xref: /netbsd/sys/kern/kern_exec.c (revision 58a2c399)
1 /*	$NetBSD: kern_exec.c,v 1.510 2021/10/10 18:07:51 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
34  * Copyright (C) 1992 Wolfgang Solfrank.
35  * Copyright (C) 1992 TooLs GmbH.
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by TooLs GmbH.
49  * 4. The name of TooLs GmbH may not be used to endorse or promote products
50  *    derived from this software without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
57  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
58  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
59  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
60  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
61  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.510 2021/10/10 18:07:51 thorpej Exp $");
66 
67 #include "opt_exec.h"
68 #include "opt_execfmt.h"
69 #include "opt_ktrace.h"
70 #include "opt_modular.h"
71 #include "opt_syscall_debug.h"
72 #include "veriexec.h"
73 #include "opt_pax.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/ptrace.h>
81 #include <sys/mount.h>
82 #include <sys/kmem.h>
83 #include <sys/namei.h>
84 #include <sys/vnode.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/acct.h>
88 #include <sys/atomic.h>
89 #include <sys/exec.h>
90 #include <sys/futex.h>
91 #include <sys/ktrace.h>
92 #include <sys/uidinfo.h>
93 #include <sys/wait.h>
94 #include <sys/mman.h>
95 #include <sys/ras.h>
96 #include <sys/signalvar.h>
97 #include <sys/stat.h>
98 #include <sys/syscall.h>
99 #include <sys/kauth.h>
100 #include <sys/lwpctl.h>
101 #include <sys/pax.h>
102 #include <sys/cpu.h>
103 #include <sys/module.h>
104 #include <sys/syscallvar.h>
105 #include <sys/syscallargs.h>
106 #if NVERIEXEC > 0
107 #include <sys/verified_exec.h>
108 #endif /* NVERIEXEC > 0 */
109 #include <sys/sdt.h>
110 #include <sys/spawn.h>
111 #include <sys/prot.h>
112 #include <sys/cprng.h>
113 
114 #include <uvm/uvm_extern.h>
115 
116 #include <machine/reg.h>
117 
118 #include <compat/common/compat_util.h>
119 
120 #ifndef MD_TOPDOWN_INIT
121 #ifdef __USE_TOPDOWN_VM
122 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
123 #else
124 #define	MD_TOPDOWN_INIT(epp)
125 #endif
126 #endif
127 
128 struct execve_data;
129 
130 extern int user_va0_disable;
131 
132 static size_t calcargs(struct execve_data * restrict, const size_t);
133 static size_t calcstack(struct execve_data * restrict, const size_t);
134 static int copyoutargs(struct execve_data * restrict, struct lwp *,
135     char * const);
136 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
137 static int copyinargs(struct execve_data * restrict, char * const *,
138     char * const *, execve_fetch_element_t, char **);
139 static int copyinargstrs(struct execve_data * restrict, char * const *,
140     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
141 static int exec_sigcode_map(struct proc *, const struct emul *);
142 
143 #if defined(DEBUG) && !defined(DEBUG_EXEC)
144 #define DEBUG_EXEC
145 #endif
146 #ifdef DEBUG_EXEC
147 #define DPRINTF(a) printf a
148 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
149     __LINE__, (s), (a), (b))
150 static void dump_vmcmds(const struct exec_package * const, size_t, int);
151 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
152 #else
153 #define DPRINTF(a)
154 #define COPYPRINTF(s, a, b)
155 #define DUMPVMCMDS(p, x, e) do {} while (0)
156 #endif /* DEBUG_EXEC */
157 
158 /*
159  * DTrace SDT provider definitions
160  */
161 SDT_PROVIDER_DECLARE(proc);
162 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
163 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
164 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
165 
166 /*
167  * Exec function switch:
168  *
169  * Note that each makecmds function is responsible for loading the
170  * exec package with the necessary functions for any exec-type-specific
171  * handling.
172  *
173  * Functions for specific exec types should be defined in their own
174  * header file.
175  */
176 static const struct execsw	**execsw = NULL;
177 static int			nexecs;
178 
179 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
180 
181 /* list of dynamically loaded execsw entries */
182 static LIST_HEAD(execlist_head, exec_entry) ex_head =
183     LIST_HEAD_INITIALIZER(ex_head);
184 struct exec_entry {
185 	LIST_ENTRY(exec_entry)	ex_list;
186 	SLIST_ENTRY(exec_entry)	ex_slist;
187 	const struct execsw	*ex_sw;
188 };
189 
190 #ifndef __HAVE_SYSCALL_INTERN
191 void	syscall(void);
192 #endif
193 
194 /* NetBSD autoloadable syscalls */
195 #ifdef MODULAR
196 #include <kern/syscalls_autoload.c>
197 #endif
198 
199 /* NetBSD emul struct */
200 struct emul emul_netbsd = {
201 	.e_name =		"netbsd",
202 #ifdef EMUL_NATIVEROOT
203 	.e_path =		EMUL_NATIVEROOT,
204 #else
205 	.e_path =		NULL,
206 #endif
207 #ifndef __HAVE_MINIMAL_EMUL
208 	.e_flags =		EMUL_HAS_SYS___syscall,
209 	.e_errno =		NULL,
210 	.e_nosys =		SYS_syscall,
211 	.e_nsysent =		SYS_NSYSENT,
212 #endif
213 #ifdef MODULAR
214 	.e_sc_autoload =	netbsd_syscalls_autoload,
215 #endif
216 	.e_sysent =		sysent,
217 	.e_nomodbits =		sysent_nomodbits,
218 #ifdef SYSCALL_DEBUG
219 	.e_syscallnames =	syscallnames,
220 #else
221 	.e_syscallnames =	NULL,
222 #endif
223 	.e_sendsig =		sendsig,
224 	.e_trapsignal =		trapsignal,
225 	.e_sigcode =		NULL,
226 	.e_esigcode =		NULL,
227 	.e_sigobject =		NULL,
228 	.e_setregs =		setregs,
229 	.e_proc_exec =		NULL,
230 	.e_proc_fork =		NULL,
231 	.e_proc_exit =		NULL,
232 	.e_lwp_fork =		NULL,
233 	.e_lwp_exit =		NULL,
234 #ifdef __HAVE_SYSCALL_INTERN
235 	.e_syscall_intern =	syscall_intern,
236 #else
237 	.e_syscall =		syscall,
238 #endif
239 	.e_sysctlovly =		NULL,
240 	.e_vm_default_addr =	uvm_default_mapaddr,
241 	.e_usertrap =		NULL,
242 	.e_ucsize =		sizeof(ucontext_t),
243 	.e_startlwp =		startlwp
244 };
245 
246 /*
247  * Exec lock. Used to control access to execsw[] structures.
248  * This must not be static so that netbsd32 can access it, too.
249  */
250 krwlock_t exec_lock __cacheline_aligned;
251 
252 static kmutex_t sigobject_lock __cacheline_aligned;
253 
254 /*
255  * Data used between a loadvm and execve part of an "exec" operation
256  */
257 struct execve_data {
258 	struct exec_package	ed_pack;
259 	struct pathbuf		*ed_pathbuf;
260 	struct vattr		ed_attr;
261 	struct ps_strings	ed_arginfo;
262 	char			*ed_argp;
263 	const char		*ed_pathstring;
264 	char			*ed_resolvedname;
265 	size_t			ed_ps_strings_sz;
266 	int			ed_szsigcode;
267 	size_t			ed_argslen;
268 	long			ed_argc;
269 	long			ed_envc;
270 };
271 
272 /*
273  * data passed from parent lwp to child during a posix_spawn()
274  */
275 struct spawn_exec_data {
276 	struct execve_data	sed_exec;
277 	struct posix_spawn_file_actions
278 				*sed_actions;
279 	struct posix_spawnattr	*sed_attrs;
280 	struct proc		*sed_parent;
281 	kcondvar_t		sed_cv_child_ready;
282 	kmutex_t		sed_mtx_child;
283 	int			sed_error;
284 	volatile uint32_t	sed_refcnt;
285 };
286 
287 static struct vm_map *exec_map;
288 static struct pool exec_pool;
289 
290 static void *
291 exec_pool_alloc(struct pool *pp, int flags)
292 {
293 
294 	return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
295 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
296 }
297 
298 static void
299 exec_pool_free(struct pool *pp, void *addr)
300 {
301 
302 	uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
303 }
304 
305 static struct pool_allocator exec_palloc = {
306 	.pa_alloc = exec_pool_alloc,
307 	.pa_free = exec_pool_free,
308 	.pa_pagesz = NCARGS
309 };
310 
311 static void
312 exec_path_free(struct execve_data *data)
313 {
314 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
315 	pathbuf_destroy(data->ed_pathbuf);
316 	if (data->ed_resolvedname)
317 		PNBUF_PUT(data->ed_resolvedname);
318 }
319 
320 static int
321 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
322     char **rpath)
323 {
324 	int error;
325 	char *p;
326 
327 	KASSERT(rpath != NULL);
328 
329 	*rpath = PNBUF_GET();
330 	error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
331 	if (error) {
332 		DPRINTF(("%s: can't resolve name for %s, error %d\n",
333 		    __func__, epp->ep_kname, error));
334 		PNBUF_PUT(*rpath);
335 		*rpath = NULL;
336 		return error;
337 	}
338 	epp->ep_resolvedname = *rpath;
339 	if ((p = strrchr(*rpath, '/')) != NULL)
340 		epp->ep_kname = p + 1;
341 	return 0;
342 }
343 
344 
345 /*
346  * check exec:
347  * given an "executable" described in the exec package's namei info,
348  * see what we can do with it.
349  *
350  * ON ENTRY:
351  *	exec package with appropriate namei info
352  *	lwp pointer of exec'ing lwp
353  *	NO SELF-LOCKED VNODES
354  *
355  * ON EXIT:
356  *	error:	nothing held, etc.  exec header still allocated.
357  *	ok:	filled exec package, executable's vnode (unlocked).
358  *
359  * EXEC SWITCH ENTRY:
360  * 	Locked vnode to check, exec package, proc.
361  *
362  * EXEC SWITCH EXIT:
363  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
364  *	error:	destructive:
365  *			everything deallocated execept exec header.
366  *		non-destructive:
367  *			error code, executable's vnode (unlocked),
368  *			exec header unmodified.
369  */
370 int
371 /*ARGSUSED*/
372 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
373     char **rpath)
374 {
375 	int		error, i;
376 	struct vnode	*vp;
377 	size_t		resid;
378 
379 	if (epp->ep_resolvedname) {
380 		struct nameidata nd;
381 
382 		// grab the absolute pathbuf here before namei() trashes it.
383 		pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
384 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
385 
386 		/* first get the vnode */
387 		if ((error = namei(&nd)) != 0)
388 			return error;
389 
390 		epp->ep_vp = vp = nd.ni_vp;
391 #ifdef DIAGNOSTIC
392 		/* paranoia (take this out once namei stuff stabilizes) */
393 		memset(nd.ni_pnbuf, '~', PATH_MAX);
394 #endif
395 	} else {
396 		struct file *fp;
397 
398 		if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
399 			return error;
400 		epp->ep_vp = vp = fp->f_vnode;
401 		vref(vp);
402 		fd_putfile(epp->ep_xfd);
403 		if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
404 			return error;
405 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
406 	}
407 
408 	/* check access and type */
409 	if (vp->v_type != VREG) {
410 		error = EACCES;
411 		goto bad1;
412 	}
413 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
414 		goto bad1;
415 
416 	/* get attributes */
417 	/* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
418 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
419 		goto bad1;
420 
421 	/* Check mount point */
422 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
423 		error = EACCES;
424 		goto bad1;
425 	}
426 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
427 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
428 
429 	/* try to open it */
430 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
431 		goto bad1;
432 
433 	/* now we have the file, get the exec header */
434 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
435 			UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
436 	if (error)
437 		goto bad1;
438 
439 	/* unlock vp, since we need it unlocked from here on out. */
440 	VOP_UNLOCK(vp);
441 
442 #if NVERIEXEC > 0
443 	error = veriexec_verify(l, vp,
444 	    epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
445 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
446 	    NULL);
447 	if (error)
448 		goto bad2;
449 #endif /* NVERIEXEC > 0 */
450 
451 #ifdef PAX_SEGVGUARD
452 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
453 	if (error)
454 		goto bad2;
455 #endif /* PAX_SEGVGUARD */
456 
457 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
458 
459 	/*
460 	 * Set up default address space limits.  Can be overridden
461 	 * by individual exec packages.
462 	 */
463 	epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
464 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
465 
466 	/*
467 	 * set up the vmcmds for creation of the process
468 	 * address space
469 	 */
470 	error = ENOEXEC;
471 	for (i = 0; i < nexecs; i++) {
472 		int newerror;
473 
474 		epp->ep_esch = execsw[i];
475 		newerror = (*execsw[i]->es_makecmds)(l, epp);
476 
477 		if (!newerror) {
478 			/* Seems ok: check that entry point is not too high */
479 			if (epp->ep_entry >= epp->ep_vm_maxaddr) {
480 #ifdef DIAGNOSTIC
481 				printf("%s: rejecting %p due to "
482 				    "too high entry address (>= %p)\n",
483 					 __func__, (void *)epp->ep_entry,
484 					 (void *)epp->ep_vm_maxaddr);
485 #endif
486 				error = ENOEXEC;
487 				break;
488 			}
489 			/* Seems ok: check that entry point is not too low */
490 			if (epp->ep_entry < epp->ep_vm_minaddr) {
491 #ifdef DIAGNOSTIC
492 				printf("%s: rejecting %p due to "
493 				    "too low entry address (< %p)\n",
494 				     __func__, (void *)epp->ep_entry,
495 				     (void *)epp->ep_vm_minaddr);
496 #endif
497 				error = ENOEXEC;
498 				break;
499 			}
500 
501 			/* check limits */
502 #ifdef DIAGNOSTIC
503 #define LMSG "%s: rejecting due to %s limit (%ju > %ju)\n"
504 #endif
505 #ifdef MAXTSIZ
506 			if (epp->ep_tsize > MAXTSIZ) {
507 #ifdef DIAGNOSTIC
508 				printf(LMSG, __func__, "text",
509 				    (uintmax_t)epp->ep_tsize,
510 				    (uintmax_t)MAXTSIZ);
511 #endif
512 				error = ENOMEM;
513 				break;
514 			}
515 #endif
516 			vsize_t dlimit =
517 			    (vsize_t)l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur;
518 			if (epp->ep_dsize > dlimit) {
519 #ifdef DIAGNOSTIC
520 				printf(LMSG, __func__, "data",
521 				    (uintmax_t)epp->ep_dsize,
522 				    (uintmax_t)dlimit);
523 #endif
524 				error = ENOMEM;
525 				break;
526 			}
527 			return 0;
528 		}
529 
530 		/*
531 		 * Reset all the fields that may have been modified by the
532 		 * loader.
533 		 */
534 		KASSERT(epp->ep_emul_arg == NULL);
535 		if (epp->ep_emul_root != NULL) {
536 			vrele(epp->ep_emul_root);
537 			epp->ep_emul_root = NULL;
538 		}
539 		if (epp->ep_interp != NULL) {
540 			vrele(epp->ep_interp);
541 			epp->ep_interp = NULL;
542 		}
543 		epp->ep_pax_flags = 0;
544 
545 		/* make sure the first "interesting" error code is saved. */
546 		if (error == ENOEXEC)
547 			error = newerror;
548 
549 		if (epp->ep_flags & EXEC_DESTR)
550 			/* Error from "#!" code, tidied up by recursive call */
551 			return error;
552 	}
553 
554 	/* not found, error */
555 
556 	/*
557 	 * free any vmspace-creation commands,
558 	 * and release their references
559 	 */
560 	kill_vmcmds(&epp->ep_vmcmds);
561 
562 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
563 bad2:
564 #endif
565 	/*
566 	 * close and release the vnode, restore the old one, free the
567 	 * pathname buf, and punt.
568 	 */
569 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
570 	VOP_CLOSE(vp, FREAD, l->l_cred);
571 	vput(vp);
572 	return error;
573 
574 bad1:
575 	/*
576 	 * free the namei pathname buffer, and put the vnode
577 	 * (which we don't yet have open).
578 	 */
579 	vput(vp);				/* was still locked */
580 	return error;
581 }
582 
583 #ifdef __MACHINE_STACK_GROWS_UP
584 #define STACK_PTHREADSPACE NBPG
585 #else
586 #define STACK_PTHREADSPACE 0
587 #endif
588 
589 static int
590 execve_fetch_element(char * const *array, size_t index, char **value)
591 {
592 	return copyin(array + index, value, sizeof(*value));
593 }
594 
595 /*
596  * exec system call
597  */
598 int
599 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
600 {
601 	/* {
602 		syscallarg(const char *)	path;
603 		syscallarg(char * const *)	argp;
604 		syscallarg(char * const *)	envp;
605 	} */
606 
607 	return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
608 	    SCARG(uap, envp), execve_fetch_element);
609 }
610 
611 int
612 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
613     register_t *retval)
614 {
615 	/* {
616 		syscallarg(int)			fd;
617 		syscallarg(char * const *)	argp;
618 		syscallarg(char * const *)	envp;
619 	} */
620 
621 	return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
622 	    SCARG(uap, envp), execve_fetch_element);
623 }
624 
625 /*
626  * Load modules to try and execute an image that we do not understand.
627  * If no execsw entries are present, we load those likely to be needed
628  * in order to run native images only.  Otherwise, we autoload all
629  * possible modules that could let us run the binary.  XXX lame
630  */
631 static void
632 exec_autoload(void)
633 {
634 #ifdef MODULAR
635 	static const char * const native[] = {
636 		"exec_elf32",
637 		"exec_elf64",
638 		"exec_script",
639 		NULL
640 	};
641 	static const char * const compat[] = {
642 		"exec_elf32",
643 		"exec_elf64",
644 		"exec_script",
645 		"exec_aout",
646 		"exec_coff",
647 		"exec_ecoff",
648 		"compat_aoutm68k",
649 		"compat_netbsd32",
650 #if 0
651 		"compat_linux",
652 		"compat_linux32",
653 #endif
654 		"compat_sunos",
655 		"compat_sunos32",
656 		"compat_ultrix",
657 		NULL
658 	};
659 	char const * const *list;
660 	int i;
661 
662 	list = nexecs == 0 ? native : compat;
663 	for (i = 0; list[i] != NULL; i++) {
664 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
665 			continue;
666 		}
667 		yield();
668 	}
669 #endif
670 }
671 
672 /*
673  * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
674  * making it absolute in the process, by prepending the current working
675  * directory if it is not. If offs is supplied it will contain the offset
676  * where the original supplied copy of upath starts.
677  */
678 int
679 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
680     struct pathbuf **pbp, size_t *offs)
681 {
682 	char *path, *bp;
683 	size_t len, tlen;
684 	int error;
685 	struct cwdinfo *cwdi;
686 
687 	path = PNBUF_GET();
688 	if (seg == UIO_SYSSPACE) {
689 		error = copystr(upath, path, MAXPATHLEN, &len);
690 	} else {
691 		error = copyinstr(upath, path, MAXPATHLEN, &len);
692 	}
693 	if (error)
694 		goto err;
695 
696 	if (path[0] == '/') {
697 		if (offs)
698 			*offs = 0;
699 		goto out;
700 	}
701 
702 	len++;
703 	if (len + 1 >= MAXPATHLEN) {
704 		error = ENAMETOOLONG;
705 		goto err;
706 	}
707 	bp = path + MAXPATHLEN - len;
708 	memmove(bp, path, len);
709 	*(--bp) = '/';
710 
711 	cwdi = l->l_proc->p_cwdi;
712 	rw_enter(&cwdi->cwdi_lock, RW_READER);
713 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
714 	    GETCWD_CHECK_ACCESS, l);
715 	rw_exit(&cwdi->cwdi_lock);
716 
717 	if (error)
718 		goto err;
719 	tlen = path + MAXPATHLEN - bp;
720 
721 	memmove(path, bp, tlen);
722 	path[tlen - 1] = '\0';
723 	if (offs)
724 		*offs = tlen - len;
725 out:
726 	*pbp = pathbuf_assimilate(path);
727 	return 0;
728 err:
729 	PNBUF_PUT(path);
730 	return error;
731 }
732 
733 vaddr_t
734 exec_vm_minaddr(vaddr_t va_min)
735 {
736 	/*
737 	 * Increase va_min if we don't want NULL to be mappable by the
738 	 * process.
739 	 */
740 #define VM_MIN_GUARD	PAGE_SIZE
741 	if (user_va0_disable && (va_min < VM_MIN_GUARD))
742 		return VM_MIN_GUARD;
743 	return va_min;
744 }
745 
746 static int
747 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
748 	char * const *args, char * const *envs,
749 	execve_fetch_element_t fetch_element,
750 	struct execve_data * restrict data)
751 {
752 	struct exec_package	* const epp = &data->ed_pack;
753 	int			error;
754 	struct proc		*p;
755 	char			*dp;
756 	u_int			modgen;
757 
758 	KASSERT(data != NULL);
759 
760 	p = l->l_proc;
761 	modgen = 0;
762 
763 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
764 
765 	/*
766 	 * Check if we have exceeded our number of processes limit.
767 	 * This is so that we handle the case where a root daemon
768 	 * forked, ran setuid to become the desired user and is trying
769 	 * to exec. The obvious place to do the reference counting check
770 	 * is setuid(), but we don't do the reference counting check there
771 	 * like other OS's do because then all the programs that use setuid()
772 	 * must be modified to check the return code of setuid() and exit().
773 	 * It is dangerous to make setuid() fail, because it fails open and
774 	 * the program will continue to run as root. If we make it succeed
775 	 * and return an error code, again we are not enforcing the limit.
776 	 * The best place to enforce the limit is here, when the process tries
777 	 * to execute a new image, because eventually the process will need
778 	 * to call exec in order to do something useful.
779 	 */
780  retry:
781 	if (p->p_flag & PK_SUGID) {
782 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
783 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
784 		     &p->p_rlimit[RLIMIT_NPROC],
785 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
786 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
787 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
788 		return EAGAIN;
789 	}
790 
791 	/*
792 	 * Drain existing references and forbid new ones.  The process
793 	 * should be left alone until we're done here.  This is necessary
794 	 * to avoid race conditions - e.g. in ptrace() - that might allow
795 	 * a local user to illicitly obtain elevated privileges.
796 	 */
797 	rw_enter(&p->p_reflock, RW_WRITER);
798 
799 	if (has_path) {
800 		size_t	offs;
801 		/*
802 		 * Init the namei data to point the file user's program name.
803 		 * This is done here rather than in check_exec(), so that it's
804 		 * possible to override this settings if any of makecmd/probe
805 		 * functions call check_exec() recursively - for example,
806 		 * see exec_script_makecmds().
807 		 */
808 		if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
809 		    &data->ed_pathbuf, &offs)) != 0)
810 			goto clrflg;
811 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
812 		epp->ep_kname = data->ed_pathstring + offs;
813 		data->ed_resolvedname = PNBUF_GET();
814 		epp->ep_resolvedname = data->ed_resolvedname;
815 		epp->ep_xfd = -1;
816 	} else {
817 		data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
818 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
819 		epp->ep_kname = "*fexecve*";
820 		data->ed_resolvedname = NULL;
821 		epp->ep_resolvedname = NULL;
822 		epp->ep_xfd = fd;
823 	}
824 
825 
826 	/*
827 	 * initialize the fields of the exec package.
828 	 */
829 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
830 	epp->ep_hdrlen = exec_maxhdrsz;
831 	epp->ep_hdrvalid = 0;
832 	epp->ep_emul_arg = NULL;
833 	epp->ep_emul_arg_free = NULL;
834 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
835 	epp->ep_vap = &data->ed_attr;
836 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
837 	MD_TOPDOWN_INIT(epp);
838 	epp->ep_emul_root = NULL;
839 	epp->ep_interp = NULL;
840 	epp->ep_esch = NULL;
841 	epp->ep_pax_flags = 0;
842 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
843 
844 	rw_enter(&exec_lock, RW_READER);
845 
846 	/* see if we can run it. */
847 	if ((error = check_exec(l, epp, data->ed_pathbuf,
848 	    &data->ed_resolvedname)) != 0) {
849 		if (error != ENOENT && error != EACCES && error != ENOEXEC) {
850 			DPRINTF(("%s: check exec failed for %s, error %d\n",
851 			    __func__, epp->ep_kname, error));
852 		}
853 		goto freehdr;
854 	}
855 
856 	/* allocate an argument buffer */
857 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
858 	KASSERT(data->ed_argp != NULL);
859 	dp = data->ed_argp;
860 
861 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
862 		goto bad;
863 	}
864 
865 	/*
866 	 * Calculate the new stack size.
867 	 */
868 
869 #ifdef __MACHINE_STACK_GROWS_UP
870 /*
871  * copyargs() fills argc/argv/envp from the lower address even on
872  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
873  * so that _rtld() use it.
874  */
875 #define	RTLD_GAP	32
876 #else
877 #define	RTLD_GAP	0
878 #endif
879 
880 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
881 
882 	data->ed_argslen = calcargs(data, argenvstrlen);
883 
884 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
885 
886 	if (len > epp->ep_ssize) {
887 		/* in effect, compare to initial limit */
888 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
889 		error = ENOMEM;
890 		goto bad;
891 	}
892 	/* adjust "active stack depth" for process VSZ */
893 	epp->ep_ssize = len;
894 
895 	return 0;
896 
897  bad:
898 	/* free the vmspace-creation commands, and release their references */
899 	kill_vmcmds(&epp->ep_vmcmds);
900 	/* kill any opened file descriptor, if necessary */
901 	if (epp->ep_flags & EXEC_HASFD) {
902 		epp->ep_flags &= ~EXEC_HASFD;
903 		fd_close(epp->ep_fd);
904 	}
905 	/* close and put the exec'd file */
906 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
907 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
908 	vput(epp->ep_vp);
909 	pool_put(&exec_pool, data->ed_argp);
910 
911  freehdr:
912 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
913 	if (epp->ep_emul_root != NULL)
914 		vrele(epp->ep_emul_root);
915 	if (epp->ep_interp != NULL)
916 		vrele(epp->ep_interp);
917 
918 	rw_exit(&exec_lock);
919 
920 	exec_path_free(data);
921 
922  clrflg:
923 	rw_exit(&p->p_reflock);
924 
925 	if (modgen != module_gen && error == ENOEXEC) {
926 		modgen = module_gen;
927 		exec_autoload();
928 		goto retry;
929 	}
930 
931 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
932 	return error;
933 }
934 
935 static int
936 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
937 {
938 	struct exec_package	* const epp = &data->ed_pack;
939 	struct proc		*p = l->l_proc;
940 	struct exec_vmcmd	*base_vcp;
941 	int			error = 0;
942 	size_t			i;
943 
944 	/* record proc's vnode, for use by procfs and others */
945 	if (p->p_textvp)
946 		vrele(p->p_textvp);
947 	vref(epp->ep_vp);
948 	p->p_textvp = epp->ep_vp;
949 
950 	/* create the new process's VM space by running the vmcmds */
951 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
952 
953 #ifdef TRACE_EXEC
954 	DUMPVMCMDS(epp, 0, 0);
955 #endif
956 
957 	base_vcp = NULL;
958 
959 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
960 		struct exec_vmcmd *vcp;
961 
962 		vcp = &epp->ep_vmcmds.evs_cmds[i];
963 		if (vcp->ev_flags & VMCMD_RELATIVE) {
964 			KASSERTMSG(base_vcp != NULL,
965 			    "%s: relative vmcmd with no base", __func__);
966 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
967 			    "%s: illegal base & relative vmcmd", __func__);
968 			vcp->ev_addr += base_vcp->ev_addr;
969 		}
970 		error = (*vcp->ev_proc)(l, vcp);
971 		if (error)
972 			DUMPVMCMDS(epp, i, error);
973 		if (vcp->ev_flags & VMCMD_BASE)
974 			base_vcp = vcp;
975 	}
976 
977 	/* free the vmspace-creation commands, and release their references */
978 	kill_vmcmds(&epp->ep_vmcmds);
979 
980 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
981 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
982 	vput(epp->ep_vp);
983 
984 	/* if an error happened, deallocate and punt */
985 	if (error != 0) {
986 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
987 	}
988 	return error;
989 }
990 
991 static void
992 execve_free_data(struct execve_data *data)
993 {
994 	struct exec_package	* const epp = &data->ed_pack;
995 
996 	/* free the vmspace-creation commands, and release their references */
997 	kill_vmcmds(&epp->ep_vmcmds);
998 	/* kill any opened file descriptor, if necessary */
999 	if (epp->ep_flags & EXEC_HASFD) {
1000 		epp->ep_flags &= ~EXEC_HASFD;
1001 		fd_close(epp->ep_fd);
1002 	}
1003 
1004 	/* close and put the exec'd file */
1005 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
1006 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
1007 	vput(epp->ep_vp);
1008 	pool_put(&exec_pool, data->ed_argp);
1009 
1010 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1011 	if (epp->ep_emul_root != NULL)
1012 		vrele(epp->ep_emul_root);
1013 	if (epp->ep_interp != NULL)
1014 		vrele(epp->ep_interp);
1015 
1016 	exec_path_free(data);
1017 }
1018 
1019 static void
1020 pathexec(struct proc *p, const char *resolvedname)
1021 {
1022 	/* set command name & other accounting info */
1023 	const char *cmdname;
1024 
1025 	if (resolvedname == NULL) {
1026 		cmdname = "*fexecve*";
1027 		resolvedname = "/";
1028 	} else {
1029 		cmdname = strrchr(resolvedname, '/') + 1;
1030 	}
1031 	KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
1032 	    resolvedname);
1033 
1034 	strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
1035 
1036 	kmem_strfree(p->p_path);
1037 	p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
1038 }
1039 
1040 /* XXX elsewhere */
1041 static int
1042 credexec(struct lwp *l, struct vattr *attr)
1043 {
1044 	struct proc *p = l->l_proc;
1045 	int error;
1046 
1047 	/*
1048 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
1049 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
1050 	 * out additional references on the process for the moment.
1051 	 */
1052 	if ((p->p_slflag & PSL_TRACED) == 0 &&
1053 
1054 	    (((attr->va_mode & S_ISUID) != 0 &&
1055 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1056 
1057 	     ((attr->va_mode & S_ISGID) != 0 &&
1058 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1059 		/*
1060 		 * Mark the process as SUGID before we do
1061 		 * anything that might block.
1062 		 */
1063 		proc_crmod_enter();
1064 		proc_crmod_leave(NULL, NULL, true);
1065 
1066 		/* Make sure file descriptors 0..2 are in use. */
1067 		if ((error = fd_checkstd()) != 0) {
1068 			DPRINTF(("%s: fdcheckstd failed %d\n",
1069 			    __func__, error));
1070 			return error;
1071 		}
1072 
1073 		/*
1074 		 * Copy the credential so other references don't see our
1075 		 * changes.
1076 		 */
1077 		l->l_cred = kauth_cred_copy(l->l_cred);
1078 #ifdef KTRACE
1079 		/*
1080 		 * If the persistent trace flag isn't set, turn off.
1081 		 */
1082 		if (p->p_tracep) {
1083 			mutex_enter(&ktrace_lock);
1084 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1085 				ktrderef(p);
1086 			mutex_exit(&ktrace_lock);
1087 		}
1088 #endif
1089 		if (attr->va_mode & S_ISUID)
1090 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
1091 		if (attr->va_mode & S_ISGID)
1092 			kauth_cred_setegid(l->l_cred, attr->va_gid);
1093 	} else {
1094 		if (kauth_cred_geteuid(l->l_cred) ==
1095 		    kauth_cred_getuid(l->l_cred) &&
1096 		    kauth_cred_getegid(l->l_cred) ==
1097 		    kauth_cred_getgid(l->l_cred))
1098 			p->p_flag &= ~PK_SUGID;
1099 	}
1100 
1101 	/*
1102 	 * Copy the credential so other references don't see our changes.
1103 	 * Test to see if this is necessary first, since in the common case
1104 	 * we won't need a private reference.
1105 	 */
1106 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1107 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1108 		l->l_cred = kauth_cred_copy(l->l_cred);
1109 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1110 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1111 	}
1112 
1113 	/* Update the master credentials. */
1114 	if (l->l_cred != p->p_cred) {
1115 		kauth_cred_t ocred;
1116 
1117 		kauth_cred_hold(l->l_cred);
1118 		mutex_enter(p->p_lock);
1119 		ocred = p->p_cred;
1120 		p->p_cred = l->l_cred;
1121 		mutex_exit(p->p_lock);
1122 		kauth_cred_free(ocred);
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static void
1129 emulexec(struct lwp *l, struct exec_package *epp)
1130 {
1131 	struct proc		*p = l->l_proc;
1132 
1133 	/* The emulation root will usually have been found when we looked
1134 	 * for the elf interpreter (or similar), if not look now. */
1135 	if (epp->ep_esch->es_emul->e_path != NULL &&
1136 	    epp->ep_emul_root == NULL)
1137 		emul_find_root(l, epp);
1138 
1139 	/* Any old emulation root got removed by fdcloseexec */
1140 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1141 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1142 	rw_exit(&p->p_cwdi->cwdi_lock);
1143 	epp->ep_emul_root = NULL;
1144 	if (epp->ep_interp != NULL)
1145 		vrele(epp->ep_interp);
1146 
1147 	/*
1148 	 * Call emulation specific exec hook. This can setup per-process
1149 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
1150 	 *
1151 	 * If we are executing process of different emulation than the
1152 	 * original forked process, call e_proc_exit() of the old emulation
1153 	 * first, then e_proc_exec() of new emulation. If the emulation is
1154 	 * same, the exec hook code should deallocate any old emulation
1155 	 * resources held previously by this process.
1156 	 */
1157 	if (p->p_emul && p->p_emul->e_proc_exit
1158 	    && p->p_emul != epp->ep_esch->es_emul)
1159 		(*p->p_emul->e_proc_exit)(p);
1160 
1161 	/*
1162 	 * Call exec hook. Emulation code may NOT store reference to anything
1163 	 * from &pack.
1164 	 */
1165 	if (epp->ep_esch->es_emul->e_proc_exec)
1166 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1167 
1168 	/* update p_emul, the old value is no longer needed */
1169 	p->p_emul = epp->ep_esch->es_emul;
1170 
1171 	/* ...and the same for p_execsw */
1172 	p->p_execsw = epp->ep_esch;
1173 
1174 #ifdef __HAVE_SYSCALL_INTERN
1175 	(*p->p_emul->e_syscall_intern)(p);
1176 #endif
1177 	ktremul();
1178 }
1179 
1180 static int
1181 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1182 	bool no_local_exec_lock, bool is_spawn)
1183 {
1184 	struct exec_package	* const epp = &data->ed_pack;
1185 	int error = 0;
1186 	struct proc		*p;
1187 	struct vmspace		*vm;
1188 
1189 	/*
1190 	 * In case of a posix_spawn operation, the child doing the exec
1191 	 * might not hold the reader lock on exec_lock, but the parent
1192 	 * will do this instead.
1193 	 */
1194 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1195 	KASSERT(!no_local_exec_lock || is_spawn);
1196 	KASSERT(data != NULL);
1197 
1198 	p = l->l_proc;
1199 
1200 	/* Get rid of other LWPs. */
1201 	if (p->p_nlwps > 1) {
1202 		mutex_enter(p->p_lock);
1203 		exit_lwps(l);
1204 		mutex_exit(p->p_lock);
1205 	}
1206 	KDASSERT(p->p_nlwps == 1);
1207 
1208 	/*
1209 	 * All of the other LWPs got rid of their robust futexes
1210 	 * when they exited above, but we might still have some
1211 	 * to dispose of.  Do that now.
1212 	 */
1213 	if (__predict_false(l->l_robust_head != 0)) {
1214 		futex_release_all_lwp(l);
1215 		/*
1216 		 * Since this LWP will live on with a different
1217 		 * program image, we need to clear the robust
1218 		 * futex list pointer here.
1219 		 */
1220 		l->l_robust_head = 0;
1221 	}
1222 
1223 	/* Destroy any lwpctl info. */
1224 	if (p->p_lwpctl != NULL)
1225 		lwp_ctl_exit();
1226 
1227 	/* Remove POSIX timers */
1228 	ptimers_free(p, TIMERS_POSIX);
1229 
1230 	/* Set the PaX flags. */
1231 	pax_set_flags(epp, p);
1232 
1233 	/*
1234 	 * Do whatever is necessary to prepare the address space
1235 	 * for remapping.  Note that this might replace the current
1236 	 * vmspace with another!
1237 	 *
1238 	 * vfork(): do not touch any user space data in the new child
1239 	 * until we have awoken the parent below, or it will defeat
1240 	 * lazy pmap switching (on x86).
1241 	 */
1242 	if (is_spawn)
1243 		uvmspace_spawn(l, epp->ep_vm_minaddr,
1244 		    epp->ep_vm_maxaddr,
1245 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1246 	else
1247 		uvmspace_exec(l, epp->ep_vm_minaddr,
1248 		    epp->ep_vm_maxaddr,
1249 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1250 	vm = p->p_vmspace;
1251 
1252 	vm->vm_taddr = (void *)epp->ep_taddr;
1253 	vm->vm_tsize = btoc(epp->ep_tsize);
1254 	vm->vm_daddr = (void*)epp->ep_daddr;
1255 	vm->vm_dsize = btoc(epp->ep_dsize);
1256 	vm->vm_ssize = btoc(epp->ep_ssize);
1257 	vm->vm_issize = 0;
1258 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1259 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1260 
1261 	pax_aslr_init_vm(l, vm, epp);
1262 
1263 	cwdexec(p);
1264 	fd_closeexec();		/* handle close on exec */
1265 
1266 	if (__predict_false(ktrace_on))
1267 		fd_ktrexecfd();
1268 
1269 	execsigs(p);		/* reset caught signals */
1270 
1271 	mutex_enter(p->p_lock);
1272 	l->l_ctxlink = NULL;	/* reset ucontext link */
1273 	p->p_acflag &= ~AFORK;
1274 	p->p_flag |= PK_EXEC;
1275 	mutex_exit(p->p_lock);
1276 
1277 	error = credexec(l, &data->ed_attr);
1278 	if (error)
1279 		goto exec_abort;
1280 
1281 #if defined(__HAVE_RAS)
1282 	/*
1283 	 * Remove all RASs from the address space.
1284 	 */
1285 	ras_purgeall();
1286 #endif
1287 
1288 	/*
1289 	 * Stop profiling.
1290 	 */
1291 	if ((p->p_stflag & PST_PROFIL) != 0) {
1292 		mutex_spin_enter(&p->p_stmutex);
1293 		stopprofclock(p);
1294 		mutex_spin_exit(&p->p_stmutex);
1295 	}
1296 
1297 	/*
1298 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1299 	 * exited and exec()/exit() are the only places it will be cleared.
1300 	 *
1301 	 * Once the parent has been awoken, curlwp may teleport to a new CPU
1302 	 * in sched_vforkexec(), and it's then OK to start messing with user
1303 	 * data.  See comment above.
1304 	 */
1305 	if ((p->p_lflag & PL_PPWAIT) != 0) {
1306 		bool samecpu;
1307 		lwp_t *lp;
1308 
1309 		mutex_enter(&proc_lock);
1310 		lp = p->p_vforklwp;
1311 		p->p_vforklwp = NULL;
1312 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1313 		cv_broadcast(&lp->l_waitcv);
1314 
1315 		/* Clear flags after cv_broadcast() (scheduler needs them). */
1316 		p->p_lflag &= ~PL_PPWAIT;
1317 		lp->l_vforkwaiting = false;
1318 
1319 		/* If parent is still on same CPU, teleport curlwp elsewhere. */
1320 		samecpu = (lp->l_cpu == curlwp->l_cpu);
1321 		mutex_exit(&proc_lock);
1322 
1323 		/* Give the parent its CPU back - find a new home. */
1324 		KASSERT(!is_spawn);
1325 		sched_vforkexec(l, samecpu);
1326 	}
1327 
1328 	/* Now map address space. */
1329 	error = execve_dovmcmds(l, data);
1330 	if (error != 0)
1331 		goto exec_abort;
1332 
1333 	pathexec(p, epp->ep_resolvedname);
1334 
1335 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1336 
1337 	error = copyoutargs(data, l, newstack);
1338 	if (error != 0)
1339 		goto exec_abort;
1340 
1341 	doexechooks(p);
1342 
1343 	/*
1344 	 * Set initial SP at the top of the stack.
1345 	 *
1346 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
1347 	 * the end of arg/env strings.  Userland guesses the address of argc
1348 	 * via ps_strings::ps_argvstr.
1349 	 */
1350 
1351 	/* Setup new registers and do misc. setup. */
1352 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1353 	if (epp->ep_esch->es_setregs)
1354 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1355 
1356 	/* Provide a consistent LWP private setting */
1357 	(void)lwp_setprivate(l, NULL);
1358 
1359 	/* Discard all PCU state; need to start fresh */
1360 	pcu_discard_all(l);
1361 
1362 	/* map the process's signal trampoline code */
1363 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1364 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1365 		goto exec_abort;
1366 	}
1367 
1368 	pool_put(&exec_pool, data->ed_argp);
1369 
1370 	/*
1371 	 * Notify anyone who might care that we've exec'd.
1372 	 *
1373 	 * This is slightly racy; someone could sneak in and
1374 	 * attach a knote after we've decided not to notify,
1375 	 * or vice-versa, but that's not particularly bothersome.
1376 	 * knote_proc_exec() will acquire p->p_lock as needed.
1377 	 */
1378 	if (!SLIST_EMPTY(&p->p_klist)) {
1379 		knote_proc_exec(p);
1380 	}
1381 
1382 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1383 
1384 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1385 
1386 	emulexec(l, epp);
1387 
1388 	/* Allow new references from the debugger/procfs. */
1389 	rw_exit(&p->p_reflock);
1390 	if (!no_local_exec_lock)
1391 		rw_exit(&exec_lock);
1392 
1393 	mutex_enter(&proc_lock);
1394 
1395 	/* posix_spawn(3) reports a single event with implied exec(3) */
1396 	if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1397 		mutex_enter(p->p_lock);
1398 		eventswitch(TRAP_EXEC, 0, 0);
1399 		mutex_enter(&proc_lock);
1400 	}
1401 
1402 	if (p->p_sflag & PS_STOPEXEC) {
1403 		ksiginfoq_t kq;
1404 
1405 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1406 		p->p_pptr->p_nstopchild++;
1407 		p->p_waited = 0;
1408 		mutex_enter(p->p_lock);
1409 		ksiginfo_queue_init(&kq);
1410 		sigclearall(p, &contsigmask, &kq);
1411 		lwp_lock(l);
1412 		l->l_stat = LSSTOP;
1413 		p->p_stat = SSTOP;
1414 		p->p_nrlwps--;
1415 		lwp_unlock(l);
1416 		mutex_exit(p->p_lock);
1417 		mutex_exit(&proc_lock);
1418 		lwp_lock(l);
1419 		spc_lock(l->l_cpu);
1420 		mi_switch(l);
1421 		ksiginfo_queue_drain(&kq);
1422 	} else {
1423 		mutex_exit(&proc_lock);
1424 	}
1425 
1426 	exec_path_free(data);
1427 #ifdef TRACE_EXEC
1428 	DPRINTF(("%s finished\n", __func__));
1429 #endif
1430 	return EJUSTRETURN;
1431 
1432  exec_abort:
1433 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1434 	rw_exit(&p->p_reflock);
1435 	if (!no_local_exec_lock)
1436 		rw_exit(&exec_lock);
1437 
1438 	exec_path_free(data);
1439 
1440 	/*
1441 	 * the old process doesn't exist anymore.  exit gracefully.
1442 	 * get rid of the (new) address space we have created, if any, get rid
1443 	 * of our namei data and vnode, and exit noting failure
1444 	 */
1445 	if (vm != NULL) {
1446 		uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1447 			VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1448 	}
1449 
1450 	exec_free_emul_arg(epp);
1451 	pool_put(&exec_pool, data->ed_argp);
1452 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1453 	if (epp->ep_emul_root != NULL)
1454 		vrele(epp->ep_emul_root);
1455 	if (epp->ep_interp != NULL)
1456 		vrele(epp->ep_interp);
1457 
1458 	/* Acquire the sched-state mutex (exit1() will release it). */
1459 	if (!is_spawn) {
1460 		mutex_enter(p->p_lock);
1461 		exit1(l, error, SIGABRT);
1462 	}
1463 
1464 	return error;
1465 }
1466 
1467 int
1468 execve1(struct lwp *l, bool has_path, const char *path, int fd,
1469     char * const *args, char * const *envs,
1470     execve_fetch_element_t fetch_element)
1471 {
1472 	struct execve_data data;
1473 	int error;
1474 
1475 	error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
1476 	    &data);
1477 	if (error)
1478 		return error;
1479 	error = execve_runproc(l, &data, false, false);
1480 	return error;
1481 }
1482 
1483 static size_t
1484 fromptrsz(const struct exec_package *epp)
1485 {
1486 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1487 }
1488 
1489 static size_t
1490 ptrsz(const struct exec_package *epp)
1491 {
1492 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1493 }
1494 
1495 static size_t
1496 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1497 {
1498 	struct exec_package	* const epp = &data->ed_pack;
1499 
1500 	const size_t nargenvptrs =
1501 	    1 +				/* long argc */
1502 	    data->ed_argc +		/* char *argv[] */
1503 	    1 +				/* \0 */
1504 	    data->ed_envc +		/* char *env[] */
1505 	    1;				/* \0 */
1506 
1507 	return (nargenvptrs * ptrsz(epp))	/* pointers */
1508 	    + argenvstrlen			/* strings */
1509 	    + epp->ep_esch->es_arglen;		/* auxinfo */
1510 }
1511 
1512 static size_t
1513 calcstack(struct execve_data * restrict data, const size_t gaplen)
1514 {
1515 	struct exec_package	* const epp = &data->ed_pack;
1516 
1517 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1518 	    epp->ep_esch->es_emul->e_sigcode;
1519 
1520 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1521 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1522 
1523 	const size_t sigcode_psstr_sz =
1524 	    data->ed_szsigcode +	/* sigcode */
1525 	    data->ed_ps_strings_sz +	/* ps_strings */
1526 	    STACK_PTHREADSPACE;		/* pthread space */
1527 
1528 	const size_t stacklen =
1529 	    data->ed_argslen +
1530 	    gaplen +
1531 	    sigcode_psstr_sz;
1532 
1533 	/* make the stack "safely" aligned */
1534 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1535 }
1536 
1537 static int
1538 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1539     char * const newstack)
1540 {
1541 	struct exec_package	* const epp = &data->ed_pack;
1542 	struct proc		*p = l->l_proc;
1543 	int			error;
1544 
1545 	memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1546 
1547 	/* remember information about the process */
1548 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
1549 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
1550 
1551 	/*
1552 	 * Allocate the stack address passed to the newly execve()'ed process.
1553 	 *
1554 	 * The new stack address will be set to the SP (stack pointer) register
1555 	 * in setregs().
1556 	 */
1557 
1558 	char *newargs = STACK_ALLOC(
1559 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1560 
1561 	error = (*epp->ep_esch->es_copyargs)(l, epp,
1562 	    &data->ed_arginfo, &newargs, data->ed_argp);
1563 
1564 	if (error) {
1565 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1566 		return error;
1567 	}
1568 
1569 	error = copyoutpsstrs(data, p);
1570 	if (error != 0)
1571 		return error;
1572 
1573 	return 0;
1574 }
1575 
1576 static int
1577 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1578 {
1579 	struct exec_package	* const epp = &data->ed_pack;
1580 	struct ps_strings32	arginfo32;
1581 	void			*aip;
1582 	int			error;
1583 
1584 	/* fill process ps_strings info */
1585 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1586 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1587 
1588 	if (epp->ep_flags & EXEC_32) {
1589 		aip = &arginfo32;
1590 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1591 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1592 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1593 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1594 	} else
1595 		aip = &data->ed_arginfo;
1596 
1597 	/* copy out the process's ps_strings structure */
1598 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1599 	    != 0) {
1600 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1601 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1602 		return error;
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 static int
1609 copyinargs(struct execve_data * restrict data, char * const *args,
1610     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1611 {
1612 	struct exec_package	* const epp = &data->ed_pack;
1613 	char			*dp;
1614 	size_t			i;
1615 	int			error;
1616 
1617 	dp = *dpp;
1618 
1619 	data->ed_argc = 0;
1620 
1621 	/* copy the fake args list, if there's one, freeing it as we go */
1622 	if (epp->ep_flags & EXEC_HASARGL) {
1623 		struct exec_fakearg	*fa = epp->ep_fa;
1624 
1625 		while (fa->fa_arg != NULL) {
1626 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1627 			size_t len;
1628 
1629 			len = strlcpy(dp, fa->fa_arg, maxlen);
1630 			/* Count NUL into len. */
1631 			if (len < maxlen)
1632 				len++;
1633 			else {
1634 				while (fa->fa_arg != NULL) {
1635 					kmem_free(fa->fa_arg, fa->fa_len);
1636 					fa++;
1637 				}
1638 				kmem_free(epp->ep_fa, epp->ep_fa_len);
1639 				epp->ep_flags &= ~EXEC_HASARGL;
1640 				return E2BIG;
1641 			}
1642 			ktrexecarg(fa->fa_arg, len - 1);
1643 			dp += len;
1644 
1645 			kmem_free(fa->fa_arg, fa->fa_len);
1646 			fa++;
1647 			data->ed_argc++;
1648 		}
1649 		kmem_free(epp->ep_fa, epp->ep_fa_len);
1650 		epp->ep_flags &= ~EXEC_HASARGL;
1651 	}
1652 
1653 	/*
1654 	 * Read and count argument strings from user.
1655 	 */
1656 
1657 	if (args == NULL) {
1658 		DPRINTF(("%s: null args\n", __func__));
1659 		return EINVAL;
1660 	}
1661 	if (epp->ep_flags & EXEC_SKIPARG)
1662 		args = (const void *)((const char *)args + fromptrsz(epp));
1663 	i = 0;
1664 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1665 	if (error != 0) {
1666 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
1667 		return error;
1668 	}
1669 	data->ed_argc += i;
1670 
1671 	/*
1672 	 * Read and count environment strings from user.
1673 	 */
1674 
1675 	data->ed_envc = 0;
1676 	/* environment need not be there */
1677 	if (envs == NULL)
1678 		goto done;
1679 	i = 0;
1680 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1681 	if (error != 0) {
1682 		DPRINTF(("%s: copyin env %d\n", __func__, error));
1683 		return error;
1684 	}
1685 	data->ed_envc += i;
1686 
1687 done:
1688 	*dpp = dp;
1689 
1690 	return 0;
1691 }
1692 
1693 static int
1694 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1695     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1696     void (*ktr)(const void *, size_t))
1697 {
1698 	char			*dp, *sp;
1699 	size_t			i;
1700 	int			error;
1701 
1702 	dp = *dpp;
1703 
1704 	i = 0;
1705 	while (1) {
1706 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1707 		size_t len;
1708 
1709 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1710 			return error;
1711 		}
1712 		if (!sp)
1713 			break;
1714 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1715 			if (error == ENAMETOOLONG)
1716 				error = E2BIG;
1717 			return error;
1718 		}
1719 		if (__predict_false(ktrace_on))
1720 			(*ktr)(dp, len - 1);
1721 		dp += len;
1722 		i++;
1723 	}
1724 
1725 	*dpp = dp;
1726 	*ip = i;
1727 
1728 	return 0;
1729 }
1730 
1731 /*
1732  * Copy argv and env strings from kernel buffer (argp) to the new stack.
1733  * Those strings are located just after auxinfo.
1734  */
1735 int
1736 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1737     char **stackp, void *argp)
1738 {
1739 	char	**cpp, *dp, *sp;
1740 	size_t	len;
1741 	void	*nullp;
1742 	long	argc, envc;
1743 	int	error;
1744 
1745 	cpp = (char **)*stackp;
1746 	nullp = NULL;
1747 	argc = arginfo->ps_nargvstr;
1748 	envc = arginfo->ps_nenvstr;
1749 
1750 	/* argc on stack is long */
1751 	CTASSERT(sizeof(*cpp) == sizeof(argc));
1752 
1753 	dp = (char *)(cpp +
1754 	    1 +				/* long argc */
1755 	    argc +			/* char *argv[] */
1756 	    1 +				/* \0 */
1757 	    envc +			/* char *env[] */
1758 	    1) +			/* \0 */
1759 	    pack->ep_esch->es_arglen;	/* auxinfo */
1760 	sp = argp;
1761 
1762 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1763 		COPYPRINTF("", cpp - 1, sizeof(argc));
1764 		return error;
1765 	}
1766 
1767 	/* XXX don't copy them out, remap them! */
1768 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1769 
1770 	for (; --argc >= 0; sp += len, dp += len) {
1771 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1772 			COPYPRINTF("", cpp - 1, sizeof(dp));
1773 			return error;
1774 		}
1775 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1776 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1777 			return error;
1778 		}
1779 	}
1780 
1781 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1782 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1783 		return error;
1784 	}
1785 
1786 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
1787 
1788 	for (; --envc >= 0; sp += len, dp += len) {
1789 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1790 			COPYPRINTF("", cpp - 1, sizeof(dp));
1791 			return error;
1792 		}
1793 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1794 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1795 			return error;
1796 		}
1797 
1798 	}
1799 
1800 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1801 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1802 		return error;
1803 	}
1804 
1805 	*stackp = (char *)cpp;
1806 	return 0;
1807 }
1808 
1809 
1810 /*
1811  * Add execsw[] entries.
1812  */
1813 int
1814 exec_add(struct execsw *esp, int count)
1815 {
1816 	struct exec_entry	*it;
1817 	int			i;
1818 
1819 	if (count == 0) {
1820 		return 0;
1821 	}
1822 
1823 	/* Check for duplicates. */
1824 	rw_enter(&exec_lock, RW_WRITER);
1825 	for (i = 0; i < count; i++) {
1826 		LIST_FOREACH(it, &ex_head, ex_list) {
1827 			/* assume unique (makecmds, probe_func, emulation) */
1828 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1829 			    it->ex_sw->u.elf_probe_func ==
1830 			    esp[i].u.elf_probe_func &&
1831 			    it->ex_sw->es_emul == esp[i].es_emul) {
1832 				rw_exit(&exec_lock);
1833 				return EEXIST;
1834 			}
1835 		}
1836 	}
1837 
1838 	/* Allocate new entries. */
1839 	for (i = 0; i < count; i++) {
1840 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
1841 		it->ex_sw = &esp[i];
1842 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
1843 	}
1844 
1845 	/* update execsw[] */
1846 	exec_init(0);
1847 	rw_exit(&exec_lock);
1848 	return 0;
1849 }
1850 
1851 /*
1852  * Remove execsw[] entry.
1853  */
1854 int
1855 exec_remove(struct execsw *esp, int count)
1856 {
1857 	struct exec_entry	*it, *next;
1858 	int			i;
1859 	const struct proclist_desc *pd;
1860 	proc_t			*p;
1861 
1862 	if (count == 0) {
1863 		return 0;
1864 	}
1865 
1866 	/* Abort if any are busy. */
1867 	rw_enter(&exec_lock, RW_WRITER);
1868 	for (i = 0; i < count; i++) {
1869 		mutex_enter(&proc_lock);
1870 		for (pd = proclists; pd->pd_list != NULL; pd++) {
1871 			PROCLIST_FOREACH(p, pd->pd_list) {
1872 				if (p->p_execsw == &esp[i]) {
1873 					mutex_exit(&proc_lock);
1874 					rw_exit(&exec_lock);
1875 					return EBUSY;
1876 				}
1877 			}
1878 		}
1879 		mutex_exit(&proc_lock);
1880 	}
1881 
1882 	/* None are busy, so remove them all. */
1883 	for (i = 0; i < count; i++) {
1884 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1885 			next = LIST_NEXT(it, ex_list);
1886 			if (it->ex_sw == &esp[i]) {
1887 				LIST_REMOVE(it, ex_list);
1888 				kmem_free(it, sizeof(*it));
1889 				break;
1890 			}
1891 		}
1892 	}
1893 
1894 	/* update execsw[] */
1895 	exec_init(0);
1896 	rw_exit(&exec_lock);
1897 	return 0;
1898 }
1899 
1900 /*
1901  * Initialize exec structures. If init_boot is true, also does necessary
1902  * one-time initialization (it's called from main() that way).
1903  * Once system is multiuser, this should be called with exec_lock held,
1904  * i.e. via exec_{add|remove}().
1905  */
1906 int
1907 exec_init(int init_boot)
1908 {
1909 	const struct execsw 	**sw;
1910 	struct exec_entry	*ex;
1911 	SLIST_HEAD(,exec_entry)	first;
1912 	SLIST_HEAD(,exec_entry)	any;
1913 	SLIST_HEAD(,exec_entry)	last;
1914 	int			i, sz;
1915 
1916 	if (init_boot) {
1917 		/* do one-time initializations */
1918 		vaddr_t vmin = 0, vmax;
1919 
1920 		rw_init(&exec_lock);
1921 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1922 		exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1923 		    maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1924 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1925 		    "execargs", &exec_palloc, IPL_NONE);
1926 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1927 	} else {
1928 		KASSERT(rw_write_held(&exec_lock));
1929 	}
1930 
1931 	/* Sort each entry onto the appropriate queue. */
1932 	SLIST_INIT(&first);
1933 	SLIST_INIT(&any);
1934 	SLIST_INIT(&last);
1935 	sz = 0;
1936 	LIST_FOREACH(ex, &ex_head, ex_list) {
1937 		switch(ex->ex_sw->es_prio) {
1938 		case EXECSW_PRIO_FIRST:
1939 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
1940 			break;
1941 		case EXECSW_PRIO_ANY:
1942 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
1943 			break;
1944 		case EXECSW_PRIO_LAST:
1945 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
1946 			break;
1947 		default:
1948 			panic("%s", __func__);
1949 			break;
1950 		}
1951 		sz++;
1952 	}
1953 
1954 	/*
1955 	 * Create new execsw[].  Ensure we do not try a zero-sized
1956 	 * allocation.
1957 	 */
1958 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1959 	i = 0;
1960 	SLIST_FOREACH(ex, &first, ex_slist) {
1961 		sw[i++] = ex->ex_sw;
1962 	}
1963 	SLIST_FOREACH(ex, &any, ex_slist) {
1964 		sw[i++] = ex->ex_sw;
1965 	}
1966 	SLIST_FOREACH(ex, &last, ex_slist) {
1967 		sw[i++] = ex->ex_sw;
1968 	}
1969 
1970 	/* Replace old execsw[] and free used memory. */
1971 	if (execsw != NULL) {
1972 		kmem_free(__UNCONST(execsw),
1973 		    nexecs * sizeof(struct execsw *) + 1);
1974 	}
1975 	execsw = sw;
1976 	nexecs = sz;
1977 
1978 	/* Figure out the maximum size of an exec header. */
1979 	exec_maxhdrsz = sizeof(int);
1980 	for (i = 0; i < nexecs; i++) {
1981 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1982 			exec_maxhdrsz = execsw[i]->es_hdrsz;
1983 	}
1984 
1985 	return 0;
1986 }
1987 
1988 static int
1989 exec_sigcode_map(struct proc *p, const struct emul *e)
1990 {
1991 	vaddr_t va;
1992 	vsize_t sz;
1993 	int error;
1994 	struct uvm_object *uobj;
1995 
1996 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1997 
1998 	if (e->e_sigobject == NULL || sz == 0) {
1999 		return 0;
2000 	}
2001 
2002 	/*
2003 	 * If we don't have a sigobject for this emulation, create one.
2004 	 *
2005 	 * sigobject is an anonymous memory object (just like SYSV shared
2006 	 * memory) that we keep a permanent reference to and that we map
2007 	 * in all processes that need this sigcode. The creation is simple,
2008 	 * we create an object, add a permanent reference to it, map it in
2009 	 * kernel space, copy out the sigcode to it and unmap it.
2010 	 * We map it with PROT_READ|PROT_EXEC into the process just
2011 	 * the way sys_mmap() would map it.
2012 	 */
2013 
2014 	uobj = *e->e_sigobject;
2015 	if (uobj == NULL) {
2016 		mutex_enter(&sigobject_lock);
2017 		if ((uobj = *e->e_sigobject) == NULL) {
2018 			uobj = uao_create(sz, 0);
2019 			(*uobj->pgops->pgo_reference)(uobj);
2020 			va = vm_map_min(kernel_map);
2021 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
2022 			    uobj, 0, 0,
2023 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
2024 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
2025 				printf("kernel mapping failed %d\n", error);
2026 				(*uobj->pgops->pgo_detach)(uobj);
2027 				mutex_exit(&sigobject_lock);
2028 				return error;
2029 			}
2030 			memcpy((void *)va, e->e_sigcode, sz);
2031 #ifdef PMAP_NEED_PROCWR
2032 			pmap_procwr(&proc0, va, sz);
2033 #endif
2034 			uvm_unmap(kernel_map, va, va + round_page(sz));
2035 			*e->e_sigobject = uobj;
2036 		}
2037 		mutex_exit(&sigobject_lock);
2038 	}
2039 
2040 	/* Just a hint to uvm_map where to put it. */
2041 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
2042 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
2043 
2044 #ifdef __alpha__
2045 	/*
2046 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
2047 	 * which causes the above calculation to put the sigcode at
2048 	 * an invalid address.  Put it just below the text instead.
2049 	 */
2050 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
2051 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
2052 	}
2053 #endif
2054 
2055 	(*uobj->pgops->pgo_reference)(uobj);
2056 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
2057 			uobj, 0, 0,
2058 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
2059 				    UVM_ADV_RANDOM, 0));
2060 	if (error) {
2061 		DPRINTF(("%s, %d: map %p "
2062 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
2063 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
2064 		    va, error));
2065 		(*uobj->pgops->pgo_detach)(uobj);
2066 		return error;
2067 	}
2068 	p->p_sigctx.ps_sigcode = (void *)va;
2069 	return 0;
2070 }
2071 
2072 /*
2073  * Release a refcount on spawn_exec_data and destroy memory, if this
2074  * was the last one.
2075  */
2076 static void
2077 spawn_exec_data_release(struct spawn_exec_data *data)
2078 {
2079 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2080 		return;
2081 
2082 	cv_destroy(&data->sed_cv_child_ready);
2083 	mutex_destroy(&data->sed_mtx_child);
2084 
2085 	if (data->sed_actions)
2086 		posix_spawn_fa_free(data->sed_actions,
2087 		    data->sed_actions->len);
2088 	if (data->sed_attrs)
2089 		kmem_free(data->sed_attrs,
2090 		    sizeof(*data->sed_attrs));
2091 	kmem_free(data, sizeof(*data));
2092 }
2093 
2094 static int
2095 handle_posix_spawn_file_actions(struct posix_spawn_file_actions *actions)
2096 {
2097 	struct lwp *l = curlwp;
2098 	register_t retval;
2099 	int error, newfd;
2100 
2101 	if (actions == NULL)
2102 		return 0;
2103 
2104 	for (size_t i = 0; i < actions->len; i++) {
2105 		const struct posix_spawn_file_actions_entry *fae =
2106 		    &actions->fae[i];
2107 		switch (fae->fae_action) {
2108 		case FAE_OPEN:
2109 			if (fd_getfile(fae->fae_fildes) != NULL) {
2110 				error = fd_close(fae->fae_fildes);
2111 				if (error)
2112 					return error;
2113 			}
2114 			error = fd_open(fae->fae_path, fae->fae_oflag,
2115 			    fae->fae_mode, &newfd);
2116 			if (error)
2117 				return error;
2118 			if (newfd != fae->fae_fildes) {
2119 				error = dodup(l, newfd,
2120 				    fae->fae_fildes, 0, &retval);
2121 				if (fd_getfile(newfd) != NULL)
2122 					fd_close(newfd);
2123 			}
2124 			break;
2125 		case FAE_DUP2:
2126 			error = dodup(l, fae->fae_fildes,
2127 			    fae->fae_newfildes, 0, &retval);
2128 			break;
2129 		case FAE_CLOSE:
2130 			if (fd_getfile(fae->fae_fildes) == NULL) {
2131 				return EBADF;
2132 			}
2133 			error = fd_close(fae->fae_fildes);
2134 			break;
2135 		}
2136 		if (error)
2137 			return error;
2138 	}
2139 	return 0;
2140 }
2141 
2142 static int
2143 handle_posix_spawn_attrs(struct posix_spawnattr *attrs, struct proc *parent)
2144 {
2145 	struct sigaction sigact;
2146 	int error;
2147 	struct proc *p = curproc;
2148 	struct lwp *l = curlwp;
2149 
2150 	if (attrs == NULL)
2151 		return 0;
2152 
2153 	memset(&sigact, 0, sizeof(sigact));
2154 	sigact._sa_u._sa_handler = SIG_DFL;
2155 	sigact.sa_flags = 0;
2156 
2157 	/*
2158 	 * set state to SSTOP so that this proc can be found by pid.
2159 	 * see proc_enterprp, do_sched_setparam below
2160 	 */
2161 	mutex_enter(&proc_lock);
2162 	/*
2163 	 * p_stat should be SACTIVE, so we need to adjust the
2164 	 * parent's p_nstopchild here.  For safety, just make
2165 	 * we're on the good side of SDEAD before we adjust.
2166 	 */
2167 	int ostat = p->p_stat;
2168 	KASSERT(ostat < SSTOP);
2169 	p->p_stat = SSTOP;
2170 	p->p_waited = 0;
2171 	p->p_pptr->p_nstopchild++;
2172 	mutex_exit(&proc_lock);
2173 
2174 	/* Set process group */
2175 	if (attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2176 		pid_t mypid = p->p_pid;
2177 		pid_t pgrp = attrs->sa_pgroup;
2178 
2179 		if (pgrp == 0)
2180 			pgrp = mypid;
2181 
2182 		error = proc_enterpgrp(parent, mypid, pgrp, false);
2183 		if (error)
2184 			goto out;
2185 	}
2186 
2187 	/* Set scheduler policy */
2188 	if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2189 		error = do_sched_setparam(p->p_pid, 0, attrs->sa_schedpolicy,
2190 		    &attrs->sa_schedparam);
2191 	else if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDPARAM) {
2192 		error = do_sched_setparam(parent->p_pid, 0,
2193 		    SCHED_NONE, &attrs->sa_schedparam);
2194 	}
2195 	if (error)
2196 		goto out;
2197 
2198 	/* Reset user ID's */
2199 	if (attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2200 		error = do_setresgid(l, -1, kauth_cred_getgid(l->l_cred), -1,
2201 		     ID_E_EQ_R | ID_E_EQ_S);
2202 		if (error)
2203 			return error;
2204 		error = do_setresuid(l, -1, kauth_cred_getuid(l->l_cred), -1,
2205 		    ID_E_EQ_R | ID_E_EQ_S);
2206 		if (error)
2207 			goto out;
2208 	}
2209 
2210 	/* Set signal masks/defaults */
2211 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2212 		mutex_enter(p->p_lock);
2213 		error = sigprocmask1(l, SIG_SETMASK, &attrs->sa_sigmask, NULL);
2214 		mutex_exit(p->p_lock);
2215 		if (error)
2216 			goto out;
2217 	}
2218 
2219 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2220 		/*
2221 		 * The following sigaction call is using a sigaction
2222 		 * version 0 trampoline which is in the compatibility
2223 		 * code only. This is not a problem because for SIG_DFL
2224 		 * and SIG_IGN, the trampolines are now ignored. If they
2225 		 * were not, this would be a problem because we are
2226 		 * holding the exec_lock, and the compat code needs
2227 		 * to do the same in order to replace the trampoline
2228 		 * code of the process.
2229 		 */
2230 		for (int i = 1; i <= NSIG; i++) {
2231 			if (sigismember(&attrs->sa_sigdefault, i))
2232 				sigaction1(l, i, &sigact, NULL, NULL, 0);
2233 		}
2234 	}
2235 	error = 0;
2236 out:
2237 	mutex_enter(&proc_lock);
2238 	p->p_stat = ostat;
2239 	p->p_pptr->p_nstopchild--;
2240 	mutex_exit(&proc_lock);
2241 	return error;
2242 }
2243 
2244 /*
2245  * A child lwp of a posix_spawn operation starts here and ends up in
2246  * cpu_spawn_return, dealing with all filedescriptor and scheduler
2247  * manipulations in between.
2248  * The parent waits for the child, as it is not clear whether the child
2249  * will be able to acquire its own exec_lock. If it can, the parent can
2250  * be released early and continue running in parallel. If not (or if the
2251  * magic debug flag is passed in the scheduler attribute struct), the
2252  * child rides on the parent's exec lock until it is ready to return to
2253  * to userland - and only then releases the parent. This method loses
2254  * concurrency, but improves error reporting.
2255  */
2256 static void
2257 spawn_return(void *arg)
2258 {
2259 	struct spawn_exec_data *spawn_data = arg;
2260 	struct lwp *l = curlwp;
2261 	struct proc *p = l->l_proc;
2262 	int error;
2263 	bool have_reflock;
2264 	bool parent_is_waiting = true;
2265 
2266 	/*
2267 	 * Check if we can release parent early.
2268 	 * We either need to have no sed_attrs, or sed_attrs does not
2269 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2270 	 * safe access to the parent proc (passed in sed_parent).
2271 	 * We then try to get the exec_lock, and only if that works, we can
2272 	 * release the parent here already.
2273 	 */
2274 	struct posix_spawnattr *attrs = spawn_data->sed_attrs;
2275 	if ((!attrs || (attrs->sa_flags
2276 		& (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2277 	    && rw_tryenter(&exec_lock, RW_READER)) {
2278 		parent_is_waiting = false;
2279 		mutex_enter(&spawn_data->sed_mtx_child);
2280 		cv_signal(&spawn_data->sed_cv_child_ready);
2281 		mutex_exit(&spawn_data->sed_mtx_child);
2282 	}
2283 
2284 	/* don't allow debugger access yet */
2285 	rw_enter(&p->p_reflock, RW_WRITER);
2286 	have_reflock = true;
2287 
2288 	/* handle posix_spawnattr */
2289 	error = handle_posix_spawn_attrs(attrs, spawn_data->sed_parent);
2290 	if (error)
2291 		goto report_error;
2292 
2293 	/* handle posix_spawn_file_actions */
2294 	error = handle_posix_spawn_file_actions(spawn_data->sed_actions);
2295 	if (error)
2296 		goto report_error;
2297 
2298 	/* now do the real exec */
2299 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2300 	    true);
2301 	have_reflock = false;
2302 	if (error == EJUSTRETURN)
2303 		error = 0;
2304 	else if (error)
2305 		goto report_error;
2306 
2307 	if (parent_is_waiting) {
2308 		mutex_enter(&spawn_data->sed_mtx_child);
2309 		cv_signal(&spawn_data->sed_cv_child_ready);
2310 		mutex_exit(&spawn_data->sed_mtx_child);
2311 	}
2312 
2313 	/* release our refcount on the data */
2314 	spawn_exec_data_release(spawn_data);
2315 
2316 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
2317 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
2318 		eventswitchchild(p, TRAP_CHLD, PTRACE_POSIX_SPAWN);
2319 	}
2320 
2321 	/* and finally: leave to userland for the first time */
2322 	cpu_spawn_return(l);
2323 
2324 	/* NOTREACHED */
2325 	return;
2326 
2327  report_error:
2328 	if (have_reflock) {
2329 		/*
2330 		 * We have not passed through execve_runproc(),
2331 		 * which would have released the p_reflock and also
2332 		 * taken ownership of the sed_exec part of spawn_data,
2333 		 * so release/free both here.
2334 		 */
2335 		rw_exit(&p->p_reflock);
2336 		execve_free_data(&spawn_data->sed_exec);
2337 	}
2338 
2339 	if (parent_is_waiting) {
2340 		/* pass error to parent */
2341 		mutex_enter(&spawn_data->sed_mtx_child);
2342 		spawn_data->sed_error = error;
2343 		cv_signal(&spawn_data->sed_cv_child_ready);
2344 		mutex_exit(&spawn_data->sed_mtx_child);
2345 	} else {
2346 		rw_exit(&exec_lock);
2347 	}
2348 
2349 	/* release our refcount on the data */
2350 	spawn_exec_data_release(spawn_data);
2351 
2352 	/* done, exit */
2353 	mutex_enter(p->p_lock);
2354 	/*
2355 	 * Posix explicitly asks for an exit code of 127 if we report
2356 	 * errors from the child process - so, unfortunately, there
2357 	 * is no way to report a more exact error code.
2358 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2359 	 * flag bit in the attrp argument to posix_spawn(2), see above.
2360 	 */
2361 	exit1(l, 127, 0);
2362 }
2363 
2364 void
2365 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2366 {
2367 
2368 	for (size_t i = 0; i < len; i++) {
2369 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2370 		if (fae->fae_action != FAE_OPEN)
2371 			continue;
2372 		kmem_strfree(fae->fae_path);
2373 	}
2374 	if (fa->len > 0)
2375 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2376 	kmem_free(fa, sizeof(*fa));
2377 }
2378 
2379 static int
2380 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2381     const struct posix_spawn_file_actions *ufa, rlim_t lim)
2382 {
2383 	struct posix_spawn_file_actions *fa;
2384 	struct posix_spawn_file_actions_entry *fae;
2385 	char *pbuf = NULL;
2386 	int error;
2387 	size_t i = 0;
2388 
2389 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2390 	error = copyin(ufa, fa, sizeof(*fa));
2391 	if (error || fa->len == 0) {
2392 		kmem_free(fa, sizeof(*fa));
2393 		return error;	/* 0 if not an error, and len == 0 */
2394 	}
2395 
2396 	if (fa->len > lim) {
2397 		kmem_free(fa, sizeof(*fa));
2398 		return EINVAL;
2399 	}
2400 
2401 	fa->size = fa->len;
2402 	size_t fal = fa->len * sizeof(*fae);
2403 	fae = fa->fae;
2404 	fa->fae = kmem_alloc(fal, KM_SLEEP);
2405 	error = copyin(fae, fa->fae, fal);
2406 	if (error)
2407 		goto out;
2408 
2409 	pbuf = PNBUF_GET();
2410 	for (; i < fa->len; i++) {
2411 		fae = &fa->fae[i];
2412 		if (fae->fae_action != FAE_OPEN)
2413 			continue;
2414 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2415 		if (error)
2416 			goto out;
2417 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2418 		memcpy(fae->fae_path, pbuf, fal);
2419 	}
2420 	PNBUF_PUT(pbuf);
2421 
2422 	*fap = fa;
2423 	return 0;
2424 out:
2425 	if (pbuf)
2426 		PNBUF_PUT(pbuf);
2427 	posix_spawn_fa_free(fa, i);
2428 	return error;
2429 }
2430 
2431 /*
2432  * N.B. increments nprocs upon success.  Callers need to drop nprocs if
2433  * they fail for some other reason.
2434  */
2435 int
2436 check_posix_spawn(struct lwp *l1)
2437 {
2438 	int error, tnprocs, count;
2439 	uid_t uid;
2440 	struct proc *p1;
2441 
2442 	p1 = l1->l_proc;
2443 	uid = kauth_cred_getuid(l1->l_cred);
2444 	tnprocs = atomic_inc_uint_nv(&nprocs);
2445 
2446 	/*
2447 	 * Although process entries are dynamically created, we still keep
2448 	 * a global limit on the maximum number we will create.
2449 	 */
2450 	if (__predict_false(tnprocs >= maxproc))
2451 		error = -1;
2452 	else
2453 		error = kauth_authorize_process(l1->l_cred,
2454 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2455 
2456 	if (error) {
2457 		atomic_dec_uint(&nprocs);
2458 		return EAGAIN;
2459 	}
2460 
2461 	/*
2462 	 * Enforce limits.
2463 	 */
2464 	count = chgproccnt(uid, 1);
2465 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2466 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2467 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2468 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2469 		(void)chgproccnt(uid, -1);
2470 		atomic_dec_uint(&nprocs);
2471 		return EAGAIN;
2472 	}
2473 
2474 	return 0;
2475 }
2476 
2477 int
2478 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2479 	struct posix_spawn_file_actions *fa,
2480 	struct posix_spawnattr *sa,
2481 	char *const *argv, char *const *envp,
2482 	execve_fetch_element_t fetch)
2483 {
2484 
2485 	struct proc *p1, *p2;
2486 	struct lwp *l2;
2487 	int error;
2488 	struct spawn_exec_data *spawn_data;
2489 	vaddr_t uaddr;
2490 	pid_t pid;
2491 	bool have_exec_lock = false;
2492 
2493 	p1 = l1->l_proc;
2494 
2495 	/* Allocate and init spawn_data */
2496 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2497 	spawn_data->sed_refcnt = 1; /* only parent so far */
2498 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2499 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2500 	mutex_enter(&spawn_data->sed_mtx_child);
2501 
2502 	/*
2503 	 * Do the first part of the exec now, collect state
2504 	 * in spawn_data.
2505 	 */
2506 	error = execve_loadvm(l1, true, path, -1, argv,
2507 	    envp, fetch, &spawn_data->sed_exec);
2508 	if (error == EJUSTRETURN)
2509 		error = 0;
2510 	else if (error)
2511 		goto error_exit;
2512 
2513 	have_exec_lock = true;
2514 
2515 	/*
2516 	 * Allocate virtual address space for the U-area now, while it
2517 	 * is still easy to abort the fork operation if we're out of
2518 	 * kernel virtual address space.
2519 	 */
2520 	uaddr = uvm_uarea_alloc();
2521 	if (__predict_false(uaddr == 0)) {
2522 		error = ENOMEM;
2523 		goto error_exit;
2524 	}
2525 
2526 	/*
2527 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
2528 	 * replace it with its own before returning to userland
2529 	 * in the child.
2530 	 */
2531 	p2 = proc_alloc();
2532 	if (p2 == NULL) {
2533 		/* We were unable to allocate a process ID. */
2534 		error = EAGAIN;
2535 		goto error_exit;
2536 	}
2537 
2538 	/*
2539 	 * This is a point of no return, we will have to go through
2540 	 * the child proc to properly clean it up past this point.
2541 	 */
2542 	pid = p2->p_pid;
2543 
2544 	/*
2545 	 * Make a proc table entry for the new process.
2546 	 * Start by zeroing the section of proc that is zero-initialized,
2547 	 * then copy the section that is copied directly from the parent.
2548 	 */
2549 	memset(&p2->p_startzero, 0,
2550 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2551 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
2552 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2553 	p2->p_vmspace = proc0.p_vmspace;
2554 
2555 	TAILQ_INIT(&p2->p_sigpend.sp_info);
2556 
2557 	LIST_INIT(&p2->p_lwps);
2558 	LIST_INIT(&p2->p_sigwaiters);
2559 
2560 	/*
2561 	 * Duplicate sub-structures as needed.
2562 	 * Increase reference counts on shared objects.
2563 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
2564 	 * handling are important in order to keep a consistent behaviour
2565 	 * for the child after the fork.  If we are a 32-bit process, the
2566 	 * child will be too.
2567 	 */
2568 	p2->p_flag =
2569 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2570 	p2->p_emul = p1->p_emul;
2571 	p2->p_execsw = p1->p_execsw;
2572 
2573 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2574 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2575 	rw_init(&p2->p_reflock);
2576 	cv_init(&p2->p_waitcv, "wait");
2577 	cv_init(&p2->p_lwpcv, "lwpwait");
2578 
2579 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2580 
2581 	kauth_proc_fork(p1, p2);
2582 
2583 	p2->p_raslist = NULL;
2584 	p2->p_fd = fd_copy();
2585 
2586 	/* XXX racy */
2587 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2588 
2589 	p2->p_cwdi = cwdinit();
2590 
2591 	/*
2592 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2593 	 * we just need increase pl_refcnt.
2594 	 */
2595 	if (!p1->p_limit->pl_writeable) {
2596 		lim_addref(p1->p_limit);
2597 		p2->p_limit = p1->p_limit;
2598 	} else {
2599 		p2->p_limit = lim_copy(p1->p_limit);
2600 	}
2601 
2602 	p2->p_lflag = 0;
2603 	l1->l_vforkwaiting = false;
2604 	p2->p_sflag = 0;
2605 	p2->p_slflag = 0;
2606 	p2->p_pptr = p1;
2607 	p2->p_ppid = p1->p_pid;
2608 	LIST_INIT(&p2->p_children);
2609 
2610 	p2->p_aio = NULL;
2611 
2612 #ifdef KTRACE
2613 	/*
2614 	 * Copy traceflag and tracefile if enabled.
2615 	 * If not inherited, these were zeroed above.
2616 	 */
2617 	if (p1->p_traceflag & KTRFAC_INHERIT) {
2618 		mutex_enter(&ktrace_lock);
2619 		p2->p_traceflag = p1->p_traceflag;
2620 		if ((p2->p_tracep = p1->p_tracep) != NULL)
2621 			ktradref(p2);
2622 		mutex_exit(&ktrace_lock);
2623 	}
2624 #endif
2625 
2626 	/*
2627 	 * Create signal actions for the child process.
2628 	 */
2629 	p2->p_sigacts = sigactsinit(p1, 0);
2630 	mutex_enter(p1->p_lock);
2631 	p2->p_sflag |=
2632 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2633 	sched_proc_fork(p1, p2);
2634 	mutex_exit(p1->p_lock);
2635 
2636 	p2->p_stflag = p1->p_stflag;
2637 
2638 	/*
2639 	 * p_stats.
2640 	 * Copy parts of p_stats, and zero out the rest.
2641 	 */
2642 	p2->p_stats = pstatscopy(p1->p_stats);
2643 
2644 	/* copy over machdep flags to the new proc */
2645 	cpu_proc_fork(p1, p2);
2646 
2647 	/*
2648 	 * Prepare remaining parts of spawn data
2649 	 */
2650 	spawn_data->sed_actions = fa;
2651 	spawn_data->sed_attrs = sa;
2652 
2653 	spawn_data->sed_parent = p1;
2654 
2655 	/* create LWP */
2656 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2657 	    &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2658 	l2->l_ctxlink = NULL;	/* reset ucontext link */
2659 
2660 	/*
2661 	 * Copy the credential so other references don't see our changes.
2662 	 * Test to see if this is necessary first, since in the common case
2663 	 * we won't need a private reference.
2664 	 */
2665 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2666 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2667 		l2->l_cred = kauth_cred_copy(l2->l_cred);
2668 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2669 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2670 	}
2671 
2672 	/* Update the master credentials. */
2673 	if (l2->l_cred != p2->p_cred) {
2674 		kauth_cred_t ocred;
2675 
2676 		kauth_cred_hold(l2->l_cred);
2677 		mutex_enter(p2->p_lock);
2678 		ocred = p2->p_cred;
2679 		p2->p_cred = l2->l_cred;
2680 		mutex_exit(p2->p_lock);
2681 		kauth_cred_free(ocred);
2682 	}
2683 
2684 	*child_ok = true;
2685 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
2686 #if 0
2687 	l2->l_nopreempt = 1; /* start it non-preemptable */
2688 #endif
2689 
2690 	/*
2691 	 * It's now safe for the scheduler and other processes to see the
2692 	 * child process.
2693 	 */
2694 	mutex_enter(&proc_lock);
2695 
2696 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2697 		p2->p_lflag |= PL_CONTROLT;
2698 
2699 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2700 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
2701 
2702 	if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2703 	    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2704 		proc_changeparent(p2, p1->p_pptr);
2705 		SET(p2->p_slflag, PSL_TRACEDCHILD);
2706 	}
2707 
2708 	p2->p_oppid = p1->p_pid;  /* Remember the original parent id. */
2709 
2710 	LIST_INSERT_AFTER(p1, p2, p_pglist);
2711 	LIST_INSERT_HEAD(&allproc, p2, p_list);
2712 
2713 	p2->p_trace_enabled = trace_is_enabled(p2);
2714 #ifdef __HAVE_SYSCALL_INTERN
2715 	(*p2->p_emul->e_syscall_intern)(p2);
2716 #endif
2717 
2718 	/*
2719 	 * Make child runnable, set start time, and add to run queue except
2720 	 * if the parent requested the child to start in SSTOP state.
2721 	 */
2722 	mutex_enter(p2->p_lock);
2723 
2724 	getmicrotime(&p2->p_stats->p_start);
2725 
2726 	lwp_lock(l2);
2727 	KASSERT(p2->p_nrlwps == 1);
2728 	KASSERT(l2->l_stat == LSIDL);
2729 	p2->p_nrlwps = 1;
2730 	p2->p_stat = SACTIVE;
2731 	setrunnable(l2);
2732 	/* LWP now unlocked */
2733 
2734 	mutex_exit(p2->p_lock);
2735 	mutex_exit(&proc_lock);
2736 
2737 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2738 	error = spawn_data->sed_error;
2739 	mutex_exit(&spawn_data->sed_mtx_child);
2740 	spawn_exec_data_release(spawn_data);
2741 
2742 	rw_exit(&p1->p_reflock);
2743 	rw_exit(&exec_lock);
2744 	have_exec_lock = false;
2745 
2746 	*pid_res = pid;
2747 
2748 	if (error)
2749 		return error;
2750 
2751 	if (p1->p_slflag & PSL_TRACED) {
2752 		/* Paranoid check */
2753 		mutex_enter(&proc_lock);
2754 		if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2755 		    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2756 			mutex_exit(&proc_lock);
2757 			return 0;
2758 		}
2759 
2760 		mutex_enter(p1->p_lock);
2761 		eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
2762 	}
2763 	return 0;
2764 
2765  error_exit:
2766 	if (have_exec_lock) {
2767 		execve_free_data(&spawn_data->sed_exec);
2768 		rw_exit(&p1->p_reflock);
2769 		rw_exit(&exec_lock);
2770 	}
2771 	mutex_exit(&spawn_data->sed_mtx_child);
2772 	spawn_exec_data_release(spawn_data);
2773 
2774 	return error;
2775 }
2776 
2777 int
2778 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2779     register_t *retval)
2780 {
2781 	/* {
2782 		syscallarg(pid_t *) pid;
2783 		syscallarg(const char *) path;
2784 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
2785 		syscallarg(const struct posix_spawnattr *) attrp;
2786 		syscallarg(char *const *) argv;
2787 		syscallarg(char *const *) envp;
2788 	} */
2789 
2790 	int error;
2791 	struct posix_spawn_file_actions *fa = NULL;
2792 	struct posix_spawnattr *sa = NULL;
2793 	pid_t pid;
2794 	bool child_ok = false;
2795 	rlim_t max_fileactions;
2796 	proc_t *p = l1->l_proc;
2797 
2798 	/* check_posix_spawn() increments nprocs for us. */
2799 	error = check_posix_spawn(l1);
2800 	if (error) {
2801 		*retval = error;
2802 		return 0;
2803 	}
2804 
2805 	/* copy in file_actions struct */
2806 	if (SCARG(uap, file_actions) != NULL) {
2807 		max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2808 		    maxfiles);
2809 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2810 		    max_fileactions);
2811 		if (error)
2812 			goto error_exit;
2813 	}
2814 
2815 	/* copyin posix_spawnattr struct */
2816 	if (SCARG(uap, attrp) != NULL) {
2817 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2818 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2819 		if (error)
2820 			goto error_exit;
2821 	}
2822 
2823 	/*
2824 	 * Do the spawn
2825 	 */
2826 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2827 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2828 	if (error)
2829 		goto error_exit;
2830 
2831 	if (error == 0 && SCARG(uap, pid) != NULL)
2832 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2833 
2834 	*retval = error;
2835 	return 0;
2836 
2837  error_exit:
2838 	if (!child_ok) {
2839 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2840 		atomic_dec_uint(&nprocs);
2841 
2842 		if (sa)
2843 			kmem_free(sa, sizeof(*sa));
2844 		if (fa)
2845 			posix_spawn_fa_free(fa, fa->len);
2846 	}
2847 
2848 	*retval = error;
2849 	return 0;
2850 }
2851 
2852 void
2853 exec_free_emul_arg(struct exec_package *epp)
2854 {
2855 	if (epp->ep_emul_arg_free != NULL) {
2856 		KASSERT(epp->ep_emul_arg != NULL);
2857 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2858 		epp->ep_emul_arg_free = NULL;
2859 		epp->ep_emul_arg = NULL;
2860 	} else {
2861 		KASSERT(epp->ep_emul_arg == NULL);
2862 	}
2863 }
2864 
2865 #ifdef DEBUG_EXEC
2866 static void
2867 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2868 {
2869 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2870 	size_t j;
2871 
2872 	if (error == 0)
2873 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2874 	else
2875 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2876 		    epp->ep_vmcmds.evs_used, error));
2877 
2878 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2879 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2880 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2881 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
2882 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
2883 		    "pagedvn" :
2884 		    vp[j].ev_proc == vmcmd_map_readvn ?
2885 		    "readvn" :
2886 		    vp[j].ev_proc == vmcmd_map_zero ?
2887 		    "zero" : "*unknown*",
2888 		    vp[j].ev_addr, vp[j].ev_len,
2889 		    vp[j].ev_offset, vp[j].ev_prot,
2890 		    vp[j].ev_flags));
2891 		if (error != 0 && j == x)
2892 			DPRINTF(("     ^--- failed\n"));
2893 	}
2894 }
2895 #endif
2896