xref: /netbsd/sys/kern/kern_event.c (revision c4a72b64)
1 /*	$NetBSD: kern_event.c,v 1.5 2002/11/26 18:44:34 christos Exp $	*/
2 /*-
3  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/fcntl.h>
38 #include <sys/select.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/poll.h>
43 #include <sys/pool.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/stat.h>
48 #include <sys/uio.h>
49 #include <sys/mount.h>
50 #include <sys/filedesc.h>
51 #include <sys/syscallargs.h>
52 
53 static int	kqueue_scan(struct file *fp, size_t maxevents,
54 		    struct kevent *ulistp, const struct timespec *timeout,
55 		    struct proc *p, register_t *retval);
56 static void	kqueue_wakeup(struct kqueue *kq);
57 
58 static int	kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
59 		    struct ucred *cred, int flags);
60 static int	kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
61 		    struct ucred *cred, int flags);
62 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
63 		    struct proc *p);
64 static int	kqueue_fcntl(struct file *fp, u_int com, caddr_t data,
65 		    struct proc *p);
66 static int	kqueue_poll(struct file *fp, int events, struct proc *p);
67 static int	kqueue_kqfilter(struct file *fp, struct knote *kn);
68 static int	kqueue_stat(struct file *fp, struct stat *sp, struct proc *p);
69 static int	kqueue_close(struct file *fp, struct proc *p);
70 
71 static struct fileops kqueueops = {
72 	kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
73 	kqueue_stat, kqueue_close, kqueue_kqfilter
74 };
75 
76 static void	knote_attach(struct knote *kn, struct filedesc *fdp);
77 static void	knote_drop(struct knote *kn, struct proc *p,
78 		    struct filedesc *fdp);
79 static void	knote_enqueue(struct knote *kn);
80 static void	knote_dequeue(struct knote *kn);
81 
82 static void	filt_kqdetach(struct knote *kn);
83 static int	filt_kqueue(struct knote *kn, long hint);
84 static int	filt_procattach(struct knote *kn);
85 static void	filt_procdetach(struct knote *kn);
86 static int	filt_proc(struct knote *kn, long hint);
87 static int	filt_fileattach(struct knote *kn);
88 
89 static const struct filterops kqread_filtops =
90 	{ 1, NULL, filt_kqdetach, filt_kqueue };
91 static const struct filterops proc_filtops =
92 	{ 0, filt_procattach, filt_procdetach, filt_proc };
93 static const struct filterops file_filtops =
94 	{ 1, filt_fileattach, NULL, NULL };
95 
96 struct pool	kqueue_pool;
97 struct pool	knote_pool;
98 
99 #define	KNOTE_ACTIVATE(kn)						\
100 do {									\
101 	kn->kn_status |= KN_ACTIVE;					\
102 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
103 		knote_enqueue(kn);					\
104 } while(0)
105 
106 #define	KN_HASHSIZE		64		/* XXX should be tunable */
107 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
108 
109 extern const struct filterops sig_filtops;
110 
111 /*
112  * Table for for all system-defined filters.
113  * These should be listed in the numeric order of the EVFILT_* defines.
114  * If filtops is NULL, the filter isn't implemented in NetBSD.
115  * End of list is when name is NULL.
116  */
117 struct kfilter {
118 	const char	 *name;		/* name of filter */
119 	uint32_t	  filter;	/* id of filter */
120 	const struct filterops *filtops;/* operations for filter */
121 };
122 
123 		/* System defined filters */
124 static const struct kfilter sys_kfilters[] = {
125 	{ "EVFILT_READ",	EVFILT_READ,	&file_filtops },
126 	{ "EVFILT_WRITE",	EVFILT_WRITE,	&file_filtops },
127 	{ "EVFILT_AIO",		EVFILT_AIO,	NULL },
128 	{ "EVFILT_VNODE",	EVFILT_VNODE,	&file_filtops },
129 	{ "EVFILT_PROC",	EVFILT_PROC,	&proc_filtops },
130 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	&sig_filtops },
131 	{ NULL,			0,		NULL },	/* end of list */
132 };
133 
134 		/* User defined kfilters */
135 static struct kfilter	*user_kfilters;		/* array */
136 static int		user_kfilterc;		/* current offset */
137 static int		user_kfiltermaxc;	/* max size so far */
138 
139 /*
140  * kqueue_init:
141  *
142  *	Initialize the kqueue/knote facility.
143  */
144 void
145 kqueue_init(void)
146 {
147 
148 	pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
149 	    NULL);
150 	pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
151 	    NULL);
152 }
153 
154 /*
155  * Find kfilter entry by name, or NULL if not found.
156  */
157 static const struct kfilter *
158 kfilter_byname_sys(const char *name)
159 {
160 	int i;
161 
162 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
163 		if (strcmp(name, sys_kfilters[i].name) == 0)
164 			return (&sys_kfilters[i]);
165 	}
166 	return (NULL);
167 }
168 
169 static struct kfilter *
170 kfilter_byname_user(const char *name)
171 {
172 	int i;
173 
174 	/* user_kfilters[] could be NULL if no filters were registered */
175 	if (!user_kfilters)
176 		return (NULL);
177 
178 	for (i = 0; user_kfilters[i].name != NULL; i++) {
179 		if (user_kfilters[i].name != '\0' &&
180 		    strcmp(name, user_kfilters[i].name) == 0)
181 			return (&user_kfilters[i]);
182 	}
183 	return (NULL);
184 }
185 
186 static const struct kfilter *
187 kfilter_byname(const char *name)
188 {
189 	const struct kfilter *kfilter;
190 
191 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
192 		return (kfilter);
193 
194 	return (kfilter_byname_user(name));
195 }
196 
197 /*
198  * Find kfilter entry by filter id, or NULL if not found.
199  * Assumes entries are indexed in filter id order, for speed.
200  */
201 static const struct kfilter *
202 kfilter_byfilter(uint32_t filter)
203 {
204 	const struct kfilter *kfilter;
205 
206 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
207 		kfilter = &sys_kfilters[filter];
208 	else if (user_kfilters != NULL &&
209 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
210 					/* it's a user filter */
211 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
212 	else
213 		return (NULL);		/* out of range */
214 	KASSERT(kfilter->filter == filter);	/* sanity check! */
215 	return (kfilter);
216 }
217 
218 /*
219  * Register a new kfilter. Stores the entry in user_kfilters.
220  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
221  * If retfilter != NULL, the new filterid is returned in it.
222  */
223 int
224 kfilter_register(const char *name, const struct filterops *filtops,
225     int *retfilter)
226 {
227 	struct kfilter *kfilter;
228 	void *space;
229 	int len;
230 
231 	if (name == NULL || name[0] == '\0' || filtops == NULL)
232 		return (EINVAL);	/* invalid args */
233 	if (kfilter_byname(name) != NULL)
234 		return (EEXIST);	/* already exists */
235 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
236 		return (EINVAL);	/* too many */
237 
238 	/* check if need to grow user_kfilters */
239 	if (user_kfilterc + 1 > user_kfiltermaxc) {
240 		/*
241 		 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
242 		 * want to traverse user_kfilters as an array.
243 		 */
244 		user_kfiltermaxc += KFILTER_EXTENT;
245 		kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
246 		    M_KEVENT, M_WAITOK);
247 
248 		/* copy existing user_kfilters */
249 		if (user_kfilters != NULL)
250 			memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
251 			    user_kfilterc * sizeof(struct kfilter *));
252 					/* zero new sections */
253 		memset((caddr_t)kfilter +
254 		    user_kfilterc * sizeof(struct kfilter *), 0,
255 		    (user_kfiltermaxc - user_kfilterc) *
256 		    sizeof(struct kfilter *));
257 					/* switch to new kfilter */
258 		if (user_kfilters != NULL)
259 			free(user_kfilters, M_KEVENT);
260 		user_kfilters = kfilter;
261 	}
262 	len = strlen(name) + 1;		/* copy name */
263 	space = malloc(len, M_KEVENT, M_WAITOK);
264 	memcpy(space, name, len);
265 	user_kfilters[user_kfilterc].name = space;
266 
267 	user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
268 
269 	len = sizeof(struct filterops);	/* copy filtops */
270 	space = malloc(len, M_KEVENT, M_WAITOK);
271 	memcpy(space, filtops, len);
272 	user_kfilters[user_kfilterc].filtops = space;
273 
274 	if (retfilter != NULL)
275 		*retfilter = user_kfilters[user_kfilterc].filter;
276 	user_kfilterc++;		/* finally, increment count */
277 	return (0);
278 }
279 
280 /*
281  * Unregister a kfilter previously registered with kfilter_register.
282  * This retains the filter id, but clears the name and frees filtops (filter
283  * operations), so that the number isn't reused during a boot.
284  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
285  */
286 int
287 kfilter_unregister(const char *name)
288 {
289 	struct kfilter *kfilter;
290 
291 	if (name == NULL || name[0] == '\0')
292 		return (EINVAL);	/* invalid name */
293 
294 	if (kfilter_byname_sys(name) != NULL)
295 		return (EINVAL);	/* can't detach system filters */
296 
297 	kfilter = kfilter_byname_user(name);
298 	if (kfilter == NULL)		/* not found */
299 		return (ENOENT);
300 
301 	if (kfilter->name[0] != '\0') {
302 		/* XXX Cast away const (but we know it's safe. */
303 		free((void *) kfilter->name, M_KEVENT);
304 		kfilter->name = "";	/* mark as `not implemented' */
305 	}
306 	if (kfilter->filtops != NULL) {
307 		/* XXX Cast away const (but we know it's safe. */
308 		free((void *) kfilter->filtops, M_KEVENT);
309 		kfilter->filtops = NULL; /* mark as `not implemented' */
310 	}
311 	return (0);
312 }
313 
314 
315 /*
316  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
317  * descriptors. Calls struct fileops kqfilter method for given file descriptor.
318  */
319 static int
320 filt_fileattach(struct knote *kn)
321 {
322 	struct file *fp;
323 
324 	fp = kn->kn_fp;
325 	return ((*fp->f_ops->fo_kqfilter)(fp, kn));
326 }
327 
328 /*
329  * Filter detach method for EVFILT_READ on kqueue descriptor.
330  */
331 static void
332 filt_kqdetach(struct knote *kn)
333 {
334 	struct kqueue *kq;
335 
336 	kq = (struct kqueue *)kn->kn_fp->f_data;
337 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
338 }
339 
340 /*
341  * Filter event method for EVFILT_READ on kqueue descriptor.
342  */
343 /*ARGSUSED*/
344 static int
345 filt_kqueue(struct knote *kn, long hint)
346 {
347 	struct kqueue *kq;
348 
349 	kq = (struct kqueue *)kn->kn_fp->f_data;
350 	kn->kn_data = kq->kq_count;
351 	return (kn->kn_data > 0);
352 }
353 
354 /*
355  * Filter attach method for EVFILT_PROC.
356  */
357 static int
358 filt_procattach(struct knote *kn)
359 {
360 	struct proc *p;
361 
362 	p = pfind(kn->kn_id);
363 	if (p == NULL)
364 		return (ESRCH);
365 
366 	/*
367 	 * Fail if it's not owned by you, or the last exec gave us
368 	 * setuid/setgid privs (unless you're root).
369 	 */
370 	if ((p->p_cred->p_ruid != curproc->p_cred->p_ruid ||
371 		(p->p_flag & P_SUGID))
372 	    && suser(curproc->p_ucred, &curproc->p_acflag) != 0)
373 		return (EACCES);
374 
375 	kn->kn_ptr.p_proc = p;
376 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
377 
378 	/*
379 	 * internal flag indicating registration done by kernel
380 	 */
381 	if (kn->kn_flags & EV_FLAG1) {
382 		kn->kn_data = kn->kn_sdata;	/* ppid */
383 		kn->kn_fflags = NOTE_CHILD;
384 		kn->kn_flags &= ~EV_FLAG1;
385 	}
386 
387 	/* XXXSMP lock the process? */
388 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
389 
390 	return (0);
391 }
392 
393 /*
394  * Filter detach method for EVFILT_PROC.
395  *
396  * The knote may be attached to a different process, which may exit,
397  * leaving nothing for the knote to be attached to.  So when the process
398  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
399  * it will be deleted when read out.  However, as part of the knote deletion,
400  * this routine is called, so a check is needed to avoid actually performing
401  * a detach, because the original process might not exist any more.
402  */
403 static void
404 filt_procdetach(struct knote *kn)
405 {
406 	struct proc *p;
407 
408 	if (kn->kn_status & KN_DETACHED)
409 		return;
410 
411 	p = kn->kn_ptr.p_proc;
412 	KASSERT(p->p_stat == SDEAD || pfind(kn->kn_id) == p);
413 
414 	/* XXXSMP lock the process? */
415 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
416 }
417 
418 /*
419  * Filter event method for EVFILT_PROC.
420  */
421 static int
422 filt_proc(struct knote *kn, long hint)
423 {
424 	u_int event;
425 
426 	/*
427 	 * mask off extra data
428 	 */
429 	event = (u_int)hint & NOTE_PCTRLMASK;
430 
431 	/*
432 	 * if the user is interested in this event, record it.
433 	 */
434 	if (kn->kn_sfflags & event)
435 		kn->kn_fflags |= event;
436 
437 	/*
438 	 * process is gone, so flag the event as finished.
439 	 */
440 	if (event == NOTE_EXIT) {
441 		/*
442 		 * Detach the knote from watched process and mark
443 		 * it as such. We can't leave this to kqueue_scan(),
444 		 * since the process might not exist by then. And we
445 		 * have to do this now, since psignal KNOTE() is called
446 		 * also for zombies and we might end up reading freed
447 		 * memory if the kevent would already be picked up
448 		 * and knote g/c'ed.
449 		 */
450 		kn->kn_fop->f_detach(kn);
451 		kn->kn_status |= KN_DETACHED;
452 
453 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
454 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
455 		return (1);
456 	}
457 
458 	/*
459 	 * process forked, and user wants to track the new process,
460 	 * so attach a new knote to it, and immediately report an
461 	 * event with the parent's pid.
462 	 */
463 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
464 		struct kevent kev;
465 		int error;
466 
467 		/*
468 		 * register knote with new process.
469 		 */
470 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
471 		kev.filter = kn->kn_filter;
472 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
473 		kev.fflags = kn->kn_sfflags;
474 		kev.data = kn->kn_id;			/* parent */
475 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
476 		error = kqueue_register(kn->kn_kq, &kev, NULL);
477 		if (error)
478 			kn->kn_fflags |= NOTE_TRACKERR;
479 	}
480 
481 	return (kn->kn_fflags != 0);
482 }
483 
484 /*
485  * filt_seltrue:
486  *
487  *	This filter "event" routine simulates seltrue().
488  */
489 int
490 filt_seltrue(struct knote *kn, long hint)
491 {
492 
493 	/*
494 	 * We don't know how much data can be read/written,
495 	 * but we know that it *can* be.  This is about as
496 	 * good as select/poll does as well.
497 	 */
498 	kn->kn_data = 0;
499 	return (1);
500 }
501 
502 /*
503  * This provides full kqfilter entry for device switch tables, which
504  * has same effect as filter using filt_seltrue() as filter method.
505  */
506 static void
507 filt_seltruedetach(struct knote *kn)
508 {
509 	/* Nothing to do */
510 }
511 
512 static const struct filterops seltrue_filtops =
513 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
514 
515 int
516 seltrue_kqfilter(dev_t dev, struct knote *kn)
517 {
518 	switch (kn->kn_filter) {
519 	case EVFILT_READ:
520 	case EVFILT_WRITE:
521 		kn->kn_fop = &seltrue_filtops;
522 		break;
523 	default:
524 		return (1);
525 	}
526 
527 	/* Nothing more to do */
528 	return (0);
529 }
530 
531 /*
532  * kqueue(2) system call.
533  */
534 int
535 sys_kqueue(struct proc *p, void *v, register_t *retval)
536 {
537 	struct filedesc	*fdp;
538 	struct kqueue	*kq;
539 	struct file	*fp;
540 	int		fd, error;
541 
542 	fdp = p->p_fd;
543 	error = falloc(p, &fp, &fd);	/* setup a new file descriptor */
544 	if (error)
545 		return (error);
546 	fp->f_flag = FREAD | FWRITE;
547 	fp->f_type = DTYPE_KQUEUE;
548 	fp->f_ops = &kqueueops;
549 	kq = pool_get(&kqueue_pool, PR_WAITOK);
550 	memset((char *)kq, 0, sizeof(struct kqueue));
551 	TAILQ_INIT(&kq->kq_head);
552 	fp->f_data = (caddr_t)kq;	/* store the kqueue with the fp */
553 	*retval = fd;
554 	if (fdp->fd_knlistsize < 0)
555 		fdp->fd_knlistsize = 0;	/* this process has a kq */
556 	kq->kq_fdp = fdp;
557 	FILE_SET_MATURE(fp);
558 	FILE_UNUSE(fp, p);		/* falloc() does FILE_USE() */
559 	return (error);
560 }
561 
562 /*
563  * kevent(2) system call.
564  */
565 int
566 sys_kevent(struct proc *p, void *v, register_t *retval)
567 {
568 	struct sys_kevent_args /* {
569 		syscallarg(int) fd;
570 		syscallarg(const struct kevent *) changelist;
571 		syscallarg(size_t) nchanges;
572 		syscallarg(struct kevent *) eventlist;
573 		syscallarg(size_t) nevents;
574 		syscallarg(const struct timespec *) timeout;
575 	} */ *uap = v;
576 	struct kevent	*kevp;
577 	struct kqueue	*kq;
578 	struct file	*fp;
579 	struct timespec	ts;
580 	size_t		i, n;
581 	int		nerrors, error;
582 
583 	/* check that we're dealing with a kq */
584 	fp = fd_getfile(p->p_fd, SCARG(uap, fd));
585 	if (!fp || fp->f_type != DTYPE_KQUEUE)
586 		return (EBADF);
587 
588 	FILE_USE(fp);
589 
590 	if (SCARG(uap, timeout) != NULL) {
591 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
592 		if (error)
593 			goto done;
594 		SCARG(uap, timeout) = &ts;
595 	}
596 
597 	kq = (struct kqueue *)fp->f_data;
598 	nerrors = 0;
599 
600 	/* traverse list of events to register */
601 	while (SCARG(uap, nchanges) > 0) {
602 		/* copyin a maximum of KQ_EVENTS at each pass */
603 		n = MIN(SCARG(uap, nchanges), KQ_NEVENTS);
604 		error = copyin(SCARG(uap, changelist), kq->kq_kev,
605 		    n * sizeof(struct kevent));
606 		if (error)
607 			goto done;
608 		for (i = 0; i < n; i++) {
609 			kevp = &kq->kq_kev[i];
610 			kevp->flags &= ~EV_SYSFLAGS;
611 			/* register each knote */
612 			error = kqueue_register(kq, kevp, p);
613 			if (error) {
614 				if (SCARG(uap, nevents) != 0) {
615 					kevp->flags = EV_ERROR;
616 					kevp->data = error;
617 					error = copyout((caddr_t)kevp,
618 					    (caddr_t)SCARG(uap, eventlist),
619 					    sizeof(*kevp));
620 					if (error)
621 						goto done;
622 					SCARG(uap, eventlist)++;
623 					SCARG(uap, nevents)--;
624 					nerrors++;
625 				} else {
626 					goto done;
627 				}
628 			}
629 		}
630 		SCARG(uap, nchanges) -= n;	/* update the results */
631 		SCARG(uap, changelist) += n;
632 	}
633 	if (nerrors) {
634 		*retval = nerrors;
635 		error = 0;
636 		goto done;
637 	}
638 
639 	/* actually scan through the events */
640 	error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist),
641 	    SCARG(uap, timeout), p, retval);
642  done:
643 	FILE_UNUSE(fp, p);
644 	return (error);
645 }
646 
647 /*
648  * Register a given kevent kev onto the kqueue
649  */
650 int
651 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
652 {
653 	const struct kfilter *kfilter;
654 	struct filedesc	*fdp;
655 	struct file	*fp;
656 	struct knote	*kn;
657 	int		s, error;
658 
659 	fdp = kq->kq_fdp;
660 	fp = NULL;
661 	kn = NULL;
662 	error = 0;
663 	kfilter = kfilter_byfilter(kev->filter);
664 	if (kfilter == NULL || kfilter->filtops == NULL) {
665 		/* filter not found nor implemented */
666 		return (EINVAL);
667 	}
668 
669 	/* search if knote already exists */
670 	if (kfilter->filtops->f_isfd) {
671 		/* monitoring a file descriptor */
672 		if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
673 			return (EBADF);	/* validate descriptor */
674 		FILE_USE(fp);
675 
676 		if (kev->ident < fdp->fd_knlistsize) {
677 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
678 				if (kq == kn->kn_kq &&
679 				    kev->filter == kn->kn_filter)
680 					break;
681 		}
682 	} else {
683 		/*
684 		 * not monitoring a file descriptor, so
685 		 * lookup knotes in internal hash table
686 		 */
687 		if (fdp->fd_knhashmask != 0) {
688 			struct klist *list;
689 
690 			list = &fdp->fd_knhash[
691 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
692 			SLIST_FOREACH(kn, list, kn_link)
693 				if (kev->ident == kn->kn_id &&
694 				    kq == kn->kn_kq &&
695 				    kev->filter == kn->kn_filter)
696 					break;
697 		}
698 	}
699 
700 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
701 		error = ENOENT;		/* filter not found */
702 		goto done;
703 	}
704 
705 	/*
706 	 * kn now contains the matching knote, or NULL if no match
707 	 */
708 	if (kev->flags & EV_ADD) {
709 		/* add knote */
710 
711 		if (kn == NULL) {
712 			/* create new knote */
713 			kn = pool_get(&knote_pool, PR_WAITOK);
714 			if (kn == NULL) {
715 				error = ENOMEM;
716 				goto done;
717 			}
718 			kn->kn_fp = fp;
719 			kn->kn_kq = kq;
720 			kn->kn_fop = kfilter->filtops;
721 
722 			/*
723 			 * apply reference count to knote structure, and
724 			 * do not release it at the end of this routine.
725 			 */
726 			fp = NULL;
727 
728 			kn->kn_sfflags = kev->fflags;
729 			kn->kn_sdata = kev->data;
730 			kev->fflags = 0;
731 			kev->data = 0;
732 			kn->kn_kevent = *kev;
733 
734 			knote_attach(kn, fdp);
735 			if ((error = kfilter->filtops->f_attach(kn)) != 0) {
736 				knote_drop(kn, p, fdp);
737 				goto done;
738 			}
739 		} else {
740 			/* modify existing knote */
741 
742 			/*
743 			 * The user may change some filter values after the
744 			 * initial EV_ADD, but doing so will not reset any
745 			 * filter which have already been triggered.
746 			 */
747 			kn->kn_sfflags = kev->fflags;
748 			kn->kn_sdata = kev->data;
749 			kn->kn_kevent.udata = kev->udata;
750 		}
751 
752 		s = splhigh();
753 		if (kn->kn_fop->f_event(kn, 0))
754 			KNOTE_ACTIVATE(kn);
755 		splx(s);
756 
757 	} else if (kev->flags & EV_DELETE) {	/* delete knote */
758 		kn->kn_fop->f_detach(kn);
759 		knote_drop(kn, p, fdp);
760 		goto done;
761 	}
762 
763 	/* disable knote */
764 	if ((kev->flags & EV_DISABLE) &&
765 	    ((kn->kn_status & KN_DISABLED) == 0)) {
766 		s = splhigh();
767 		kn->kn_status |= KN_DISABLED;
768 		splx(s);
769 	}
770 
771 	/* enable knote */
772 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
773 		s = splhigh();
774 		kn->kn_status &= ~KN_DISABLED;
775 		if ((kn->kn_status & KN_ACTIVE) &&
776 		    ((kn->kn_status & KN_QUEUED) == 0))
777 			knote_enqueue(kn);
778 		splx(s);
779 	}
780 
781  done:
782 	if (fp != NULL)
783 		FILE_UNUSE(fp, p);
784 	return (error);
785 }
786 
787 /*
788  * Scan through the list of events on fp (for a maximum of maxevents),
789  * returning the results in to ulistp. Timeout is determined by tsp; if
790  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
791  * as appropriate.
792  */
793 static int
794 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
795 	const struct timespec *tsp, struct proc *p, register_t *retval)
796 {
797 	struct kqueue	*kq;
798 	struct kevent	*kevp;
799 	struct timeval	atv;
800 	struct knote	*kn, marker;
801 	size_t		count, nkev;
802 	int		s, timeout, error;
803 
804 	kq = (struct kqueue *)fp->f_data;
805 	count = maxevents;
806 	nkev = error = 0;
807 	if (count == 0)
808 		goto done;
809 
810 	if (tsp != NULL) {			/* timeout supplied */
811 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
812 		if (itimerfix(&atv)) {
813 			error = EINVAL;
814 			goto done;
815 		}
816 		s = splclock();
817 		timeradd(&atv, &time, &atv);	/* calc. time to wait until */
818 		splx(s);
819 		if (tsp->tv_sec == 0 && tsp->tv_nsec < 1000 /*<1us*/)
820 			timeout = -1;		/* perform a poll */
821 		else
822 			timeout = hzto(&atv);	/* calculate hz till timeout */
823 	} else {
824 		atv.tv_sec = 0;			/* no timeout, wait forever */
825 		atv.tv_usec = 0;
826 		timeout = 0;
827 	}
828 	goto start;
829 
830  retry:
831 	if (atv.tv_sec || atv.tv_usec) {	/* timeout requested */
832 		s = splclock();
833 		if (timercmp(&time, &atv, >=)) {
834 			splx(s);
835 			goto done;		/* timeout reached */
836 		}
837 		splx(s);
838 		timeout = hzto(&atv);		/* recalc. timeout remaining */
839 	}
840 
841  start:
842 	kevp = kq->kq_kev;
843 	s = splhigh();
844 	if (kq->kq_count == 0) {
845 		if (timeout < 0) {
846 			error = EWOULDBLOCK;
847 		} else {
848 			kq->kq_state |= KQ_SLEEP;
849 			error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
850 		}
851 		splx(s);
852 		if (error == 0)
853 			goto retry;
854 		/* don't restart after signals... */
855 		if (error == ERESTART)
856 			error = EINTR;
857 		else if (error == EWOULDBLOCK)
858 			error = 0;
859 		goto done;
860 	}
861 
862 	/* mark end of knote list */
863 	TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
864 
865 	while (count) {				/* while user wants data ... */
866 		kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
867 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
868 		if (kn == &marker) {		/* if it's our marker, stop */
869 			splx(s);
870 			if (count == maxevents)
871 				goto retry;
872 			goto done;
873 		}
874 		if (kn->kn_status & KN_DISABLED) {
875 			/* don't want disabled events */
876 			kn->kn_status &= ~KN_QUEUED;
877 			kq->kq_count--;
878 			continue;
879 		}
880 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
881 		    kn->kn_fop->f_event(kn, 0) == 0) {
882 			/*
883 			 * non-ONESHOT event that hasn't
884 			 * triggered again, so de-queue.
885 			 */
886 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
887 			kq->kq_count--;
888 			continue;
889 		}
890 		*kevp = kn->kn_kevent;
891 		kevp++;
892 		nkev++;
893 		if (kn->kn_flags & EV_ONESHOT) {
894 			/* delete ONESHOT events after retrieval */
895 			kn->kn_status &= ~KN_QUEUED;
896 			kq->kq_count--;
897 			splx(s);
898 			kn->kn_fop->f_detach(kn);
899 			knote_drop(kn, p, p->p_fd);
900 			s = splhigh();
901 		} else if (kn->kn_flags & EV_CLEAR) {
902 			/* clear state after retrieval */
903 			kn->kn_data = 0;
904 			kn->kn_fflags = 0;
905 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
906 			kq->kq_count--;
907 		} else {
908 			/* add event back on list */
909 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
910 		}
911 		count--;
912 		if (nkev == KQ_NEVENTS) {
913 			/* do copyouts in KQ_NEVENTS chunks */
914 			splx(s);
915 			error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
916 			    sizeof(struct kevent) * nkev);
917 			ulistp += nkev;
918 			nkev = 0;
919 			kevp = kq->kq_kev;
920 			s = splhigh();
921 			if (error)
922 				break;
923 		}
924 	}
925 
926 	/* remove marker */
927 	TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
928 	splx(s);
929  done:
930 	if (nkev != 0) {
931 		/* copyout remaining events */
932 		error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
933 		    sizeof(struct kevent) * nkev);
934 	}
935 	*retval = maxevents - count;
936 
937 	return (error);
938 }
939 
940 /*
941  * struct fileops read method for a kqueue descriptor.
942  * Not implemented.
943  * XXX: This could be expanded to call kqueue_scan, if desired.
944  */
945 /*ARGSUSED*/
946 static int
947 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
948 	struct ucred *cred, int flags)
949 {
950 
951 	return (ENXIO);
952 }
953 
954 /*
955  * struct fileops write method for a kqueue descriptor.
956  * Not implemented.
957  */
958 /*ARGSUSED*/
959 static int
960 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
961 	struct ucred *cred, int flags)
962 {
963 
964 	return (ENXIO);
965 }
966 
967 /*
968  * struct fileops ioctl method for a kqueue descriptor.
969  *
970  * Two ioctls are currently supported. They both use struct kfilter_mapping:
971  *	KFILTER_BYNAME		find name for filter, and return result in
972  *				name, which is of size len.
973  *	KFILTER_BYFILTER	find filter for name. len is ignored.
974  */
975 /*ARGSUSED*/
976 static int
977 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
978 {
979 	struct kfilter_mapping	*km;
980 	const struct kfilter	*kfilter;
981 	char			*name;
982 	int			error;
983 
984 	km = (struct kfilter_mapping *)data;
985 	error = 0;
986 
987 	switch (com) {
988 	case KFILTER_BYFILTER:	/* convert filter -> name */
989 		kfilter = kfilter_byfilter(km->filter);
990 		if (kfilter != NULL)
991 			error = copyoutstr(kfilter->name, km->name, km->len,
992 			    NULL);
993 		else
994 			error = ENOENT;
995 		break;
996 
997 	case KFILTER_BYNAME:	/* convert name -> filter */
998 		MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
999 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1000 		if (error) {
1001 			FREE(name, M_KEVENT);
1002 			break;
1003 		}
1004 		kfilter = kfilter_byname(name);
1005 		if (kfilter != NULL)
1006 			km->filter = kfilter->filter;
1007 		else
1008 			error = ENOENT;
1009 		FREE(name, M_KEVENT);
1010 		break;
1011 
1012 	default:
1013 		error = ENOTTY;
1014 
1015 	}
1016 	return (error);
1017 }
1018 
1019 /*
1020  * struct fileops fcntl method for a kqueue descriptor.
1021  * Not implemented.
1022  */
1023 /*ARGSUSED*/
1024 static int
1025 kqueue_fcntl(struct file *fp, u_int com, caddr_t data, struct proc *p)
1026 {
1027 
1028 	return (ENOTTY);
1029 }
1030 
1031 /*
1032  * struct fileops poll method for a kqueue descriptor.
1033  * Determine if kqueue has events pending.
1034  */
1035 static int
1036 kqueue_poll(struct file *fp, int events, struct proc *p)
1037 {
1038 	struct kqueue	*kq;
1039 	int		revents;
1040 
1041 	kq = (struct kqueue *)fp->f_data;
1042 	revents = 0;
1043 	if (events & (POLLIN | POLLRDNORM)) {
1044 		if (kq->kq_count) {
1045 			revents |= events & (POLLIN | POLLRDNORM);
1046 		} else {
1047 			selrecord(p, &kq->kq_sel);
1048 		}
1049 	}
1050 	return (revents);
1051 }
1052 
1053 /*
1054  * struct fileops stat method for a kqueue descriptor.
1055  * Returns dummy info, with st_size being number of events pending.
1056  */
1057 static int
1058 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
1059 {
1060 	struct kqueue	*kq;
1061 
1062 	kq = (struct kqueue *)fp->f_data;
1063 	memset((void *)st, 0, sizeof(*st));
1064 	st->st_size = kq->kq_count;
1065 	st->st_blksize = sizeof(struct kevent);
1066 	st->st_mode = S_IFIFO;
1067 	return (0);
1068 }
1069 
1070 /*
1071  * struct fileops close method for a kqueue descriptor.
1072  * Cleans up kqueue.
1073  */
1074 static int
1075 kqueue_close(struct file *fp, struct proc *p)
1076 {
1077 	struct kqueue	*kq;
1078 	struct filedesc	*fdp;
1079 	struct knote	**knp, *kn, *kn0;
1080 	int		i;
1081 
1082 	kq = (struct kqueue *)fp->f_data;
1083 	fdp = p->p_fd;
1084 	for (i = 0; i < fdp->fd_knlistsize; i++) {
1085 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1086 		kn = *knp;
1087 		while (kn != NULL) {
1088 			kn0 = SLIST_NEXT(kn, kn_link);
1089 			if (kq == kn->kn_kq) {
1090 				kn->kn_fop->f_detach(kn);
1091 				FILE_UNUSE(kn->kn_fp, p);
1092 				pool_put(&knote_pool, kn);
1093 				*knp = kn0;
1094 			} else {
1095 				knp = &SLIST_NEXT(kn, kn_link);
1096 			}
1097 			kn = kn0;
1098 		}
1099 	}
1100 	if (fdp->fd_knhashmask != 0) {
1101 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1102 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1103 			kn = *knp;
1104 			while (kn != NULL) {
1105 				kn0 = SLIST_NEXT(kn, kn_link);
1106 				if (kq == kn->kn_kq) {
1107 					kn->kn_fop->f_detach(kn);
1108 					/* XXX non-fd release of kn->kn_ptr */
1109 					pool_put(&knote_pool, kn);
1110 					*knp = kn0;
1111 				} else {
1112 					knp = &SLIST_NEXT(kn, kn_link);
1113 				}
1114 				kn = kn0;
1115 			}
1116 		}
1117 	}
1118 	pool_put(&kqueue_pool, kq);
1119 	fp->f_data = NULL;
1120 
1121 	return (0);
1122 }
1123 
1124 /*
1125  * wakeup a kqueue
1126  */
1127 static void
1128 kqueue_wakeup(struct kqueue *kq)
1129 {
1130 
1131 	if (kq->kq_state & KQ_SLEEP) {		/* if currently sleeping ...  */
1132 		kq->kq_state &= ~KQ_SLEEP;
1133 		wakeup(kq);			/* ... wakeup */
1134 	}
1135 
1136 	/* Notify select/poll and kevent. */
1137 	selnotify(&kq->kq_sel, 0);
1138 }
1139 
1140 /*
1141  * struct fileops kqfilter method for a kqueue descriptor.
1142  * Event triggered when monitored kqueue changes.
1143  */
1144 /*ARGSUSED*/
1145 static int
1146 kqueue_kqfilter(struct file *fp, struct knote *kn)
1147 {
1148 	struct kqueue *kq;
1149 
1150 	KASSERT(fp == kn->kn_fp);
1151 	kq = (struct kqueue *)kn->kn_fp->f_data;
1152 	if (kn->kn_filter != EVFILT_READ)
1153 		return (1);
1154 	kn->kn_fop = &kqread_filtops;
1155 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1156 	return (0);
1157 }
1158 
1159 
1160 /*
1161  * Walk down a list of knotes, activating them if their event has triggered.
1162  */
1163 void
1164 knote(struct klist *list, long hint)
1165 {
1166 	struct knote *kn;
1167 
1168 	SLIST_FOREACH(kn, list, kn_selnext)
1169 		if (kn->kn_fop->f_event(kn, hint))
1170 			KNOTE_ACTIVATE(kn);
1171 }
1172 
1173 /*
1174  * Remove all knotes from a specified klist
1175  */
1176 void
1177 knote_remove(struct proc *p, struct klist *list)
1178 {
1179 	struct knote *kn;
1180 
1181 	while ((kn = SLIST_FIRST(list)) != NULL) {
1182 		kn->kn_fop->f_detach(kn);
1183 		knote_drop(kn, p, p->p_fd);
1184 	}
1185 }
1186 
1187 /*
1188  * Remove all knotes referencing a specified fd
1189  */
1190 void
1191 knote_fdclose(struct proc *p, int fd)
1192 {
1193 	struct filedesc	*fdp;
1194 	struct klist	*list;
1195 
1196 	fdp = p->p_fd;
1197 	list = &fdp->fd_knlist[fd];
1198 	knote_remove(p, list);
1199 }
1200 
1201 /*
1202  * Attach a new knote to a file descriptor
1203  */
1204 static void
1205 knote_attach(struct knote *kn, struct filedesc *fdp)
1206 {
1207 	struct klist	*list;
1208 	int		size;
1209 
1210 	if (! kn->kn_fop->f_isfd) {
1211 		/* if knote is not on an fd, store on internal hash table */
1212 		if (fdp->fd_knhashmask == 0)
1213 			fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1214 			    M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1215 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1216 		goto done;
1217 	}
1218 
1219 	/*
1220 	 * otherwise, knote is on an fd.
1221 	 * knotes are stored in fd_knlist indexed by kn->kn_id.
1222 	 */
1223 	if (fdp->fd_knlistsize <= kn->kn_id) {
1224 		/* expand list, it's too small */
1225 		size = fdp->fd_knlistsize;
1226 		while (size <= kn->kn_id) {
1227 			/* grow in KQ_EXTENT chunks */
1228 			size += KQ_EXTENT;
1229 		}
1230 		list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1231 		if (fdp->fd_knlist) {
1232 			/* copy existing knlist */
1233 			memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1234 			    fdp->fd_knlistsize * sizeof(struct klist *));
1235 		}
1236 		/*
1237 		 * Zero new memory. Stylistically, SLIST_INIT() should be
1238 		 * used here, but that does same thing as the memset() anyway.
1239 		 */
1240 		memset(&list[fdp->fd_knlistsize], 0,
1241 		    (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1242 
1243 		/* switch to new knlist */
1244 		if (fdp->fd_knlist != NULL)
1245 			free(fdp->fd_knlist, M_KEVENT);
1246 		fdp->fd_knlistsize = size;
1247 		fdp->fd_knlist = list;
1248 	}
1249 
1250 	/* get list head for this fd */
1251 	list = &fdp->fd_knlist[kn->kn_id];
1252  done:
1253 	/* add new knote */
1254 	SLIST_INSERT_HEAD(list, kn, kn_link);
1255 	kn->kn_status = 0;
1256 }
1257 
1258 /*
1259  * Drop knote.
1260  * Should be called at spl == 0, since we don't want to hold spl
1261  * while calling FILE_UNUSE and free.
1262  */
1263 static void
1264 knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp)
1265 {
1266 	struct klist	*list;
1267 
1268 	if (kn->kn_fop->f_isfd)
1269 		list = &fdp->fd_knlist[kn->kn_id];
1270 	else
1271 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1272 
1273 	SLIST_REMOVE(list, kn, knote, kn_link);
1274 	if (kn->kn_status & KN_QUEUED)
1275 		knote_dequeue(kn);
1276 	if (kn->kn_fop->f_isfd)
1277 		FILE_UNUSE(kn->kn_fp, p);
1278 	pool_put(&knote_pool, kn);
1279 }
1280 
1281 
1282 /*
1283  * Queue new event for knote.
1284  */
1285 static void
1286 knote_enqueue(struct knote *kn)
1287 {
1288 	struct kqueue	*kq;
1289 	int		s;
1290 
1291 	kq = kn->kn_kq;
1292 	s = splhigh();
1293 	KASSERT((kn->kn_status & KN_QUEUED) == 0);
1294 
1295 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1296 	kn->kn_status |= KN_QUEUED;
1297 	kq->kq_count++;
1298 	splx(s);
1299 	kqueue_wakeup(kq);
1300 }
1301 
1302 /*
1303  * Dequeue event for knote.
1304  */
1305 static void
1306 knote_dequeue(struct knote *kn)
1307 {
1308 	struct kqueue	*kq;
1309 	int		s;
1310 
1311 	kq = kn->kn_kq;
1312 	s = splhigh();
1313 	KASSERT(kn->kn_status & KN_QUEUED);
1314 
1315 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1316 	kn->kn_status &= ~KN_QUEUED;
1317 	kq->kq_count--;
1318 	splx(s);
1319 }
1320