/01/03 13:12:40 drochner Exp $ */
2 
3 /*
4  * Copyright (c) 2006, 2008 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 #include <sys/cdefs.h>
30 #ifndef lint
31 __KERNEL_RCSID(0, "$NetBSD: udf_strat_sequential.c,v 1.11 2011/01/03 13:12:40 drochner Exp $");
32 #endif /* not lint */
33 
34 
35 #if defined(_KERNEL_OPT)
36 #include "opt_compat_netbsd.h"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/namei.h>
43 #include <sys/proc.h>
44 #include <sys/kernel.h>
45 #include <sys/vnode.h>
46 #include <miscfs/genfs/genfs_node.h>
47 #include <sys/mount.h>
48 #include <sys/buf.h>
49 #include <sys/file.h>
50 #include <sys/device.h>
51 #include <sys/disklabel.h>
52 #include <sys/ioctl.h>
53 #include <sys/malloc.h>
54 #include <sys/dirent.h>
55 #include <sys/stat.h>
56 #include <sys/conf.h>
57 #include <sys/kauth.h>
58 #include <sys/kthread.h>
59 #include <dev/clock_subr.h>
60 
61 #include <fs/udf/ecma167-udf.h>
62 #include <fs/udf/udf_mount.h>
63 
64 #include "udf.h"
65 #include "udf_subr.h"
66 #include "udf_bswap.h"
67 
68 
69 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
70 #define PRIV(ump) ((struct strat_private *) ump->strategy_private)
71 
72 /* --------------------------------------------------------------------- */
73 
74 /* BUFQ's */
75 #define UDF_SHED_MAX 3
76 
77 #define UDF_SHED_READING	0
78 #define UDF_SHED_WRITING	1
79 #define UDF_SHED_SEQWRITING	2
80 
81 struct strat_private {
82 	struct pool		 desc_pool;	 	/* node descriptors */
83 
84 	lwp_t			*queue_lwp;
85 	kcondvar_t		 discstrat_cv;		/* to wait on       */
86 	kmutex_t		 discstrat_mutex;	/* disc strategy    */
87 
88 	int			 run_thread;		/* thread control */
89 	int			 cur_queue;
90 
91 	struct disk_strategy	 old_strategy_setting;
92 	struct bufq_state	*queues[UDF_SHED_MAX];
93 	struct timespec		 last_queued[UDF_SHED_MAX];
94 };
95 
96 
97 /* --------------------------------------------------------------------- */
98 
99 static void
100 udf_wr_nodedscr_callback(struct buf *buf)
101 {
102 	struct udf_node *udf_node;
103 
104 	KASSERT(buf);
105 	KASSERT(buf->b_data);
106 
107 	/* called when write action is done */
108 	DPRINTF(WRITE, ("udf_wr_nodedscr_callback(): node written out\n"));
109 
110 	udf_node = VTOI(buf->b_vp);
111 	if (udf_node == NULL) {
112 		putiobuf(buf);
113 		printf("udf_wr_node_callback: NULL node?\n");
114 		return;
115 	}
116 
117 	/* XXX right flags to mark dirty again on error? */
118 	if (buf->b_error) {
119 		udf_node->i_flags |= IN_MODIFIED | IN_ACCESSED;
120 		/* XXX TODO reshedule on error */
121 	}
122 
123 	/* decrement outstanding_nodedscr */
124 	KASSERT(udf_node->outstanding_nodedscr >= 1);
125 	udf_node->outstanding_nodedscr--;
126 	if (udf_node->outstanding_nodedscr == 0) {
127 		/* first unlock the node */
128 		UDF_UNLOCK_NODE(udf_node, 0);
129 		wakeup(&udf_node->outstanding_nodedscr);
130 	}
131 
132 	/* unreference the vnode so it can be recycled */
133 	holdrele(udf_node->vnode);
134 
135 	putiobuf(buf);
136 }
137 
138 /* --------------------------------------------------------------------- */
139 
140 static int
141 udf_create_logvol_dscr_seq(struct udf_strat_args *args)
142 {
143 	union dscrptr   **dscrptr = &args->dscr;
144 	struct udf_mount *ump = args->ump;
145 	struct strat_private *priv = PRIV(ump);
146 	uint32_t lb_size;
147 
148 	lb_size = udf_rw32(ump->logical_vol->lb_size);
149 	*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
150 	memset(*dscrptr, 0, lb_size);
151 
152 	return 0;
153 }
154 
155 
156 static void
157 udf_free_logvol_dscr_seq(struct udf_strat_args *args)
158 {
159 	union dscrptr    *dscr = args->dscr;
160 	struct udf_mount *ump  = args->ump;
161 	struct strat_private *priv = PRIV(ump);
162 
163 	pool_put(&priv->desc_pool, dscr);
164 }
165 
166 
167 static int
168 udf_read_logvol_dscr_seq(struct udf_strat_args *args)
169 {
170 	union dscrptr   **dscrptr = &args->dscr;
171 	union dscrptr    *tmpdscr;
172 	struct udf_mount *ump = args->ump;
173 	struct long_ad   *icb = args->icb;
174 	struct strat_private *priv = PRIV(ump);
175 	uint32_t lb_size;
176 	uint32_t sector, dummy;
177 	int error;
178 
179 	lb_size = udf_rw32(ump->logical_vol->lb_size);
180 
181 	error = udf_translate_vtop(ump, icb, &sector, &dummy);
182 	if (error)
183 		return error;
184 
185 	/* try to read in fe/efe */
186 	error = udf_read_phys_dscr(ump, sector, M_UDFTEMP, &tmpdscr);
187 	if (error)
188 		return error;
189 
190 	*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
191 	memcpy(*dscrptr, tmpdscr, lb_size);
192 	free(tmpdscr, M_UDFTEMP);
193 
194 	return 0;
195 }
196 
197 
198 static int
199 udf_write_logvol_dscr_seq(struct udf_strat_args *args)
200 {
201 	union dscrptr    *dscr     = args->dscr;
202 	struct udf_mount *ump      = args->ump;
203 	struct udf_node  *udf_node = args->udf_node;
204 	struct long_ad   *icb      = args->icb;
205 	int               waitfor  = args->waitfor;
206 	uint32_t logsectornr, sectornr, dummy;
207 	int error, vpart;
208 
209 	/*
210 	 * we have to decide if we write it out sequential or at its fixed
211 	 * position by examining the partition its (to be) written on.
212 	 */
213 	vpart       = udf_rw16(udf_node->loc.loc.part_num);
214 	logsectornr = udf_rw32(icb->loc.lb_num);
215 	sectornr    = 0;
216 	if (ump->vtop_tp[vpart] != UDF_VTOP_TYPE_VIRT) {
217 		error = udf_translate_vtop(ump, icb, &sectornr, &dummy);
218 		if (error)
219 			goto out;
220 	}
221 
222 	/* add reference to the vnode to prevent recycling */
223 	vhold(udf_node->vnode);
224 
225 	if (waitfor) {
226 		DPRINTF(WRITE, ("udf_write_logvol_dscr: sync write\n"));
227 
228 		error = udf_write_phys_dscr_sync(ump, udf_node, UDF_C_NODE,
229 			dscr, sectornr, logsectornr);
230 	} else {
231 		DPRINTF(WRITE, ("udf_write_logvol_dscr: no wait, async write\n"));
232 
233 		error = udf_write_phys_dscr_async(ump, udf_node, UDF_C_NODE,
234 			dscr, sectornr, logsectornr, udf_wr_nodedscr_callback);
235 		/* will be UNLOCKED in call back */
236 		return error;
237 	}
238 
239 	holdrele(udf_node->vnode);
240 out:
241 	udf_node->outstanding_nodedscr--;
242 	if (udf_node->outstanding_nodedscr == 0) {
243 		UDF_UNLOCK_NODE(udf_node, 0);
244 		wakeup(&udf_node->outstanding_nodedscr);
245 	}
246 
247 	return error;
248 }
249 
250 /* --------------------------------------------------------------------- */
251 
252 /*
253  * Main file-system specific sheduler. Due to the nature of optical media
254  * sheduling can't be performed in the traditional way. Most OS
255  * implementations i've seen thus read or write a file atomically giving all
256  * kinds of side effects.
257  *
258  * This implementation uses a kernel thread to shedule the queued requests in
259  * such a way that is semi-optimal for optical media; this means aproximately
260  * (R*|(Wr*|Ws*))* since switching between reading and writing is expensive in
261  * time.
262  */
263 
264 static void
265 udf_queuebuf_seq(struct udf_strat_args *args)
266 {
267 	struct udf_mount *ump = args->ump;
268 	struct buf *nestbuf = args->nestbuf;
269 	struct strat_private *priv = PRIV(ump);
270 	int queue;
271 	int what;
272 
273 	KASSERT(ump);
274 	KASSERT(nestbuf);
275 	KASSERT(nestbuf->b_iodone == nestiobuf_iodone);
276 
277 	what = nestbuf->b_udf_c_type;
278 	queue = UDF_SHED_READING;
279 	if ((nestbuf->b_flags & B_READ) == 0) {
280 		/* writing */
281 		queue = UDF_SHED_SEQWRITING;
282 		if (what == UDF_C_ABSOLUTE)
283 			queue = UDF_SHED_WRITING;
284 	}
285 
286 	/* use our own sheduler lists for more complex sheduling */
287 	mutex_enter(&priv->discstrat_mutex);
288 		bufq_put(priv->queues[queue], nestbuf);
289 		vfs_timestamp(&priv->last_queued[queue]);
290 	mutex_exit(&priv->discstrat_mutex);
291 
292 	/* signal our thread that there might be something to do */
293 	cv_signal(&priv->discstrat_cv);
294 }
295 
296 /* --------------------------------------------------------------------- */
297 
298 /* TODO convert to lb_size */
299 static void
300 udf_VAT_mapping_update(struct udf_mount *ump, struct buf *buf, uint32_t lb_map)
301 {
302 	union dscrptr    *fdscr = (union dscrptr *) buf->b_data;
303 	struct vnode     *vp = buf->b_vp;
304 	struct udf_node  *udf_node = VTOI(vp);
305 	uint32_t lb_size, blks;
306 	uint32_t lb_num;
307 	uint32_t udf_rw32_lbmap;
308 	int c_type = buf->b_udf_c_type;
309 	int error;
310 
311 	/* only interested when we're using a VAT */
312 	KASSERT(ump->vat_node);
313 	KASSERT(ump->vtop_alloc[ump->node_part] == UDF_ALLOC_VAT);
314 
315 	/* only nodes are recorded in the VAT */
316 	/* NOTE: and the fileset descriptor (FIXME ?) */
317 	if (c_type != UDF_C_NODE)
318 		return;
319 
320 	/* we now have an UDF FE/EFE node on media with VAT (or VAT itself) */
321 	lb_size = udf_rw32(ump->logical_vol->lb_size);
322 	blks = lb_size / DEV_BSIZE;
323 
324 	udf_rw32_lbmap = udf_rw32(lb_map);
325 
326 	/* if we're the VAT itself, only update our assigned sector number */
327 	if (udf_node == ump->vat_node) {
328 		fdscr->tag.tag_loc = udf_rw32_lbmap;
329 		udf_validate_tag_sum(fdscr);
330 		DPRINTF(TRANSLATE, ("VAT assigned to sector %u\n",
331 			udf_rw32(udf_rw32_lbmap)));
332 		/* no use mapping the VAT node in the VAT */
333 		return;
334 	}
335 
336 	/* record new position in VAT file */
337 	lb_num = udf_rw32(fdscr->tag.tag_loc);
338 
339 	/* lb_num = udf_rw32(udf_node->write_loc.loc.lb_num); */
340 
341 	DPRINTF(TRANSLATE, ("VAT entry change (log %u -> phys %u)\n",
342 			lb_num, lb_map));
343 
344 	/* VAT should be the longer than this write, can't go wrong */
345 	KASSERT(lb_num <= ump->vat_entries);
346 
347 	mutex_enter(&ump->allocate_mutex);
348 	error = udf_vat_write(ump->vat_node,
349 			(uint8_t *) &udf_rw32_lbmap, 4,
350 			ump->vat_offset + lb_num * 4);
351 	mutex_exit(&ump->allocate_mutex);
352 
353 	if (error)
354 		panic( "udf_VAT_mapping_update: HELP! i couldn't "
355 			"write in the VAT file ?\n");
356 }
357 
358 
359 static void
360 udf_issue_buf(struct udf_mount *ump, int queue, struct buf *buf)
361 {
362 	union dscrptr *dscr;
363 	struct long_ad *node_ad_cpy;
364 	struct part_desc *pdesc;
365 	uint64_t *lmapping, *lmappos, blknr;
366 	uint32_t our_sectornr, sectornr, bpos;
367 	uint32_t ptov;
368 	uint16_t vpart_num;
369 	uint8_t *fidblk;
370 	int sector_size = ump->discinfo.sector_size;
371 	int blks = sector_size / DEV_BSIZE;
372 	int len, buf_len;
373 
374 	/* if reading, just pass to the device's STRATEGY */
375 	if (queue == UDF_SHED_READING) {
376 		DPRINTF(SHEDULE, ("\nudf_issue_buf READ %p : sector %d type %d,"
377 			"b_resid %d, b_bcount %d, b_bufsize %d\n",
378 			buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
379 			buf->b_resid, buf->b_bcount, buf->b_bufsize));
380 		VOP_STRATEGY(ump->devvp, buf);
381 		return;
382 	}
383 
384 	blknr        = buf->b_blkno;
385 	our_sectornr = blknr / blks;
386 
387 	if (queue == UDF_SHED_WRITING) {
388 		DPRINTF(SHEDULE, ("\nudf_issue_buf WRITE %p : sector %d "
389 			"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
390 			buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
391 			buf->b_resid, buf->b_bcount, buf->b_bufsize));
392 		KASSERT(buf->b_udf_c_type == UDF_C_ABSOLUTE);
393 
394 		// udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
395 		VOP_STRATEGY(ump->devvp, buf);
396 		return;
397 	}
398 
399 	KASSERT(queue == UDF_SHED_SEQWRITING);
400 	DPRINTF(SHEDULE, ("\nudf_issue_buf SEQWRITE %p : sector XXXX "
401 		"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
402 		buf, buf->b_udf_c_type, buf->b_resid, buf->b_bcount,
403 		buf->b_bufsize));
404 
405 	/*
406 	 * Buffers should not have been allocated to disc addresses yet on
407 	 * this queue. Note that a buffer can get multiple extents allocated.
408 	 *
409 	 * lmapping contains lb_num relative to base partition.
410 	 */
411 	lmapping    = ump->la_lmapping;
412 	node_ad_cpy = ump->la_node_ad_cpy;
413 
414 	/* logically allocate buf and map it in the file */
415 	udf_late_allocate_buf(ump, buf, lmapping, node_ad_cpy, &vpart_num);
416 
417 	/*
418 	 * NOTE We are using the knowledge here that sequential media will
419 	 * always be mapped linearly. Thus no use to explicitly translate the
420 	 * lmapping list.
421 	 */
422 
423 	/* calculate offset from physical base partition */
424 	pdesc = ump->partitions[ump->vtop[vpart_num]];
425 	ptov  = udf_rw32(pdesc->start_loc);
426 
427 	/* set buffers blkno to the physical block number */
428 	buf->b_blkno = (*lmapping + ptov) * blks;
429 
430 	/* fixate floating descriptors */
431 	if (buf->b_udf_c_type == UDF_C_FLOAT_DSCR) {
432 		/* set our tag location to the absolute position */
433 		dscr = (union dscrptr *) buf->b_data;
434 		dscr->tag.tag_loc = udf_rw32(*lmapping + ptov);
435 		udf_validate_tag_and_crc_sums(dscr);
436 	}
437 
438 	/* update mapping in the VAT */
439 	if (buf->b_udf_c_type == UDF_C_NODE) {
440 		udf_VAT_mapping_update(ump, buf, *lmapping);
441 		udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
442 	}
443 
444 	/* if we have FIDs, fixup using the new allocation table */
445 	if (buf->b_udf_c_type == UDF_C_FIDS) {
446 		buf_len = buf->b_bcount;
447 		bpos = 0;
448 		lmappos = lmapping;
449 		while (buf_len) {
450 			sectornr = *lmappos++;
451 			len = MIN(buf_len, sector_size);
452 			fidblk = (uint8_t *) buf->b_data + bpos;
453 			udf_fixup_fid_block(fidblk, sector_size,
454 				0, len, sectornr);
455 			bpos += len;
456 			buf_len -= len;
457 		}
458 	}
459 
460 	VOP_STRATEGY(ump->devvp, buf);
461 }
462 
463 
464 static void
465 udf_doshedule(struct udf_mount *ump)
466 {
467 	struct buf *buf;
468 	struct timespec now, *last;
469 	struct strat_private *priv = PRIV(ump);
470 	void (*b_callback)(struct buf *);
471 	int new_queue;
472 	int error;
473 
474 	buf = bufq_get(priv->queues[priv->cur_queue]);
475 	if (buf) {
476 		/* transfer from the current queue to the device queue */
477 		mutex_exit(&priv->discstrat_mutex);
478 
479 		/* transform buffer to synchronous; XXX needed? */
480 		b_callback = buf->b_iodone;
481 		buf->b_iodone = NULL;
482 		CLR(buf->b_flags, B_ASYNC);
483 
484 		/* issue and wait on completion */
485 		udf_issue_buf(ump, priv->cur_queue, buf);
486 		biowait(buf);
487 
488 		mutex_enter(&priv->discstrat_mutex);
489 
490 		/* if there is an error, repair this error, otherwise propagate */
491 		if (buf->b_error && ((buf->b_flags & B_READ) == 0)) {
492 			/* check what we need to do */
493 			panic("UDF write error, can't handle yet!\n");
494 		}
495 
496 		/* propagate result to higher layers */
497 		if (b_callback) {
498 			buf->b_iodone = b_callback;
499 			(*buf->b_iodone)(buf);
500 		}
501 
502 		return;
503 	}
504 
505 	/* Check if we're idling in this state */
506 	vfs_timestamp(&now);
507 	last = &priv->last_queued[priv->cur_queue];
508 	if (ump->discinfo.mmc_class == MMC_CLASS_CD) {
509 		/* dont switch too fast for CD media; its expensive in time */
510 		if (now.tv_sec - last->tv_sec < 3)
511 			return;
512 	}
513 
514 	/* check if we can/should switch */
515 	new_queue = priv->cur_queue;
516 
517 	if (bufq_peek(priv->queues[UDF_SHED_READING]))
518 		new_queue = UDF_SHED_READING;
519 	if (bufq_peek(priv->queues[UDF_SHED_WRITING]))		/* only for unmount */
520 		new_queue = UDF_SHED_WRITING;
521 	if (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]))
522 		new_queue = UDF_SHED_SEQWRITING;
523 	if (priv->cur_queue == UDF_SHED_READING) {
524 		if (new_queue == UDF_SHED_SEQWRITING) {
525 			/* TODO use flag to signal if this is needed */
526 			mutex_exit(&priv->discstrat_mutex);
527 
528 			/* update trackinfo for data and metadata */
529 			error = udf_update_trackinfo(ump,
530 					&ump->data_track);
531 			assert(error == 0);
532 			error = udf_update_trackinfo(ump,
533 					&ump->metadata_track);
534 			assert(error == 0);
535 			mutex_enter(&priv->discstrat_mutex);
536 		}
537 	}
538 
539 	if (new_queue != priv->cur_queue) {
540 		DPRINTF(SHEDULE, ("switching from %d to %d\n",
541 			priv->cur_queue, new_queue));
542 	}
543 
544 	priv->cur_queue = new_queue;
545 }
546 
547 
548 static void
549 udf_discstrat_thread(void *arg)
550 {
551 	struct udf_mount *ump = (struct udf_mount *) arg;
552 	struct strat_private *priv = PRIV(ump);
553 	int empty;
554 
555 	empty = 1;
556 	mutex_enter(&priv->discstrat_mutex);
557 	while (priv->run_thread || !empty) {
558 		/* process the current selected queue */
559 		udf_doshedule(ump);
560 		empty  = (bufq_peek(priv->queues[UDF_SHED_READING]) == NULL);
561 		empty &= (bufq_peek(priv->queues[UDF_SHED_WRITING]) == NULL);
562 		empty &= (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]) == NULL);
563 
564 		/* wait for more if needed */
565 		if (empty)
566 			cv_timedwait(&priv->discstrat_cv,
567 				&priv->discstrat_mutex, hz/8);
568 	}
569 	mutex_exit(&priv->discstrat_mutex);
570 
571 	wakeup(&priv->run_thread);
572 	kthread_exit(0);
573 	/* not reached */
574 }
575 
576 /* --------------------------------------------------------------------- */
577 
578 static void
579 udf_discstrat_init_seq(struct udf_strat_args *args)
580 {
581 	struct udf_mount *ump = args->ump;
582 	struct strat_private *priv = PRIV(ump);
583 	struct disk_strategy dkstrat;
584 	uint32_t lb_size;
585 
586 	KASSERT(ump);
587 	KASSERT(ump->logical_vol);
588 	KASSERT(priv == NULL);
589 
590 	lb_size = udf_rw32(ump->logical_vol->lb_size);
591 	KASSERT(lb_size > 0);
592 
593 	/* initialise our memory space */
594 	ump->strategy_private = malloc(sizeof(struct strat_private),
595 		M_UDFTEMP, M_WAITOK);
596 	priv = ump->strategy_private;
597 	memset(priv, 0 , sizeof(struct strat_private));
598 
599 	/* initialise locks */
600 	cv_init(&priv->discstrat_cv, "udfstrat");
601 	mutex_init(&priv->discstrat_mutex, MUTEX_DEFAULT, IPL_NONE);
602 
603 	/*
604 	 * Initialise pool for descriptors associated with nodes. This is done
605 	 * in lb_size units though currently lb_size is dictated to be
606 	 * sector_size.
607 	 */
608 	pool_init(&priv->desc_pool, lb_size, 0, 0, 0, "udf_desc_pool", NULL,
609 	    IPL_NONE);
610 
611 	/*
612 	 * remember old device strategy method and explicit set method
613 	 * `discsort' since we have our own more complex strategy that is not
614 	 * implementable on the CD device and other strategies will get in the
615 	 * way.
616 	 */
617 	memset(&priv->old_strategy_setting, 0,
618 		sizeof(struct disk_strategy));
619 	VOP_IOCTL(ump->devvp, DIOCGSTRATEGY, &priv->old_strategy_setting,
620 		FREAD | FKIOCTL, NOCRED);
621 	memset(&dkstrat, 0, sizeof(struct disk_strategy));
622 	strcpy(dkstrat.dks_name, "discsort");
623 	VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &dkstrat, FWRITE | FKIOCTL,
624 		NOCRED);
625 
626 	/* initialise our internal sheduler */
627 	priv->cur_queue = UDF_SHED_READING;
628 	bufq_alloc(&priv->queues[UDF_SHED_READING], "disksort",
629 		BUFQ_SORT_RAWBLOCK);
630 	bufq_alloc(&priv->queues[UDF_SHED_WRITING], "disksort",
631 		BUFQ_SORT_RAWBLOCK);
632 	bufq_alloc(&priv->queues[UDF_SHED_SEQWRITING], "fcfs", 0);
633 	vfs_timestamp(&priv->last_queued[UDF_SHED_READING]);
634 	vfs_timestamp(&priv->last_queued[UDF_SHED_WRITING]);
635 	vfs_timestamp(&priv->last_queued[UDF_SHED_SEQWRITING]);
636 
637 	/* create our disk strategy thread */
638 	priv->run_thread = 1;
639 	if (kthread_create(PRI_NONE, 0 /* KTHREAD_MPSAFE*/, NULL /* cpu_info*/,
640 		udf_discstrat_thread, ump, &priv->queue_lwp,
641 		"%s", "udf_rw")) {
642 		panic("fork udf_rw");
643 	}
644 }
645 
646 
647 static void
648 udf_discstrat_finish_seq(struct udf_strat_args *args)
649 {
650 	struct udf_mount *ump = args->ump;
651 	struct strat_private *priv = PRIV(ump);
652 	int error;
653 
654 	if (ump == NULL)
655 		return;
656 
657 	/* stop our sheduling thread */
658 	KASSERT(priv->run_thread == 1);
659 	priv->run_thread = 0;
660 	wakeup(priv->queue_lwp);
661 	do {
662 		error = tsleep(&priv->run_thread, PRIBIO+1,
663 			"udfshedfin", hz);
664 	} while (error);
665 	/* kthread should be finished now */
666 
667 	/* set back old device strategy method */
668 	VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &priv->old_strategy_setting,
669 			FWRITE, NOCRED);
670 
671 	/* destroy our pool */
672 	pool_destroy(&priv->desc_pool);
673 
674 	mutex_destroy(&priv->discstrat_mutex);
675 	cv_destroy(&priv->discstrat_cv);
676 
677 	/* free our private space */
678 	free(ump->strategy_private, M_UDFTEMP);
679 	ump->strategy_private = NULL;
680 }
681 
682 /* --------------------------------------------------------------------- */
683 
684 struct udf_strategy udf_strat_sequential =
685 {
686 	udf_create_logvol_dscr_seq,
687 	udf_free_logvol_dscr_seq,
688 	udf_read_logvol_dscr_seq,
689 	udf_write_logvol_dscr_seq,
690 	udf_queuebuf_seq,
691 	udf_discstrat_init_seq,
692 	udf_discstrat_finish_seq
693 };
694 
695 
696