xref: /netbsd/sys/kern/kern_sysctl.c (revision bf9ec67e)
1 /*	$NetBSD: kern_sysctl.c,v 1.108 2002/05/14 02:58:32 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Mike Karels at Berkeley Software Design, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sysctl.c	8.9 (Berkeley) 5/20/95
39  */
40 
41 /*
42  * sysctl system call.
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: kern_sysctl.c,v 1.108 2002/05/14 02:58:32 matt Exp $");
47 
48 #include "opt_ddb.h"
49 #include "opt_insecure.h"
50 #include "opt_defcorename.h"
51 #include "opt_pipe.h"
52 #include "opt_sysv.h"
53 #include "pty.h"
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/buf.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/dkstat.h>
62 #include <sys/exec.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/malloc.h>
66 #include <sys/mount.h>
67 #include <sys/msgbuf.h>
68 #include <sys/pool.h>
69 #include <sys/proc.h>
70 #include <sys/resource.h>
71 #include <sys/resourcevar.h>
72 #include <sys/syscallargs.h>
73 #include <sys/tty.h>
74 #include <sys/unistd.h>
75 #include <sys/vnode.h>
76 #include <sys/socketvar.h>
77 #define	__SYSCTL_PRIVATE
78 #include <sys/sysctl.h>
79 #include <sys/lock.h>
80 #include <sys/namei.h>
81 
82 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
83 #include <sys/ipc.h>
84 #endif
85 #ifdef SYSVMSG
86 #include <sys/msg.h>
87 #endif
88 #ifdef SYSVSEM
89 #include <sys/sem.h>
90 #endif
91 #ifdef SYSVSHM
92 #include <sys/shm.h>
93 #endif
94 
95 #include <dev/cons.h>
96 
97 #if defined(DDB)
98 #include <ddb/ddbvar.h>
99 #endif
100 
101 #ifndef PIPE_SOCKETPAIR
102 #include <sys/pipe.h>
103 #endif
104 
105 #define PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(foo))
106 
107 static int sysctl_file(void *, size_t *);
108 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
109 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
110 #endif
111 static int sysctl_msgbuf(void *, size_t *);
112 static int sysctl_doeproc(int *, u_int, void *, size_t *);
113 static int sysctl_dotkstat(int *, u_int, void *, size_t *, void *);
114 #ifdef MULTIPROCESSOR
115 static int sysctl_docptime(void *, size_t *, void *);
116 static int sysctl_ncpus(void);
117 #endif
118 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
119 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
120 #if NPTY > 0
121 static int sysctl_pty(void *, size_t *, void *, size_t);
122 #endif
123 
124 /*
125  * The `sysctl_memlock' is intended to keep too many processes from
126  * locking down memory by doing sysctls at once.  Whether or not this
127  * is really a good idea to worry about it probably a subject of some
128  * debate.
129  */
130 struct lock sysctl_memlock;
131 
132 void
133 sysctl_init(void)
134 {
135 
136 	lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
137 }
138 
139 int
140 sys___sysctl(struct proc *p, void *v, register_t *retval)
141 {
142 	struct sys___sysctl_args /* {
143 		syscallarg(int *) name;
144 		syscallarg(u_int) namelen;
145 		syscallarg(void *) old;
146 		syscallarg(size_t *) oldlenp;
147 		syscallarg(void *) new;
148 		syscallarg(size_t) newlen;
149 	} */ *uap = v;
150 	int error;
151 	size_t savelen = 0, oldlen = 0;
152 	sysctlfn *fn;
153 	int name[CTL_MAXNAME];
154 	size_t *oldlenp;
155 
156 	/*
157 	 * all top-level sysctl names are non-terminal
158 	 */
159 	if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
160 		return (EINVAL);
161 	error = copyin(SCARG(uap, name), &name,
162 		       SCARG(uap, namelen) * sizeof(int));
163 	if (error)
164 		return (error);
165 
166 	/*
167 	 * For all but CTL_PROC, must be root to change a value.
168 	 * For CTL_PROC, must be root, or owner of the proc (and not suid),
169 	 * this is checked in proc_sysctl() (once we know the targer proc).
170 	 */
171 	if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
172 		    (error = suser(p->p_ucred, &p->p_acflag)))
173 			return error;
174 
175 	switch (name[0]) {
176 	case CTL_KERN:
177 		fn = kern_sysctl;
178 		break;
179 	case CTL_HW:
180 		fn = hw_sysctl;
181 		break;
182 	case CTL_VM:
183 		fn = uvm_sysctl;
184 		break;
185 	case CTL_NET:
186 		fn = net_sysctl;
187 		break;
188 	case CTL_VFS:
189 		fn = vfs_sysctl;
190 		break;
191 	case CTL_MACHDEP:
192 		fn = cpu_sysctl;
193 		break;
194 #ifdef DEBUG
195 	case CTL_DEBUG:
196 		fn = debug_sysctl;
197 		break;
198 #endif
199 #ifdef DDB
200 	case CTL_DDB:
201 		fn = ddb_sysctl;
202 		break;
203 #endif
204 	case CTL_PROC:
205 		fn = proc_sysctl;
206 		break;
207 
208 	case CTL_EMUL:
209 		fn = emul_sysctl;
210 		break;
211 	default:
212 		return (EOPNOTSUPP);
213 	}
214 
215 	/*
216 	 * XXX Hey, we wire `old', but what about `new'?
217 	 */
218 
219 	oldlenp = SCARG(uap, oldlenp);
220 	if (oldlenp) {
221 		if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
222 			return (error);
223 		oldlenp = &oldlen;
224 	}
225 	if (SCARG(uap, old) != NULL) {
226 		error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
227 		if (error)
228 			return (error);
229 		error = uvm_vslock(p, SCARG(uap, old), oldlen, VM_PROT_WRITE);
230 		if (error) {
231 			(void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
232 			return error;
233 		}
234 		savelen = oldlen;
235 	}
236 	error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
237 	    oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
238 	if (SCARG(uap, old) != NULL) {
239 		uvm_vsunlock(p, SCARG(uap, old), savelen);
240 		(void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
241 	}
242 	if (error)
243 		return (error);
244 	if (SCARG(uap, oldlenp))
245 		error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
246 	return (error);
247 }
248 
249 /*
250  * Attributes stored in the kernel.
251  */
252 char hostname[MAXHOSTNAMELEN];
253 int hostnamelen;
254 
255 char domainname[MAXHOSTNAMELEN];
256 int domainnamelen;
257 
258 long hostid;
259 
260 #ifdef INSECURE
261 int securelevel = -1;
262 #else
263 int securelevel = 0;
264 #endif
265 
266 #ifndef DEFCORENAME
267 #define	DEFCORENAME	"%n.core"
268 #endif
269 char defcorename[MAXPATHLEN] = DEFCORENAME;
270 int defcorenamelen = sizeof(DEFCORENAME);
271 
272 extern	int	kern_logsigexit;
273 extern	fixpt_t	ccpu;
274 
275 #ifndef MULTIPROCESSOR
276 #define sysctl_ncpus() 1
277 #endif
278 
279 #ifdef MULTIPROCESSOR
280 
281 #ifndef CPU_INFO_FOREACH
282 #define CPU_INFO_ITERATOR int
283 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
284 #endif
285 
286 static int
287 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
288 {
289 	u_int64_t cp_time[CPUSTATES];
290 	int i;
291 	struct cpu_info *ci;
292 	CPU_INFO_ITERATOR cii;
293 
294 	for (i=0; i<CPUSTATES; i++)
295 		cp_time[i] = 0;
296 
297 	for (CPU_INFO_FOREACH(cii, ci)) {
298 		for (i=0; i<CPUSTATES; i++)
299 			cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
300 	}
301 	return (sysctl_rdstruct(oldp, oldlenp, newp,
302 	    cp_time, sizeof(cp_time)));
303 }
304 
305 static int
306 sysctl_ncpus(void)
307 {
308 	struct cpu_info *ci;
309 	CPU_INFO_ITERATOR cii;
310 
311 	int ncpus = 0;
312 	for (CPU_INFO_FOREACH(cii, ci))
313 		ncpus++;
314 	return ncpus;
315 }
316 
317 #endif
318 
319 /*
320  * kernel related system variables.
321  */
322 int
323 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
324     void *newp, size_t newlen, struct proc *p)
325 {
326 	int error, level, inthostid;
327 	int old_autonicetime;
328 	int old_vnodes;
329 	dev_t consdev;
330 
331 	/* All sysctl names at this level, except for a few, are terminal. */
332 	switch (name[0]) {
333 	case KERN_PROC:
334 	case KERN_PROC2:
335 	case KERN_PROF:
336 	case KERN_MBUF:
337 	case KERN_PROC_ARGS:
338 	case KERN_SYSVIPC_INFO:
339 	case KERN_PIPE:
340 	case KERN_TKSTAT:
341 		/* Not terminal. */
342 		break;
343 	default:
344 		if (namelen != 1)
345 			return (ENOTDIR);	/* overloaded */
346 	}
347 
348 	switch (name[0]) {
349 	case KERN_OSTYPE:
350 		return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
351 	case KERN_OSRELEASE:
352 		return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
353 	case KERN_OSREV:
354 		return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
355 	case KERN_VERSION:
356 		return (sysctl_rdstring(oldp, oldlenp, newp, version));
357 	case KERN_MAXVNODES:
358 		old_vnodes = desiredvnodes;
359 		error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
360 		if (newp && !error) {
361 			if (old_vnodes > desiredvnodes) {
362 				desiredvnodes = old_vnodes;
363 				return (EINVAL);
364 			}
365 			vfs_reinit();
366 			nchreinit();
367 		}
368 		return (error);
369 	case KERN_MAXPROC:
370 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
371 	case KERN_MAXFILES:
372 		return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
373 	case KERN_ARGMAX:
374 		return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
375 	case KERN_SECURELVL:
376 		level = securelevel;
377 		if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
378 		    newp == NULL)
379 			return (error);
380 		if (level < securelevel && p->p_pid != 1)
381 			return (EPERM);
382 		securelevel = level;
383 		return (0);
384 	case KERN_HOSTNAME:
385 		error = sysctl_string(oldp, oldlenp, newp, newlen,
386 		    hostname, sizeof(hostname));
387 		if (newp && !error)
388 			hostnamelen = newlen;
389 		return (error);
390 	case KERN_DOMAINNAME:
391 		error = sysctl_string(oldp, oldlenp, newp, newlen,
392 		    domainname, sizeof(domainname));
393 		if (newp && !error)
394 			domainnamelen = newlen;
395 		return (error);
396 	case KERN_HOSTID:
397 		inthostid = hostid;  /* XXX assumes sizeof long <= sizeof int */
398 		error =  sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
399 		if (newp && !error)
400 			hostid = inthostid;
401 		return (error);
402 	case KERN_CLOCKRATE:
403 		return (sysctl_clockrate(oldp, oldlenp));
404 	case KERN_BOOTTIME:
405 		return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
406 		    sizeof(struct timeval)));
407 	case KERN_VNODE:
408 		return (sysctl_vnode(oldp, oldlenp, p));
409 	case KERN_PROC:
410 	case KERN_PROC2:
411 		return (sysctl_doeproc(name, namelen, oldp, oldlenp));
412 	case KERN_PROC_ARGS:
413 		return (sysctl_procargs(name + 1, namelen - 1,
414 		    oldp, oldlenp, p));
415 	case KERN_FILE:
416 		return (sysctl_file(oldp, oldlenp));
417 #ifdef GPROF
418 	case KERN_PROF:
419 		return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
420 		    newp, newlen));
421 #endif
422 	case KERN_POSIX1:
423 		return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
424 	case KERN_NGROUPS:
425 		return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
426 	case KERN_JOB_CONTROL:
427 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
428 	case KERN_SAVED_IDS:
429 #ifdef _POSIX_SAVED_IDS
430 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
431 #else
432 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
433 #endif
434 	case KERN_MAXPARTITIONS:
435 		return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
436 	case KERN_RAWPARTITION:
437 		return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
438 #ifdef NTP
439 	case KERN_NTPTIME:
440 		return (sysctl_ntptime(oldp, oldlenp));
441 #endif
442 	case KERN_AUTONICETIME:
443 	        old_autonicetime = autonicetime;
444 	        error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
445 		if (autonicetime < 0)
446  		        autonicetime = old_autonicetime;
447 		return (error);
448 	case KERN_AUTONICEVAL:
449 		error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
450 		if (autoniceval < PRIO_MIN)
451 			autoniceval = PRIO_MIN;
452 		if (autoniceval > PRIO_MAX)
453 			autoniceval = PRIO_MAX;
454 		return (error);
455 	case KERN_RTC_OFFSET:
456 		return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
457 	case KERN_ROOT_DEVICE:
458 		return (sysctl_rdstring(oldp, oldlenp, newp,
459 		    root_device->dv_xname));
460 	case KERN_MSGBUFSIZE:
461 		/*
462 		 * deal with cases where the message buffer has
463 		 * become corrupted.
464 		 */
465 		if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
466 			msgbufenabled = 0;
467 			return (ENXIO);
468 		}
469 		return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
470 	case KERN_FSYNC:
471 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
472 	case KERN_SYSVMSG:
473 #ifdef SYSVMSG
474 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
475 #else
476 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
477 #endif
478 	case KERN_SYSVSEM:
479 #ifdef SYSVSEM
480 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
481 #else
482 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
483 #endif
484 	case KERN_SYSVSHM:
485 #ifdef SYSVSHM
486 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
487 #else
488 		return (sysctl_rdint(oldp, oldlenp, newp, 0));
489 #endif
490  	case KERN_DEFCORENAME:
491 		if (newp && newlen < 1)
492 			return (EINVAL);
493 		error = sysctl_string(oldp, oldlenp, newp, newlen,
494 		    defcorename, sizeof(defcorename));
495 		if (newp && !error)
496 			defcorenamelen = newlen;
497 		return (error);
498 	case KERN_SYNCHRONIZED_IO:
499 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
500 	case KERN_IOV_MAX:
501 		return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
502 	case KERN_MBUF:
503 		return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
504 		    newp, newlen));
505 	case KERN_MAPPED_FILES:
506 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
507 	case KERN_MEMLOCK:
508 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
509 	case KERN_MEMLOCK_RANGE:
510 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
511 	case KERN_MEMORY_PROTECTION:
512 		return (sysctl_rdint(oldp, oldlenp, newp, 1));
513 	case KERN_LOGIN_NAME_MAX:
514 		return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
515 	case KERN_LOGSIGEXIT:
516 		return (sysctl_int(oldp, oldlenp, newp, newlen,
517 		    &kern_logsigexit));
518 	case KERN_FSCALE:
519 		return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
520 	case KERN_CCPU:
521 		return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
522 	case KERN_CP_TIME:
523 #ifndef MULTIPROCESSOR
524 		return (sysctl_rdstruct(oldp, oldlenp, newp,
525 		    curcpu()->ci_schedstate.spc_cp_time,
526 		    sizeof(curcpu()->ci_schedstate.spc_cp_time)));
527 #else
528 		return (sysctl_docptime(oldp, oldlenp, newp));
529 #endif
530 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
531 	case KERN_SYSVIPC_INFO:
532 		return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
533 #endif
534 	case KERN_MSGBUF:
535 		return (sysctl_msgbuf(oldp, oldlenp));
536 	case KERN_CONSDEV:
537 		if (cn_tab != NULL)
538 			consdev = cn_tab->cn_dev;
539 		else
540 			consdev = NODEV;
541 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
542 		    sizeof consdev));
543 #if NPTY > 0
544 	case KERN_MAXPTYS:
545 		return sysctl_pty(oldp, oldlenp, newp, newlen);
546 #endif
547 #ifndef PIPE_SOCKETPAIR
548 	case KERN_PIPE:
549 		return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
550 		    newp, newlen));
551 #endif
552 	case KERN_MAXPHYS:
553 		return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
554 	case KERN_SBMAX:
555 	    {
556 		int new_sbmax = sb_max;
557 
558 		error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
559 		if (newp && !error) {
560 			if (new_sbmax < (16 * 1024)) /* sanity */
561 				return (EINVAL);
562 			sb_max = new_sbmax;
563 		}
564 		return (error);
565 	    }
566 	case KERN_TKSTAT:
567 		return (sysctl_dotkstat(name + 1, namelen - 1, oldp, oldlenp,
568 		    newp));
569 	case KERN_MONOTONIC_CLOCK:	/* XXX _POSIX_VERSION */
570 		return (sysctl_rdint(oldp, oldlenp, newp, 200112));
571 	default:
572 		return (EOPNOTSUPP);
573 	}
574 	/* NOTREACHED */
575 }
576 
577 /*
578  * hardware related system variables.
579  */
580 int
581 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
582     void *newp, size_t newlen, struct proc *p)
583 {
584 
585 	/* All sysctl names at this level, except for a few, are terminal. */
586 	switch (name[0]) {
587 	case HW_DISKSTATS:
588 		/* Not terminal. */
589 		break;
590 	default:
591 		if (namelen != 1)
592 			return (ENOTDIR);	/* overloaded */
593 	}
594 
595 	switch (name[0]) {
596 	case HW_MACHINE:
597 		return (sysctl_rdstring(oldp, oldlenp, newp, machine));
598 	case HW_MACHINE_ARCH:
599 		return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
600 	case HW_MODEL:
601 		return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
602 	case HW_NCPU:
603 		return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
604 	case HW_BYTEORDER:
605 		return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
606 	case HW_PHYSMEM:
607 		return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
608 	case HW_USERMEM:
609 		return (sysctl_rdint(oldp, oldlenp, newp,
610 		    ctob(physmem - uvmexp.wired)));
611 	case HW_PAGESIZE:
612 		return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
613 	case HW_ALIGNBYTES:
614 		return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
615 	case HW_DISKNAMES:
616 		return (sysctl_disknames(oldp, oldlenp));
617 	case HW_DISKSTATS:
618 		return (sysctl_diskstats(name + 1, namelen - 1, oldp, oldlenp));
619 	case HW_CNMAGIC: {
620 		char magic[CNS_LEN];
621 		int error;
622 
623 		if (oldp)
624 			cn_get_magic(magic, CNS_LEN);
625 		error = sysctl_string(oldp, oldlenp, newp, newlen,
626 		    magic, sizeof(magic));
627 		if (newp && !error) {
628 			error = cn_set_magic(magic);
629 		}
630 		return (error);
631 	}
632 	default:
633 		return (EOPNOTSUPP);
634 	}
635 	/* NOTREACHED */
636 }
637 
638 #ifdef DEBUG
639 /*
640  * Debugging related system variables.
641  */
642 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
643 struct ctldebug debug5, debug6, debug7, debug8, debug9;
644 struct ctldebug debug10, debug11, debug12, debug13, debug14;
645 struct ctldebug debug15, debug16, debug17, debug18, debug19;
646 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
647 	&debug0, &debug1, &debug2, &debug3, &debug4,
648 	&debug5, &debug6, &debug7, &debug8, &debug9,
649 	&debug10, &debug11, &debug12, &debug13, &debug14,
650 	&debug15, &debug16, &debug17, &debug18, &debug19,
651 };
652 
653 int
654 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
655     void *newp, size_t newlen, struct proc *p)
656 {
657 	struct ctldebug *cdp;
658 
659 	/* all sysctl names at this level are name and field */
660 	if (namelen != 2)
661 		return (ENOTDIR);		/* overloaded */
662 	if (name[0] >= CTL_DEBUG_MAXID)
663 		return (EOPNOTSUPP);
664 	cdp = debugvars[name[0]];
665 	if (cdp->debugname == 0)
666 		return (EOPNOTSUPP);
667 	switch (name[1]) {
668 	case CTL_DEBUG_NAME:
669 		return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
670 	case CTL_DEBUG_VALUE:
671 		return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
672 	default:
673 		return (EOPNOTSUPP);
674 	}
675 	/* NOTREACHED */
676 }
677 #endif /* DEBUG */
678 
679 int
680 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
681     void *newp, size_t newlen, struct proc *p)
682 {
683 	struct proc *ptmp = NULL;
684 	const struct proclist_desc *pd;
685 	int error = 0;
686 	struct rlimit alim;
687 	struct plimit *newplim;
688 	char *tmps = NULL;
689 	int i, curlen, len;
690 
691 	if (namelen < 2)
692 		return EINVAL;
693 
694 	if (name[0] == PROC_CURPROC) {
695 		ptmp = p;
696 	} else {
697 		proclist_lock_read();
698 		for (pd = proclists; pd->pd_list != NULL; pd++) {
699 			for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
700 			    ptmp = LIST_NEXT(ptmp, p_list)) {
701 				/* Skip embryonic processes. */
702 				if (ptmp->p_stat == SIDL)
703 					continue;
704 				if (ptmp->p_pid == (pid_t)name[0])
705 					break;
706 			}
707 			if (ptmp != NULL)
708 				break;
709 		}
710 		proclist_unlock_read();
711 		if (ptmp == NULL)
712 			return(ESRCH);
713 		if (p->p_ucred->cr_uid != 0) {
714 			if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
715 			    p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
716 				return EPERM;
717 			if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
718 				return EPERM; /* sgid proc */
719 			for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
720 				if (p->p_ucred->cr_groups[i] ==
721 				    ptmp->p_cred->p_rgid)
722 					break;
723 			}
724 			if (i == p->p_ucred->cr_ngroups)
725 				return EPERM;
726 		}
727 	}
728 	if (name[1] == PROC_PID_CORENAME) {
729 		if (namelen != 2)
730 			return EINVAL;
731 		/*
732 		 * Can't use sysctl_string() here because we may malloc a new
733 		 * area during the process, so we have to do it by hand.
734 		 */
735 		curlen = strlen(ptmp->p_limit->pl_corename) + 1;
736 		if (oldlenp  && *oldlenp < curlen) {
737 			if (!oldp)
738 				*oldlenp = curlen;
739 			return (ENOMEM);
740 		}
741 		if (newp) {
742 			if (securelevel > 2)
743 				return EPERM;
744 			if (newlen > MAXPATHLEN)
745 				return ENAMETOOLONG;
746 			tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
747 			if (tmps == NULL)
748 				return ENOMEM;
749 			error = copyin(newp, tmps, newlen + 1);
750 			tmps[newlen] = '\0';
751 			if (error)
752 				goto cleanup;
753 			/* Enforce to be either 'core' for end with '.core' */
754 			if (newlen < 4)  { /* c.o.r.e */
755 				error = EINVAL;
756 				goto cleanup;
757 			}
758 			len = newlen - 4;
759 			if (len > 0) {
760 				if (tmps[len - 1] != '.' &&
761 				    tmps[len - 1] != '/') {
762 					error = EINVAL;
763 					goto cleanup;
764 				}
765 			}
766 			if (strcmp(&tmps[len], "core") != 0) {
767 				error = EINVAL;
768 				goto cleanup;
769 			}
770 		}
771 		if (oldp && oldlenp) {
772 			*oldlenp = curlen;
773 			error = copyout(ptmp->p_limit->pl_corename, oldp,
774 			    curlen);
775 		}
776 		if (newp && error == 0) {
777 			/* if the 2 strings are identical, don't limcopy() */
778 			if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
779 				error = 0;
780 				goto cleanup;
781 			}
782 			if (ptmp->p_limit->p_refcnt > 1 &&
783 			    (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
784 				newplim = limcopy(ptmp->p_limit);
785 				limfree(ptmp->p_limit);
786 				ptmp->p_limit = newplim;
787 			}
788 			if (ptmp->p_limit->pl_corename != defcorename) {
789 				free(ptmp->p_limit->pl_corename, M_TEMP);
790 			}
791 			ptmp->p_limit->pl_corename = tmps;
792 			return (0);
793 		}
794 cleanup:
795 		if (tmps)
796 			free(tmps, M_TEMP);
797 		return (error);
798 	}
799 	if (name[1] == PROC_PID_LIMIT) {
800 		if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
801 			return EINVAL;
802 		memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
803 		if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
804 			error = sysctl_quad(oldp, oldlenp, newp, newlen,
805 			    &alim.rlim_max);
806 		else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
807 			error = sysctl_quad(oldp, oldlenp, newp, newlen,
808 			    &alim.rlim_cur);
809 		else
810 			error = EINVAL;
811 
812 		if (error)
813 			return error;
814 
815 		if (newp)
816 			error = dosetrlimit(ptmp, p->p_cred,
817 			    name[2] - 1, &alim);
818 		return error;
819 	}
820 	return (EINVAL);
821 }
822 
823 int
824 emul_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
825     void *newp, size_t newlen, struct proc *p)
826 {
827 	static struct {
828 		const char *name;
829 		int  type;
830 	} emulations[] = CTL_EMUL_NAMES;
831 	const struct emul *e;
832 	const char *ename;
833 #ifdef LKM
834 	extern struct lock exec_lock;	/* XXX */
835 	int error;
836 #else
837 	extern int nexecs_builtin;
838 	extern const struct execsw execsw_builtin[];
839 	int i;
840 #endif
841 
842 	/* all sysctl names at this level are name and field */
843 	if (namelen < 2)
844 		return (ENOTDIR);		/* overloaded */
845 
846 	if ((u_int) name[0] >= EMUL_MAXID || name[0] == 0)
847 		return (EOPNOTSUPP);
848 
849 	ename = emulations[name[0]].name;
850 
851 #ifdef LKM
852 	lockmgr(&exec_lock, LK_SHARED, NULL);
853 	if ((e = emul_search(ename))) {
854 		error = (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
855 				newp, newlen, p);
856 	} else
857 		error = EOPNOTSUPP;
858 	lockmgr(&exec_lock, LK_RELEASE, NULL);
859 
860 	return (error);
861 #else
862 	for (i = 0; i < nexecs_builtin; i++) {
863 	    e = execsw_builtin[i].es_emul;
864 	    if (e == NULL || strcmp(ename, e->e_name) != 0 ||
865 		e->e_sysctl != NULL)
866 		continue;
867 
868 	    return (*e->e_sysctl)(name + 1, namelen - 1, oldp, oldlenp,
869 					newp, newlen, p);
870 	}
871 
872 	return (EOPNOTSUPP);
873 #endif
874 }
875 /*
876  * Convenience macros.
877  */
878 
879 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) 		\
880 	if (oldlenp) {							\
881 		if (!oldp)						\
882 			*oldlenp = len;					\
883 		else {							\
884 			if (*oldlenp < len)				\
885 				return(ENOMEM);				\
886 			*oldlenp = len;					\
887 			error = copyout((caddr_t)valp, oldp, len);	\
888 		}							\
889 	}
890 
891 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
892 	SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
893 
894 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)	\
895 	if (newp && newlen != len)			\
896 		return (EINVAL);
897 
898 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ)	\
899 	SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
900 
901 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len)	\
902 	if (error == 0 && newp)				\
903 		error = copyin(newp, valp, len);
904 
905 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ)      \
906 	SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
907 
908 #define SYSCTL_STRING_CORE(oldp, oldlenp, str)		\
909 	if (oldlenp) {					\
910 		len = strlen(str) + 1;			\
911 		if (!oldp)				\
912 			*oldlenp = len;			\
913 		else {					\
914 			if (*oldlenp < len) {		\
915 				err2 = ENOMEM;		\
916 				len = *oldlenp;		\
917 			} else				\
918 				*oldlenp = len;		\
919 			error = copyout(str, oldp, len);\
920 			if (error == 0)			\
921 				error = err2;		\
922 		}					\
923 	}
924 
925 /*
926  * Validate parameters and get old / set new parameters
927  * for an integer-valued sysctl function.
928  */
929 int
930 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
931 {
932 	int error = 0;
933 
934 	SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
935 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
936 	SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
937 
938 	return (error);
939 }
940 
941 
942 /*
943  * As above, but read-only.
944  */
945 int
946 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
947 {
948 	int error = 0;
949 
950 	if (newp)
951 		return (EPERM);
952 
953 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
954 
955 	return (error);
956 }
957 
958 /*
959  * Validate parameters and get old / set new parameters
960  * for an quad-valued sysctl function.
961  */
962 int
963 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
964     quad_t *valp)
965 {
966 	int error = 0;
967 
968 	SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
969 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
970 	SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
971 
972 	return (error);
973 }
974 
975 /*
976  * As above, but read-only.
977  */
978 int
979 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
980 {
981 	int error = 0;
982 
983 	if (newp)
984 		return (EPERM);
985 
986 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
987 
988 	return (error);
989 }
990 
991 /*
992  * Validate parameters and get old / set new parameters
993  * for a string-valued sysctl function.
994  */
995 int
996 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
997     int maxlen)
998 {
999 	int len, error = 0, err2 = 0;
1000 
1001 	if (newp && newlen >= maxlen)
1002 		return (EINVAL);
1003 
1004 	SYSCTL_STRING_CORE(oldp, oldlenp, str);
1005 
1006 	if (error == 0 && newp) {
1007 		error = copyin(newp, str, newlen);
1008 		str[newlen] = 0;
1009 	}
1010 	return (error);
1011 }
1012 
1013 /*
1014  * As above, but read-only.
1015  */
1016 int
1017 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1018 {
1019 	int len, error = 0, err2 = 0;
1020 
1021 	if (newp)
1022 		return (EPERM);
1023 
1024 	SYSCTL_STRING_CORE(oldp, oldlenp, str);
1025 
1026 	return (error);
1027 }
1028 
1029 /*
1030  * Validate parameters and get old / set new parameters
1031  * for a structure oriented sysctl function.
1032  */
1033 int
1034 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1035     int len)
1036 {
1037 	int error = 0;
1038 
1039 	SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
1040 	SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1041 	SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
1042 
1043 	return (error);
1044 }
1045 
1046 /*
1047  * Validate parameters and get old parameters
1048  * for a structure oriented sysctl function.
1049  */
1050 int
1051 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1052     int len)
1053 {
1054 	int error = 0;
1055 
1056 	if (newp)
1057 		return (EPERM);
1058 
1059 	SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1060 
1061 	return (error);
1062 }
1063 
1064 /*
1065  * As above, but can return a truncated result.
1066  */
1067 int
1068 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1069     int len)
1070 {
1071 	int error = 0;
1072 
1073 	if (newp)
1074 		return (EPERM);
1075 
1076 	len = min(*oldlenp, len);
1077 	SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1078 
1079 	return (error);
1080 }
1081 
1082 /*
1083  * Get file structures.
1084  */
1085 static int
1086 sysctl_file(void *vwhere, size_t *sizep)
1087 {
1088 	int buflen, error;
1089 	struct file *fp;
1090 	char *start, *where;
1091 
1092 	start = where = vwhere;
1093 	buflen = *sizep;
1094 	if (where == NULL) {
1095 		/*
1096 		 * overestimate by 10 files
1097 		 */
1098 		*sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1099 		return (0);
1100 	}
1101 
1102 	/*
1103 	 * first copyout filehead
1104 	 */
1105 	if (buflen < sizeof(filehead)) {
1106 		*sizep = 0;
1107 		return (0);
1108 	}
1109 	error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1110 	if (error)
1111 		return (error);
1112 	buflen -= sizeof(filehead);
1113 	where += sizeof(filehead);
1114 
1115 	/*
1116 	 * followed by an array of file structures
1117 	 */
1118 	for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
1119 		if (buflen < sizeof(struct file)) {
1120 			*sizep = where - start;
1121 			return (ENOMEM);
1122 		}
1123 		error = copyout((caddr_t)fp, where, sizeof(struct file));
1124 		if (error)
1125 			return (error);
1126 		buflen -= sizeof(struct file);
1127 		where += sizeof(struct file);
1128 	}
1129 	*sizep = where - start;
1130 	return (0);
1131 }
1132 
1133 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1134 #define	FILL_PERM(src, dst) do { \
1135 		(dst)._key = (src)._key; \
1136 		(dst).uid = (src).uid; \
1137 		(dst).gid = (src).gid; \
1138 		(dst).cuid = (src).cuid; \
1139 		(dst).cgid = (src).cgid; \
1140 		(dst).mode = (src).mode; \
1141 		(dst)._seq = (src)._seq; \
1142 	} while (0);
1143 #define	FILL_MSG(src, dst) do { \
1144 	FILL_PERM((src).msg_perm, (dst).msg_perm); \
1145 	(dst).msg_qnum = (src).msg_qnum; \
1146 	(dst).msg_qbytes = (src).msg_qbytes; \
1147 	(dst)._msg_cbytes = (src)._msg_cbytes; \
1148 	(dst).msg_lspid = (src).msg_lspid; \
1149 	(dst).msg_lrpid = (src).msg_lrpid; \
1150 	(dst).msg_stime = (src).msg_stime; \
1151 	(dst).msg_rtime = (src).msg_rtime; \
1152 	(dst).msg_ctime = (src).msg_ctime; \
1153 	} while (0)
1154 #define	FILL_SEM(src, dst) do { \
1155 	FILL_PERM((src).sem_perm, (dst).sem_perm); \
1156 	(dst).sem_nsems = (src).sem_nsems; \
1157 	(dst).sem_otime = (src).sem_otime; \
1158 	(dst).sem_ctime = (src).sem_ctime; \
1159 	} while (0)
1160 #define	FILL_SHM(src, dst) do { \
1161 	FILL_PERM((src).shm_perm, (dst).shm_perm); \
1162 	(dst).shm_segsz = (src).shm_segsz; \
1163 	(dst).shm_lpid = (src).shm_lpid; \
1164 	(dst).shm_cpid = (src).shm_cpid; \
1165 	(dst).shm_atime = (src).shm_atime; \
1166 	(dst).shm_dtime = (src).shm_dtime; \
1167 	(dst).shm_ctime = (src).shm_ctime; \
1168 	(dst).shm_nattch = (src).shm_nattch; \
1169 	} while (0)
1170 
1171 static int
1172 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1173 {
1174 #ifdef SYSVMSG
1175 	struct msg_sysctl_info *msgsi;
1176 #endif
1177 #ifdef SYSVSEM
1178 	struct sem_sysctl_info *semsi;
1179 #endif
1180 #ifdef SYSVSHM
1181 	struct shm_sysctl_info *shmsi;
1182 #endif
1183 	size_t infosize, dssize, tsize, buflen;
1184 	void *buf = NULL;
1185 	char *start;
1186 	int32_t nds;
1187 	int i, error, ret;
1188 
1189 	if (namelen != 1)
1190 		return (EINVAL);
1191 
1192 	start = where;
1193 	buflen = *sizep;
1194 
1195 	switch (*name) {
1196 	case KERN_SYSVIPC_MSG_INFO:
1197 #ifdef SYSVMSG
1198 		infosize = sizeof(msgsi->msginfo);
1199 		nds = msginfo.msgmni;
1200 		dssize = sizeof(msgsi->msgids[0]);
1201 		break;
1202 #else
1203 		return (EINVAL);
1204 #endif
1205 	case KERN_SYSVIPC_SEM_INFO:
1206 #ifdef SYSVSEM
1207 		infosize = sizeof(semsi->seminfo);
1208 		nds = seminfo.semmni;
1209 		dssize = sizeof(semsi->semids[0]);
1210 		break;
1211 #else
1212 		return (EINVAL);
1213 #endif
1214 	case KERN_SYSVIPC_SHM_INFO:
1215 #ifdef SYSVSHM
1216 		infosize = sizeof(shmsi->shminfo);
1217 		nds = shminfo.shmmni;
1218 		dssize = sizeof(shmsi->shmids[0]);
1219 		break;
1220 #else
1221 		return (EINVAL);
1222 #endif
1223 	default:
1224 		return (EINVAL);
1225 	}
1226 	/*
1227 	 * Round infosize to 64 bit boundary if requesting more than just
1228 	 * the info structure or getting the total data size.
1229 	 */
1230 	if (where == NULL || *sizep > infosize)
1231 		infosize = ((infosize + 7) / 8) * 8;
1232 	tsize = infosize + nds * dssize;
1233 
1234 	/* Return just the total size required. */
1235 	if (where == NULL) {
1236 		*sizep = tsize;
1237 		return (0);
1238 	}
1239 
1240 	/* Not enough room for even the info struct. */
1241 	if (buflen < infosize) {
1242 		*sizep = 0;
1243 		return (ENOMEM);
1244 	}
1245 	buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1246 	memset(buf, 0, min(tsize, buflen));
1247 
1248 	switch (*name) {
1249 #ifdef SYSVMSG
1250 	case KERN_SYSVIPC_MSG_INFO:
1251 		msgsi = (struct msg_sysctl_info *)buf;
1252 		msgsi->msginfo = msginfo;
1253 		break;
1254 #endif
1255 #ifdef SYSVSEM
1256 	case KERN_SYSVIPC_SEM_INFO:
1257 		semsi = (struct sem_sysctl_info *)buf;
1258 		semsi->seminfo = seminfo;
1259 		break;
1260 #endif
1261 #ifdef SYSVSHM
1262 	case KERN_SYSVIPC_SHM_INFO:
1263 		shmsi = (struct shm_sysctl_info *)buf;
1264 		shmsi->shminfo = shminfo;
1265 		break;
1266 #endif
1267 	}
1268 	buflen -= infosize;
1269 
1270 	ret = 0;
1271 	if (buflen > 0) {
1272 		/* Fill in the IPC data structures.  */
1273 		for (i = 0; i < nds; i++) {
1274 			if (buflen < dssize) {
1275 				ret = ENOMEM;
1276 				break;
1277 			}
1278 			switch (*name) {
1279 #ifdef SYSVMSG
1280 			case KERN_SYSVIPC_MSG_INFO:
1281 				FILL_MSG(msqids[i], msgsi->msgids[i]);
1282 				break;
1283 #endif
1284 #ifdef SYSVSEM
1285 			case KERN_SYSVIPC_SEM_INFO:
1286 				FILL_SEM(sema[i], semsi->semids[i]);
1287 				break;
1288 #endif
1289 #ifdef SYSVSHM
1290 			case KERN_SYSVIPC_SHM_INFO:
1291 				FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1292 				break;
1293 #endif
1294 			}
1295 			buflen -= dssize;
1296 		}
1297 	}
1298 	*sizep -= buflen;
1299 	error = copyout(buf, start, *sizep);
1300 	/* If copyout succeeded, use return code set earlier. */
1301 	if (error == 0)
1302 		error = ret;
1303 	if (buf)
1304 		free(buf, M_TEMP);
1305 	return (error);
1306 }
1307 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1308 
1309 static int
1310 sysctl_msgbuf(void *vwhere, size_t *sizep)
1311 {
1312 	char *where = vwhere;
1313 	size_t len, maxlen = *sizep;
1314 	long beg, end;
1315 	int error;
1316 
1317 	/*
1318 	 * deal with cases where the message buffer has
1319 	 * become corrupted.
1320 	 */
1321 	if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1322 		msgbufenabled = 0;
1323 		return (ENXIO);
1324 	}
1325 
1326 	if (where == NULL) {
1327 		/* always return full buffer size */
1328 		*sizep = msgbufp->msg_bufs;
1329 		return (0);
1330 	}
1331 
1332 	error = 0;
1333 	maxlen = min(msgbufp->msg_bufs, maxlen);
1334 
1335 	/*
1336 	 * First, copy from the write pointer to the end of
1337 	 * message buffer.
1338 	 */
1339 	beg = msgbufp->msg_bufx;
1340 	end = msgbufp->msg_bufs;
1341 	while (maxlen > 0) {
1342 		len = min(end - beg, maxlen);
1343 		if (len == 0)
1344 			break;
1345 		error = copyout(&msgbufp->msg_bufc[beg], where, len);
1346 		if (error)
1347 			break;
1348 		where += len;
1349 		maxlen -= len;
1350 
1351 		/*
1352 		 * ... then, copy from the beginning of message buffer to
1353 		 * the write pointer.
1354 		 */
1355 		beg = 0;
1356 		end = msgbufp->msg_bufx;
1357 	}
1358 	return (error);
1359 }
1360 
1361 /*
1362  * try over estimating by 5 procs
1363  */
1364 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
1365 
1366 static int
1367 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1368 {
1369 	struct eproc eproc;
1370 	struct kinfo_proc2 kproc2;
1371 	struct kinfo_proc *dp;
1372 	struct proc *p;
1373 	const struct proclist_desc *pd;
1374 	char *where, *dp2;
1375 	int type, op, arg, elem_size, elem_count;
1376 	int buflen, needed, error;
1377 
1378 	dp = vwhere;
1379 	dp2 = where = vwhere;
1380 	buflen = where != NULL ? *sizep : 0;
1381 	error = needed = 0;
1382 	type = name[0];
1383 
1384 	if (type == KERN_PROC) {
1385 		if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1386 			return (EINVAL);
1387 		op = name[1];
1388 		if (op != KERN_PROC_ALL)
1389 			arg = name[2];
1390 	} else {
1391 		if (namelen != 5)
1392 			return (EINVAL);
1393 		op = name[1];
1394 		arg = name[2];
1395 		elem_size = name[3];
1396 		elem_count = name[4];
1397 	}
1398 
1399 	proclist_lock_read();
1400 
1401 	pd = proclists;
1402 again:
1403 	for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1404 		/*
1405 		 * Skip embryonic processes.
1406 		 */
1407 		if (p->p_stat == SIDL)
1408 			continue;
1409 		/*
1410 		 * TODO - make more efficient (see notes below).
1411 		 * do by session.
1412 		 */
1413 		switch (op) {
1414 
1415 		case KERN_PROC_PID:
1416 			/* could do this with just a lookup */
1417 			if (p->p_pid != (pid_t)arg)
1418 				continue;
1419 			break;
1420 
1421 		case KERN_PROC_PGRP:
1422 			/* could do this by traversing pgrp */
1423 			if (p->p_pgrp->pg_id != (pid_t)arg)
1424 				continue;
1425 			break;
1426 
1427 		case KERN_PROC_SESSION:
1428 			if (p->p_session->s_sid != (pid_t)arg)
1429 				continue;
1430 			break;
1431 
1432 		case KERN_PROC_TTY:
1433 			if (arg == KERN_PROC_TTY_REVOKE) {
1434 				if ((p->p_flag & P_CONTROLT) == 0 ||
1435 				    p->p_session->s_ttyp == NULL ||
1436 				    p->p_session->s_ttyvp != NULL)
1437 					continue;
1438 			} else if ((p->p_flag & P_CONTROLT) == 0 ||
1439 			    p->p_session->s_ttyp == NULL) {
1440 				if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1441 					continue;
1442 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1443 				continue;
1444 			break;
1445 
1446 		case KERN_PROC_UID:
1447 			if (p->p_ucred->cr_uid != (uid_t)arg)
1448 				continue;
1449 			break;
1450 
1451 		case KERN_PROC_RUID:
1452 			if (p->p_cred->p_ruid != (uid_t)arg)
1453 				continue;
1454 			break;
1455 
1456 		case KERN_PROC_GID:
1457 			if (p->p_ucred->cr_gid != (uid_t)arg)
1458 				continue;
1459 			break;
1460 
1461 		case KERN_PROC_RGID:
1462 			if (p->p_cred->p_rgid != (uid_t)arg)
1463 				continue;
1464 			break;
1465 
1466 		case KERN_PROC_ALL:
1467 			/* allow everything */
1468 			break;
1469 
1470 		default:
1471 			error = EINVAL;
1472 			goto cleanup;
1473 		}
1474 		if (type == KERN_PROC) {
1475 			if (buflen >= sizeof(struct kinfo_proc)) {
1476 				fill_eproc(p, &eproc);
1477 				error = copyout((caddr_t)p, &dp->kp_proc,
1478 						sizeof(struct proc));
1479 				if (error)
1480 					goto cleanup;
1481 				error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1482 						sizeof(eproc));
1483 				if (error)
1484 					goto cleanup;
1485 				dp++;
1486 				buflen -= sizeof(struct kinfo_proc);
1487 			}
1488 			needed += sizeof(struct kinfo_proc);
1489 		} else { /* KERN_PROC2 */
1490 			if (buflen >= elem_size && elem_count > 0) {
1491 				fill_kproc2(p, &kproc2);
1492 				/*
1493 				 * Copy out elem_size, but not larger than
1494 				 * the size of a struct kinfo_proc2.
1495 				 */
1496 				error = copyout(&kproc2, dp2,
1497 				    min(sizeof(kproc2), elem_size));
1498 				if (error)
1499 					goto cleanup;
1500 				dp2 += elem_size;
1501 				buflen -= elem_size;
1502 				elem_count--;
1503 			}
1504 			needed += elem_size;
1505 		}
1506 	}
1507 	pd++;
1508 	if (pd->pd_list != NULL)
1509 		goto again;
1510 	proclist_unlock_read();
1511 
1512 	if (where != NULL) {
1513 		if (type == KERN_PROC)
1514 			*sizep = (caddr_t)dp - where;
1515 		else
1516 			*sizep = dp2 - where;
1517 		if (needed > *sizep)
1518 			return (ENOMEM);
1519 	} else {
1520 		needed += KERN_PROCSLOP;
1521 		*sizep = needed;
1522 	}
1523 	return (0);
1524  cleanup:
1525 	proclist_unlock_read();
1526 	return (error);
1527 }
1528 
1529 /*
1530  * Fill in an eproc structure for the specified process.
1531  */
1532 void
1533 fill_eproc(struct proc *p, struct eproc *ep)
1534 {
1535 	struct tty *tp;
1536 
1537 	ep->e_paddr = p;
1538 	ep->e_sess = p->p_session;
1539 	ep->e_pcred = *p->p_cred;
1540 	ep->e_ucred = *p->p_ucred;
1541 	if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1542 		ep->e_vm.vm_rssize = 0;
1543 		ep->e_vm.vm_tsize = 0;
1544 		ep->e_vm.vm_dsize = 0;
1545 		ep->e_vm.vm_ssize = 0;
1546 		/* ep->e_vm.vm_pmap = XXX; */
1547 	} else {
1548 		struct vmspace *vm = p->p_vmspace;
1549 
1550 		ep->e_vm.vm_rssize = vm_resident_count(vm);
1551 		ep->e_vm.vm_tsize = vm->vm_tsize;
1552 		ep->e_vm.vm_dsize = vm->vm_dsize;
1553 		ep->e_vm.vm_ssize = vm->vm_ssize;
1554 	}
1555 	if (p->p_pptr)
1556 		ep->e_ppid = p->p_pptr->p_pid;
1557 	else
1558 		ep->e_ppid = 0;
1559 	ep->e_pgid = p->p_pgrp->pg_id;
1560 	ep->e_sid = ep->e_sess->s_sid;
1561 	ep->e_jobc = p->p_pgrp->pg_jobc;
1562 	if ((p->p_flag & P_CONTROLT) &&
1563 	     (tp = ep->e_sess->s_ttyp)) {
1564 		ep->e_tdev = tp->t_dev;
1565 		ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1566 		ep->e_tsess = tp->t_session;
1567 	} else
1568 		ep->e_tdev = NODEV;
1569 	if (p->p_wmesg)
1570 		strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1571 	ep->e_xsize = ep->e_xrssize = 0;
1572 	ep->e_xccount = ep->e_xswrss = 0;
1573 	ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1574 	if (SESS_LEADER(p))
1575 		ep->e_flag |= EPROC_SLEADER;
1576 	strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1577 }
1578 
1579 /*
1580  * Fill in an eproc structure for the specified process.
1581  */
1582 static void
1583 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1584 {
1585 	struct tty *tp;
1586 
1587 	memset(ki, 0, sizeof(*ki));
1588 
1589 	ki->p_forw = PTRTOINT64(p->p_forw);
1590 	ki->p_back = PTRTOINT64(p->p_back);
1591 	ki->p_paddr = PTRTOINT64(p);
1592 
1593 	ki->p_addr = PTRTOINT64(p->p_addr);
1594 	ki->p_fd = PTRTOINT64(p->p_fd);
1595 	ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1596 	ki->p_stats = PTRTOINT64(p->p_stats);
1597 	ki->p_limit = PTRTOINT64(p->p_limit);
1598 	ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1599 	ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1600 	ki->p_sess = PTRTOINT64(p->p_session);
1601 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
1602 	ki->p_ru = PTRTOINT64(p->p_ru);
1603 
1604 	ki->p_eflag = 0;
1605 	ki->p_exitsig = p->p_exitsig;
1606 	ki->p_flag = p->p_flag;
1607 
1608 	ki->p_pid = p->p_pid;
1609 	if (p->p_pptr)
1610 		ki->p_ppid = p->p_pptr->p_pid;
1611 	else
1612 		ki->p_ppid = 0;
1613 	ki->p_sid = p->p_session->s_sid;
1614 	ki->p__pgid = p->p_pgrp->pg_id;
1615 
1616 	ki->p_tpgid = NO_PID;	/* may be changed if controlling tty below */
1617 
1618 	ki->p_uid = p->p_ucred->cr_uid;
1619 	ki->p_ruid = p->p_cred->p_ruid;
1620 	ki->p_gid = p->p_ucred->cr_gid;
1621 	ki->p_rgid = p->p_cred->p_rgid;
1622 
1623 	memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1624 	    min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1625 	ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1626 
1627 	ki->p_jobc = p->p_pgrp->pg_jobc;
1628 	if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1629 		ki->p_tdev = tp->t_dev;
1630 		ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1631 		ki->p_tsess = PTRTOINT64(tp->t_session);
1632 	} else {
1633 		ki->p_tdev = NODEV;
1634 	}
1635 
1636 	ki->p_estcpu = p->p_estcpu;
1637 	ki->p_rtime_sec = p->p_rtime.tv_sec;
1638 	ki->p_rtime_usec = p->p_rtime.tv_usec;
1639 	ki->p_cpticks = p->p_cpticks;
1640 	ki->p_pctcpu = p->p_pctcpu;
1641 	ki->p_swtime = p->p_swtime;
1642 	ki->p_slptime = p->p_slptime;
1643 	if (p->p_stat == SONPROC) {
1644 		KDASSERT(p->p_cpu != NULL);
1645 		ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1646 	} else
1647 		ki->p_schedflags = 0;
1648 
1649 	ki->p_uticks = p->p_uticks;
1650 	ki->p_sticks = p->p_sticks;
1651 	ki->p_iticks = p->p_iticks;
1652 
1653 	ki->p_tracep = PTRTOINT64(p->p_tracep);
1654 	ki->p_traceflag = p->p_traceflag;
1655 
1656 	ki->p_holdcnt = p->p_holdcnt;
1657 
1658 	memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1659 	memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1660 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1661 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1662 
1663 	ki->p_stat = p->p_stat;
1664 	ki->p_priority = p->p_priority;
1665 	ki->p_usrpri = p->p_usrpri;
1666 	ki->p_nice = p->p_nice;
1667 
1668 	ki->p_xstat = p->p_xstat;
1669 	ki->p_acflag = p->p_acflag;
1670 
1671 	strncpy(ki->p_comm, p->p_comm,
1672 	    min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1673 
1674 	if (p->p_wmesg)
1675 		strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1676 	ki->p_wchan = PTRTOINT64(p->p_wchan);
1677 
1678 	strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1679 
1680 	if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1681 		ki->p_vm_rssize = 0;
1682 		ki->p_vm_tsize = 0;
1683 		ki->p_vm_dsize = 0;
1684 		ki->p_vm_ssize = 0;
1685 	} else {
1686 		struct vmspace *vm = p->p_vmspace;
1687 
1688 		ki->p_vm_rssize = vm_resident_count(vm);
1689 		ki->p_vm_tsize = vm->vm_tsize;
1690 		ki->p_vm_dsize = vm->vm_dsize;
1691 		ki->p_vm_ssize = vm->vm_ssize;
1692 	}
1693 
1694 	if (p->p_session->s_ttyvp)
1695 		ki->p_eflag |= EPROC_CTTY;
1696 	if (SESS_LEADER(p))
1697 		ki->p_eflag |= EPROC_SLEADER;
1698 
1699 	/* XXX Is this double check necessary? */
1700 	if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1701 		ki->p_uvalid = 0;
1702 	} else {
1703 		ki->p_uvalid = 1;
1704 
1705 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1706 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1707 
1708 		ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1709 		ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1710 		ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1711 		ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1712 
1713 		ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1714 		ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1715 		ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1716 		ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1717 		ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1718 		ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1719 		ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1720 		ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1721 		ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1722 		ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1723 		ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1724 		ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1725 		ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1726 		ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1727 
1728 		ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1729 		    p->p_stats->p_cru.ru_stime.tv_sec;
1730 		ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1731 		    p->p_stats->p_cru.ru_stime.tv_usec;
1732 	}
1733 #ifdef MULTIPROCESSOR
1734 	if (p->p_cpu != NULL)
1735 		ki->p_cpuid = p->p_cpu->ci_cpuid;
1736 	else
1737 #endif
1738 		ki->p_cpuid = KI_NOCPU;
1739 }
1740 
1741 int
1742 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
1743     struct proc *up)
1744 {
1745 	struct ps_strings pss;
1746 	struct proc *p;
1747 	size_t len, upper_bound, xlen;
1748 	struct uio auio;
1749 	struct iovec aiov;
1750 	vaddr_t argv;
1751 	pid_t pid;
1752 	int nargv, type, error, i;
1753 	char *arg;
1754 	char *tmp;
1755 
1756 	if (namelen != 2)
1757 		return (EINVAL);
1758 	pid = name[0];
1759 	type = name[1];
1760 
1761 	switch (type) {
1762 	  case KERN_PROC_ARGV:
1763 	  case KERN_PROC_NARGV:
1764 	  case KERN_PROC_ENV:
1765 	  case KERN_PROC_NENV:
1766 		/* ok */
1767 		break;
1768 	  default:
1769 		return (EINVAL);
1770 	}
1771 
1772 	/* check pid */
1773 	if ((p = pfind(pid)) == NULL)
1774 		return (EINVAL);
1775 
1776 	/* only root or same user change look at the environment */
1777 	if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1778 		if (up->p_ucred->cr_uid != 0) {
1779 			if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1780 			    up->p_cred->p_ruid != p->p_cred->p_svuid)
1781 				return (EPERM);
1782 		}
1783 	}
1784 
1785 	if (sizep != NULL && where == NULL) {
1786 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1787 			*sizep = sizeof (int);
1788 		else
1789 			*sizep = ARG_MAX;	/* XXX XXX XXX */
1790 		return (0);
1791 	}
1792 	if (where == NULL || sizep == NULL)
1793 		return (EINVAL);
1794 
1795 	/*
1796 	 * Zombies don't have a stack, so we can't read their psstrings.
1797 	 * System processes also don't have a user stack.
1798 	 */
1799 	if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1800 		return (EINVAL);
1801 
1802 	/*
1803 	 * Lock the process down in memory.
1804 	 */
1805 	/* XXXCDC: how should locking work here? */
1806 	if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1807 		return (EFAULT);
1808 	p->p_vmspace->vm_refcnt++;	/* XXX */
1809 
1810 	/*
1811 	 * Allocate a temporary buffer to hold the arguments.
1812 	 */
1813 	arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1814 
1815 	/*
1816 	 * Read in the ps_strings structure.
1817 	 */
1818 	aiov.iov_base = &pss;
1819 	aiov.iov_len = sizeof(pss);
1820 	auio.uio_iov = &aiov;
1821 	auio.uio_iovcnt = 1;
1822 	auio.uio_offset = (vaddr_t)p->p_psstr;
1823 	auio.uio_resid = sizeof(pss);
1824 	auio.uio_segflg = UIO_SYSSPACE;
1825 	auio.uio_rw = UIO_READ;
1826 	auio.uio_procp = NULL;
1827 	error = uvm_io(&p->p_vmspace->vm_map, &auio);
1828 	if (error)
1829 		goto done;
1830 
1831 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1832 		memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1833 	else
1834 		memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1835 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1836 		error = copyout(&nargv, where, sizeof(nargv));
1837 		*sizep = sizeof(nargv);
1838 		goto done;
1839 	}
1840 	/*
1841 	 * Now read the address of the argument vector.
1842 	 */
1843 	switch (type) {
1844 	case KERN_PROC_ARGV:
1845 		/* XXX compat32 stuff here */
1846 		memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1847 		break;
1848 	case KERN_PROC_ENV:
1849 		memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1850 		break;
1851 	default:
1852 		return (EINVAL);
1853 	}
1854 	auio.uio_offset = (off_t)(long)tmp;
1855 	aiov.iov_base = &argv;
1856 	aiov.iov_len = sizeof(argv);
1857 	auio.uio_iov = &aiov;
1858 	auio.uio_iovcnt = 1;
1859 	auio.uio_resid = sizeof(argv);
1860 	auio.uio_segflg = UIO_SYSSPACE;
1861 	auio.uio_rw = UIO_READ;
1862 	auio.uio_procp = NULL;
1863 	error = uvm_io(&p->p_vmspace->vm_map, &auio);
1864 	if (error)
1865 		goto done;
1866 
1867 	/*
1868 	 * Now copy in the actual argument vector, one page at a time,
1869 	 * since we don't know how long the vector is (though, we do
1870 	 * know how many NUL-terminated strings are in the vector).
1871 	 */
1872 	len = 0;
1873 	upper_bound = *sizep;
1874 	for (; nargv != 0 && len < upper_bound; len += xlen) {
1875 		aiov.iov_base = arg;
1876 		aiov.iov_len = PAGE_SIZE;
1877 		auio.uio_iov = &aiov;
1878 		auio.uio_iovcnt = 1;
1879 		auio.uio_offset = argv + len;
1880 		xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1881 		auio.uio_resid = xlen;
1882 		auio.uio_segflg = UIO_SYSSPACE;
1883 		auio.uio_rw = UIO_READ;
1884 		auio.uio_procp = NULL;
1885 		error = uvm_io(&p->p_vmspace->vm_map, &auio);
1886 		if (error)
1887 			goto done;
1888 
1889 		for (i = 0; i < xlen && nargv != 0; i++) {
1890 			if (arg[i] == '\0')
1891 				nargv--;	/* one full string */
1892 		}
1893 
1894 		/* make sure we don't copyout past the end of the user's buffer */
1895 		if (len + i > upper_bound)
1896 			i = upper_bound - len;
1897 
1898 		error = copyout(arg, (char *)where + len, i);
1899 		if (error)
1900 			break;
1901 
1902 		if (nargv == 0) {
1903 			len += i;
1904 			break;
1905 		}
1906 	}
1907 	*sizep = len;
1908 
1909 done:
1910 	uvmspace_free(p->p_vmspace);
1911 
1912 	free(arg, M_TEMP);
1913 	return (error);
1914 }
1915 
1916 #if NPTY > 0
1917 int pty_maxptys(int, int);		/* defined in kern/tty_pty.c */
1918 
1919 /*
1920  * Validate parameters and get old / set new parameters
1921  * for pty sysctl function.
1922  */
1923 static int
1924 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
1925 {
1926 	int error = 0;
1927 	int oldmax = 0, newmax = 0;
1928 
1929 	/* get current value of maxptys */
1930 	oldmax = pty_maxptys(0, 0);
1931 
1932 	SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
1933 
1934 	if (!error && newp) {
1935 		SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1936 		SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
1937 
1938 		if (newmax != pty_maxptys(newmax, (newp != NULL)))
1939 			return (EINVAL);
1940 
1941 	}
1942 
1943 	return (error);
1944 }
1945 #endif /* NPTY > 0 */
1946 
1947 static int
1948 sysctl_dotkstat(name, namelen, where, sizep, newp)
1949 	int *name;
1950 	u_int namelen;
1951 	void *where;
1952 	size_t *sizep;
1953 	void *newp;
1954 {
1955 	/* all sysctl names at this level are terminal */
1956 	if (namelen != 1)
1957 		return (ENOTDIR);		/* overloaded */
1958 
1959 	switch (name[0]) {
1960 	case KERN_TKSTAT_NIN:
1961 		return (sysctl_rdquad(where, sizep, newp, tk_nin));
1962 	case KERN_TKSTAT_NOUT:
1963 		return (sysctl_rdquad(where, sizep, newp, tk_nout));
1964 	case KERN_TKSTAT_CANCC:
1965 		return (sysctl_rdquad(where, sizep, newp, tk_cancc));
1966 	case KERN_TKSTAT_RAWCC:
1967 		return (sysctl_rdquad(where, sizep, newp, tk_rawcc));
1968 	default:
1969 		return (EOPNOTSUPP);
1970 	}
1971 }
1972