xref: /netbsd/sys/kern/kern_event.c (revision 6550d01e)
1 /*	$NetBSD: kern_event.c,v 1.71 2010/09/10 10:23:46 drochner Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.71 2010/09/10 10:23:46 drochner Exp $");
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/proc.h>
67 #include <sys/file.h>
68 #include <sys/select.h>
69 #include <sys/queue.h>
70 #include <sys/event.h>
71 #include <sys/eventvar.h>
72 #include <sys/poll.h>
73 #include <sys/kmem.h>
74 #include <sys/stat.h>
75 #include <sys/filedesc.h>
76 #include <sys/syscallargs.h>
77 #include <sys/kauth.h>
78 #include <sys/conf.h>
79 #include <sys/atomic.h>
80 
81 static int	kqueue_scan(file_t *, size_t, struct kevent *,
82 			    const struct timespec *, register_t *,
83 			    const struct kevent_ops *, struct kevent *,
84 			    size_t);
85 static int	kqueue_ioctl(file_t *, u_long, void *);
86 static int	kqueue_fcntl(file_t *, u_int, void *);
87 static int	kqueue_poll(file_t *, int);
88 static int	kqueue_kqfilter(file_t *, struct knote *);
89 static int	kqueue_stat(file_t *, struct stat *);
90 static int	kqueue_close(file_t *);
91 static int	kqueue_register(struct kqueue *, struct kevent *);
92 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
93 
94 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
95 static void	knote_enqueue(struct knote *);
96 static void	knote_activate(struct knote *);
97 
98 static void	filt_kqdetach(struct knote *);
99 static int	filt_kqueue(struct knote *, long hint);
100 static int	filt_procattach(struct knote *);
101 static void	filt_procdetach(struct knote *);
102 static int	filt_proc(struct knote *, long hint);
103 static int	filt_fileattach(struct knote *);
104 static void	filt_timerexpire(void *x);
105 static int	filt_timerattach(struct knote *);
106 static void	filt_timerdetach(struct knote *);
107 static int	filt_timer(struct knote *, long hint);
108 
109 static const struct fileops kqueueops = {
110 	.fo_read = (void *)enxio,
111 	.fo_write = (void *)enxio,
112 	.fo_ioctl = kqueue_ioctl,
113 	.fo_fcntl = kqueue_fcntl,
114 	.fo_poll = kqueue_poll,
115 	.fo_stat = kqueue_stat,
116 	.fo_close = kqueue_close,
117 	.fo_kqfilter = kqueue_kqfilter,
118 	.fo_restart = fnullop_restart,
119 };
120 
121 static const struct filterops kqread_filtops =
122 	{ 1, NULL, filt_kqdetach, filt_kqueue };
123 static const struct filterops proc_filtops =
124 	{ 0, filt_procattach, filt_procdetach, filt_proc };
125 static const struct filterops file_filtops =
126 	{ 1, filt_fileattach, NULL, NULL };
127 static const struct filterops timer_filtops =
128 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
129 
130 static u_int	kq_ncallouts = 0;
131 static int	kq_calloutmax = (4 * 1024);
132 
133 #define	KN_HASHSIZE		64		/* XXX should be tunable */
134 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
135 
136 extern const struct filterops sig_filtops;
137 
138 /*
139  * Table for for all system-defined filters.
140  * These should be listed in the numeric order of the EVFILT_* defines.
141  * If filtops is NULL, the filter isn't implemented in NetBSD.
142  * End of list is when name is NULL.
143  *
144  * Note that 'refcnt' is meaningless for built-in filters.
145  */
146 struct kfilter {
147 	const char	*name;		/* name of filter */
148 	uint32_t	filter;		/* id of filter */
149 	unsigned	refcnt;		/* reference count */
150 	const struct filterops *filtops;/* operations for filter */
151 	size_t		namelen;	/* length of name string */
152 };
153 
154 /* System defined filters */
155 static struct kfilter sys_kfilters[] = {
156 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
157 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
158 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
159 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
160 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
161 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
162 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
163 	{ NULL,			0,		0, NULL, 0 },
164 };
165 
166 /* User defined kfilters */
167 static struct kfilter	*user_kfilters;		/* array */
168 static int		user_kfilterc;		/* current offset */
169 static int		user_kfiltermaxc;	/* max size so far */
170 static size_t		user_kfiltersz;		/* size of allocated memory */
171 
172 /* Locks */
173 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
174 static kmutex_t		kqueue_misc_lock;	/* miscellaneous */
175 
176 static kauth_listener_t	kqueue_listener;
177 
178 static int
179 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
180     void *arg0, void *arg1, void *arg2, void *arg3)
181 {
182 	struct proc *p;
183 	int result;
184 
185 	result = KAUTH_RESULT_DEFER;
186 	p = arg0;
187 
188 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
189 		return result;
190 
191 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
192 	    ISSET(p->p_flag, PK_SUGID)))
193 		return result;
194 
195 	result = KAUTH_RESULT_ALLOW;
196 
197 	return result;
198 }
199 
200 /*
201  * Initialize the kqueue subsystem.
202  */
203 void
204 kqueue_init(void)
205 {
206 
207 	rw_init(&kqueue_filter_lock);
208 	mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
209 
210 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
211 	    kqueue_listener_cb, NULL);
212 }
213 
214 /*
215  * Find kfilter entry by name, or NULL if not found.
216  */
217 static struct kfilter *
218 kfilter_byname_sys(const char *name)
219 {
220 	int i;
221 
222 	KASSERT(rw_lock_held(&kqueue_filter_lock));
223 
224 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
225 		if (strcmp(name, sys_kfilters[i].name) == 0)
226 			return &sys_kfilters[i];
227 	}
228 	return NULL;
229 }
230 
231 static struct kfilter *
232 kfilter_byname_user(const char *name)
233 {
234 	int i;
235 
236 	KASSERT(rw_lock_held(&kqueue_filter_lock));
237 
238 	/* user filter slots have a NULL name if previously deregistered */
239 	for (i = 0; i < user_kfilterc ; i++) {
240 		if (user_kfilters[i].name != NULL &&
241 		    strcmp(name, user_kfilters[i].name) == 0)
242 			return &user_kfilters[i];
243 	}
244 	return NULL;
245 }
246 
247 static struct kfilter *
248 kfilter_byname(const char *name)
249 {
250 	struct kfilter *kfilter;
251 
252 	KASSERT(rw_lock_held(&kqueue_filter_lock));
253 
254 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
255 		return kfilter;
256 
257 	return kfilter_byname_user(name);
258 }
259 
260 /*
261  * Find kfilter entry by filter id, or NULL if not found.
262  * Assumes entries are indexed in filter id order, for speed.
263  */
264 static struct kfilter *
265 kfilter_byfilter(uint32_t filter)
266 {
267 	struct kfilter *kfilter;
268 
269 	KASSERT(rw_lock_held(&kqueue_filter_lock));
270 
271 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
272 		kfilter = &sys_kfilters[filter];
273 	else if (user_kfilters != NULL &&
274 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
275 					/* it's a user filter */
276 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
277 	else
278 		return (NULL);		/* out of range */
279 	KASSERT(kfilter->filter == filter);	/* sanity check! */
280 	return (kfilter);
281 }
282 
283 /*
284  * Register a new kfilter. Stores the entry in user_kfilters.
285  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286  * If retfilter != NULL, the new filterid is returned in it.
287  */
288 int
289 kfilter_register(const char *name, const struct filterops *filtops,
290 		 int *retfilter)
291 {
292 	struct kfilter *kfilter;
293 	size_t len;
294 	int i;
295 
296 	if (name == NULL || name[0] == '\0' || filtops == NULL)
297 		return (EINVAL);	/* invalid args */
298 
299 	rw_enter(&kqueue_filter_lock, RW_WRITER);
300 	if (kfilter_byname(name) != NULL) {
301 		rw_exit(&kqueue_filter_lock);
302 		return (EEXIST);	/* already exists */
303 	}
304 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
305 		rw_exit(&kqueue_filter_lock);
306 		return (EINVAL);	/* too many */
307 	}
308 
309 	for (i = 0; i < user_kfilterc; i++) {
310 		kfilter = &user_kfilters[i];
311 		if (kfilter->name == NULL) {
312 			/* Previously deregistered slot.  Reuse. */
313 			goto reuse;
314 		}
315 	}
316 
317 	/* check if need to grow user_kfilters */
318 	if (user_kfilterc + 1 > user_kfiltermaxc) {
319 		/* Grow in KFILTER_EXTENT chunks. */
320 		user_kfiltermaxc += KFILTER_EXTENT;
321 		len = user_kfiltermaxc * sizeof(*kfilter);
322 		kfilter = kmem_alloc(len, KM_SLEEP);
323 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
324 		if (user_kfilters != NULL) {
325 			memcpy(kfilter, user_kfilters, user_kfiltersz);
326 			kmem_free(user_kfilters, user_kfiltersz);
327 		}
328 		user_kfiltersz = len;
329 		user_kfilters = kfilter;
330 	}
331 	/* Adding new slot */
332 	kfilter = &user_kfilters[user_kfilterc++];
333 reuse:
334 	kfilter->namelen = strlen(name) + 1;
335 	kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
336 	memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
337 
338 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
339 
340 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
341 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
342 
343 	if (retfilter != NULL)
344 		*retfilter = kfilter->filter;
345 	rw_exit(&kqueue_filter_lock);
346 
347 	return (0);
348 }
349 
350 /*
351  * Unregister a kfilter previously registered with kfilter_register.
352  * This retains the filter id, but clears the name and frees filtops (filter
353  * operations), so that the number isn't reused during a boot.
354  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
355  */
356 int
357 kfilter_unregister(const char *name)
358 {
359 	struct kfilter *kfilter;
360 
361 	if (name == NULL || name[0] == '\0')
362 		return (EINVAL);	/* invalid name */
363 
364 	rw_enter(&kqueue_filter_lock, RW_WRITER);
365 	if (kfilter_byname_sys(name) != NULL) {
366 		rw_exit(&kqueue_filter_lock);
367 		return (EINVAL);	/* can't detach system filters */
368 	}
369 
370 	kfilter = kfilter_byname_user(name);
371 	if (kfilter == NULL) {
372 		rw_exit(&kqueue_filter_lock);
373 		return (ENOENT);
374 	}
375 	if (kfilter->refcnt != 0) {
376 		rw_exit(&kqueue_filter_lock);
377 		return (EBUSY);
378 	}
379 
380 	/* Cast away const (but we know it's safe. */
381 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
382 	kfilter->name = NULL;	/* mark as `not implemented' */
383 
384 	if (kfilter->filtops != NULL) {
385 		/* Cast away const (but we know it's safe. */
386 		kmem_free(__UNCONST(kfilter->filtops),
387 		    sizeof(*kfilter->filtops));
388 		kfilter->filtops = NULL; /* mark as `not implemented' */
389 	}
390 	rw_exit(&kqueue_filter_lock);
391 
392 	return (0);
393 }
394 
395 
396 /*
397  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
398  * descriptors. Calls fileops kqfilter method for given file descriptor.
399  */
400 static int
401 filt_fileattach(struct knote *kn)
402 {
403 	file_t *fp;
404 
405 	fp = kn->kn_obj;
406 
407 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
408 }
409 
410 /*
411  * Filter detach method for EVFILT_READ on kqueue descriptor.
412  */
413 static void
414 filt_kqdetach(struct knote *kn)
415 {
416 	struct kqueue *kq;
417 
418 	kq = ((file_t *)kn->kn_obj)->f_data;
419 
420 	mutex_spin_enter(&kq->kq_lock);
421 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
422 	mutex_spin_exit(&kq->kq_lock);
423 }
424 
425 /*
426  * Filter event method for EVFILT_READ on kqueue descriptor.
427  */
428 /*ARGSUSED*/
429 static int
430 filt_kqueue(struct knote *kn, long hint)
431 {
432 	struct kqueue *kq;
433 	int rv;
434 
435 	kq = ((file_t *)kn->kn_obj)->f_data;
436 
437 	if (hint != NOTE_SUBMIT)
438 		mutex_spin_enter(&kq->kq_lock);
439 	kn->kn_data = kq->kq_count;
440 	rv = (kn->kn_data > 0);
441 	if (hint != NOTE_SUBMIT)
442 		mutex_spin_exit(&kq->kq_lock);
443 
444 	return rv;
445 }
446 
447 /*
448  * Filter attach method for EVFILT_PROC.
449  */
450 static int
451 filt_procattach(struct knote *kn)
452 {
453 	struct proc *p, *curp;
454 	struct lwp *curl;
455 
456 	curl = curlwp;
457 	curp = curl->l_proc;
458 
459 	mutex_enter(proc_lock);
460 	p = proc_find(kn->kn_id);
461 	if (p == NULL) {
462 		mutex_exit(proc_lock);
463 		return ESRCH;
464 	}
465 
466 	/*
467 	 * Fail if it's not owned by you, or the last exec gave us
468 	 * setuid/setgid privs (unless you're root).
469 	 */
470 	mutex_enter(p->p_lock);
471 	mutex_exit(proc_lock);
472 	if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
473 	    p, NULL, NULL, NULL) != 0) {
474 	    	mutex_exit(p->p_lock);
475 		return EACCES;
476 	}
477 
478 	kn->kn_obj = p;
479 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
480 
481 	/*
482 	 * internal flag indicating registration done by kernel
483 	 */
484 	if (kn->kn_flags & EV_FLAG1) {
485 		kn->kn_data = kn->kn_sdata;	/* ppid */
486 		kn->kn_fflags = NOTE_CHILD;
487 		kn->kn_flags &= ~EV_FLAG1;
488 	}
489 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
490     	mutex_exit(p->p_lock);
491 
492 	return 0;
493 }
494 
495 /*
496  * Filter detach method for EVFILT_PROC.
497  *
498  * The knote may be attached to a different process, which may exit,
499  * leaving nothing for the knote to be attached to.  So when the process
500  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
501  * it will be deleted when read out.  However, as part of the knote deletion,
502  * this routine is called, so a check is needed to avoid actually performing
503  * a detach, because the original process might not exist any more.
504  */
505 static void
506 filt_procdetach(struct knote *kn)
507 {
508 	struct proc *p;
509 
510 	if (kn->kn_status & KN_DETACHED)
511 		return;
512 
513 	p = kn->kn_obj;
514 
515 	mutex_enter(p->p_lock);
516 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
517 	mutex_exit(p->p_lock);
518 }
519 
520 /*
521  * Filter event method for EVFILT_PROC.
522  */
523 static int
524 filt_proc(struct knote *kn, long hint)
525 {
526 	u_int event, fflag;
527 	struct kevent kev;
528 	struct kqueue *kq;
529 	int error;
530 
531 	event = (u_int)hint & NOTE_PCTRLMASK;
532 	kq = kn->kn_kq;
533 	fflag = 0;
534 
535 	/* If the user is interested in this event, record it. */
536 	if (kn->kn_sfflags & event)
537 		fflag |= event;
538 
539 	if (event == NOTE_EXIT) {
540 		/*
541 		 * Process is gone, so flag the event as finished.
542 		 *
543 		 * Detach the knote from watched process and mark
544 		 * it as such. We can't leave this to kqueue_scan(),
545 		 * since the process might not exist by then. And we
546 		 * have to do this now, since psignal KNOTE() is called
547 		 * also for zombies and we might end up reading freed
548 		 * memory if the kevent would already be picked up
549 		 * and knote g/c'ed.
550 		 */
551 		filt_procdetach(kn);
552 
553 		mutex_spin_enter(&kq->kq_lock);
554 		kn->kn_status |= KN_DETACHED;
555 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
556 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
557 		kn->kn_fflags |= fflag;
558 		mutex_spin_exit(&kq->kq_lock);
559 
560 		return 1;
561 	}
562 
563 	mutex_spin_enter(&kq->kq_lock);
564 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
565 		/*
566 		 * Process forked, and user wants to track the new process,
567 		 * so attach a new knote to it, and immediately report an
568 		 * event with the parent's pid.  Register knote with new
569 		 * process.
570 		 */
571 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
572 		kev.filter = kn->kn_filter;
573 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
574 		kev.fflags = kn->kn_sfflags;
575 		kev.data = kn->kn_id;			/* parent */
576 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
577 		mutex_spin_exit(&kq->kq_lock);
578 		error = kqueue_register(kq, &kev);
579 		mutex_spin_enter(&kq->kq_lock);
580 		if (error != 0)
581 			kn->kn_fflags |= NOTE_TRACKERR;
582 	}
583 	kn->kn_fflags |= fflag;
584 	fflag = kn->kn_fflags;
585 	mutex_spin_exit(&kq->kq_lock);
586 
587 	return fflag != 0;
588 }
589 
590 static void
591 filt_timerexpire(void *knx)
592 {
593 	struct knote *kn = knx;
594 	int tticks;
595 
596 	mutex_enter(&kqueue_misc_lock);
597 	kn->kn_data++;
598 	knote_activate(kn);
599 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
600 		tticks = mstohz(kn->kn_sdata);
601 		callout_schedule((callout_t *)kn->kn_hook, tticks);
602 	}
603 	mutex_exit(&kqueue_misc_lock);
604 }
605 
606 /*
607  * data contains amount of time to sleep, in milliseconds
608  */
609 static int
610 filt_timerattach(struct knote *kn)
611 {
612 	callout_t *calloutp;
613 	struct kqueue *kq;
614 	int tticks;
615 
616 	tticks = mstohz(kn->kn_sdata);
617 
618 	/* if the supplied value is under our resolution, use 1 tick */
619 	if (tticks == 0) {
620 		if (kn->kn_sdata == 0)
621 			return EINVAL;
622 		tticks = 1;
623 	}
624 
625 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
626 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
627 		atomic_dec_uint(&kq_ncallouts);
628 		return ENOMEM;
629 	}
630 	callout_init(calloutp, CALLOUT_MPSAFE);
631 
632 	kq = kn->kn_kq;
633 	mutex_spin_enter(&kq->kq_lock);
634 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
635 	kn->kn_hook = calloutp;
636 	mutex_spin_exit(&kq->kq_lock);
637 
638 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
639 
640 	return (0);
641 }
642 
643 static void
644 filt_timerdetach(struct knote *kn)
645 {
646 	callout_t *calloutp;
647 
648 	calloutp = (callout_t *)kn->kn_hook;
649 	callout_halt(calloutp, NULL);
650 	callout_destroy(calloutp);
651 	kmem_free(calloutp, sizeof(*calloutp));
652 	atomic_dec_uint(&kq_ncallouts);
653 }
654 
655 static int
656 filt_timer(struct knote *kn, long hint)
657 {
658 	int rv;
659 
660 	mutex_enter(&kqueue_misc_lock);
661 	rv = (kn->kn_data != 0);
662 	mutex_exit(&kqueue_misc_lock);
663 
664 	return rv;
665 }
666 
667 /*
668  * filt_seltrue:
669  *
670  *	This filter "event" routine simulates seltrue().
671  */
672 int
673 filt_seltrue(struct knote *kn, long hint)
674 {
675 
676 	/*
677 	 * We don't know how much data can be read/written,
678 	 * but we know that it *can* be.  This is about as
679 	 * good as select/poll does as well.
680 	 */
681 	kn->kn_data = 0;
682 	return (1);
683 }
684 
685 /*
686  * This provides full kqfilter entry for device switch tables, which
687  * has same effect as filter using filt_seltrue() as filter method.
688  */
689 static void
690 filt_seltruedetach(struct knote *kn)
691 {
692 	/* Nothing to do */
693 }
694 
695 const struct filterops seltrue_filtops =
696 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
697 
698 int
699 seltrue_kqfilter(dev_t dev, struct knote *kn)
700 {
701 	switch (kn->kn_filter) {
702 	case EVFILT_READ:
703 	case EVFILT_WRITE:
704 		kn->kn_fop = &seltrue_filtops;
705 		break;
706 	default:
707 		return (EINVAL);
708 	}
709 
710 	/* Nothing more to do */
711 	return (0);
712 }
713 
714 /*
715  * kqueue(2) system call.
716  */
717 int
718 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
719 {
720 	struct kqueue *kq;
721 	file_t *fp;
722 	int fd, error;
723 
724 	if ((error = fd_allocfile(&fp, &fd)) != 0)
725 		return error;
726 	fp->f_flag = FREAD | FWRITE;
727 	fp->f_type = DTYPE_KQUEUE;
728 	fp->f_ops = &kqueueops;
729 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
730 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
731 	cv_init(&kq->kq_cv, "kqueue");
732 	selinit(&kq->kq_sel);
733 	TAILQ_INIT(&kq->kq_head);
734 	fp->f_data = kq;
735 	*retval = fd;
736 	kq->kq_fdp = curlwp->l_fd;
737 	fd_affix(curproc, fp, fd);
738 	return error;
739 }
740 
741 /*
742  * kevent(2) system call.
743  */
744 int
745 kevent_fetch_changes(void *private, const struct kevent *changelist,
746     struct kevent *changes, size_t index, int n)
747 {
748 
749 	return copyin(changelist + index, changes, n * sizeof(*changes));
750 }
751 
752 int
753 kevent_put_events(void *private, struct kevent *events,
754     struct kevent *eventlist, size_t index, int n)
755 {
756 
757 	return copyout(events, eventlist + index, n * sizeof(*events));
758 }
759 
760 static const struct kevent_ops kevent_native_ops = {
761 	.keo_private = NULL,
762 	.keo_fetch_timeout = copyin,
763 	.keo_fetch_changes = kevent_fetch_changes,
764 	.keo_put_events = kevent_put_events,
765 };
766 
767 int
768 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
769     register_t *retval)
770 {
771 	/* {
772 		syscallarg(int) fd;
773 		syscallarg(const struct kevent *) changelist;
774 		syscallarg(size_t) nchanges;
775 		syscallarg(struct kevent *) eventlist;
776 		syscallarg(size_t) nevents;
777 		syscallarg(const struct timespec *) timeout;
778 	} */
779 
780 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
781 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
782 	    SCARG(uap, timeout), &kevent_native_ops);
783 }
784 
785 int
786 kevent1(register_t *retval, int fd,
787 	const struct kevent *changelist, size_t nchanges,
788 	struct kevent *eventlist, size_t nevents,
789 	const struct timespec *timeout,
790 	const struct kevent_ops *keops)
791 {
792 	struct kevent *kevp;
793 	struct kqueue *kq;
794 	struct timespec	ts;
795 	size_t i, n, ichange;
796 	int nerrors, error;
797 	struct kevent kevbuf[8];	/* approx 300 bytes on 64-bit */
798 	file_t *fp;
799 
800 	/* check that we're dealing with a kq */
801 	fp = fd_getfile(fd);
802 	if (fp == NULL)
803 		return (EBADF);
804 
805 	if (fp->f_type != DTYPE_KQUEUE) {
806 		fd_putfile(fd);
807 		return (EBADF);
808 	}
809 
810 	if (timeout != NULL) {
811 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
812 		if (error)
813 			goto done;
814 		timeout = &ts;
815 	}
816 
817 	kq = (struct kqueue *)fp->f_data;
818 	nerrors = 0;
819 	ichange = 0;
820 
821 	/* traverse list of events to register */
822 	while (nchanges > 0) {
823 		n = MIN(nchanges, __arraycount(kevbuf));
824 		error = (*keops->keo_fetch_changes)(keops->keo_private,
825 		    changelist, kevbuf, ichange, n);
826 		if (error)
827 			goto done;
828 		for (i = 0; i < n; i++) {
829 			kevp = &kevbuf[i];
830 			kevp->flags &= ~EV_SYSFLAGS;
831 			/* register each knote */
832 			error = kqueue_register(kq, kevp);
833 			if (error) {
834 				if (nevents != 0) {
835 					kevp->flags = EV_ERROR;
836 					kevp->data = error;
837 					error = (*keops->keo_put_events)
838 					    (keops->keo_private, kevp,
839 					    eventlist, nerrors, 1);
840 					if (error)
841 						goto done;
842 					nevents--;
843 					nerrors++;
844 				} else {
845 					goto done;
846 				}
847 			}
848 		}
849 		nchanges -= n;	/* update the results */
850 		ichange += n;
851 	}
852 	if (nerrors) {
853 		*retval = nerrors;
854 		error = 0;
855 		goto done;
856 	}
857 
858 	/* actually scan through the events */
859 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
860 	    kevbuf, __arraycount(kevbuf));
861  done:
862 	fd_putfile(fd);
863 	return (error);
864 }
865 
866 /*
867  * Register a given kevent kev onto the kqueue
868  */
869 static int
870 kqueue_register(struct kqueue *kq, struct kevent *kev)
871 {
872 	struct kfilter *kfilter;
873 	filedesc_t *fdp;
874 	file_t *fp;
875 	fdfile_t *ff;
876 	struct knote *kn, *newkn;
877 	struct klist *list;
878 	int error, fd, rv;
879 
880 	fdp = kq->kq_fdp;
881 	fp = NULL;
882 	kn = NULL;
883 	error = 0;
884 	fd = 0;
885 
886 	newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
887 
888 	rw_enter(&kqueue_filter_lock, RW_READER);
889 	kfilter = kfilter_byfilter(kev->filter);
890 	if (kfilter == NULL || kfilter->filtops == NULL) {
891 		/* filter not found nor implemented */
892 		rw_exit(&kqueue_filter_lock);
893 		kmem_free(newkn, sizeof(*newkn));
894 		return (EINVAL);
895 	}
896 
897  	mutex_enter(&fdp->fd_lock);
898 
899 	/* search if knote already exists */
900 	if (kfilter->filtops->f_isfd) {
901 		/* monitoring a file descriptor */
902 		fd = kev->ident;
903 		if ((fp = fd_getfile(fd)) == NULL) {
904 		 	mutex_exit(&fdp->fd_lock);
905 			rw_exit(&kqueue_filter_lock);
906 			kmem_free(newkn, sizeof(*newkn));
907 			return EBADF;
908 		}
909 		ff = fdp->fd_dt->dt_ff[fd];
910 		if (fd <= fdp->fd_lastkqfile) {
911 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
912 				if (kq == kn->kn_kq &&
913 				    kev->filter == kn->kn_filter)
914 					break;
915 			}
916 		}
917 	} else {
918 		/*
919 		 * not monitoring a file descriptor, so
920 		 * lookup knotes in internal hash table
921 		 */
922 		if (fdp->fd_knhashmask != 0) {
923 			list = &fdp->fd_knhash[
924 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
925 			SLIST_FOREACH(kn, list, kn_link) {
926 				if (kev->ident == kn->kn_id &&
927 				    kq == kn->kn_kq &&
928 				    kev->filter == kn->kn_filter)
929 					break;
930 			}
931 		}
932 	}
933 
934 	/*
935 	 * kn now contains the matching knote, or NULL if no match
936 	 */
937 	if (kev->flags & EV_ADD) {
938 		if (kn == NULL) {
939 			/* create new knote */
940 			kn = newkn;
941 			newkn = NULL;
942 			kn->kn_obj = fp;
943 			kn->kn_kq = kq;
944 			kn->kn_fop = kfilter->filtops;
945 			kn->kn_kfilter = kfilter;
946 			kn->kn_sfflags = kev->fflags;
947 			kn->kn_sdata = kev->data;
948 			kev->fflags = 0;
949 			kev->data = 0;
950 			kn->kn_kevent = *kev;
951 
952 			/*
953 			 * apply reference count to knote structure, and
954 			 * do not release it at the end of this routine.
955 			 */
956 			fp = NULL;
957 
958 			if (!kn->kn_fop->f_isfd) {
959 				/*
960 				 * If knote is not on an fd, store on
961 				 * internal hash table.
962 				 */
963 				if (fdp->fd_knhashmask == 0) {
964 					/* XXXAD can block with fd_lock held */
965 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
966 					    HASH_LIST, true,
967 					    &fdp->fd_knhashmask);
968 				}
969 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
970 				    fdp->fd_knhashmask)];
971 			} else {
972 				/* Otherwise, knote is on an fd. */
973 				list = (struct klist *)
974 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
975 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
976 					fdp->fd_lastkqfile = kn->kn_id;
977 			}
978 			SLIST_INSERT_HEAD(list, kn, kn_link);
979 
980 			KERNEL_LOCK(1, NULL);		/* XXXSMP */
981 			error = (*kfilter->filtops->f_attach)(kn);
982 			KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
983 			if (error != 0) {
984 				/* knote_detach() drops fdp->fd_lock */
985 				knote_detach(kn, fdp, false);
986 				goto done;
987 			}
988 			atomic_inc_uint(&kfilter->refcnt);
989 		} else {
990 			/*
991 			 * The user may change some filter values after the
992 			 * initial EV_ADD, but doing so will not reset any
993 			 * filter which have already been triggered.
994 			 */
995 			kn->kn_sfflags = kev->fflags;
996 			kn->kn_sdata = kev->data;
997 			kn->kn_kevent.udata = kev->udata;
998 		}
999 		KERNEL_LOCK(1, NULL);			/* XXXSMP */
1000 		rv = (*kn->kn_fop->f_event)(kn, 0);
1001 		KERNEL_UNLOCK_ONE(NULL);		/* XXXSMP */
1002 		if (rv)
1003 			knote_activate(kn);
1004 	} else {
1005 		if (kn == NULL) {
1006 			error = ENOENT;
1007 		 	mutex_exit(&fdp->fd_lock);
1008 			goto done;
1009 		}
1010 		if (kev->flags & EV_DELETE) {
1011 			/* knote_detach() drops fdp->fd_lock */
1012 			knote_detach(kn, fdp, true);
1013 			goto done;
1014 		}
1015 	}
1016 
1017 	/* disable knote */
1018 	if ((kev->flags & EV_DISABLE)) {
1019 		mutex_spin_enter(&kq->kq_lock);
1020 		if ((kn->kn_status & KN_DISABLED) == 0)
1021 			kn->kn_status |= KN_DISABLED;
1022 		mutex_spin_exit(&kq->kq_lock);
1023 	}
1024 
1025 	/* enable knote */
1026 	if ((kev->flags & EV_ENABLE)) {
1027 		knote_enqueue(kn);
1028 	}
1029 	mutex_exit(&fdp->fd_lock);
1030  done:
1031 	rw_exit(&kqueue_filter_lock);
1032 	if (newkn != NULL)
1033 		kmem_free(newkn, sizeof(*newkn));
1034 	if (fp != NULL)
1035 		fd_putfile(fd);
1036 	return (error);
1037 }
1038 
1039 #if defined(DEBUG)
1040 static void
1041 kq_check(struct kqueue *kq)
1042 {
1043 	const struct knote *kn;
1044 	int count;
1045 	int nmarker;
1046 
1047 	KASSERT(mutex_owned(&kq->kq_lock));
1048 	KASSERT(kq->kq_count >= 0);
1049 
1050 	count = 0;
1051 	nmarker = 0;
1052 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1053 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1054 			panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1055 		}
1056 		if ((kn->kn_status & KN_MARKER) == 0) {
1057 			if (kn->kn_kq != kq) {
1058 				panic("%s: kq=%p kn=%p inconsist 2",
1059 				    __func__, kq, kn);
1060 			}
1061 			if ((kn->kn_status & KN_ACTIVE) == 0) {
1062 				panic("%s: kq=%p kn=%p: not active",
1063 				    __func__, kq, kn);
1064 			}
1065 			count++;
1066 			if (count > kq->kq_count) {
1067 				goto bad;
1068 			}
1069 		} else {
1070 			nmarker++;
1071 #if 0
1072 			if (nmarker > 10000) {
1073 				panic("%s: kq=%p too many markers: %d != %d, "
1074 				    "nmarker=%d",
1075 				    __func__, kq, kq->kq_count, count, nmarker);
1076 			}
1077 #endif
1078 		}
1079 	}
1080 	if (kq->kq_count != count) {
1081 bad:
1082 		panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1083 		    __func__, kq, kq->kq_count, count, nmarker);
1084 	}
1085 }
1086 #else /* defined(DEBUG) */
1087 #define	kq_check(a)	/* nothing */
1088 #endif /* defined(DEBUG) */
1089 
1090 /*
1091  * Scan through the list of events on fp (for a maximum of maxevents),
1092  * returning the results in to ulistp. Timeout is determined by tsp; if
1093  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1094  * as appropriate.
1095  */
1096 static int
1097 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1098 	    const struct timespec *tsp, register_t *retval,
1099 	    const struct kevent_ops *keops, struct kevent *kevbuf,
1100 	    size_t kevcnt)
1101 {
1102 	struct kqueue	*kq;
1103 	struct kevent	*kevp;
1104 	struct timespec	ats, sleepts;
1105 	struct knote	*kn, *marker;
1106 	size_t		count, nkev, nevents;
1107 	int		timeout, error, rv;
1108 	filedesc_t	*fdp;
1109 
1110 	fdp = curlwp->l_fd;
1111 	kq = fp->f_data;
1112 	count = maxevents;
1113 	nkev = nevents = error = 0;
1114 	if (count == 0) {
1115 		*retval = 0;
1116 		return 0;
1117 	}
1118 
1119 	if (tsp) {				/* timeout supplied */
1120 		ats = *tsp;
1121 		if (inittimeleft(&ats, &sleepts) == -1) {
1122 			*retval = maxevents;
1123 			return EINVAL;
1124 		}
1125 		timeout = tstohz(&ats);
1126 		if (timeout <= 0)
1127 			timeout = -1;           /* do poll */
1128 	} else {
1129 		/* no timeout, wait forever */
1130 		timeout = 0;
1131 	}
1132 
1133 	marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1134 	marker->kn_status = KN_MARKER;
1135 	mutex_spin_enter(&kq->kq_lock);
1136  retry:
1137 	kevp = kevbuf;
1138 	if (kq->kq_count == 0) {
1139 		if (timeout >= 0) {
1140 			error = cv_timedwait_sig(&kq->kq_cv,
1141 			    &kq->kq_lock, timeout);
1142 			if (error == 0) {
1143 				 if (tsp == NULL || (timeout =
1144 				     gettimeleft(&ats, &sleepts)) > 0)
1145 					goto retry;
1146 			} else {
1147 				/* don't restart after signals... */
1148 				if (error == ERESTART)
1149 					error = EINTR;
1150 				if (error == EWOULDBLOCK)
1151 					error = 0;
1152 			}
1153 		}
1154 	} else {
1155 		/* mark end of knote list */
1156 		TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1157 
1158 		while (count != 0) {
1159 			kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
1160 			while ((kn->kn_status & KN_MARKER) != 0) {
1161 				if (kn == marker) {
1162 					/* it's our marker, stop */
1163 					TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1164 					if (count < maxevents || (tsp != NULL &&
1165 					    (timeout = gettimeleft(&ats,
1166 					    &sleepts)) <= 0))
1167 						goto done;
1168 					goto retry;
1169 				}
1170 				/* someone else's marker. */
1171 				kn = TAILQ_NEXT(kn, kn_tqe);
1172 			}
1173 			kq_check(kq);
1174 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1175 			kq->kq_count--;
1176 			kn->kn_status &= ~KN_QUEUED;
1177 			kq_check(kq);
1178 			if (kn->kn_status & KN_DISABLED) {
1179 				/* don't want disabled events */
1180 				continue;
1181 			}
1182 			if ((kn->kn_flags & EV_ONESHOT) == 0) {
1183 				mutex_spin_exit(&kq->kq_lock);
1184 				KERNEL_LOCK(1, NULL);		/* XXXSMP */
1185 				rv = (*kn->kn_fop->f_event)(kn, 0);
1186 				KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1187 				mutex_spin_enter(&kq->kq_lock);
1188 				/* Re-poll if note was re-enqueued. */
1189 				if ((kn->kn_status & KN_QUEUED) != 0)
1190 					continue;
1191 				if (rv == 0) {
1192 					/*
1193 					 * non-ONESHOT event that hasn't
1194 					 * triggered again, so de-queue.
1195 					 */
1196 					kn->kn_status &= ~KN_ACTIVE;
1197 					continue;
1198 				}
1199 			}
1200 			/* XXXAD should be got from f_event if !oneshot. */
1201 			*kevp++ = kn->kn_kevent;
1202 			nkev++;
1203 			if (kn->kn_flags & EV_ONESHOT) {
1204 				/* delete ONESHOT events after retrieval */
1205 				mutex_spin_exit(&kq->kq_lock);
1206 				mutex_enter(&fdp->fd_lock);
1207 				knote_detach(kn, fdp, true);
1208 				mutex_spin_enter(&kq->kq_lock);
1209 			} else if (kn->kn_flags & EV_CLEAR) {
1210 				/* clear state after retrieval */
1211 				kn->kn_data = 0;
1212 				kn->kn_fflags = 0;
1213 				kn->kn_status &= ~KN_ACTIVE;
1214 			} else {
1215 				/* add event back on list */
1216 				kq_check(kq);
1217 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1218 				kq->kq_count++;
1219 				kn->kn_status |= KN_QUEUED;
1220 				kq_check(kq);
1221 			}
1222 			if (nkev == kevcnt) {
1223 				/* do copyouts in kevcnt chunks */
1224 				mutex_spin_exit(&kq->kq_lock);
1225 				error = (*keops->keo_put_events)
1226 				    (keops->keo_private,
1227 				    kevbuf, ulistp, nevents, nkev);
1228 				mutex_spin_enter(&kq->kq_lock);
1229 				nevents += nkev;
1230 				nkev = 0;
1231 				kevp = kevbuf;
1232 			}
1233 			count--;
1234 			if (error != 0 || count == 0) {
1235 				/* remove marker */
1236 				TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1237 				break;
1238 			}
1239 		}
1240 	}
1241  done:
1242  	mutex_spin_exit(&kq->kq_lock);
1243 	if (marker != NULL)
1244 		kmem_free(marker, sizeof(*marker));
1245 	if (nkev != 0) {
1246 		/* copyout remaining events */
1247 		error = (*keops->keo_put_events)(keops->keo_private,
1248 		    kevbuf, ulistp, nevents, nkev);
1249 	}
1250 	*retval = maxevents - count;
1251 
1252 	return error;
1253 }
1254 
1255 /*
1256  * fileops ioctl method for a kqueue descriptor.
1257  *
1258  * Two ioctls are currently supported. They both use struct kfilter_mapping:
1259  *	KFILTER_BYNAME		find name for filter, and return result in
1260  *				name, which is of size len.
1261  *	KFILTER_BYFILTER	find filter for name. len is ignored.
1262  */
1263 /*ARGSUSED*/
1264 static int
1265 kqueue_ioctl(file_t *fp, u_long com, void *data)
1266 {
1267 	struct kfilter_mapping	*km;
1268 	const struct kfilter	*kfilter;
1269 	char			*name;
1270 	int			error;
1271 
1272 	km = data;
1273 	error = 0;
1274 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1275 
1276 	switch (com) {
1277 	case KFILTER_BYFILTER:	/* convert filter -> name */
1278 		rw_enter(&kqueue_filter_lock, RW_READER);
1279 		kfilter = kfilter_byfilter(km->filter);
1280 		if (kfilter != NULL) {
1281 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1282 			rw_exit(&kqueue_filter_lock);
1283 			error = copyoutstr(name, km->name, km->len, NULL);
1284 		} else {
1285 			rw_exit(&kqueue_filter_lock);
1286 			error = ENOENT;
1287 		}
1288 		break;
1289 
1290 	case KFILTER_BYNAME:	/* convert name -> filter */
1291 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1292 		if (error) {
1293 			break;
1294 		}
1295 		rw_enter(&kqueue_filter_lock, RW_READER);
1296 		kfilter = kfilter_byname(name);
1297 		if (kfilter != NULL)
1298 			km->filter = kfilter->filter;
1299 		else
1300 			error = ENOENT;
1301 		rw_exit(&kqueue_filter_lock);
1302 		break;
1303 
1304 	default:
1305 		error = ENOTTY;
1306 		break;
1307 
1308 	}
1309 	kmem_free(name, KFILTER_MAXNAME);
1310 	return (error);
1311 }
1312 
1313 /*
1314  * fileops fcntl method for a kqueue descriptor.
1315  */
1316 static int
1317 kqueue_fcntl(file_t *fp, u_int com, void *data)
1318 {
1319 
1320 	return (ENOTTY);
1321 }
1322 
1323 /*
1324  * fileops poll method for a kqueue descriptor.
1325  * Determine if kqueue has events pending.
1326  */
1327 static int
1328 kqueue_poll(file_t *fp, int events)
1329 {
1330 	struct kqueue	*kq;
1331 	int		revents;
1332 
1333 	kq = fp->f_data;
1334 
1335 	revents = 0;
1336 	if (events & (POLLIN | POLLRDNORM)) {
1337 		mutex_spin_enter(&kq->kq_lock);
1338 		if (kq->kq_count != 0) {
1339 			revents |= events & (POLLIN | POLLRDNORM);
1340 		} else {
1341 			selrecord(curlwp, &kq->kq_sel);
1342 		}
1343 		kq_check(kq);
1344 		mutex_spin_exit(&kq->kq_lock);
1345 	}
1346 
1347 	return revents;
1348 }
1349 
1350 /*
1351  * fileops stat method for a kqueue descriptor.
1352  * Returns dummy info, with st_size being number of events pending.
1353  */
1354 static int
1355 kqueue_stat(file_t *fp, struct stat *st)
1356 {
1357 	struct kqueue *kq;
1358 
1359 	kq = fp->f_data;
1360 
1361 	memset(st, 0, sizeof(*st));
1362 	st->st_size = kq->kq_count;
1363 	st->st_blksize = sizeof(struct kevent);
1364 	st->st_mode = S_IFIFO;
1365 
1366 	return 0;
1367 }
1368 
1369 static void
1370 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1371 {
1372 	struct knote *kn;
1373 	filedesc_t *fdp;
1374 
1375 	fdp = kq->kq_fdp;
1376 
1377 	KASSERT(mutex_owned(&fdp->fd_lock));
1378 
1379 	for (kn = SLIST_FIRST(list); kn != NULL;) {
1380 		if (kq != kn->kn_kq) {
1381 			kn = SLIST_NEXT(kn, kn_link);
1382 			continue;
1383 		}
1384 		knote_detach(kn, fdp, true);
1385 		mutex_enter(&fdp->fd_lock);
1386 		kn = SLIST_FIRST(list);
1387 	}
1388 }
1389 
1390 
1391 /*
1392  * fileops close method for a kqueue descriptor.
1393  */
1394 static int
1395 kqueue_close(file_t *fp)
1396 {
1397 	struct kqueue *kq;
1398 	filedesc_t *fdp;
1399 	fdfile_t *ff;
1400 	int i;
1401 
1402 	kq = fp->f_data;
1403 	fdp = curlwp->l_fd;
1404 
1405 	mutex_enter(&fdp->fd_lock);
1406 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1407 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1408 			continue;
1409 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1410 	}
1411 	if (fdp->fd_knhashmask != 0) {
1412 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1413 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1414 		}
1415 	}
1416 	mutex_exit(&fdp->fd_lock);
1417 
1418 	KASSERT(kq->kq_count == 0);
1419 	mutex_destroy(&kq->kq_lock);
1420 	cv_destroy(&kq->kq_cv);
1421 	seldestroy(&kq->kq_sel);
1422 	kmem_free(kq, sizeof(*kq));
1423 	fp->f_data = NULL;
1424 
1425 	return (0);
1426 }
1427 
1428 /*
1429  * struct fileops kqfilter method for a kqueue descriptor.
1430  * Event triggered when monitored kqueue changes.
1431  */
1432 static int
1433 kqueue_kqfilter(file_t *fp, struct knote *kn)
1434 {
1435 	struct kqueue *kq;
1436 	filedesc_t *fdp;
1437 
1438 	kq = ((file_t *)kn->kn_obj)->f_data;
1439 
1440 	KASSERT(fp == kn->kn_obj);
1441 
1442 	if (kn->kn_filter != EVFILT_READ)
1443 		return 1;
1444 
1445 	kn->kn_fop = &kqread_filtops;
1446 	fdp = curlwp->l_fd;
1447 	mutex_enter(&kq->kq_lock);
1448 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1449 	mutex_exit(&kq->kq_lock);
1450 
1451 	return 0;
1452 }
1453 
1454 
1455 /*
1456  * Walk down a list of knotes, activating them if their event has
1457  * triggered.  The caller's object lock (e.g. device driver lock)
1458  * must be held.
1459  */
1460 void
1461 knote(struct klist *list, long hint)
1462 {
1463 	struct knote *kn, *tmpkn;
1464 
1465 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1466 		if ((*kn->kn_fop->f_event)(kn, hint))
1467 			knote_activate(kn);
1468 	}
1469 }
1470 
1471 /*
1472  * Remove all knotes referencing a specified fd
1473  */
1474 void
1475 knote_fdclose(int fd)
1476 {
1477 	struct klist *list;
1478 	struct knote *kn;
1479 	filedesc_t *fdp;
1480 
1481 	fdp = curlwp->l_fd;
1482 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1483 	mutex_enter(&fdp->fd_lock);
1484 	while ((kn = SLIST_FIRST(list)) != NULL) {
1485 		knote_detach(kn, fdp, true);
1486 		mutex_enter(&fdp->fd_lock);
1487 	}
1488 	mutex_exit(&fdp->fd_lock);
1489 }
1490 
1491 /*
1492  * Drop knote.  Called with fdp->fd_lock held, and will drop before
1493  * returning.
1494  */
1495 static void
1496 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1497 {
1498 	struct klist *list;
1499 	struct kqueue *kq;
1500 
1501 	kq = kn->kn_kq;
1502 
1503 	KASSERT((kn->kn_status & KN_MARKER) == 0);
1504 	KASSERT(mutex_owned(&fdp->fd_lock));
1505 
1506 	/* Remove from monitored object. */
1507 	if (dofop) {
1508 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
1509 		(*kn->kn_fop->f_detach)(kn);
1510 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1511 	}
1512 
1513 	/* Remove from descriptor table. */
1514 	if (kn->kn_fop->f_isfd)
1515 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1516 	else
1517 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1518 
1519 	SLIST_REMOVE(list, kn, knote, kn_link);
1520 
1521 	/* Remove from kqueue. */
1522 	/* XXXAD should verify not in use by kqueue_scan. */
1523 	mutex_spin_enter(&kq->kq_lock);
1524 	if ((kn->kn_status & KN_QUEUED) != 0) {
1525 		kq_check(kq);
1526 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1527 		kn->kn_status &= ~KN_QUEUED;
1528 		kq->kq_count--;
1529 		kq_check(kq);
1530 	}
1531 	mutex_spin_exit(&kq->kq_lock);
1532 
1533 	mutex_exit(&fdp->fd_lock);
1534 	if (kn->kn_fop->f_isfd)
1535 		fd_putfile(kn->kn_id);
1536 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
1537 	kmem_free(kn, sizeof(*kn));
1538 }
1539 
1540 /*
1541  * Queue new event for knote.
1542  */
1543 static void
1544 knote_enqueue(struct knote *kn)
1545 {
1546 	struct kqueue *kq;
1547 
1548 	KASSERT((kn->kn_status & KN_MARKER) == 0);
1549 
1550 	kq = kn->kn_kq;
1551 
1552 	mutex_spin_enter(&kq->kq_lock);
1553 	if ((kn->kn_status & KN_DISABLED) != 0) {
1554 		kn->kn_status &= ~KN_DISABLED;
1555 	}
1556 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1557 		kq_check(kq);
1558 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1559 		kn->kn_status |= KN_QUEUED;
1560 		kq->kq_count++;
1561 		kq_check(kq);
1562 		cv_broadcast(&kq->kq_cv);
1563 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1564 	}
1565 	mutex_spin_exit(&kq->kq_lock);
1566 }
1567 /*
1568  * Queue new event for knote.
1569  */
1570 static void
1571 knote_activate(struct knote *kn)
1572 {
1573 	struct kqueue *kq;
1574 
1575 	KASSERT((kn->kn_status & KN_MARKER) == 0);
1576 
1577 	kq = kn->kn_kq;
1578 
1579 	mutex_spin_enter(&kq->kq_lock);
1580 	kn->kn_status |= KN_ACTIVE;
1581 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1582 		kq_check(kq);
1583 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1584 		kn->kn_status |= KN_QUEUED;
1585 		kq->kq_count++;
1586 		kq_check(kq);
1587 		cv_broadcast(&kq->kq_cv);
1588 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1589 	}
1590 	mutex_spin_exit(&kq->kq_lock);
1591 }
1592