xref: /netbsd/sys/kern/kern_exec.c (revision 82dd682f)
1 /*	$NetBSD: kern_exec.c,v 1.495 2020/04/06 08:20:05 kamil Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
34  * Copyright (C) 1992 Wolfgang Solfrank.
35  * Copyright (C) 1992 TooLs GmbH.
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by TooLs GmbH.
49  * 4. The name of TooLs GmbH may not be used to endorse or promote products
50  *    derived from this software without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
57  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
58  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
59  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
60  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
61  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.495 2020/04/06 08:20:05 kamil Exp $");
66 
67 #include "opt_exec.h"
68 #include "opt_execfmt.h"
69 #include "opt_ktrace.h"
70 #include "opt_modular.h"
71 #include "opt_syscall_debug.h"
72 #include "veriexec.h"
73 #include "opt_pax.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/ptrace.h>
81 #include <sys/mount.h>
82 #include <sys/kmem.h>
83 #include <sys/namei.h>
84 #include <sys/vnode.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/acct.h>
88 #include <sys/atomic.h>
89 #include <sys/exec.h>
90 #include <sys/ktrace.h>
91 #include <sys/uidinfo.h>
92 #include <sys/wait.h>
93 #include <sys/mman.h>
94 #include <sys/ras.h>
95 #include <sys/signalvar.h>
96 #include <sys/stat.h>
97 #include <sys/syscall.h>
98 #include <sys/kauth.h>
99 #include <sys/lwpctl.h>
100 #include <sys/pax.h>
101 #include <sys/cpu.h>
102 #include <sys/module.h>
103 #include <sys/syscallvar.h>
104 #include <sys/syscallargs.h>
105 #if NVERIEXEC > 0
106 #include <sys/verified_exec.h>
107 #endif /* NVERIEXEC > 0 */
108 #include <sys/sdt.h>
109 #include <sys/spawn.h>
110 #include <sys/prot.h>
111 #include <sys/cprng.h>
112 
113 #include <uvm/uvm_extern.h>
114 
115 #include <machine/reg.h>
116 
117 #include <compat/common/compat_util.h>
118 
119 #ifndef MD_TOPDOWN_INIT
120 #ifdef __USE_TOPDOWN_VM
121 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
122 #else
123 #define	MD_TOPDOWN_INIT(epp)
124 #endif
125 #endif
126 
127 struct execve_data;
128 
129 extern int user_va0_disable;
130 
131 static size_t calcargs(struct execve_data * restrict, const size_t);
132 static size_t calcstack(struct execve_data * restrict, const size_t);
133 static int copyoutargs(struct execve_data * restrict, struct lwp *,
134     char * const);
135 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
136 static int copyinargs(struct execve_data * restrict, char * const *,
137     char * const *, execve_fetch_element_t, char **);
138 static int copyinargstrs(struct execve_data * restrict, char * const *,
139     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
140 static int exec_sigcode_map(struct proc *, const struct emul *);
141 
142 #if defined(DEBUG) && !defined(DEBUG_EXEC)
143 #define DEBUG_EXEC
144 #endif
145 #ifdef DEBUG_EXEC
146 #define DPRINTF(a) printf a
147 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
148     __LINE__, (s), (a), (b))
149 static void dump_vmcmds(const struct exec_package * const, size_t, int);
150 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
151 #else
152 #define DPRINTF(a)
153 #define COPYPRINTF(s, a, b)
154 #define DUMPVMCMDS(p, x, e) do {} while (0)
155 #endif /* DEBUG_EXEC */
156 
157 /*
158  * DTrace SDT provider definitions
159  */
160 SDT_PROVIDER_DECLARE(proc);
161 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
162 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
163 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
164 
165 /*
166  * Exec function switch:
167  *
168  * Note that each makecmds function is responsible for loading the
169  * exec package with the necessary functions for any exec-type-specific
170  * handling.
171  *
172  * Functions for specific exec types should be defined in their own
173  * header file.
174  */
175 static const struct execsw	**execsw = NULL;
176 static int			nexecs;
177 
178 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
179 
180 /* list of dynamically loaded execsw entries */
181 static LIST_HEAD(execlist_head, exec_entry) ex_head =
182     LIST_HEAD_INITIALIZER(ex_head);
183 struct exec_entry {
184 	LIST_ENTRY(exec_entry)	ex_list;
185 	SLIST_ENTRY(exec_entry)	ex_slist;
186 	const struct execsw	*ex_sw;
187 };
188 
189 #ifndef __HAVE_SYSCALL_INTERN
190 void	syscall(void);
191 #endif
192 
193 /* NetBSD autoloadable syscalls */
194 #ifdef MODULAR
195 #include <kern/syscalls_autoload.c>
196 #endif
197 
198 /* NetBSD emul struct */
199 struct emul emul_netbsd = {
200 	.e_name =		"netbsd",
201 #ifdef EMUL_NATIVEROOT
202 	.e_path =		EMUL_NATIVEROOT,
203 #else
204 	.e_path =		NULL,
205 #endif
206 #ifndef __HAVE_MINIMAL_EMUL
207 	.e_flags =		EMUL_HAS_SYS___syscall,
208 	.e_errno =		NULL,
209 	.e_nosys =		SYS_syscall,
210 	.e_nsysent =		SYS_NSYSENT,
211 #endif
212 #ifdef MODULAR
213 	.e_sc_autoload =	netbsd_syscalls_autoload,
214 #endif
215 	.e_sysent =		sysent,
216 	.e_nomodbits =		sysent_nomodbits,
217 #ifdef SYSCALL_DEBUG
218 	.e_syscallnames =	syscallnames,
219 #else
220 	.e_syscallnames =	NULL,
221 #endif
222 	.e_sendsig =		sendsig,
223 	.e_trapsignal =		trapsignal,
224 	.e_sigcode =		NULL,
225 	.e_esigcode =		NULL,
226 	.e_sigobject =		NULL,
227 	.e_setregs =		setregs,
228 	.e_proc_exec =		NULL,
229 	.e_proc_fork =		NULL,
230 	.e_proc_exit =		NULL,
231 	.e_lwp_fork =		NULL,
232 	.e_lwp_exit =		NULL,
233 #ifdef __HAVE_SYSCALL_INTERN
234 	.e_syscall_intern =	syscall_intern,
235 #else
236 	.e_syscall =		syscall,
237 #endif
238 	.e_sysctlovly =		NULL,
239 	.e_vm_default_addr =	uvm_default_mapaddr,
240 	.e_usertrap =		NULL,
241 	.e_ucsize =		sizeof(ucontext_t),
242 	.e_startlwp =		startlwp
243 };
244 
245 /*
246  * Exec lock. Used to control access to execsw[] structures.
247  * This must not be static so that netbsd32 can access it, too.
248  */
249 krwlock_t exec_lock __cacheline_aligned;
250 
251 static kmutex_t sigobject_lock __cacheline_aligned;
252 
253 /*
254  * Data used between a loadvm and execve part of an "exec" operation
255  */
256 struct execve_data {
257 	struct exec_package	ed_pack;
258 	struct pathbuf		*ed_pathbuf;
259 	struct vattr		ed_attr;
260 	struct ps_strings	ed_arginfo;
261 	char			*ed_argp;
262 	const char		*ed_pathstring;
263 	char			*ed_resolvedname;
264 	size_t			ed_ps_strings_sz;
265 	int			ed_szsigcode;
266 	size_t			ed_argslen;
267 	long			ed_argc;
268 	long			ed_envc;
269 };
270 
271 /*
272  * data passed from parent lwp to child during a posix_spawn()
273  */
274 struct spawn_exec_data {
275 	struct execve_data	sed_exec;
276 	struct posix_spawn_file_actions
277 				*sed_actions;
278 	struct posix_spawnattr	*sed_attrs;
279 	struct proc		*sed_parent;
280 	kcondvar_t		sed_cv_child_ready;
281 	kmutex_t		sed_mtx_child;
282 	int			sed_error;
283 	volatile uint32_t	sed_refcnt;
284 };
285 
286 static struct vm_map *exec_map;
287 static struct pool exec_pool;
288 
289 static void *
290 exec_pool_alloc(struct pool *pp, int flags)
291 {
292 
293 	return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
294 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
295 }
296 
297 static void
298 exec_pool_free(struct pool *pp, void *addr)
299 {
300 
301 	uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
302 }
303 
304 static struct pool_allocator exec_palloc = {
305 	.pa_alloc = exec_pool_alloc,
306 	.pa_free = exec_pool_free,
307 	.pa_pagesz = NCARGS
308 };
309 
310 static void
311 exec_path_free(struct execve_data *data)
312 {
313 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
314 	pathbuf_destroy(data->ed_pathbuf);
315 	if (data->ed_resolvedname)
316 		PNBUF_PUT(data->ed_resolvedname);
317 }
318 
319 static int
320 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
321     char **rpath)
322 {
323 	int error;
324 	char *p;
325 
326 	KASSERT(rpath != NULL);
327 
328 	*rpath = PNBUF_GET();
329 	error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
330 	if (error) {
331 		DPRINTF(("%s: can't resolve name for %s, error %d\n",
332 		    __func__, epp->ep_kname, error));
333 		PNBUF_PUT(*rpath);
334 		*rpath = NULL;
335 		return error;
336 	}
337 	epp->ep_resolvedname = *rpath;
338 	if ((p = strrchr(*rpath, '/')) != NULL)
339 		epp->ep_kname = p + 1;
340 	return 0;
341 }
342 
343 
344 /*
345  * check exec:
346  * given an "executable" described in the exec package's namei info,
347  * see what we can do with it.
348  *
349  * ON ENTRY:
350  *	exec package with appropriate namei info
351  *	lwp pointer of exec'ing lwp
352  *	NO SELF-LOCKED VNODES
353  *
354  * ON EXIT:
355  *	error:	nothing held, etc.  exec header still allocated.
356  *	ok:	filled exec package, executable's vnode (unlocked).
357  *
358  * EXEC SWITCH ENTRY:
359  * 	Locked vnode to check, exec package, proc.
360  *
361  * EXEC SWITCH EXIT:
362  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
363  *	error:	destructive:
364  *			everything deallocated execept exec header.
365  *		non-destructive:
366  *			error code, executable's vnode (unlocked),
367  *			exec header unmodified.
368  */
369 int
370 /*ARGSUSED*/
371 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
372     char **rpath)
373 {
374 	int		error, i;
375 	struct vnode	*vp;
376 	size_t		resid;
377 
378 	if (epp->ep_resolvedname) {
379 		struct nameidata nd;
380 
381 		// grab the absolute pathbuf here before namei() trashes it.
382 		pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
383 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
384 
385 		/* first get the vnode */
386 		if ((error = namei(&nd)) != 0)
387 			return error;
388 
389 		epp->ep_vp = vp = nd.ni_vp;
390 #ifdef DIAGNOSTIC
391 		/* paranoia (take this out once namei stuff stabilizes) */
392 		memset(nd.ni_pnbuf, '~', PATH_MAX);
393 #endif
394 	} else {
395 		struct file *fp;
396 
397 		if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
398 			return error;
399 		epp->ep_vp = vp = fp->f_vnode;
400 		vref(vp);
401 		fd_putfile(epp->ep_xfd);
402 		if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
403 			return error;
404 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
405 	}
406 
407 	/* check access and type */
408 	if (vp->v_type != VREG) {
409 		error = EACCES;
410 		goto bad1;
411 	}
412 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
413 		goto bad1;
414 
415 	/* get attributes */
416 	/* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
417 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
418 		goto bad1;
419 
420 	/* Check mount point */
421 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
422 		error = EACCES;
423 		goto bad1;
424 	}
425 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
426 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
427 
428 	/* try to open it */
429 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
430 		goto bad1;
431 
432 	/* now we have the file, get the exec header */
433 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
434 			UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
435 	if (error)
436 		goto bad1;
437 
438 	/* unlock vp, since we need it unlocked from here on out. */
439 	VOP_UNLOCK(vp);
440 
441 #if NVERIEXEC > 0
442 	error = veriexec_verify(l, vp,
443 	    epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
444 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
445 	    NULL);
446 	if (error)
447 		goto bad2;
448 #endif /* NVERIEXEC > 0 */
449 
450 #ifdef PAX_SEGVGUARD
451 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
452 	if (error)
453 		goto bad2;
454 #endif /* PAX_SEGVGUARD */
455 
456 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
457 
458 	/*
459 	 * Set up default address space limits.  Can be overridden
460 	 * by individual exec packages.
461 	 */
462 	epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
463 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
464 
465 	/*
466 	 * set up the vmcmds for creation of the process
467 	 * address space
468 	 */
469 	error = ENOEXEC;
470 	for (i = 0; i < nexecs; i++) {
471 		int newerror;
472 
473 		epp->ep_esch = execsw[i];
474 		newerror = (*execsw[i]->es_makecmds)(l, epp);
475 
476 		if (!newerror) {
477 			/* Seems ok: check that entry point is not too high */
478 			if (epp->ep_entry >= epp->ep_vm_maxaddr) {
479 #ifdef DIAGNOSTIC
480 				printf("%s: rejecting %p due to "
481 				    "too high entry address (>= %p)\n",
482 					 __func__, (void *)epp->ep_entry,
483 					 (void *)epp->ep_vm_maxaddr);
484 #endif
485 				error = ENOEXEC;
486 				break;
487 			}
488 			/* Seems ok: check that entry point is not too low */
489 			if (epp->ep_entry < epp->ep_vm_minaddr) {
490 #ifdef DIAGNOSTIC
491 				printf("%s: rejecting %p due to "
492 				    "too low entry address (< %p)\n",
493 				     __func__, (void *)epp->ep_entry,
494 				     (void *)epp->ep_vm_minaddr);
495 #endif
496 				error = ENOEXEC;
497 				break;
498 			}
499 
500 			/* check limits */
501 			if ((epp->ep_tsize > MAXTSIZ) ||
502 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
503 						    [RLIMIT_DATA].rlim_cur)) {
504 #ifdef DIAGNOSTIC
505 				printf("%s: rejecting due to "
506 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
507 				    __func__,
508 				    (unsigned long long)epp->ep_tsize,
509 				    (unsigned long long)MAXTSIZ,
510 				    (unsigned long long)epp->ep_dsize,
511 				    (unsigned long long)
512 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
513 #endif
514 				error = ENOMEM;
515 				break;
516 			}
517 			return 0;
518 		}
519 
520 		/*
521 		 * Reset all the fields that may have been modified by the
522 		 * loader.
523 		 */
524 		KASSERT(epp->ep_emul_arg == NULL);
525 		if (epp->ep_emul_root != NULL) {
526 			vrele(epp->ep_emul_root);
527 			epp->ep_emul_root = NULL;
528 		}
529 		if (epp->ep_interp != NULL) {
530 			vrele(epp->ep_interp);
531 			epp->ep_interp = NULL;
532 		}
533 		epp->ep_pax_flags = 0;
534 
535 		/* make sure the first "interesting" error code is saved. */
536 		if (error == ENOEXEC)
537 			error = newerror;
538 
539 		if (epp->ep_flags & EXEC_DESTR)
540 			/* Error from "#!" code, tidied up by recursive call */
541 			return error;
542 	}
543 
544 	/* not found, error */
545 
546 	/*
547 	 * free any vmspace-creation commands,
548 	 * and release their references
549 	 */
550 	kill_vmcmds(&epp->ep_vmcmds);
551 
552 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
553 bad2:
554 #endif
555 	/*
556 	 * close and release the vnode, restore the old one, free the
557 	 * pathname buf, and punt.
558 	 */
559 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
560 	VOP_CLOSE(vp, FREAD, l->l_cred);
561 	vput(vp);
562 	return error;
563 
564 bad1:
565 	/*
566 	 * free the namei pathname buffer, and put the vnode
567 	 * (which we don't yet have open).
568 	 */
569 	vput(vp);				/* was still locked */
570 	return error;
571 }
572 
573 #ifdef __MACHINE_STACK_GROWS_UP
574 #define STACK_PTHREADSPACE NBPG
575 #else
576 #define STACK_PTHREADSPACE 0
577 #endif
578 
579 static int
580 execve_fetch_element(char * const *array, size_t index, char **value)
581 {
582 	return copyin(array + index, value, sizeof(*value));
583 }
584 
585 /*
586  * exec system call
587  */
588 int
589 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
590 {
591 	/* {
592 		syscallarg(const char *)	path;
593 		syscallarg(char * const *)	argp;
594 		syscallarg(char * const *)	envp;
595 	} */
596 
597 	return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
598 	    SCARG(uap, envp), execve_fetch_element);
599 }
600 
601 int
602 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
603     register_t *retval)
604 {
605 	/* {
606 		syscallarg(int)			fd;
607 		syscallarg(char * const *)	argp;
608 		syscallarg(char * const *)	envp;
609 	} */
610 
611 	return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
612 	    SCARG(uap, envp), execve_fetch_element);
613 }
614 
615 /*
616  * Load modules to try and execute an image that we do not understand.
617  * If no execsw entries are present, we load those likely to be needed
618  * in order to run native images only.  Otherwise, we autoload all
619  * possible modules that could let us run the binary.  XXX lame
620  */
621 static void
622 exec_autoload(void)
623 {
624 #ifdef MODULAR
625 	static const char * const native[] = {
626 		"exec_elf32",
627 		"exec_elf64",
628 		"exec_script",
629 		NULL
630 	};
631 	static const char * const compat[] = {
632 		"exec_elf32",
633 		"exec_elf64",
634 		"exec_script",
635 		"exec_aout",
636 		"exec_coff",
637 		"exec_ecoff",
638 		"compat_aoutm68k",
639 		"compat_netbsd32",
640 #if 0
641 		"compat_linux",
642 		"compat_linux32",
643 #endif
644 		"compat_sunos",
645 		"compat_sunos32",
646 		"compat_ultrix",
647 		NULL
648 	};
649 	char const * const *list;
650 	int i;
651 
652 	list = nexecs == 0 ? native : compat;
653 	for (i = 0; list[i] != NULL; i++) {
654 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
655 			continue;
656 		}
657 		yield();
658 	}
659 #endif
660 }
661 
662 /*
663  * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
664  * making it absolute in the process, by prepending the current working
665  * directory if it is not. If offs is supplied it will contain the offset
666  * where the original supplied copy of upath starts.
667  */
668 int
669 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
670     struct pathbuf **pbp, size_t *offs)
671 {
672 	char *path, *bp;
673 	size_t len, tlen;
674 	int error;
675 	struct vnode *dvp;
676 
677 	path = PNBUF_GET();
678 	if (seg == UIO_SYSSPACE) {
679 		error = copystr(upath, path, MAXPATHLEN, &len);
680 	} else {
681 		error = copyinstr(upath, path, MAXPATHLEN, &len);
682 	}
683 	if (error)
684 		goto err;
685 
686 	if (path[0] == '/') {
687 		if (offs)
688 			*offs = 0;
689 		goto out;
690 	}
691 
692 	len++;
693 	if (len + 1 >= MAXPATHLEN) {
694 		error = ENAMETOOLONG;
695 		goto err;
696 	}
697 	bp = path + MAXPATHLEN - len;
698 	memmove(bp, path, len);
699 	*(--bp) = '/';
700 
701 	dvp = cwdcdir();
702 	error = getcwd_common(dvp, NULL, &bp, path, MAXPATHLEN / 2,
703 	    GETCWD_CHECK_ACCESS, l);
704 	vrele(dvp);
705 
706 	if (error)
707 		goto err;
708 	tlen = path + MAXPATHLEN - bp;
709 
710 	memmove(path, bp, tlen);
711 	path[tlen - 1] = '\0';
712 	if (offs)
713 		*offs = tlen - len;
714 out:
715 	*pbp = pathbuf_assimilate(path);
716 	return 0;
717 err:
718 	PNBUF_PUT(path);
719 	return error;
720 }
721 
722 vaddr_t
723 exec_vm_minaddr(vaddr_t va_min)
724 {
725 	/*
726 	 * Increase va_min if we don't want NULL to be mappable by the
727 	 * process.
728 	 */
729 #define VM_MIN_GUARD	PAGE_SIZE
730 	if (user_va0_disable && (va_min < VM_MIN_GUARD))
731 		return VM_MIN_GUARD;
732 	return va_min;
733 }
734 
735 static int
736 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
737 	char * const *args, char * const *envs,
738 	execve_fetch_element_t fetch_element,
739 	struct execve_data * restrict data)
740 {
741 	struct exec_package	* const epp = &data->ed_pack;
742 	int			error;
743 	struct proc		*p;
744 	char			*dp;
745 	u_int			modgen;
746 
747 	KASSERT(data != NULL);
748 
749 	p = l->l_proc;
750 	modgen = 0;
751 
752 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
753 
754 	/*
755 	 * Check if we have exceeded our number of processes limit.
756 	 * This is so that we handle the case where a root daemon
757 	 * forked, ran setuid to become the desired user and is trying
758 	 * to exec. The obvious place to do the reference counting check
759 	 * is setuid(), but we don't do the reference counting check there
760 	 * like other OS's do because then all the programs that use setuid()
761 	 * must be modified to check the return code of setuid() and exit().
762 	 * It is dangerous to make setuid() fail, because it fails open and
763 	 * the program will continue to run as root. If we make it succeed
764 	 * and return an error code, again we are not enforcing the limit.
765 	 * The best place to enforce the limit is here, when the process tries
766 	 * to execute a new image, because eventually the process will need
767 	 * to call exec in order to do something useful.
768 	 */
769  retry:
770 	if (p->p_flag & PK_SUGID) {
771 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
772 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
773 		     &p->p_rlimit[RLIMIT_NPROC],
774 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
775 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
776 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
777 		return EAGAIN;
778 	}
779 
780 	/*
781 	 * Drain existing references and forbid new ones.  The process
782 	 * should be left alone until we're done here.  This is necessary
783 	 * to avoid race conditions - e.g. in ptrace() - that might allow
784 	 * a local user to illicitly obtain elevated privileges.
785 	 */
786 	rw_enter(&p->p_reflock, RW_WRITER);
787 
788 	if (has_path) {
789 		size_t	offs;
790 		/*
791 		 * Init the namei data to point the file user's program name.
792 		 * This is done here rather than in check_exec(), so that it's
793 		 * possible to override this settings if any of makecmd/probe
794 		 * functions call check_exec() recursively - for example,
795 		 * see exec_script_makecmds().
796 		 */
797 		if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
798 		    &data->ed_pathbuf, &offs)) != 0)
799 			goto clrflg;
800 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
801 		epp->ep_kname = data->ed_pathstring + offs;
802 		data->ed_resolvedname = PNBUF_GET();
803 		epp->ep_resolvedname = data->ed_resolvedname;
804 		epp->ep_xfd = -1;
805 	} else {
806 		data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
807 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
808 		epp->ep_kname = "*fexecve*";
809 		data->ed_resolvedname = NULL;
810 		epp->ep_resolvedname = NULL;
811 		epp->ep_xfd = fd;
812 	}
813 
814 
815 	/*
816 	 * initialize the fields of the exec package.
817 	 */
818 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
819 	epp->ep_hdrlen = exec_maxhdrsz;
820 	epp->ep_hdrvalid = 0;
821 	epp->ep_emul_arg = NULL;
822 	epp->ep_emul_arg_free = NULL;
823 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
824 	epp->ep_vap = &data->ed_attr;
825 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
826 	MD_TOPDOWN_INIT(epp);
827 	epp->ep_emul_root = NULL;
828 	epp->ep_interp = NULL;
829 	epp->ep_esch = NULL;
830 	epp->ep_pax_flags = 0;
831 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
832 
833 	rw_enter(&exec_lock, RW_READER);
834 
835 	/* see if we can run it. */
836 	if ((error = check_exec(l, epp, data->ed_pathbuf,
837 	    &data->ed_resolvedname)) != 0) {
838 		if (error != ENOENT && error != EACCES && error != ENOEXEC) {
839 			DPRINTF(("%s: check exec failed for %s, error %d\n",
840 			    __func__, epp->ep_kname, error));
841 		}
842 		goto freehdr;
843 	}
844 
845 	/* allocate an argument buffer */
846 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
847 	KASSERT(data->ed_argp != NULL);
848 	dp = data->ed_argp;
849 
850 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
851 		goto bad;
852 	}
853 
854 	/*
855 	 * Calculate the new stack size.
856 	 */
857 
858 #ifdef __MACHINE_STACK_GROWS_UP
859 /*
860  * copyargs() fills argc/argv/envp from the lower address even on
861  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
862  * so that _rtld() use it.
863  */
864 #define	RTLD_GAP	32
865 #else
866 #define	RTLD_GAP	0
867 #endif
868 
869 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
870 
871 	data->ed_argslen = calcargs(data, argenvstrlen);
872 
873 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
874 
875 	if (len > epp->ep_ssize) {
876 		/* in effect, compare to initial limit */
877 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
878 		error = ENOMEM;
879 		goto bad;
880 	}
881 	/* adjust "active stack depth" for process VSZ */
882 	epp->ep_ssize = len;
883 
884 	return 0;
885 
886  bad:
887 	/* free the vmspace-creation commands, and release their references */
888 	kill_vmcmds(&epp->ep_vmcmds);
889 	/* kill any opened file descriptor, if necessary */
890 	if (epp->ep_flags & EXEC_HASFD) {
891 		epp->ep_flags &= ~EXEC_HASFD;
892 		fd_close(epp->ep_fd);
893 	}
894 	/* close and put the exec'd file */
895 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
896 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
897 	vput(epp->ep_vp);
898 	pool_put(&exec_pool, data->ed_argp);
899 
900  freehdr:
901 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
902 	if (epp->ep_emul_root != NULL)
903 		vrele(epp->ep_emul_root);
904 	if (epp->ep_interp != NULL)
905 		vrele(epp->ep_interp);
906 
907 	rw_exit(&exec_lock);
908 
909 	exec_path_free(data);
910 
911  clrflg:
912 	rw_exit(&p->p_reflock);
913 
914 	if (modgen != module_gen && error == ENOEXEC) {
915 		modgen = module_gen;
916 		exec_autoload();
917 		goto retry;
918 	}
919 
920 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
921 	return error;
922 }
923 
924 static int
925 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
926 {
927 	struct exec_package	* const epp = &data->ed_pack;
928 	struct proc		*p = l->l_proc;
929 	struct exec_vmcmd	*base_vcp;
930 	int			error = 0;
931 	size_t			i;
932 
933 	/* record proc's vnode, for use by procfs and others */
934 	if (p->p_textvp)
935 		vrele(p->p_textvp);
936 	vref(epp->ep_vp);
937 	p->p_textvp = epp->ep_vp;
938 
939 	/* create the new process's VM space by running the vmcmds */
940 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
941 
942 #ifdef TRACE_EXEC
943 	DUMPVMCMDS(epp, 0, 0);
944 #endif
945 
946 	base_vcp = NULL;
947 
948 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
949 		struct exec_vmcmd *vcp;
950 
951 		vcp = &epp->ep_vmcmds.evs_cmds[i];
952 		if (vcp->ev_flags & VMCMD_RELATIVE) {
953 			KASSERTMSG(base_vcp != NULL,
954 			    "%s: relative vmcmd with no base", __func__);
955 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
956 			    "%s: illegal base & relative vmcmd", __func__);
957 			vcp->ev_addr += base_vcp->ev_addr;
958 		}
959 		error = (*vcp->ev_proc)(l, vcp);
960 		if (error)
961 			DUMPVMCMDS(epp, i, error);
962 		if (vcp->ev_flags & VMCMD_BASE)
963 			base_vcp = vcp;
964 	}
965 
966 	/* free the vmspace-creation commands, and release their references */
967 	kill_vmcmds(&epp->ep_vmcmds);
968 
969 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
970 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
971 	vput(epp->ep_vp);
972 
973 	/* if an error happened, deallocate and punt */
974 	if (error != 0) {
975 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
976 	}
977 	return error;
978 }
979 
980 static void
981 execve_free_data(struct execve_data *data)
982 {
983 	struct exec_package	* const epp = &data->ed_pack;
984 
985 	/* free the vmspace-creation commands, and release their references */
986 	kill_vmcmds(&epp->ep_vmcmds);
987 	/* kill any opened file descriptor, if necessary */
988 	if (epp->ep_flags & EXEC_HASFD) {
989 		epp->ep_flags &= ~EXEC_HASFD;
990 		fd_close(epp->ep_fd);
991 	}
992 
993 	/* close and put the exec'd file */
994 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
995 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
996 	vput(epp->ep_vp);
997 	pool_put(&exec_pool, data->ed_argp);
998 
999 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1000 	if (epp->ep_emul_root != NULL)
1001 		vrele(epp->ep_emul_root);
1002 	if (epp->ep_interp != NULL)
1003 		vrele(epp->ep_interp);
1004 
1005 	exec_path_free(data);
1006 }
1007 
1008 static void
1009 pathexec(struct proc *p, const char *resolvedname)
1010 {
1011 	/* set command name & other accounting info */
1012 	const char *cmdname;
1013 
1014 	if (resolvedname == NULL) {
1015 		cmdname = "*fexecve*";
1016 		resolvedname = "/";
1017 	} else {
1018 		cmdname = strrchr(resolvedname, '/') + 1;
1019 	}
1020 	KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
1021 	    resolvedname);
1022 
1023 	strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
1024 
1025 	kmem_strfree(p->p_path);
1026 	p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
1027 }
1028 
1029 /* XXX elsewhere */
1030 static int
1031 credexec(struct lwp *l, struct vattr *attr)
1032 {
1033 	struct proc *p = l->l_proc;
1034 	int error;
1035 
1036 	/*
1037 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
1038 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
1039 	 * out additional references on the process for the moment.
1040 	 */
1041 	if ((p->p_slflag & PSL_TRACED) == 0 &&
1042 
1043 	    (((attr->va_mode & S_ISUID) != 0 &&
1044 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1045 
1046 	     ((attr->va_mode & S_ISGID) != 0 &&
1047 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1048 		/*
1049 		 * Mark the process as SUGID before we do
1050 		 * anything that might block.
1051 		 */
1052 		proc_crmod_enter();
1053 		proc_crmod_leave(NULL, NULL, true);
1054 
1055 		/* Make sure file descriptors 0..2 are in use. */
1056 		if ((error = fd_checkstd()) != 0) {
1057 			DPRINTF(("%s: fdcheckstd failed %d\n",
1058 			    __func__, error));
1059 			return error;
1060 		}
1061 
1062 		/*
1063 		 * Copy the credential so other references don't see our
1064 		 * changes.
1065 		 */
1066 		l->l_cred = kauth_cred_copy(l->l_cred);
1067 #ifdef KTRACE
1068 		/*
1069 		 * If the persistent trace flag isn't set, turn off.
1070 		 */
1071 		if (p->p_tracep) {
1072 			mutex_enter(&ktrace_lock);
1073 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1074 				ktrderef(p);
1075 			mutex_exit(&ktrace_lock);
1076 		}
1077 #endif
1078 		if (attr->va_mode & S_ISUID)
1079 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
1080 		if (attr->va_mode & S_ISGID)
1081 			kauth_cred_setegid(l->l_cred, attr->va_gid);
1082 	} else {
1083 		if (kauth_cred_geteuid(l->l_cred) ==
1084 		    kauth_cred_getuid(l->l_cred) &&
1085 		    kauth_cred_getegid(l->l_cred) ==
1086 		    kauth_cred_getgid(l->l_cred))
1087 			p->p_flag &= ~PK_SUGID;
1088 	}
1089 
1090 	/*
1091 	 * Copy the credential so other references don't see our changes.
1092 	 * Test to see if this is necessary first, since in the common case
1093 	 * we won't need a private reference.
1094 	 */
1095 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1096 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1097 		l->l_cred = kauth_cred_copy(l->l_cred);
1098 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1099 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1100 	}
1101 
1102 	/* Update the master credentials. */
1103 	if (l->l_cred != p->p_cred) {
1104 		kauth_cred_t ocred;
1105 
1106 		kauth_cred_hold(l->l_cred);
1107 		mutex_enter(p->p_lock);
1108 		ocred = p->p_cred;
1109 		p->p_cred = l->l_cred;
1110 		mutex_exit(p->p_lock);
1111 		kauth_cred_free(ocred);
1112 	}
1113 
1114 	return 0;
1115 }
1116 
1117 static void
1118 emulexec(struct lwp *l, struct exec_package *epp)
1119 {
1120 	struct proc		*p = l->l_proc;
1121 	struct cwdinfo		*cwdi;
1122 
1123 	/* The emulation root will usually have been found when we looked
1124 	 * for the elf interpreter (or similar), if not look now. */
1125 	if (epp->ep_esch->es_emul->e_path != NULL &&
1126 	    epp->ep_emul_root == NULL)
1127 		emul_find_root(l, epp);
1128 
1129 	/* Any old emulation root got removed by fdcloseexec */
1130 	KASSERT(p == curproc);
1131 	cwdi = cwdenter(RW_WRITER);
1132 	cwdi->cwdi_edir = epp->ep_emul_root;
1133 	cwdexit(cwdi);
1134 	epp->ep_emul_root = NULL;
1135 	if (epp->ep_interp != NULL)
1136 		vrele(epp->ep_interp);
1137 
1138 	/*
1139 	 * Call emulation specific exec hook. This can setup per-process
1140 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
1141 	 *
1142 	 * If we are executing process of different emulation than the
1143 	 * original forked process, call e_proc_exit() of the old emulation
1144 	 * first, then e_proc_exec() of new emulation. If the emulation is
1145 	 * same, the exec hook code should deallocate any old emulation
1146 	 * resources held previously by this process.
1147 	 */
1148 	if (p->p_emul && p->p_emul->e_proc_exit
1149 	    && p->p_emul != epp->ep_esch->es_emul)
1150 		(*p->p_emul->e_proc_exit)(p);
1151 
1152 	/* This is now LWP 1.  Re-number the LWP if needed. */
1153 	if (l->l_lid != 1)
1154 		lwp_renumber(l, 1);
1155 
1156 	/*
1157 	 * Call exec hook. Emulation code may NOT store reference to anything
1158 	 * from &pack.
1159 	 */
1160 	if (epp->ep_esch->es_emul->e_proc_exec)
1161 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1162 
1163 	/* update p_emul, the old value is no longer needed */
1164 	p->p_emul = epp->ep_esch->es_emul;
1165 
1166 	/* ...and the same for p_execsw */
1167 	p->p_execsw = epp->ep_esch;
1168 
1169 #ifdef __HAVE_SYSCALL_INTERN
1170 	(*p->p_emul->e_syscall_intern)(p);
1171 #endif
1172 	ktremul();
1173 }
1174 
1175 static int
1176 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1177 	bool no_local_exec_lock, bool is_spawn)
1178 {
1179 	struct exec_package	* const epp = &data->ed_pack;
1180 	int error = 0;
1181 	struct proc		*p;
1182 	struct vmspace		*vm;
1183 
1184 	/*
1185 	 * In case of a posix_spawn operation, the child doing the exec
1186 	 * might not hold the reader lock on exec_lock, but the parent
1187 	 * will do this instead.
1188 	 */
1189 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1190 	KASSERT(!no_local_exec_lock || is_spawn);
1191 	KASSERT(data != NULL);
1192 
1193 	p = l->l_proc;
1194 
1195 	/* Get rid of other LWPs. */
1196 	if (p->p_nlwps > 1) {
1197 		mutex_enter(p->p_lock);
1198 		exit_lwps(l);
1199 		mutex_exit(p->p_lock);
1200 	}
1201 	KDASSERT(p->p_nlwps == 1);
1202 
1203 	/* Destroy any lwpctl info. */
1204 	if (p->p_lwpctl != NULL)
1205 		lwp_ctl_exit();
1206 
1207 	/* Remove POSIX timers */
1208 	timers_free(p, TIMERS_POSIX);
1209 
1210 	/* Set the PaX flags. */
1211 	pax_set_flags(epp, p);
1212 
1213 	/*
1214 	 * Do whatever is necessary to prepare the address space
1215 	 * for remapping.  Note that this might replace the current
1216 	 * vmspace with another!
1217 	 *
1218 	 * vfork(): do not touch any user space data in the new child
1219 	 * until we have awoken the parent below, or it will defeat
1220 	 * lazy pmap switching (on x86).
1221 	 */
1222 	if (is_spawn)
1223 		uvmspace_spawn(l, epp->ep_vm_minaddr,
1224 		    epp->ep_vm_maxaddr,
1225 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1226 	else
1227 		uvmspace_exec(l, epp->ep_vm_minaddr,
1228 		    epp->ep_vm_maxaddr,
1229 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1230 	vm = p->p_vmspace;
1231 
1232 	vm->vm_taddr = (void *)epp->ep_taddr;
1233 	vm->vm_tsize = btoc(epp->ep_tsize);
1234 	vm->vm_daddr = (void*)epp->ep_daddr;
1235 	vm->vm_dsize = btoc(epp->ep_dsize);
1236 	vm->vm_ssize = btoc(epp->ep_ssize);
1237 	vm->vm_issize = 0;
1238 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1239 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1240 
1241 	pax_aslr_init_vm(l, vm, epp);
1242 
1243 	cwdexec(p);
1244 	fd_closeexec();		/* handle close on exec */
1245 
1246 	if (__predict_false(ktrace_on))
1247 		fd_ktrexecfd();
1248 
1249 	execsigs(p);		/* reset caught signals */
1250 
1251 	mutex_enter(p->p_lock);
1252 	l->l_ctxlink = NULL;	/* reset ucontext link */
1253 	p->p_acflag &= ~AFORK;
1254 	p->p_flag |= PK_EXEC;
1255 	mutex_exit(p->p_lock);
1256 
1257 	error = credexec(l, &data->ed_attr);
1258 	if (error)
1259 		goto exec_abort;
1260 
1261 #if defined(__HAVE_RAS)
1262 	/*
1263 	 * Remove all RASs from the address space.
1264 	 */
1265 	ras_purgeall();
1266 #endif
1267 
1268 	/*
1269 	 * Stop profiling.
1270 	 */
1271 	if ((p->p_stflag & PST_PROFIL) != 0) {
1272 		mutex_spin_enter(&p->p_stmutex);
1273 		stopprofclock(p);
1274 		mutex_spin_exit(&p->p_stmutex);
1275 	}
1276 
1277 	/*
1278 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1279 	 * exited and exec()/exit() are the only places it will be cleared.
1280 	 *
1281 	 * Once the parent has been awoken, curlwp may teleport to a new CPU
1282 	 * in sched_vforkexec(), and it's then OK to start messing with user
1283 	 * data.  See comment above.
1284 	 */
1285 	if ((p->p_lflag & PL_PPWAIT) != 0) {
1286 		bool samecpu;
1287 		lwp_t *lp;
1288 
1289 		mutex_enter(proc_lock);
1290 		lp = p->p_vforklwp;
1291 		p->p_vforklwp = NULL;
1292 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1293 		cv_broadcast(&lp->l_waitcv);
1294 
1295 		/* Clear flags after cv_broadcast() (scheduler needs them). */
1296 		p->p_lflag &= ~PL_PPWAIT;
1297 		lp->l_vforkwaiting = false;
1298 
1299 		/* If parent is still on same CPU, teleport curlwp elsewhere. */
1300 		samecpu = (lp->l_cpu == curlwp->l_cpu);
1301 		mutex_exit(proc_lock);
1302 
1303 		/* Give the parent its CPU back - find a new home. */
1304 		KASSERT(!is_spawn);
1305 		sched_vforkexec(l, samecpu);
1306 	}
1307 
1308 	/* Now map address space. */
1309 	error = execve_dovmcmds(l, data);
1310 	if (error != 0)
1311 		goto exec_abort;
1312 
1313 	pathexec(p, epp->ep_resolvedname);
1314 
1315 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1316 
1317 	error = copyoutargs(data, l, newstack);
1318 	if (error != 0)
1319 		goto exec_abort;
1320 
1321 	doexechooks(p);
1322 
1323 	/*
1324 	 * Set initial SP at the top of the stack.
1325 	 *
1326 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
1327 	 * the end of arg/env strings.  Userland guesses the address of argc
1328 	 * via ps_strings::ps_argvstr.
1329 	 */
1330 
1331 	/* Setup new registers and do misc. setup. */
1332 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1333 	if (epp->ep_esch->es_setregs)
1334 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1335 
1336 	/* Provide a consistent LWP private setting */
1337 	(void)lwp_setprivate(l, NULL);
1338 
1339 	/* Discard all PCU state; need to start fresh */
1340 	pcu_discard_all(l);
1341 
1342 	/* map the process's signal trampoline code */
1343 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1344 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1345 		goto exec_abort;
1346 	}
1347 
1348 	pool_put(&exec_pool, data->ed_argp);
1349 
1350 	/* notify others that we exec'd */
1351 	KNOTE(&p->p_klist, NOTE_EXEC);
1352 
1353 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1354 
1355 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1356 
1357 	emulexec(l, epp);
1358 
1359 	/* Allow new references from the debugger/procfs. */
1360 	rw_exit(&p->p_reflock);
1361 	if (!no_local_exec_lock)
1362 		rw_exit(&exec_lock);
1363 
1364 	mutex_enter(proc_lock);
1365 
1366 	/* posix_spawn(3) reports a single event with implied exec(3) */
1367 	if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1368 		mutex_enter(p->p_lock);
1369 		eventswitch(TRAP_EXEC, 0, 0);
1370 		mutex_enter(proc_lock);
1371 	}
1372 
1373 	if (p->p_sflag & PS_STOPEXEC) {
1374 		ksiginfoq_t kq;
1375 
1376 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1377 		p->p_pptr->p_nstopchild++;
1378 		p->p_waited = 0;
1379 		mutex_enter(p->p_lock);
1380 		ksiginfo_queue_init(&kq);
1381 		sigclearall(p, &contsigmask, &kq);
1382 		lwp_lock(l);
1383 		l->l_stat = LSSTOP;
1384 		p->p_stat = SSTOP;
1385 		p->p_nrlwps--;
1386 		lwp_unlock(l);
1387 		mutex_exit(p->p_lock);
1388 		mutex_exit(proc_lock);
1389 		lwp_lock(l);
1390 		spc_lock(l->l_cpu);
1391 		mi_switch(l);
1392 		ksiginfo_queue_drain(&kq);
1393 	} else {
1394 		mutex_exit(proc_lock);
1395 	}
1396 
1397 	exec_path_free(data);
1398 #ifdef TRACE_EXEC
1399 	DPRINTF(("%s finished\n", __func__));
1400 #endif
1401 	return EJUSTRETURN;
1402 
1403  exec_abort:
1404 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1405 	rw_exit(&p->p_reflock);
1406 	if (!no_local_exec_lock)
1407 		rw_exit(&exec_lock);
1408 
1409 	exec_path_free(data);
1410 
1411 	/*
1412 	 * the old process doesn't exist anymore.  exit gracefully.
1413 	 * get rid of the (new) address space we have created, if any, get rid
1414 	 * of our namei data and vnode, and exit noting failure
1415 	 */
1416 	if (vm != NULL) {
1417 		uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1418 			VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1419 	}
1420 
1421 	exec_free_emul_arg(epp);
1422 	pool_put(&exec_pool, data->ed_argp);
1423 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1424 	if (epp->ep_emul_root != NULL)
1425 		vrele(epp->ep_emul_root);
1426 	if (epp->ep_interp != NULL)
1427 		vrele(epp->ep_interp);
1428 
1429 	/* Acquire the sched-state mutex (exit1() will release it). */
1430 	if (!is_spawn) {
1431 		mutex_enter(p->p_lock);
1432 		exit1(l, error, SIGABRT);
1433 	}
1434 
1435 	return error;
1436 }
1437 
1438 int
1439 execve1(struct lwp *l, bool has_path, const char *path, int fd,
1440     char * const *args, char * const *envs,
1441     execve_fetch_element_t fetch_element)
1442 {
1443 	struct execve_data data;
1444 	int error;
1445 
1446 	error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
1447 	    &data);
1448 	if (error)
1449 		return error;
1450 	error = execve_runproc(l, &data, false, false);
1451 	return error;
1452 }
1453 
1454 static size_t
1455 fromptrsz(const struct exec_package *epp)
1456 {
1457 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1458 }
1459 
1460 static size_t
1461 ptrsz(const struct exec_package *epp)
1462 {
1463 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1464 }
1465 
1466 static size_t
1467 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1468 {
1469 	struct exec_package	* const epp = &data->ed_pack;
1470 
1471 	const size_t nargenvptrs =
1472 	    1 +				/* long argc */
1473 	    data->ed_argc +		/* char *argv[] */
1474 	    1 +				/* \0 */
1475 	    data->ed_envc +		/* char *env[] */
1476 	    1;				/* \0 */
1477 
1478 	return (nargenvptrs * ptrsz(epp))	/* pointers */
1479 	    + argenvstrlen			/* strings */
1480 	    + epp->ep_esch->es_arglen;		/* auxinfo */
1481 }
1482 
1483 static size_t
1484 calcstack(struct execve_data * restrict data, const size_t gaplen)
1485 {
1486 	struct exec_package	* const epp = &data->ed_pack;
1487 
1488 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1489 	    epp->ep_esch->es_emul->e_sigcode;
1490 
1491 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1492 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1493 
1494 	const size_t sigcode_psstr_sz =
1495 	    data->ed_szsigcode +	/* sigcode */
1496 	    data->ed_ps_strings_sz +	/* ps_strings */
1497 	    STACK_PTHREADSPACE;		/* pthread space */
1498 
1499 	const size_t stacklen =
1500 	    data->ed_argslen +
1501 	    gaplen +
1502 	    sigcode_psstr_sz;
1503 
1504 	/* make the stack "safely" aligned */
1505 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1506 }
1507 
1508 static int
1509 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1510     char * const newstack)
1511 {
1512 	struct exec_package	* const epp = &data->ed_pack;
1513 	struct proc		*p = l->l_proc;
1514 	int			error;
1515 
1516 	memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1517 
1518 	/* remember information about the process */
1519 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
1520 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
1521 
1522 	/*
1523 	 * Allocate the stack address passed to the newly execve()'ed process.
1524 	 *
1525 	 * The new stack address will be set to the SP (stack pointer) register
1526 	 * in setregs().
1527 	 */
1528 
1529 	char *newargs = STACK_ALLOC(
1530 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1531 
1532 	error = (*epp->ep_esch->es_copyargs)(l, epp,
1533 	    &data->ed_arginfo, &newargs, data->ed_argp);
1534 
1535 	if (error) {
1536 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1537 		return error;
1538 	}
1539 
1540 	error = copyoutpsstrs(data, p);
1541 	if (error != 0)
1542 		return error;
1543 
1544 	return 0;
1545 }
1546 
1547 static int
1548 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1549 {
1550 	struct exec_package	* const epp = &data->ed_pack;
1551 	struct ps_strings32	arginfo32;
1552 	void			*aip;
1553 	int			error;
1554 
1555 	/* fill process ps_strings info */
1556 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1557 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1558 
1559 	if (epp->ep_flags & EXEC_32) {
1560 		aip = &arginfo32;
1561 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1562 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1563 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1564 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1565 	} else
1566 		aip = &data->ed_arginfo;
1567 
1568 	/* copy out the process's ps_strings structure */
1569 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1570 	    != 0) {
1571 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1572 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1573 		return error;
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 static int
1580 copyinargs(struct execve_data * restrict data, char * const *args,
1581     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1582 {
1583 	struct exec_package	* const epp = &data->ed_pack;
1584 	char			*dp;
1585 	size_t			i;
1586 	int			error;
1587 
1588 	dp = *dpp;
1589 
1590 	data->ed_argc = 0;
1591 
1592 	/* copy the fake args list, if there's one, freeing it as we go */
1593 	if (epp->ep_flags & EXEC_HASARGL) {
1594 		struct exec_fakearg	*fa = epp->ep_fa;
1595 
1596 		while (fa->fa_arg != NULL) {
1597 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1598 			size_t len;
1599 
1600 			len = strlcpy(dp, fa->fa_arg, maxlen);
1601 			/* Count NUL into len. */
1602 			if (len < maxlen)
1603 				len++;
1604 			else {
1605 				while (fa->fa_arg != NULL) {
1606 					kmem_free(fa->fa_arg, fa->fa_len);
1607 					fa++;
1608 				}
1609 				kmem_free(epp->ep_fa, epp->ep_fa_len);
1610 				epp->ep_flags &= ~EXEC_HASARGL;
1611 				return E2BIG;
1612 			}
1613 			ktrexecarg(fa->fa_arg, len - 1);
1614 			dp += len;
1615 
1616 			kmem_free(fa->fa_arg, fa->fa_len);
1617 			fa++;
1618 			data->ed_argc++;
1619 		}
1620 		kmem_free(epp->ep_fa, epp->ep_fa_len);
1621 		epp->ep_flags &= ~EXEC_HASARGL;
1622 	}
1623 
1624 	/*
1625 	 * Read and count argument strings from user.
1626 	 */
1627 
1628 	if (args == NULL) {
1629 		DPRINTF(("%s: null args\n", __func__));
1630 		return EINVAL;
1631 	}
1632 	if (epp->ep_flags & EXEC_SKIPARG)
1633 		args = (const void *)((const char *)args + fromptrsz(epp));
1634 	i = 0;
1635 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1636 	if (error != 0) {
1637 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
1638 		return error;
1639 	}
1640 	data->ed_argc += i;
1641 
1642 	/*
1643 	 * Read and count environment strings from user.
1644 	 */
1645 
1646 	data->ed_envc = 0;
1647 	/* environment need not be there */
1648 	if (envs == NULL)
1649 		goto done;
1650 	i = 0;
1651 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1652 	if (error != 0) {
1653 		DPRINTF(("%s: copyin env %d\n", __func__, error));
1654 		return error;
1655 	}
1656 	data->ed_envc += i;
1657 
1658 done:
1659 	*dpp = dp;
1660 
1661 	return 0;
1662 }
1663 
1664 static int
1665 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1666     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1667     void (*ktr)(const void *, size_t))
1668 {
1669 	char			*dp, *sp;
1670 	size_t			i;
1671 	int			error;
1672 
1673 	dp = *dpp;
1674 
1675 	i = 0;
1676 	while (1) {
1677 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1678 		size_t len;
1679 
1680 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1681 			return error;
1682 		}
1683 		if (!sp)
1684 			break;
1685 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1686 			if (error == ENAMETOOLONG)
1687 				error = E2BIG;
1688 			return error;
1689 		}
1690 		if (__predict_false(ktrace_on))
1691 			(*ktr)(dp, len - 1);
1692 		dp += len;
1693 		i++;
1694 	}
1695 
1696 	*dpp = dp;
1697 	*ip = i;
1698 
1699 	return 0;
1700 }
1701 
1702 /*
1703  * Copy argv and env strings from kernel buffer (argp) to the new stack.
1704  * Those strings are located just after auxinfo.
1705  */
1706 int
1707 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1708     char **stackp, void *argp)
1709 {
1710 	char	**cpp, *dp, *sp;
1711 	size_t	len;
1712 	void	*nullp;
1713 	long	argc, envc;
1714 	int	error;
1715 
1716 	cpp = (char **)*stackp;
1717 	nullp = NULL;
1718 	argc = arginfo->ps_nargvstr;
1719 	envc = arginfo->ps_nenvstr;
1720 
1721 	/* argc on stack is long */
1722 	CTASSERT(sizeof(*cpp) == sizeof(argc));
1723 
1724 	dp = (char *)(cpp +
1725 	    1 +				/* long argc */
1726 	    argc +			/* char *argv[] */
1727 	    1 +				/* \0 */
1728 	    envc +			/* char *env[] */
1729 	    1) +			/* \0 */
1730 	    pack->ep_esch->es_arglen;	/* auxinfo */
1731 	sp = argp;
1732 
1733 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1734 		COPYPRINTF("", cpp - 1, sizeof(argc));
1735 		return error;
1736 	}
1737 
1738 	/* XXX don't copy them out, remap them! */
1739 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1740 
1741 	for (; --argc >= 0; sp += len, dp += len) {
1742 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1743 			COPYPRINTF("", cpp - 1, sizeof(dp));
1744 			return error;
1745 		}
1746 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1747 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1748 			return error;
1749 		}
1750 	}
1751 
1752 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1753 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1754 		return error;
1755 	}
1756 
1757 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
1758 
1759 	for (; --envc >= 0; sp += len, dp += len) {
1760 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1761 			COPYPRINTF("", cpp - 1, sizeof(dp));
1762 			return error;
1763 		}
1764 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1765 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1766 			return error;
1767 		}
1768 
1769 	}
1770 
1771 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1772 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1773 		return error;
1774 	}
1775 
1776 	*stackp = (char *)cpp;
1777 	return 0;
1778 }
1779 
1780 
1781 /*
1782  * Add execsw[] entries.
1783  */
1784 int
1785 exec_add(struct execsw *esp, int count)
1786 {
1787 	struct exec_entry	*it;
1788 	int			i;
1789 
1790 	if (count == 0) {
1791 		return 0;
1792 	}
1793 
1794 	/* Check for duplicates. */
1795 	rw_enter(&exec_lock, RW_WRITER);
1796 	for (i = 0; i < count; i++) {
1797 		LIST_FOREACH(it, &ex_head, ex_list) {
1798 			/* assume unique (makecmds, probe_func, emulation) */
1799 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1800 			    it->ex_sw->u.elf_probe_func ==
1801 			    esp[i].u.elf_probe_func &&
1802 			    it->ex_sw->es_emul == esp[i].es_emul) {
1803 				rw_exit(&exec_lock);
1804 				return EEXIST;
1805 			}
1806 		}
1807 	}
1808 
1809 	/* Allocate new entries. */
1810 	for (i = 0; i < count; i++) {
1811 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
1812 		it->ex_sw = &esp[i];
1813 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
1814 	}
1815 
1816 	/* update execsw[] */
1817 	exec_init(0);
1818 	rw_exit(&exec_lock);
1819 	return 0;
1820 }
1821 
1822 /*
1823  * Remove execsw[] entry.
1824  */
1825 int
1826 exec_remove(struct execsw *esp, int count)
1827 {
1828 	struct exec_entry	*it, *next;
1829 	int			i;
1830 	const struct proclist_desc *pd;
1831 	proc_t			*p;
1832 
1833 	if (count == 0) {
1834 		return 0;
1835 	}
1836 
1837 	/* Abort if any are busy. */
1838 	rw_enter(&exec_lock, RW_WRITER);
1839 	for (i = 0; i < count; i++) {
1840 		mutex_enter(proc_lock);
1841 		for (pd = proclists; pd->pd_list != NULL; pd++) {
1842 			PROCLIST_FOREACH(p, pd->pd_list) {
1843 				if (p->p_execsw == &esp[i]) {
1844 					mutex_exit(proc_lock);
1845 					rw_exit(&exec_lock);
1846 					return EBUSY;
1847 				}
1848 			}
1849 		}
1850 		mutex_exit(proc_lock);
1851 	}
1852 
1853 	/* None are busy, so remove them all. */
1854 	for (i = 0; i < count; i++) {
1855 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1856 			next = LIST_NEXT(it, ex_list);
1857 			if (it->ex_sw == &esp[i]) {
1858 				LIST_REMOVE(it, ex_list);
1859 				kmem_free(it, sizeof(*it));
1860 				break;
1861 			}
1862 		}
1863 	}
1864 
1865 	/* update execsw[] */
1866 	exec_init(0);
1867 	rw_exit(&exec_lock);
1868 	return 0;
1869 }
1870 
1871 /*
1872  * Initialize exec structures. If init_boot is true, also does necessary
1873  * one-time initialization (it's called from main() that way).
1874  * Once system is multiuser, this should be called with exec_lock held,
1875  * i.e. via exec_{add|remove}().
1876  */
1877 int
1878 exec_init(int init_boot)
1879 {
1880 	const struct execsw 	**sw;
1881 	struct exec_entry	*ex;
1882 	SLIST_HEAD(,exec_entry)	first;
1883 	SLIST_HEAD(,exec_entry)	any;
1884 	SLIST_HEAD(,exec_entry)	last;
1885 	int			i, sz;
1886 
1887 	if (init_boot) {
1888 		/* do one-time initializations */
1889 		vaddr_t vmin = 0, vmax;
1890 
1891 		rw_init(&exec_lock);
1892 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1893 		exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1894 		    maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1895 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1896 		    "execargs", &exec_palloc, IPL_NONE);
1897 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1898 	} else {
1899 		KASSERT(rw_write_held(&exec_lock));
1900 	}
1901 
1902 	/* Sort each entry onto the appropriate queue. */
1903 	SLIST_INIT(&first);
1904 	SLIST_INIT(&any);
1905 	SLIST_INIT(&last);
1906 	sz = 0;
1907 	LIST_FOREACH(ex, &ex_head, ex_list) {
1908 		switch(ex->ex_sw->es_prio) {
1909 		case EXECSW_PRIO_FIRST:
1910 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
1911 			break;
1912 		case EXECSW_PRIO_ANY:
1913 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
1914 			break;
1915 		case EXECSW_PRIO_LAST:
1916 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
1917 			break;
1918 		default:
1919 			panic("%s", __func__);
1920 			break;
1921 		}
1922 		sz++;
1923 	}
1924 
1925 	/*
1926 	 * Create new execsw[].  Ensure we do not try a zero-sized
1927 	 * allocation.
1928 	 */
1929 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1930 	i = 0;
1931 	SLIST_FOREACH(ex, &first, ex_slist) {
1932 		sw[i++] = ex->ex_sw;
1933 	}
1934 	SLIST_FOREACH(ex, &any, ex_slist) {
1935 		sw[i++] = ex->ex_sw;
1936 	}
1937 	SLIST_FOREACH(ex, &last, ex_slist) {
1938 		sw[i++] = ex->ex_sw;
1939 	}
1940 
1941 	/* Replace old execsw[] and free used memory. */
1942 	if (execsw != NULL) {
1943 		kmem_free(__UNCONST(execsw),
1944 		    nexecs * sizeof(struct execsw *) + 1);
1945 	}
1946 	execsw = sw;
1947 	nexecs = sz;
1948 
1949 	/* Figure out the maximum size of an exec header. */
1950 	exec_maxhdrsz = sizeof(int);
1951 	for (i = 0; i < nexecs; i++) {
1952 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1953 			exec_maxhdrsz = execsw[i]->es_hdrsz;
1954 	}
1955 
1956 	return 0;
1957 }
1958 
1959 static int
1960 exec_sigcode_map(struct proc *p, const struct emul *e)
1961 {
1962 	vaddr_t va;
1963 	vsize_t sz;
1964 	int error;
1965 	struct uvm_object *uobj;
1966 
1967 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1968 
1969 	if (e->e_sigobject == NULL || sz == 0) {
1970 		return 0;
1971 	}
1972 
1973 	/*
1974 	 * If we don't have a sigobject for this emulation, create one.
1975 	 *
1976 	 * sigobject is an anonymous memory object (just like SYSV shared
1977 	 * memory) that we keep a permanent reference to and that we map
1978 	 * in all processes that need this sigcode. The creation is simple,
1979 	 * we create an object, add a permanent reference to it, map it in
1980 	 * kernel space, copy out the sigcode to it and unmap it.
1981 	 * We map it with PROT_READ|PROT_EXEC into the process just
1982 	 * the way sys_mmap() would map it.
1983 	 */
1984 
1985 	uobj = *e->e_sigobject;
1986 	if (uobj == NULL) {
1987 		mutex_enter(&sigobject_lock);
1988 		if ((uobj = *e->e_sigobject) == NULL) {
1989 			uobj = uao_create(sz, 0);
1990 			(*uobj->pgops->pgo_reference)(uobj);
1991 			va = vm_map_min(kernel_map);
1992 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
1993 			    uobj, 0, 0,
1994 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1995 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1996 				printf("kernel mapping failed %d\n", error);
1997 				(*uobj->pgops->pgo_detach)(uobj);
1998 				mutex_exit(&sigobject_lock);
1999 				return error;
2000 			}
2001 			memcpy((void *)va, e->e_sigcode, sz);
2002 #ifdef PMAP_NEED_PROCWR
2003 			pmap_procwr(&proc0, va, sz);
2004 #endif
2005 			uvm_unmap(kernel_map, va, va + round_page(sz));
2006 			*e->e_sigobject = uobj;
2007 		}
2008 		mutex_exit(&sigobject_lock);
2009 	}
2010 
2011 	/* Just a hint to uvm_map where to put it. */
2012 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
2013 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
2014 
2015 #ifdef __alpha__
2016 	/*
2017 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
2018 	 * which causes the above calculation to put the sigcode at
2019 	 * an invalid address.  Put it just below the text instead.
2020 	 */
2021 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
2022 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
2023 	}
2024 #endif
2025 
2026 	(*uobj->pgops->pgo_reference)(uobj);
2027 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
2028 			uobj, 0, 0,
2029 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
2030 				    UVM_ADV_RANDOM, 0));
2031 	if (error) {
2032 		DPRINTF(("%s, %d: map %p "
2033 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
2034 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
2035 		    va, error));
2036 		(*uobj->pgops->pgo_detach)(uobj);
2037 		return error;
2038 	}
2039 	p->p_sigctx.ps_sigcode = (void *)va;
2040 	return 0;
2041 }
2042 
2043 /*
2044  * Release a refcount on spawn_exec_data and destroy memory, if this
2045  * was the last one.
2046  */
2047 static void
2048 spawn_exec_data_release(struct spawn_exec_data *data)
2049 {
2050 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2051 		return;
2052 
2053 	cv_destroy(&data->sed_cv_child_ready);
2054 	mutex_destroy(&data->sed_mtx_child);
2055 
2056 	if (data->sed_actions)
2057 		posix_spawn_fa_free(data->sed_actions,
2058 		    data->sed_actions->len);
2059 	if (data->sed_attrs)
2060 		kmem_free(data->sed_attrs,
2061 		    sizeof(*data->sed_attrs));
2062 	kmem_free(data, sizeof(*data));
2063 }
2064 
2065 static int
2066 handle_posix_spawn_file_actions(struct posix_spawn_file_actions *actions)
2067 {
2068 	struct lwp *l = curlwp;
2069 	register_t retval;
2070 	int error, newfd;
2071 
2072 	if (actions == NULL)
2073 		return 0;
2074 
2075 	for (size_t i = 0; i < actions->len; i++) {
2076 		const struct posix_spawn_file_actions_entry *fae =
2077 		    &actions->fae[i];
2078 		switch (fae->fae_action) {
2079 		case FAE_OPEN:
2080 			if (fd_getfile(fae->fae_fildes) != NULL) {
2081 				error = fd_close(fae->fae_fildes);
2082 				if (error)
2083 					return error;
2084 			}
2085 			error = fd_open(fae->fae_path, fae->fae_oflag,
2086 			    fae->fae_mode, &newfd);
2087 			if (error)
2088 				return error;
2089 			if (newfd != fae->fae_fildes) {
2090 				error = dodup(l, newfd,
2091 				    fae->fae_fildes, 0, &retval);
2092 				if (fd_getfile(newfd) != NULL)
2093 					fd_close(newfd);
2094 			}
2095 			break;
2096 		case FAE_DUP2:
2097 			error = dodup(l, fae->fae_fildes,
2098 			    fae->fae_newfildes, 0, &retval);
2099 			break;
2100 		case FAE_CLOSE:
2101 			if (fd_getfile(fae->fae_fildes) == NULL) {
2102 				return EBADF;
2103 			}
2104 			error = fd_close(fae->fae_fildes);
2105 			break;
2106 		}
2107 		if (error)
2108 			return error;
2109 	}
2110 	return 0;
2111 }
2112 
2113 static int
2114 handle_posix_spawn_attrs(struct posix_spawnattr *attrs, struct proc *parent)
2115 {
2116 	struct sigaction sigact;
2117 	int error;
2118 	struct proc *p = curproc;
2119 	struct lwp *l = curlwp;
2120 
2121 	if (attrs == NULL)
2122 		return 0;
2123 
2124 	memset(&sigact, 0, sizeof(sigact));
2125 	sigact._sa_u._sa_handler = SIG_DFL;
2126 	sigact.sa_flags = 0;
2127 
2128 	/*
2129 	 * set state to SSTOP so that this proc can be found by pid.
2130 	 * see proc_enterprp, do_sched_setparam below
2131 	 */
2132 	mutex_enter(proc_lock);
2133 	/*
2134 	 * p_stat should be SACTIVE, so we need to adjust the
2135 	 * parent's p_nstopchild here.  For safety, just make
2136 	 * we're on the good side of SDEAD before we adjust.
2137 	 */
2138 	int ostat = p->p_stat;
2139 	KASSERT(ostat < SSTOP);
2140 	p->p_stat = SSTOP;
2141 	p->p_waited = 0;
2142 	p->p_pptr->p_nstopchild++;
2143 	mutex_exit(proc_lock);
2144 
2145 	/* Set process group */
2146 	if (attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2147 		pid_t mypid = p->p_pid;
2148 		pid_t pgrp = attrs->sa_pgroup;
2149 
2150 		if (pgrp == 0)
2151 			pgrp = mypid;
2152 
2153 		error = proc_enterpgrp(parent, mypid, pgrp, false);
2154 		if (error)
2155 			goto out;
2156 	}
2157 
2158 	/* Set scheduler policy */
2159 	if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2160 		error = do_sched_setparam(p->p_pid, 0, attrs->sa_schedpolicy,
2161 		    &attrs->sa_schedparam);
2162 	else if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDPARAM) {
2163 		error = do_sched_setparam(parent->p_pid, 0,
2164 		    SCHED_NONE, &attrs->sa_schedparam);
2165 	}
2166 	if (error)
2167 		goto out;
2168 
2169 	/* Reset user ID's */
2170 	if (attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2171 		error = do_setresuid(l, -1, kauth_cred_getgid(l->l_cred), -1,
2172 		     ID_E_EQ_R | ID_E_EQ_S);
2173 		if (error)
2174 			return error;
2175 		error = do_setresuid(l, -1, kauth_cred_getuid(l->l_cred), -1,
2176 		    ID_E_EQ_R | ID_E_EQ_S);
2177 		if (error)
2178 			goto out;
2179 	}
2180 
2181 	/* Set signal masks/defaults */
2182 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2183 		mutex_enter(p->p_lock);
2184 		error = sigprocmask1(l, SIG_SETMASK, &attrs->sa_sigmask, NULL);
2185 		mutex_exit(p->p_lock);
2186 		if (error)
2187 			goto out;
2188 	}
2189 
2190 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2191 		/*
2192 		 * The following sigaction call is using a sigaction
2193 		 * version 0 trampoline which is in the compatibility
2194 		 * code only. This is not a problem because for SIG_DFL
2195 		 * and SIG_IGN, the trampolines are now ignored. If they
2196 		 * were not, this would be a problem because we are
2197 		 * holding the exec_lock, and the compat code needs
2198 		 * to do the same in order to replace the trampoline
2199 		 * code of the process.
2200 		 */
2201 		for (int i = 1; i <= NSIG; i++) {
2202 			if (sigismember(&attrs->sa_sigdefault, i))
2203 				sigaction1(l, i, &sigact, NULL, NULL, 0);
2204 		}
2205 	}
2206 	error = 0;
2207 out:
2208 	mutex_enter(proc_lock);
2209 	p->p_stat = ostat;
2210 	p->p_pptr->p_nstopchild--;
2211 	mutex_exit(proc_lock);
2212 	return error;
2213 }
2214 
2215 /*
2216  * A child lwp of a posix_spawn operation starts here and ends up in
2217  * cpu_spawn_return, dealing with all filedescriptor and scheduler
2218  * manipulations in between.
2219  * The parent waits for the child, as it is not clear whether the child
2220  * will be able to acquire its own exec_lock. If it can, the parent can
2221  * be released early and continue running in parallel. If not (or if the
2222  * magic debug flag is passed in the scheduler attribute struct), the
2223  * child rides on the parent's exec lock until it is ready to return to
2224  * to userland - and only then releases the parent. This method loses
2225  * concurrency, but improves error reporting.
2226  */
2227 static void
2228 spawn_return(void *arg)
2229 {
2230 	struct spawn_exec_data *spawn_data = arg;
2231 	struct lwp *l = curlwp;
2232 	struct proc *p = l->l_proc;
2233 	int error;
2234 	bool have_reflock;
2235 	bool parent_is_waiting = true;
2236 
2237 	/*
2238 	 * Check if we can release parent early.
2239 	 * We either need to have no sed_attrs, or sed_attrs does not
2240 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2241 	 * safe access to the parent proc (passed in sed_parent).
2242 	 * We then try to get the exec_lock, and only if that works, we can
2243 	 * release the parent here already.
2244 	 */
2245 	struct posix_spawnattr *attrs = spawn_data->sed_attrs;
2246 	if ((!attrs || (attrs->sa_flags
2247 		& (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2248 	    && rw_tryenter(&exec_lock, RW_READER)) {
2249 		parent_is_waiting = false;
2250 		mutex_enter(&spawn_data->sed_mtx_child);
2251 		cv_signal(&spawn_data->sed_cv_child_ready);
2252 		mutex_exit(&spawn_data->sed_mtx_child);
2253 	}
2254 
2255 	/* don't allow debugger access yet */
2256 	rw_enter(&p->p_reflock, RW_WRITER);
2257 	have_reflock = true;
2258 
2259 	/* handle posix_spawn_file_actions */
2260 	error = handle_posix_spawn_file_actions(spawn_data->sed_actions);
2261 	if (error)
2262 		goto report_error;
2263 
2264 	/* handle posix_spawnattr */
2265 	error = handle_posix_spawn_attrs(attrs, spawn_data->sed_parent);
2266 	if (error)
2267 		goto report_error;
2268 
2269 	/* now do the real exec */
2270 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2271 	    true);
2272 	have_reflock = false;
2273 	if (error == EJUSTRETURN)
2274 		error = 0;
2275 	else if (error)
2276 		goto report_error;
2277 
2278 	if (parent_is_waiting) {
2279 		mutex_enter(&spawn_data->sed_mtx_child);
2280 		cv_signal(&spawn_data->sed_cv_child_ready);
2281 		mutex_exit(&spawn_data->sed_mtx_child);
2282 	}
2283 
2284 	/* release our refcount on the data */
2285 	spawn_exec_data_release(spawn_data);
2286 
2287 	if (p->p_slflag & PSL_TRACED)
2288 		eventswitchchild(p, TRAP_CHLD, PTRACE_POSIX_SPAWN);
2289 
2290 	/* and finally: leave to userland for the first time */
2291 	cpu_spawn_return(l);
2292 
2293 	/* NOTREACHED */
2294 	return;
2295 
2296  report_error:
2297 	if (have_reflock) {
2298 		/*
2299 		 * We have not passed through execve_runproc(),
2300 		 * which would have released the p_reflock and also
2301 		 * taken ownership of the sed_exec part of spawn_data,
2302 		 * so release/free both here.
2303 		 */
2304 		rw_exit(&p->p_reflock);
2305 		execve_free_data(&spawn_data->sed_exec);
2306 	}
2307 
2308 	if (parent_is_waiting) {
2309 		/* pass error to parent */
2310 		mutex_enter(&spawn_data->sed_mtx_child);
2311 		spawn_data->sed_error = error;
2312 		cv_signal(&spawn_data->sed_cv_child_ready);
2313 		mutex_exit(&spawn_data->sed_mtx_child);
2314 	} else {
2315 		rw_exit(&exec_lock);
2316 	}
2317 
2318 	/* release our refcount on the data */
2319 	spawn_exec_data_release(spawn_data);
2320 
2321 	/* done, exit */
2322 	mutex_enter(p->p_lock);
2323 	/*
2324 	 * Posix explicitly asks for an exit code of 127 if we report
2325 	 * errors from the child process - so, unfortunately, there
2326 	 * is no way to report a more exact error code.
2327 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2328 	 * flag bit in the attrp argument to posix_spawn(2), see above.
2329 	 */
2330 	exit1(l, 127, 0);
2331 }
2332 
2333 void
2334 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2335 {
2336 
2337 	for (size_t i = 0; i < len; i++) {
2338 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2339 		if (fae->fae_action != FAE_OPEN)
2340 			continue;
2341 		kmem_strfree(fae->fae_path);
2342 	}
2343 	if (fa->len > 0)
2344 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2345 	kmem_free(fa, sizeof(*fa));
2346 }
2347 
2348 static int
2349 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2350     const struct posix_spawn_file_actions *ufa, rlim_t lim)
2351 {
2352 	struct posix_spawn_file_actions *fa;
2353 	struct posix_spawn_file_actions_entry *fae;
2354 	char *pbuf = NULL;
2355 	int error;
2356 	size_t i = 0;
2357 
2358 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2359 	error = copyin(ufa, fa, sizeof(*fa));
2360 	if (error || fa->len == 0) {
2361 		kmem_free(fa, sizeof(*fa));
2362 		return error;	/* 0 if not an error, and len == 0 */
2363 	}
2364 
2365 	if (fa->len > lim) {
2366 		kmem_free(fa, sizeof(*fa));
2367 		return EINVAL;
2368 	}
2369 
2370 	fa->size = fa->len;
2371 	size_t fal = fa->len * sizeof(*fae);
2372 	fae = fa->fae;
2373 	fa->fae = kmem_alloc(fal, KM_SLEEP);
2374 	error = copyin(fae, fa->fae, fal);
2375 	if (error)
2376 		goto out;
2377 
2378 	pbuf = PNBUF_GET();
2379 	for (; i < fa->len; i++) {
2380 		fae = &fa->fae[i];
2381 		if (fae->fae_action != FAE_OPEN)
2382 			continue;
2383 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2384 		if (error)
2385 			goto out;
2386 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2387 		memcpy(fae->fae_path, pbuf, fal);
2388 	}
2389 	PNBUF_PUT(pbuf);
2390 
2391 	*fap = fa;
2392 	return 0;
2393 out:
2394 	if (pbuf)
2395 		PNBUF_PUT(pbuf);
2396 	posix_spawn_fa_free(fa, i);
2397 	return error;
2398 }
2399 
2400 int
2401 check_posix_spawn(struct lwp *l1)
2402 {
2403 	int error, tnprocs, count;
2404 	uid_t uid;
2405 	struct proc *p1;
2406 
2407 	p1 = l1->l_proc;
2408 	uid = kauth_cred_getuid(l1->l_cred);
2409 	tnprocs = atomic_inc_uint_nv(&nprocs);
2410 
2411 	/*
2412 	 * Although process entries are dynamically created, we still keep
2413 	 * a global limit on the maximum number we will create.
2414 	 */
2415 	if (__predict_false(tnprocs >= maxproc))
2416 		error = -1;
2417 	else
2418 		error = kauth_authorize_process(l1->l_cred,
2419 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2420 
2421 	if (error) {
2422 		atomic_dec_uint(&nprocs);
2423 		return EAGAIN;
2424 	}
2425 
2426 	/*
2427 	 * Enforce limits.
2428 	 */
2429 	count = chgproccnt(uid, 1);
2430 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2431 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2432 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2433 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2434 		(void)chgproccnt(uid, -1);
2435 		atomic_dec_uint(&nprocs);
2436 		return EAGAIN;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 int
2443 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2444 	struct posix_spawn_file_actions *fa,
2445 	struct posix_spawnattr *sa,
2446 	char *const *argv, char *const *envp,
2447 	execve_fetch_element_t fetch)
2448 {
2449 
2450 	struct proc *p1, *p2;
2451 	struct lwp *l2;
2452 	int error;
2453 	struct spawn_exec_data *spawn_data;
2454 	vaddr_t uaddr;
2455 	pid_t pid;
2456 	bool have_exec_lock = false;
2457 
2458 	p1 = l1->l_proc;
2459 
2460 	/* Allocate and init spawn_data */
2461 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2462 	spawn_data->sed_refcnt = 1; /* only parent so far */
2463 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2464 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2465 	mutex_enter(&spawn_data->sed_mtx_child);
2466 
2467 	/*
2468 	 * Do the first part of the exec now, collect state
2469 	 * in spawn_data.
2470 	 */
2471 	error = execve_loadvm(l1, true, path, -1, argv,
2472 	    envp, fetch, &spawn_data->sed_exec);
2473 	if (error == EJUSTRETURN)
2474 		error = 0;
2475 	else if (error)
2476 		goto error_exit;
2477 
2478 	have_exec_lock = true;
2479 
2480 	/*
2481 	 * Allocate virtual address space for the U-area now, while it
2482 	 * is still easy to abort the fork operation if we're out of
2483 	 * kernel virtual address space.
2484 	 */
2485 	uaddr = uvm_uarea_alloc();
2486 	if (__predict_false(uaddr == 0)) {
2487 		error = ENOMEM;
2488 		goto error_exit;
2489 	}
2490 
2491 	/*
2492 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
2493 	 * replace it with its own before returning to userland
2494 	 * in the child.
2495 	 * This is a point of no return, we will have to go through
2496 	 * the child proc to properly clean it up past this point.
2497 	 */
2498 	p2 = proc_alloc();
2499 	pid = p2->p_pid;
2500 
2501 	/*
2502 	 * Make a proc table entry for the new process.
2503 	 * Start by zeroing the section of proc that is zero-initialized,
2504 	 * then copy the section that is copied directly from the parent.
2505 	 */
2506 	memset(&p2->p_startzero, 0,
2507 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2508 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
2509 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2510 	p2->p_vmspace = proc0.p_vmspace;
2511 
2512 	TAILQ_INIT(&p2->p_sigpend.sp_info);
2513 
2514 	LIST_INIT(&p2->p_lwps);
2515 	LIST_INIT(&p2->p_sigwaiters);
2516 
2517 	/*
2518 	 * Duplicate sub-structures as needed.
2519 	 * Increase reference counts on shared objects.
2520 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
2521 	 * handling are important in order to keep a consistent behaviour
2522 	 * for the child after the fork.  If we are a 32-bit process, the
2523 	 * child will be too.
2524 	 */
2525 	p2->p_flag =
2526 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2527 	p2->p_emul = p1->p_emul;
2528 	p2->p_execsw = p1->p_execsw;
2529 
2530 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2531 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2532 	rw_init(&p2->p_reflock);
2533 	rw_init(&p2->p_treelock);
2534 	cv_init(&p2->p_waitcv, "wait");
2535 	cv_init(&p2->p_lwpcv, "lwpwait");
2536 
2537 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2538 
2539 	kauth_proc_fork(p1, p2);
2540 
2541 	p2->p_raslist = NULL;
2542 	p2->p_fd = fd_copy();
2543 
2544 	/* XXX racy */
2545 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2546 
2547 	p2->p_cwdi = cwdinit();
2548 
2549 	/*
2550 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2551 	 * we just need increase pl_refcnt.
2552 	 */
2553 	if (!p1->p_limit->pl_writeable) {
2554 		lim_addref(p1->p_limit);
2555 		p2->p_limit = p1->p_limit;
2556 	} else {
2557 		p2->p_limit = lim_copy(p1->p_limit);
2558 	}
2559 
2560 	p2->p_lflag = 0;
2561 	l1->l_vforkwaiting = false;
2562 	p2->p_sflag = 0;
2563 	p2->p_slflag = 0;
2564 	p2->p_pptr = p1;
2565 	p2->p_ppid = p1->p_pid;
2566 	LIST_INIT(&p2->p_children);
2567 
2568 	p2->p_aio = NULL;
2569 
2570 #ifdef KTRACE
2571 	/*
2572 	 * Copy traceflag and tracefile if enabled.
2573 	 * If not inherited, these were zeroed above.
2574 	 */
2575 	if (p1->p_traceflag & KTRFAC_INHERIT) {
2576 		mutex_enter(&ktrace_lock);
2577 		p2->p_traceflag = p1->p_traceflag;
2578 		if ((p2->p_tracep = p1->p_tracep) != NULL)
2579 			ktradref(p2);
2580 		mutex_exit(&ktrace_lock);
2581 	}
2582 #endif
2583 
2584 	/*
2585 	 * Create signal actions for the child process.
2586 	 */
2587 	p2->p_sigacts = sigactsinit(p1, 0);
2588 	mutex_enter(p1->p_lock);
2589 	p2->p_sflag |=
2590 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2591 	sched_proc_fork(p1, p2);
2592 	mutex_exit(p1->p_lock);
2593 
2594 	p2->p_stflag = p1->p_stflag;
2595 
2596 	/*
2597 	 * p_stats.
2598 	 * Copy parts of p_stats, and zero out the rest.
2599 	 */
2600 	p2->p_stats = pstatscopy(p1->p_stats);
2601 
2602 	/* copy over machdep flags to the new proc */
2603 	cpu_proc_fork(p1, p2);
2604 
2605 	/*
2606 	 * Prepare remaining parts of spawn data
2607 	 */
2608 	spawn_data->sed_actions = fa;
2609 	spawn_data->sed_attrs = sa;
2610 
2611 	spawn_data->sed_parent = p1;
2612 
2613 	/* create LWP */
2614 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2615 	    &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2616 	l2->l_ctxlink = NULL;	/* reset ucontext link */
2617 
2618 	/*
2619 	 * Copy the credential so other references don't see our changes.
2620 	 * Test to see if this is necessary first, since in the common case
2621 	 * we won't need a private reference.
2622 	 */
2623 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2624 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2625 		l2->l_cred = kauth_cred_copy(l2->l_cred);
2626 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2627 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2628 	}
2629 
2630 	/* Update the master credentials. */
2631 	if (l2->l_cred != p2->p_cred) {
2632 		kauth_cred_t ocred;
2633 
2634 		kauth_cred_hold(l2->l_cred);
2635 		mutex_enter(p2->p_lock);
2636 		ocred = p2->p_cred;
2637 		p2->p_cred = l2->l_cred;
2638 		mutex_exit(p2->p_lock);
2639 		kauth_cred_free(ocred);
2640 	}
2641 
2642 	*child_ok = true;
2643 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
2644 #if 0
2645 	l2->l_nopreempt = 1; /* start it non-preemptable */
2646 #endif
2647 
2648 	/*
2649 	 * It's now safe for the scheduler and other processes to see the
2650 	 * child process.
2651 	 */
2652 	mutex_enter(proc_lock);
2653 
2654 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2655 		p2->p_lflag |= PL_CONTROLT;
2656 
2657 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2658 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
2659 
2660 	if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2661 	    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2662 		proc_changeparent(p2, p1->p_pptr);
2663 		p2->p_oppid = p1->p_pid;
2664 	}
2665 
2666 	LIST_INSERT_AFTER(p1, p2, p_pglist);
2667 	LIST_INSERT_HEAD(&allproc, p2, p_list);
2668 
2669 	p2->p_trace_enabled = trace_is_enabled(p2);
2670 #ifdef __HAVE_SYSCALL_INTERN
2671 	(*p2->p_emul->e_syscall_intern)(p2);
2672 #endif
2673 
2674 	/*
2675 	 * Make child runnable, set start time, and add to run queue except
2676 	 * if the parent requested the child to start in SSTOP state.
2677 	 */
2678 	mutex_enter(p2->p_lock);
2679 
2680 	getmicrotime(&p2->p_stats->p_start);
2681 
2682 	lwp_lock(l2);
2683 	KASSERT(p2->p_nrlwps == 1);
2684 	KASSERT(l2->l_stat == LSIDL);
2685 	p2->p_nrlwps = 1;
2686 	p2->p_stat = SACTIVE;
2687 	setrunnable(l2);
2688 	/* LWP now unlocked */
2689 
2690 	mutex_exit(p2->p_lock);
2691 	mutex_exit(proc_lock);
2692 
2693 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2694 	error = spawn_data->sed_error;
2695 	mutex_exit(&spawn_data->sed_mtx_child);
2696 	spawn_exec_data_release(spawn_data);
2697 
2698 	rw_exit(&p1->p_reflock);
2699 	rw_exit(&exec_lock);
2700 	have_exec_lock = false;
2701 
2702 	*pid_res = pid;
2703 
2704 	if (error)
2705 		return error;
2706 
2707 	if (p1->p_slflag & PSL_TRACED) {
2708 		/* Paranoid check */
2709 		mutex_enter(proc_lock);
2710 		if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2711 		    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2712 			mutex_exit(proc_lock);
2713 			return 0;
2714 		}
2715 
2716 		mutex_enter(p1->p_lock);
2717 		eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
2718 	}
2719 	return 0;
2720 
2721  error_exit:
2722 	if (have_exec_lock) {
2723 		execve_free_data(&spawn_data->sed_exec);
2724 		rw_exit(&p1->p_reflock);
2725 		rw_exit(&exec_lock);
2726 	}
2727 	mutex_exit(&spawn_data->sed_mtx_child);
2728 	spawn_exec_data_release(spawn_data);
2729 
2730 	return error;
2731 }
2732 
2733 int
2734 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2735     register_t *retval)
2736 {
2737 	/* {
2738 		syscallarg(pid_t *) pid;
2739 		syscallarg(const char *) path;
2740 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
2741 		syscallarg(const struct posix_spawnattr *) attrp;
2742 		syscallarg(char *const *) argv;
2743 		syscallarg(char *const *) envp;
2744 	} */
2745 
2746 	int error;
2747 	struct posix_spawn_file_actions *fa = NULL;
2748 	struct posix_spawnattr *sa = NULL;
2749 	pid_t pid;
2750 	bool child_ok = false;
2751 	rlim_t max_fileactions;
2752 	proc_t *p = l1->l_proc;
2753 
2754 	error = check_posix_spawn(l1);
2755 	if (error) {
2756 		*retval = error;
2757 		return 0;
2758 	}
2759 
2760 	/* copy in file_actions struct */
2761 	if (SCARG(uap, file_actions) != NULL) {
2762 		max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2763 		    maxfiles);
2764 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2765 		    max_fileactions);
2766 		if (error)
2767 			goto error_exit;
2768 	}
2769 
2770 	/* copyin posix_spawnattr struct */
2771 	if (SCARG(uap, attrp) != NULL) {
2772 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2773 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2774 		if (error)
2775 			goto error_exit;
2776 	}
2777 
2778 	/*
2779 	 * Do the spawn
2780 	 */
2781 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2782 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2783 	if (error)
2784 		goto error_exit;
2785 
2786 	if (error == 0 && SCARG(uap, pid) != NULL)
2787 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2788 
2789 	*retval = error;
2790 	return 0;
2791 
2792  error_exit:
2793 	if (!child_ok) {
2794 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2795 		atomic_dec_uint(&nprocs);
2796 
2797 		if (sa)
2798 			kmem_free(sa, sizeof(*sa));
2799 		if (fa)
2800 			posix_spawn_fa_free(fa, fa->len);
2801 	}
2802 
2803 	*retval = error;
2804 	return 0;
2805 }
2806 
2807 void
2808 exec_free_emul_arg(struct exec_package *epp)
2809 {
2810 	if (epp->ep_emul_arg_free != NULL) {
2811 		KASSERT(epp->ep_emul_arg != NULL);
2812 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2813 		epp->ep_emul_arg_free = NULL;
2814 		epp->ep_emul_arg = NULL;
2815 	} else {
2816 		KASSERT(epp->ep_emul_arg == NULL);
2817 	}
2818 }
2819 
2820 #ifdef DEBUG_EXEC
2821 static void
2822 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2823 {
2824 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2825 	size_t j;
2826 
2827 	if (error == 0)
2828 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2829 	else
2830 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2831 		    epp->ep_vmcmds.evs_used, error));
2832 
2833 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2834 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2835 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2836 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
2837 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
2838 		    "pagedvn" :
2839 		    vp[j].ev_proc == vmcmd_map_readvn ?
2840 		    "readvn" :
2841 		    vp[j].ev_proc == vmcmd_map_zero ?
2842 		    "zero" : "*unknown*",
2843 		    vp[j].ev_addr, vp[j].ev_len,
2844 		    vp[j].ev_offset, vp[j].ev_prot,
2845 		    vp[j].ev_flags));
2846 		if (error != 0 && j == x)
2847 			DPRINTF(("     ^--- failed\n"));
2848 	}
2849 }
2850 #endif
2851