xref: /netbsd/sys/kern/kern_malloc.c (revision 6550d01e)
1 /*	$NetBSD: kern_malloc.c,v 1.131 2010/05/05 02:20:42 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1987, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_malloc.c	8.4 (Berkeley) 5/20/95
32  */
33 
34 /*
35  * Copyright (c) 1996 Christopher G. Demetriou.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Berkeley and its contributors.
49  * 4. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_malloc.c	8.4 (Berkeley) 5/20/95
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.131 2010/05/05 02:20:42 christos Exp $");
70 
71 #include <sys/param.h>
72 #include <sys/proc.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/systm.h>
76 #include <sys/debug.h>
77 #include <sys/mutex.h>
78 #include <sys/lockdebug.h>
79 
80 #include <uvm/uvm_extern.h>
81 
82 static struct vm_map_kernel kmem_map_store;
83 struct vm_map *kmem_map = NULL;
84 
85 #include "opt_kmempages.h"
86 
87 #ifdef NKMEMCLUSTERS
88 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
89 #endif
90 
91 /*
92  * Default number of pages in kmem_map.  We attempt to calculate this
93  * at run-time, but allow it to be either patched or set in the kernel
94  * config file.
95  */
96 #ifndef NKMEMPAGES
97 #define	NKMEMPAGES	0
98 #endif
99 int	nkmempages = NKMEMPAGES;
100 
101 /*
102  * Defaults for lower- and upper-bounds for the kmem_map page count.
103  * Can be overridden by kernel config options.
104  */
105 #ifndef	NKMEMPAGES_MIN
106 #define	NKMEMPAGES_MIN	NKMEMPAGES_MIN_DEFAULT
107 #endif
108 
109 #ifndef NKMEMPAGES_MAX
110 #define	NKMEMPAGES_MAX	NKMEMPAGES_MAX_DEFAULT
111 #endif
112 
113 #include "opt_kmemstats.h"
114 #include "opt_malloclog.h"
115 #include "opt_malloc_debug.h"
116 
117 #define	MINALLOCSIZE	(1 << MINBUCKET)
118 #define	BUCKETINDX(size) \
119 	((size) <= (MINALLOCSIZE * 128) \
120 		? (size) <= (MINALLOCSIZE * 8) \
121 			? (size) <= (MINALLOCSIZE * 2) \
122 				? (size) <= (MINALLOCSIZE * 1) \
123 					? (MINBUCKET + 0) \
124 					: (MINBUCKET + 1) \
125 				: (size) <= (MINALLOCSIZE * 4) \
126 					? (MINBUCKET + 2) \
127 					: (MINBUCKET + 3) \
128 			: (size) <= (MINALLOCSIZE* 32) \
129 				? (size) <= (MINALLOCSIZE * 16) \
130 					? (MINBUCKET + 4) \
131 					: (MINBUCKET + 5) \
132 				: (size) <= (MINALLOCSIZE * 64) \
133 					? (MINBUCKET + 6) \
134 					: (MINBUCKET + 7) \
135 		: (size) <= (MINALLOCSIZE * 2048) \
136 			? (size) <= (MINALLOCSIZE * 512) \
137 				? (size) <= (MINALLOCSIZE * 256) \
138 					? (MINBUCKET + 8) \
139 					: (MINBUCKET + 9) \
140 				: (size) <= (MINALLOCSIZE * 1024) \
141 					? (MINBUCKET + 10) \
142 					: (MINBUCKET + 11) \
143 			: (size) <= (MINALLOCSIZE * 8192) \
144 				? (size) <= (MINALLOCSIZE * 4096) \
145 					? (MINBUCKET + 12) \
146 					: (MINBUCKET + 13) \
147 				: (size) <= (MINALLOCSIZE * 16384) \
148 					? (MINBUCKET + 14) \
149 					: (MINBUCKET + 15))
150 
151 /*
152  * Array of descriptors that describe the contents of each page
153  */
154 struct kmemusage {
155 	short ku_indx;		/* bucket index */
156 	union {
157 		u_short freecnt;/* for small allocations, free pieces in page */
158 		u_short pagecnt;/* for large allocations, pages alloced */
159 	} ku_un;
160 };
161 #define	ku_freecnt ku_un.freecnt
162 #define	ku_pagecnt ku_un.pagecnt
163 
164 struct kmembuckets kmembuckets[MINBUCKET + 16];
165 struct kmemusage *kmemusage;
166 char *kmembase, *kmemlimit;
167 
168 #ifdef DEBUG
169 static void *malloc_freecheck;
170 #endif
171 
172 /*
173  * Turn virtual addresses into kmem map indicies
174  */
175 #define	btokup(addr)	(&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
176 
177 struct malloc_type *kmemstatistics;
178 
179 #ifdef MALLOCLOG
180 #ifndef MALLOCLOGSIZE
181 #define	MALLOCLOGSIZE	100000
182 #endif
183 
184 struct malloclog {
185 	void *addr;
186 	long size;
187 	struct malloc_type *type;
188 	int action;
189 	const char *file;
190 	long line;
191 } malloclog[MALLOCLOGSIZE];
192 
193 long	malloclogptr;
194 
195 /*
196  * Fuzz factor for neighbour address match this must be a mask of the lower
197  * bits we wish to ignore when comparing addresses
198  */
199 __uintptr_t malloclog_fuzz = 0x7FL;
200 
201 
202 static void
203 domlog(void *a, long size, struct malloc_type *type, int action,
204     const char *file, long line)
205 {
206 
207 	malloclog[malloclogptr].addr = a;
208 	malloclog[malloclogptr].size = size;
209 	malloclog[malloclogptr].type = type;
210 	malloclog[malloclogptr].action = action;
211 	malloclog[malloclogptr].file = file;
212 	malloclog[malloclogptr].line = line;
213 	malloclogptr++;
214 	if (malloclogptr >= MALLOCLOGSIZE)
215 		malloclogptr = 0;
216 }
217 
218 #ifdef DIAGNOSTIC
219 static void
220 hitmlog(void *a)
221 {
222 	struct malloclog *lp;
223 	long l;
224 
225 #define	PRT do { \
226 	lp = &malloclog[l]; \
227 	if (lp->addr == a && lp->action) { \
228 		printf("malloc log entry %ld:\n", l); \
229 		printf("\taddr = %p\n", lp->addr); \
230 		printf("\tsize = %ld\n", lp->size); \
231 		printf("\ttype = %s\n", lp->type->ks_shortdesc); \
232 		printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
233 		printf("\tfile = %s\n", lp->file); \
234 		printf("\tline = %ld\n", lp->line); \
235 	} \
236 } while (/* CONSTCOND */0)
237 
238 /*
239  * Print fuzzy matched "neighbour" - look for the memory block that has
240  * been allocated below the address we are interested in.  We look for a
241  * base address + size that is within malloclog_fuzz of our target
242  * address. If the base address and target address are the same then it is
243  * likely we have found a free (size is 0 in this case) so we won't report
244  * those, they will get reported by PRT anyway.
245  */
246 #define	NPRT do { \
247 	__uintptr_t fuzz_mask = ~(malloclog_fuzz); \
248 	lp = &malloclog[l]; \
249 	if ((__uintptr_t)lp->addr != (__uintptr_t)a && \
250 	    (((__uintptr_t)lp->addr + lp->size + malloclog_fuzz) & fuzz_mask) \
251 	    == ((__uintptr_t)a & fuzz_mask) && lp->action) {		\
252 		printf("neighbour malloc log entry %ld:\n", l); \
253 		printf("\taddr = %p\n", lp->addr); \
254 		printf("\tsize = %ld\n", lp->size); \
255 		printf("\ttype = %s\n", lp->type->ks_shortdesc); \
256 		printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
257 		printf("\tfile = %s\n", lp->file); \
258 		printf("\tline = %ld\n", lp->line); \
259 	} \
260 } while (/* CONSTCOND */0)
261 
262 	for (l = malloclogptr; l < MALLOCLOGSIZE; l++) {
263 		PRT;
264 		NPRT;
265 	}
266 
267 
268 	for (l = 0; l < malloclogptr; l++) {
269 		PRT;
270 		NPRT;
271 	}
272 
273 #undef PRT
274 }
275 #endif /* DIAGNOSTIC */
276 #endif /* MALLOCLOG */
277 
278 #ifdef DIAGNOSTIC
279 /*
280  * This structure provides a set of masks to catch unaligned frees.
281  */
282 const long addrmask[] = { 0,
283 	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
284 	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
285 	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
286 	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
287 };
288 
289 /*
290  * The WEIRD_ADDR is used as known text to copy into free objects so
291  * that modifications after frees can be detected.
292  */
293 #define	WEIRD_ADDR	((uint32_t) 0xdeadbeef)
294 #ifdef DEBUG
295 #define	MAX_COPY	PAGE_SIZE
296 #else
297 #define	MAX_COPY	32
298 #endif
299 
300 /*
301  * Normally the freelist structure is used only to hold the list pointer
302  * for free objects.  However, when running with diagnostics, the first
303  * 8/16 bytes of the structure is unused except for diagnostic information,
304  * and the free list pointer is at offset 8/16 in the structure.  Since the
305  * first 8 bytes is the portion of the structure most often modified, this
306  * helps to detect memory reuse problems and avoid free list corruption.
307  */
308 struct freelist {
309 	uint32_t spare0;
310 #ifdef _LP64
311 	uint32_t spare1;		/* explicit padding */
312 #endif
313 	struct malloc_type *type;
314 	void *	next;
315 };
316 #else /* !DIAGNOSTIC */
317 struct freelist {
318 	void *	next;
319 };
320 #endif /* DIAGNOSTIC */
321 
322 kmutex_t malloc_lock;
323 
324 /*
325  * Allocate a block of memory
326  */
327 #ifdef MALLOCLOG
328 void *
329 _kern_malloc(unsigned long size, struct malloc_type *ksp, int flags,
330     const char *file, long line)
331 #else
332 void *
333 kern_malloc(unsigned long size, struct malloc_type *ksp, int flags)
334 #endif /* MALLOCLOG */
335 {
336 	struct kmembuckets *kbp;
337 	struct kmemusage *kup;
338 	struct freelist *freep;
339 	long indx, npg, allocsize;
340 	char *va, *cp, *savedlist;
341 #ifdef DIAGNOSTIC
342 	uint32_t *end, *lp;
343 	int copysize;
344 #endif
345 
346 #ifdef LOCKDEBUG
347 	if ((flags & M_NOWAIT) == 0) {
348 		ASSERT_SLEEPABLE();
349 	}
350 #endif
351 #ifdef MALLOC_DEBUG
352 	if (debug_malloc(size, ksp, flags, (void *) &va)) {
353 		if (va != 0) {
354 			FREECHECK_OUT(&malloc_freecheck, (void *)va);
355 		}
356 		return ((void *) va);
357 	}
358 #endif
359 	indx = BUCKETINDX(size);
360 	kbp = &kmembuckets[indx];
361 	mutex_spin_enter(&malloc_lock);
362 #ifdef KMEMSTATS
363 	while (ksp->ks_memuse >= ksp->ks_limit) {
364 		if (flags & M_NOWAIT) {
365 			mutex_spin_exit(&malloc_lock);
366 			return ((void *) NULL);
367 		}
368 		if (ksp->ks_limblocks < 65535)
369 			ksp->ks_limblocks++;
370 		mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
371 			&malloc_lock);
372 	}
373 	ksp->ks_size |= 1 << indx;
374 #ifdef DIAGNOSTIC
375 	if (ksp->ks_active[indx - MINBUCKET] == USHRT_MAX)
376 		panic("too many allocations in bucket");
377 #endif
378 	ksp->ks_active[indx - MINBUCKET]++;
379 #endif
380 #ifdef DIAGNOSTIC
381 	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
382 #endif
383 	if (kbp->kb_next == NULL) {
384 		int s;
385 		kbp->kb_last = NULL;
386 		if (size > MAXALLOCSAVE)
387 			allocsize = round_page(size);
388 		else
389 			allocsize = 1 << indx;
390 		npg = btoc(allocsize);
391 		mutex_spin_exit(&malloc_lock);
392 		s = splvm();
393 		va = (void *) uvm_km_alloc(kmem_map,
394 		    (vsize_t)ctob(npg), 0,
395 		    ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
396 		    ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
397 		    UVM_KMF_WIRED);
398 		splx(s);
399 		if (__predict_false(va == NULL)) {
400 			/*
401 			 * Kmem_malloc() can return NULL, even if it can
402 			 * wait, if there is no map space available, because
403 			 * it can't fix that problem.  Neither can we,
404 			 * right now.  (We should release pages which
405 			 * are completely free and which are in kmembuckets
406 			 * with too many free elements.)
407 			 */
408 			if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
409 				panic("malloc: out of space in kmem_map");
410 			return (NULL);
411 		}
412 		mutex_spin_enter(&malloc_lock);
413 #ifdef KMEMSTATS
414 		kbp->kb_total += kbp->kb_elmpercl;
415 #endif
416 		kup = btokup(va);
417 		kup->ku_indx = indx;
418 		if (allocsize > MAXALLOCSAVE) {
419 			if (npg > 65535)
420 				panic("malloc: allocation too large");
421 			kup->ku_pagecnt = npg;
422 #ifdef KMEMSTATS
423 			ksp->ks_memuse += allocsize;
424 #endif
425 			goto out;
426 		}
427 #ifdef KMEMSTATS
428 		kup->ku_freecnt = kbp->kb_elmpercl;
429 		kbp->kb_totalfree += kbp->kb_elmpercl;
430 #endif
431 		/*
432 		 * Just in case we blocked while allocating memory,
433 		 * and someone else also allocated memory for this
434 		 * kmembucket, don't assume the list is still empty.
435 		 */
436 		savedlist = kbp->kb_next;
437 		kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
438 		for (;;) {
439 			freep = (struct freelist *)cp;
440 #ifdef DIAGNOSTIC
441 			/*
442 			 * Copy in known text to detect modification
443 			 * after freeing.
444 			 */
445 			end = (uint32_t *)&cp[copysize];
446 			for (lp = (uint32_t *)cp; lp < end; lp++)
447 				*lp = WEIRD_ADDR;
448 			freep->type = M_FREE;
449 #endif /* DIAGNOSTIC */
450 			if (cp <= va)
451 				break;
452 			cp -= allocsize;
453 			freep->next = cp;
454 		}
455 		freep->next = savedlist;
456 		if (savedlist == NULL)
457 			kbp->kb_last = (void *)freep;
458 	}
459 	va = kbp->kb_next;
460 	kbp->kb_next = ((struct freelist *)va)->next;
461 #ifdef DIAGNOSTIC
462 	freep = (struct freelist *)va;
463 	/* XXX potential to get garbage pointer here. */
464 	if (kbp->kb_next) {
465 		int rv;
466 		vaddr_t addr = (vaddr_t)kbp->kb_next;
467 
468 		vm_map_lock(kmem_map);
469 		rv = uvm_map_checkprot(kmem_map, addr,
470 		    addr + sizeof(struct freelist), VM_PROT_WRITE);
471 		vm_map_unlock(kmem_map);
472 
473 		if (__predict_false(rv == 0)) {
474 			printf("Data modified on freelist: "
475 			    "word %ld of object %p size %ld previous type %s "
476 			    "(invalid addr %p)\n",
477 			    (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
478 			    va, size, "foo", kbp->kb_next);
479 #ifdef MALLOCLOG
480 			hitmlog(va);
481 #endif
482 			kbp->kb_next = NULL;
483 		}
484 	}
485 
486 	/* Fill the fields that we've used with WEIRD_ADDR */
487 #ifdef _LP64
488 	freep->type = (struct malloc_type *)
489 	    (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
490 #else
491 	freep->type = (struct malloc_type *) WEIRD_ADDR;
492 #endif
493 	end = (uint32_t *)&freep->next +
494 	    (sizeof(freep->next) / sizeof(int32_t));
495 	for (lp = (uint32_t *)&freep->next; lp < end; lp++)
496 		*lp = WEIRD_ADDR;
497 
498 	/* and check that the data hasn't been modified. */
499 	end = (uint32_t *)&va[copysize];
500 	for (lp = (uint32_t *)va; lp < end; lp++) {
501 		if (__predict_true(*lp == WEIRD_ADDR))
502 			continue;
503 		printf("Data modified on freelist: "
504 		    "word %ld of object %p size %ld previous type %s "
505 		    "(0x%x != 0x%x)\n",
506 		    (long)(lp - (uint32_t *)va), va, size,
507 		    "bar", *lp, WEIRD_ADDR);
508 #ifdef MALLOCLOG
509 		hitmlog(va);
510 #endif
511 		break;
512 	}
513 
514 	freep->spare0 = 0;
515 #endif /* DIAGNOSTIC */
516 #ifdef KMEMSTATS
517 	kup = btokup(va);
518 	if (kup->ku_indx != indx)
519 		panic("malloc: wrong bucket");
520 	if (kup->ku_freecnt == 0)
521 		panic("malloc: lost data");
522 	kup->ku_freecnt--;
523 	kbp->kb_totalfree--;
524 	ksp->ks_memuse += 1 << indx;
525 out:
526 	kbp->kb_calls++;
527 	ksp->ks_inuse++;
528 	ksp->ks_calls++;
529 	if (ksp->ks_memuse > ksp->ks_maxused)
530 		ksp->ks_maxused = ksp->ks_memuse;
531 #else
532 out:
533 #endif
534 #ifdef MALLOCLOG
535 	domlog(va, size, ksp, 1, file, line);
536 #endif
537 	mutex_spin_exit(&malloc_lock);
538 	if ((flags & M_ZERO) != 0)
539 		memset(va, 0, size);
540 	FREECHECK_OUT(&malloc_freecheck, (void *)va);
541 	return ((void *) va);
542 }
543 
544 /*
545  * Free a block of memory allocated by malloc.
546  */
547 #ifdef MALLOCLOG
548 void
549 _kern_free(void *addr, struct malloc_type *ksp, const char *file, long line)
550 #else
551 void
552 kern_free(void *addr, struct malloc_type *ksp)
553 #endif /* MALLOCLOG */
554 {
555 	struct kmembuckets *kbp;
556 	struct kmemusage *kup;
557 	struct freelist *freep;
558 	long size;
559 #ifdef DIAGNOSTIC
560 	void *cp;
561 	int32_t *end, *lp;
562 	long alloc, copysize;
563 #endif
564 
565 	FREECHECK_IN(&malloc_freecheck, addr);
566 #ifdef MALLOC_DEBUG
567 	if (debug_free(addr, ksp))
568 		return;
569 #endif
570 
571 #ifdef DIAGNOSTIC
572 	/*
573 	 * Ensure that we're free'ing something that we could
574 	 * have allocated in the first place.  That is, check
575 	 * to see that the address is within kmem_map.
576 	 */
577 	if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
578 	    (vaddr_t)addr >= vm_map_max(kmem_map)))
579 		panic("free: addr %p not within kmem_map", addr);
580 #endif
581 
582 	kup = btokup(addr);
583 	size = 1 << kup->ku_indx;
584 	kbp = &kmembuckets[kup->ku_indx];
585 
586 	LOCKDEBUG_MEM_CHECK(addr,
587 	    size <= MAXALLOCSAVE ? size : ctob(kup->ku_pagecnt));
588 
589 	mutex_spin_enter(&malloc_lock);
590 #ifdef MALLOCLOG
591 	domlog(addr, 0, ksp, 2, file, line);
592 #endif
593 #ifdef DIAGNOSTIC
594 	/*
595 	 * Check for returns of data that do not point to the
596 	 * beginning of the allocation.
597 	 */
598 	if (size > PAGE_SIZE)
599 		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
600 	else
601 		alloc = addrmask[kup->ku_indx];
602 	if (((u_long)addr & alloc) != 0)
603 		panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
604 		    addr, size, ksp->ks_shortdesc, alloc);
605 #endif /* DIAGNOSTIC */
606 	if (size > MAXALLOCSAVE) {
607 		uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
608 		    UVM_KMF_WIRED);
609 #ifdef KMEMSTATS
610 		size = kup->ku_pagecnt << PGSHIFT;
611 		ksp->ks_memuse -= size;
612 #ifdef DIAGNOSTIC
613 		if (ksp->ks_active[kup->ku_indx - MINBUCKET] == 0)
614 			panic("no active allocation(1), probably double free");
615 #endif
616 		ksp->ks_active[kup->ku_indx - MINBUCKET]--;
617 		kup->ku_indx = 0;
618 		kup->ku_pagecnt = 0;
619 		if (ksp->ks_memuse + size >= ksp->ks_limit &&
620 		    ksp->ks_memuse < ksp->ks_limit)
621 			wakeup((void *)ksp);
622 #ifdef DIAGNOSTIC
623 		if (ksp->ks_inuse == 0)
624 			panic("free 1: inuse 0, probable double free");
625 #endif
626 		ksp->ks_inuse--;
627 		kbp->kb_total -= 1;
628 #endif
629 		mutex_spin_exit(&malloc_lock);
630 		return;
631 	}
632 	freep = (struct freelist *)addr;
633 #ifdef DIAGNOSTIC
634 	/*
635 	 * Check for multiple frees. Use a quick check to see if
636 	 * it looks free before laboriously searching the freelist.
637 	 */
638 	if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
639 		for (cp = kbp->kb_next; cp;
640 		    cp = ((struct freelist *)cp)->next) {
641 			if (addr != cp)
642 				continue;
643 			printf("multiply freed item %p\n", addr);
644 #ifdef MALLOCLOG
645 			hitmlog(addr);
646 #endif
647 			panic("free: duplicated free");
648 		}
649 	}
650 
651 	/*
652 	 * Copy in known text to detect modification after freeing
653 	 * and to make it look free. Also, save the type being freed
654 	 * so we can list likely culprit if modification is detected
655 	 * when the object is reallocated.
656 	 */
657 	copysize = size < MAX_COPY ? size : MAX_COPY;
658 	end = (int32_t *)&((char *)addr)[copysize];
659 	for (lp = (int32_t *)addr; lp < end; lp++)
660 		*lp = WEIRD_ADDR;
661 	freep->type = ksp;
662 #endif /* DIAGNOSTIC */
663 #ifdef KMEMSTATS
664 	kup->ku_freecnt++;
665 	if (kup->ku_freecnt >= kbp->kb_elmpercl) {
666 		if (kup->ku_freecnt > kbp->kb_elmpercl)
667 			panic("free: multiple frees");
668 		else if (kbp->kb_totalfree > kbp->kb_highwat)
669 			kbp->kb_couldfree++;
670 	}
671 	kbp->kb_totalfree++;
672 	ksp->ks_memuse -= size;
673 #ifdef DIAGNOSTIC
674 	if (ksp->ks_active[kup->ku_indx - MINBUCKET] == 0)
675 		panic("no active allocation(2), probably double free");
676 #endif
677 	ksp->ks_active[kup->ku_indx - MINBUCKET]--;
678 	if (ksp->ks_memuse + size >= ksp->ks_limit &&
679 	    ksp->ks_memuse < ksp->ks_limit)
680 		wakeup((void *)ksp);
681 #ifdef DIAGNOSTIC
682 	if (ksp->ks_inuse == 0)
683 		panic("free 2: inuse 0, probable double free");
684 #endif
685 	ksp->ks_inuse--;
686 #endif
687 	if (kbp->kb_next == NULL)
688 		kbp->kb_next = addr;
689 	else
690 		((struct freelist *)kbp->kb_last)->next = addr;
691 	freep->next = NULL;
692 	kbp->kb_last = addr;
693 	mutex_spin_exit(&malloc_lock);
694 }
695 
696 /*
697  * Change the size of a block of memory.
698  */
699 void *
700 kern_realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
701     int flags)
702 {
703 	struct kmemusage *kup;
704 	unsigned long cursize;
705 	void *newaddr;
706 #ifdef DIAGNOSTIC
707 	long alloc;
708 #endif
709 
710 	/*
711 	 * realloc() with a NULL pointer is the same as malloc().
712 	 */
713 	if (curaddr == NULL)
714 		return (malloc(newsize, ksp, flags));
715 
716 	/*
717 	 * realloc() with zero size is the same as free().
718 	 */
719 	if (newsize == 0) {
720 		free(curaddr, ksp);
721 		return (NULL);
722 	}
723 
724 #ifdef LOCKDEBUG
725 	if ((flags & M_NOWAIT) == 0) {
726 		ASSERT_SLEEPABLE();
727 	}
728 #endif
729 
730 	/*
731 	 * Find out how large the old allocation was (and do some
732 	 * sanity checking).
733 	 */
734 	kup = btokup(curaddr);
735 	cursize = 1 << kup->ku_indx;
736 
737 #ifdef DIAGNOSTIC
738 	/*
739 	 * Check for returns of data that do not point to the
740 	 * beginning of the allocation.
741 	 */
742 	if (cursize > PAGE_SIZE)
743 		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
744 	else
745 		alloc = addrmask[kup->ku_indx];
746 	if (((u_long)curaddr & alloc) != 0)
747 		panic("realloc: "
748 		    "unaligned addr %p, size %ld, type %s, mask %ld\n",
749 		    curaddr, cursize, ksp->ks_shortdesc, alloc);
750 #endif /* DIAGNOSTIC */
751 
752 	if (cursize > MAXALLOCSAVE)
753 		cursize = ctob(kup->ku_pagecnt);
754 
755 	/*
756 	 * If we already actually have as much as they want, we're done.
757 	 */
758 	if (newsize <= cursize)
759 		return (curaddr);
760 
761 	/*
762 	 * Can't satisfy the allocation with the existing block.
763 	 * Allocate a new one and copy the data.
764 	 */
765 	newaddr = malloc(newsize, ksp, flags);
766 	if (__predict_false(newaddr == NULL)) {
767 		/*
768 		 * malloc() failed, because flags included M_NOWAIT.
769 		 * Return NULL to indicate that failure.  The old
770 		 * pointer is still valid.
771 		 */
772 		return (NULL);
773 	}
774 	memcpy(newaddr, curaddr, cursize);
775 
776 	/*
777 	 * We were successful: free the old allocation and return
778 	 * the new one.
779 	 */
780 	free(curaddr, ksp);
781 	return (newaddr);
782 }
783 
784 /*
785  * Roundup size to the actual allocation size.
786  */
787 unsigned long
788 malloc_roundup(unsigned long size)
789 {
790 
791 	if (size > MAXALLOCSAVE)
792 		return (roundup(size, PAGE_SIZE));
793 	else
794 		return (1 << BUCKETINDX(size));
795 }
796 
797 /*
798  * Add a malloc type to the system.
799  */
800 void
801 malloc_type_attach(struct malloc_type *type)
802 {
803 
804 	if (nkmempages == 0)
805 		panic("malloc_type_attach: nkmempages == 0");
806 
807 	if (type->ks_magic != M_MAGIC)
808 		panic("malloc_type_attach: bad magic");
809 
810 #ifdef DIAGNOSTIC
811 	{
812 		struct malloc_type *ksp;
813 		for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
814 			if (ksp == type)
815 				panic("%s: `%s' already on list", __func__,
816 				    type->ks_shortdesc);
817 		}
818 	}
819 #endif
820 
821 #ifdef KMEMSTATS
822 	if (type->ks_limit == 0)
823 		type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
824 #else
825 	type->ks_limit = 0;
826 #endif
827 
828 	type->ks_next = kmemstatistics;
829 	kmemstatistics = type;
830 }
831 
832 /*
833  * Remove a malloc type from the system..
834  */
835 void
836 malloc_type_detach(struct malloc_type *type)
837 {
838 	struct malloc_type *ksp;
839 
840 #ifdef DIAGNOSTIC
841 	if (type->ks_magic != M_MAGIC)
842 		panic("malloc_type_detach: bad magic");
843 #endif
844 
845 	if (type == kmemstatistics)
846 		kmemstatistics = type->ks_next;
847 	else {
848 		for (ksp = kmemstatistics; ksp->ks_next != NULL;
849 		     ksp = ksp->ks_next) {
850 			if (ksp->ks_next == type) {
851 				ksp->ks_next = type->ks_next;
852 				break;
853 			}
854 		}
855 #ifdef DIAGNOSTIC
856 		if (ksp->ks_next == NULL)
857 			panic("malloc_type_detach: not on list");
858 #endif
859 	}
860 	type->ks_next = NULL;
861 }
862 
863 /*
864  * Set the limit on a malloc type.
865  */
866 void
867 malloc_type_setlimit(struct malloc_type *type, u_long limit)
868 {
869 #ifdef KMEMSTATS
870 	mutex_spin_enter(&malloc_lock);
871 	type->ks_limit = limit;
872 	mutex_spin_exit(&malloc_lock);
873 #endif
874 }
875 
876 /*
877  * Compute the number of pages that kmem_map will map, that is,
878  * the size of the kernel malloc arena.
879  */
880 void
881 kmeminit_nkmempages(void)
882 {
883 	int npages;
884 
885 	if (nkmempages != 0) {
886 		/*
887 		 * It's already been set (by us being here before, or
888 		 * by patching or kernel config options), bail out now.
889 		 */
890 		return;
891 	}
892 
893 	npages = physmem;
894 
895 	if (npages > NKMEMPAGES_MAX)
896 		npages = NKMEMPAGES_MAX;
897 
898 	if (npages < NKMEMPAGES_MIN)
899 		npages = NKMEMPAGES_MIN;
900 
901 	nkmempages = npages;
902 }
903 
904 /*
905  * Initialize the kernel memory allocator
906  */
907 void
908 kmeminit(void)
909 {
910 	__link_set_decl(malloc_types, struct malloc_type);
911 	struct malloc_type * const *ksp;
912 	vaddr_t kmb, kml;
913 #ifdef KMEMSTATS
914 	long indx;
915 #endif
916 
917 #if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
918 		ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
919 #endif
920 #if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
921 		ERROR!_kmeminit:_MAXALLOCSAVE_too_big
922 #endif
923 #if	(MAXALLOCSAVE < NBPG)
924 		ERROR!_kmeminit:_MAXALLOCSAVE_too_small
925 #endif
926 
927 	if (sizeof(struct freelist) > (1 << MINBUCKET))
928 		panic("minbucket too small/struct freelist too big");
929 
930 	mutex_init(&malloc_lock, MUTEX_DEFAULT, IPL_VM);
931 
932 	/*
933 	 * Compute the number of kmem_map pages, if we have not
934 	 * done so already.
935 	 */
936 	kmeminit_nkmempages();
937 
938 	kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
939 	    (vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
940 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
941 	kmb = 0;
942 	kmem_map = uvm_km_suballoc(kernel_map, &kmb,
943 	    &kml, ((vsize_t)nkmempages << PAGE_SHIFT),
944 	    VM_MAP_INTRSAFE, false, &kmem_map_store);
945 	uvm_km_vacache_init(kmem_map, "kvakmem", 0);
946 	kmembase = (char *)kmb;
947 	kmemlimit = (char *)kml;
948 #ifdef KMEMSTATS
949 	for (indx = 0; indx < MINBUCKET + 16; indx++) {
950 		if (1 << indx >= PAGE_SIZE)
951 			kmembuckets[indx].kb_elmpercl = 1;
952 		else
953 			kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
954 		kmembuckets[indx].kb_highwat =
955 			5 * kmembuckets[indx].kb_elmpercl;
956 	}
957 #endif
958 
959 	/* Attach all of the statically-linked malloc types. */
960 	__link_set_foreach(ksp, malloc_types)
961 		malloc_type_attach(*ksp);
962 
963 #ifdef MALLOC_DEBUG
964 	debug_malloc_init();
965 #endif
966 }
967 
968 #ifdef DDB
969 #include <ddb/db_output.h>
970 
971 /*
972  * Dump kmem statistics from ddb.
973  *
974  * usage: call dump_kmemstats
975  */
976 void	dump_kmemstats(void);
977 
978 void
979 dump_kmemstats(void)
980 {
981 #ifdef KMEMSTATS
982 	struct malloc_type *ksp;
983 
984 	for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
985 		if (ksp->ks_memuse == 0)
986 			continue;
987 		db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
988 		    (int)(20 - strlen(ksp->ks_shortdesc)),
989 		    "                    ",
990 		    ksp->ks_memuse);
991 	}
992 #else
993 	db_printf("Kmem stats are not being collected.\n");
994 #endif /* KMEMSTATS */
995 }
996 #endif /* DDB */
997 
998 
999 #if 0
1000 /*
1001  * Diagnostic messages about "Data modified on
1002  * freelist" indicate a memory corruption, but
1003  * they do not help tracking it down.
1004  * This function can be called at various places
1005  * to sanity check malloc's freelist and discover
1006  * where does the corruption take place.
1007  */
1008 int
1009 freelist_sanitycheck(void) {
1010 	int i,j;
1011 	struct kmembuckets *kbp;
1012 	struct freelist *freep;
1013 	int rv = 0;
1014 
1015 	for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
1016 		kbp = &kmembuckets[i];
1017 		freep = (struct freelist *)kbp->kb_next;
1018 		j = 0;
1019 		while(freep) {
1020 			vm_map_lock(kmem_map);
1021 			rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
1022 			    (vaddr_t)freep + sizeof(struct freelist),
1023 			    VM_PROT_WRITE);
1024 			vm_map_unlock(kmem_map);
1025 
1026 			if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
1027 				printf("bucket %i, chunck %d at %p modified\n",
1028 				    i, j, freep);
1029 				return 1;
1030 			}
1031 			freep = (struct freelist *)freep->next;
1032 			j++;
1033 		}
1034 	}
1035 
1036 	return 0;
1037 }
1038 #endif
1039