xref: /netbsd/sys/kern/kern_time.c (revision bf9ec67e)
1 /*	$NetBSD: kern_time.c,v 1.61 2002/01/31 00:13:08 simonb Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christopher G. Demetriou.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1982, 1986, 1989, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
72  */
73 
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.61 2002/01/31 00:13:08 simonb Exp $");
76 
77 #include "fs_nfs.h"
78 #include "opt_nfs.h"
79 #include "opt_nfsserver.h"
80 
81 #include <sys/param.h>
82 #include <sys/resourcevar.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/vnode.h>
87 #include <sys/signalvar.h>
88 #include <sys/syslog.h>
89 
90 #include <sys/mount.h>
91 #include <sys/syscallargs.h>
92 
93 #include <uvm/uvm_extern.h>
94 
95 #if defined(NFS) || defined(NFSSERVER)
96 #include <nfs/rpcv2.h>
97 #include <nfs/nfsproto.h>
98 #include <nfs/nfs_var.h>
99 #endif
100 
101 #include <machine/cpu.h>
102 
103 /*
104  * Time of day and interval timer support.
105  *
106  * These routines provide the kernel entry points to get and set
107  * the time-of-day and per-process interval timers.  Subroutines
108  * here provide support for adding and subtracting timeval structures
109  * and decrementing interval timers, optionally reloading the interval
110  * timers when they expire.
111  */
112 
113 /* This function is used by clock_settime and settimeofday */
114 int
115 settime(tv)
116 	struct timeval *tv;
117 {
118 	struct timeval delta;
119 	struct cpu_info *ci;
120 	int s;
121 
122 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 	s = splclock();
124 	timersub(tv, &time, &delta);
125 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 		splx(s);
127 		return (EPERM);
128 	}
129 #ifdef notyet
130 	if ((delta.tv_sec < 86400) && securelevel > 0) {
131 		splx(s);
132 		return (EPERM);
133 	}
134 #endif
135 	time = *tv;
136 	(void) spllowersoftclock();
137 	timeradd(&boottime, &delta, &boottime);
138 	/*
139 	 * XXXSMP
140 	 * This is wrong.  We should traverse a list of all
141 	 * CPUs and add the delta to the runtime of those
142 	 * CPUs which have a process on them.
143 	 */
144 	ci = curcpu();
145 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 	    &ci->ci_schedstate.spc_runtime);
147 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 		nqnfs_lease_updatetime(delta.tv_sec);
149 #	endif
150 	splx(s);
151 	resettodr();
152 	return (0);
153 }
154 
155 /* ARGSUSED */
156 int
157 sys_clock_gettime(p, v, retval)
158 	struct proc *p;
159 	void *v;
160 	register_t *retval;
161 {
162 	struct sys_clock_gettime_args /* {
163 		syscallarg(clockid_t) clock_id;
164 		syscallarg(struct timespec *) tp;
165 	} */ *uap = v;
166 	clockid_t clock_id;
167 	struct timeval atv;
168 	struct timespec ats;
169 	int s;
170 
171 	clock_id = SCARG(uap, clock_id);
172 	switch (clock_id) {
173 	case CLOCK_REALTIME:
174 		microtime(&atv);
175 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
176 		break;
177 	case CLOCK_MONOTONIC:
178 		/* XXX "hz" granularity */
179 		s = splclock();
180 		atv = mono_time;
181 		splx(s);
182 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
183 		break;
184 	default:
185 		return (EINVAL);
186 	}
187 
188 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
189 }
190 
191 /* ARGSUSED */
192 int
193 sys_clock_settime(p, v, retval)
194 	struct proc *p;
195 	void *v;
196 	register_t *retval;
197 {
198 	struct sys_clock_settime_args /* {
199 		syscallarg(clockid_t) clock_id;
200 		syscallarg(const struct timespec *) tp;
201 	} */ *uap = v;
202 	int error;
203 
204 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
205 		return (error);
206 
207 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
208 }
209 
210 
211 int
212 clock_settime1(clock_id, tp)
213 	clockid_t clock_id;
214 	const struct timespec *tp;
215 {
216 	struct timespec ats;
217 	struct timeval atv;
218 	int error;
219 
220 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
221 		return (error);
222 
223 	switch (clock_id) {
224 	case CLOCK_REALTIME:
225 		TIMESPEC_TO_TIMEVAL(&atv, &ats);
226 		if ((error = settime(&atv)) != 0)
227 			return (error);
228 		break;
229 	case CLOCK_MONOTONIC:
230 		return (EINVAL);	/* read-only clock */
231 	default:
232 		return (EINVAL);
233 	}
234 
235 	return 0;
236 }
237 
238 int
239 sys_clock_getres(p, v, retval)
240 	struct proc *p;
241 	void *v;
242 	register_t *retval;
243 {
244 	struct sys_clock_getres_args /* {
245 		syscallarg(clockid_t) clock_id;
246 		syscallarg(struct timespec *) tp;
247 	} */ *uap = v;
248 	clockid_t clock_id;
249 	struct timespec ts;
250 	int error = 0;
251 
252 	clock_id = SCARG(uap, clock_id);
253 	switch (clock_id) {
254 	case CLOCK_REALTIME:
255 	case CLOCK_MONOTONIC:
256 		ts.tv_sec = 0;
257 		ts.tv_nsec = 1000000000 / hz;
258 		break;
259 	default:
260 		return (EINVAL);
261 	}
262 
263 	if (SCARG(uap, tp))
264 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
265 
266 	return error;
267 }
268 
269 /* ARGSUSED */
270 int
271 sys_nanosleep(p, v, retval)
272 	struct proc *p;
273 	void *v;
274 	register_t *retval;
275 {
276 	static int nanowait;
277 	struct sys_nanosleep_args/* {
278 		syscallarg(struct timespec *) rqtp;
279 		syscallarg(struct timespec *) rmtp;
280 	} */ *uap = v;
281 	struct timespec rqt;
282 	struct timespec rmt;
283 	struct timeval atv, utv;
284 	int error, s, timo;
285 
286 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
287 		       sizeof(struct timespec));
288 	if (error)
289 		return (error);
290 
291 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
292 	if (itimerfix(&atv) || atv.tv_sec > 1000000000)
293 		return (EINVAL);
294 
295 	s = splclock();
296 	timeradd(&atv,&time,&atv);
297 	timo = hzto(&atv);
298 	/*
299 	 * Avoid inadvertantly sleeping forever
300 	 */
301 	if (timo == 0)
302 		timo = 1;
303 	splx(s);
304 
305 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
306 	if (error == ERESTART)
307 		error = EINTR;
308 	if (error == EWOULDBLOCK)
309 		error = 0;
310 
311 	if (SCARG(uap, rmtp)) {
312 		int error;
313 
314 		s = splclock();
315 		utv = time;
316 		splx(s);
317 
318 		timersub(&atv, &utv, &utv);
319 		if (utv.tv_sec < 0)
320 			timerclear(&utv);
321 
322 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
323 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
324 			sizeof(rmt));
325 		if (error)
326 			return (error);
327 	}
328 
329 	return error;
330 }
331 
332 /* ARGSUSED */
333 int
334 sys_gettimeofday(p, v, retval)
335 	struct proc *p;
336 	void *v;
337 	register_t *retval;
338 {
339 	struct sys_gettimeofday_args /* {
340 		syscallarg(struct timeval *) tp;
341 		syscallarg(struct timezone *) tzp;
342 	} */ *uap = v;
343 	struct timeval atv;
344 	int error = 0;
345 	struct timezone tzfake;
346 
347 	if (SCARG(uap, tp)) {
348 		microtime(&atv);
349 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
350 		if (error)
351 			return (error);
352 	}
353 	if (SCARG(uap, tzp)) {
354 		/*
355 		 * NetBSD has no kernel notion of time zone, so we just
356 		 * fake up a timezone struct and return it if demanded.
357 		 */
358 		tzfake.tz_minuteswest = 0;
359 		tzfake.tz_dsttime = 0;
360 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
361 	}
362 	return (error);
363 }
364 
365 /* ARGSUSED */
366 int
367 sys_settimeofday(p, v, retval)
368 	struct proc *p;
369 	void *v;
370 	register_t *retval;
371 {
372 	struct sys_settimeofday_args /* {
373 		syscallarg(const struct timeval *) tv;
374 		syscallarg(const struct timezone *) tzp;
375 	} */ *uap = v;
376 	int error;
377 
378 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
379 		return (error);
380 
381 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
382 }
383 
384 int
385 settimeofday1(utv, utzp, p)
386 	const struct timeval *utv;
387 	const struct timezone *utzp;
388 	struct proc *p;
389 {
390 	struct timeval atv;
391 	struct timezone atz;
392 	struct timeval *tv = NULL;
393 	struct timezone *tzp = NULL;
394 	int error;
395 
396 	/* Verify all parameters before changing time. */
397 	if (utv) {
398 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
399 			return (error);
400 		tv = &atv;
401 	}
402 	/* XXX since we don't use tz, probably no point in doing copyin. */
403 	if (utzp) {
404 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
405 			return (error);
406 		tzp = &atz;
407 	}
408 
409 	if (tv)
410 		if ((error = settime(tv)) != 0)
411 			return (error);
412 	/*
413 	 * NetBSD has no kernel notion of time zone, and only an
414 	 * obsolete program would try to set it, so we log a warning.
415 	 */
416 	if (tzp)
417 		log(LOG_WARNING, "pid %d attempted to set the "
418 		    "(obsolete) kernel time zone\n", p->p_pid);
419 	return (0);
420 }
421 
422 int	tickdelta;			/* current clock skew, us. per tick */
423 long	timedelta;			/* unapplied time correction, us. */
424 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
425 
426 /* ARGSUSED */
427 int
428 sys_adjtime(p, v, retval)
429 	struct proc *p;
430 	void *v;
431 	register_t *retval;
432 {
433 	struct sys_adjtime_args /* {
434 		syscallarg(const struct timeval *) delta;
435 		syscallarg(struct timeval *) olddelta;
436 	} */ *uap = v;
437 	int error;
438 
439 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
440 		return (error);
441 
442 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
443 }
444 
445 int
446 adjtime1(delta, olddelta, p)
447 	const struct timeval *delta;
448 	struct timeval *olddelta;
449 	struct proc *p;
450 {
451 	struct timeval atv;
452 	struct timeval *oatv = NULL;
453 	long ndelta, ntickdelta, odelta;
454 	int error;
455 	int s;
456 
457 	error = copyin(delta, &atv, sizeof(struct timeval));
458 	if (error)
459 		return (error);
460 
461 	if (olddelta != NULL) {
462 		if (uvm_useracc((caddr_t)olddelta,
463 		    sizeof(struct timeval), B_WRITE) == FALSE)
464 			return (EFAULT);
465 		oatv = olddelta;
466 	}
467 
468 	/*
469 	 * Compute the total correction and the rate at which to apply it.
470 	 * Round the adjustment down to a whole multiple of the per-tick
471 	 * delta, so that after some number of incremental changes in
472 	 * hardclock(), tickdelta will become zero, lest the correction
473 	 * overshoot and start taking us away from the desired final time.
474 	 */
475 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
476 	if (ndelta > bigadj || ndelta < -bigadj)
477 		ntickdelta = 10 * tickadj;
478 	else
479 		ntickdelta = tickadj;
480 	if (ndelta % ntickdelta)
481 		ndelta = ndelta / ntickdelta * ntickdelta;
482 
483 	/*
484 	 * To make hardclock()'s job easier, make the per-tick delta negative
485 	 * if we want time to run slower; then hardclock can simply compute
486 	 * tick + tickdelta, and subtract tickdelta from timedelta.
487 	 */
488 	if (ndelta < 0)
489 		ntickdelta = -ntickdelta;
490 	s = splclock();
491 	odelta = timedelta;
492 	timedelta = ndelta;
493 	tickdelta = ntickdelta;
494 	splx(s);
495 
496 	if (olddelta) {
497 		atv.tv_sec = odelta / 1000000;
498 		atv.tv_usec = odelta % 1000000;
499 		(void) copyout(&atv, olddelta, sizeof(struct timeval));
500 	}
501 	return (0);
502 }
503 
504 /*
505  * Get value of an interval timer.  The process virtual and
506  * profiling virtual time timers are kept in the p_stats area, since
507  * they can be swapped out.  These are kept internally in the
508  * way they are specified externally: in time until they expire.
509  *
510  * The real time interval timer is kept in the process table slot
511  * for the process, and its value (it_value) is kept as an
512  * absolute time rather than as a delta, so that it is easy to keep
513  * periodic real-time signals from drifting.
514  *
515  * Virtual time timers are processed in the hardclock() routine of
516  * kern_clock.c.  The real time timer is processed by a timeout
517  * routine, called from the softclock() routine.  Since a callout
518  * may be delayed in real time due to interrupt processing in the system,
519  * it is possible for the real time timeout routine (realitexpire, given below),
520  * to be delayed in real time past when it is supposed to occur.  It
521  * does not suffice, therefore, to reload the real timer .it_value from the
522  * real time timers .it_interval.  Rather, we compute the next time in
523  * absolute time the timer should go off.
524  */
525 /* ARGSUSED */
526 int
527 sys_getitimer(p, v, retval)
528 	struct proc *p;
529 	void *v;
530 	register_t *retval;
531 {
532 	struct sys_getitimer_args /* {
533 		syscallarg(int) which;
534 		syscallarg(struct itimerval *) itv;
535 	} */ *uap = v;
536 	int which = SCARG(uap, which);
537 	struct itimerval aitv;
538 	int s;
539 
540 	if ((u_int)which > ITIMER_PROF)
541 		return (EINVAL);
542 	s = splclock();
543 	if (which == ITIMER_REAL) {
544 		/*
545 		 * Convert from absolute to relative time in .it_value
546 		 * part of real time timer.  If time for real time timer
547 		 * has passed return 0, else return difference between
548 		 * current time and time for the timer to go off.
549 		 */
550 		aitv = p->p_realtimer;
551 		if (timerisset(&aitv.it_value)) {
552 			if (timercmp(&aitv.it_value, &time, <))
553 				timerclear(&aitv.it_value);
554 			else
555 				timersub(&aitv.it_value, &time, &aitv.it_value);
556 		}
557 	} else
558 		aitv = p->p_stats->p_timer[which];
559 	splx(s);
560 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
561 }
562 
563 /* ARGSUSED */
564 int
565 sys_setitimer(p, v, retval)
566 	struct proc *p;
567 	void *v;
568 	register_t *retval;
569 {
570 	struct sys_setitimer_args /* {
571 		syscallarg(int) which;
572 		syscallarg(const struct itimerval *) itv;
573 		syscallarg(struct itimerval *) oitv;
574 	} */ *uap = v;
575 	int which = SCARG(uap, which);
576 	struct sys_getitimer_args getargs;
577 	struct itimerval aitv;
578 	const struct itimerval *itvp;
579 	int s, error;
580 
581 	if ((u_int)which > ITIMER_PROF)
582 		return (EINVAL);
583 	itvp = SCARG(uap, itv);
584 	if (itvp &&
585 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
586 		return (error);
587 	if (SCARG(uap, oitv) != NULL) {
588 		SCARG(&getargs, which) = which;
589 		SCARG(&getargs, itv) = SCARG(uap, oitv);
590 		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
591 			return (error);
592 	}
593 	if (itvp == 0)
594 		return (0);
595 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
596 		return (EINVAL);
597 	s = splclock();
598 	if (which == ITIMER_REAL) {
599 		callout_stop(&p->p_realit_ch);
600 		if (timerisset(&aitv.it_value)) {
601 			/*
602 			 * Don't need to check hzto() return value, here.
603 			 * callout_reset() does it for us.
604 			 */
605 			timeradd(&aitv.it_value, &time, &aitv.it_value);
606 			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
607 			    realitexpire, p);
608 		}
609 		p->p_realtimer = aitv;
610 	} else
611 		p->p_stats->p_timer[which] = aitv;
612 	splx(s);
613 	return (0);
614 }
615 
616 /*
617  * Real interval timer expired:
618  * send process whose timer expired an alarm signal.
619  * If time is not set up to reload, then just return.
620  * Else compute next time timer should go off which is > current time.
621  * This is where delay in processing this timeout causes multiple
622  * SIGALRM calls to be compressed into one.
623  */
624 void
625 realitexpire(arg)
626 	void *arg;
627 {
628 	struct proc *p;
629 	int s;
630 
631 	p = (struct proc *)arg;
632 	psignal(p, SIGALRM);
633 	if (!timerisset(&p->p_realtimer.it_interval)) {
634 		timerclear(&p->p_realtimer.it_value);
635 		return;
636 	}
637 	for (;;) {
638 		s = splclock();
639 		timeradd(&p->p_realtimer.it_value,
640 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
641 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
642 			/*
643 			 * Don't need to check hzto() return value, here.
644 			 * callout_reset() does it for us.
645 			 */
646 			callout_reset(&p->p_realit_ch,
647 			    hzto(&p->p_realtimer.it_value), realitexpire, p);
648 			splx(s);
649 			return;
650 		}
651 		splx(s);
652 	}
653 }
654 
655 /*
656  * Check that a proposed value to load into the .it_value or
657  * .it_interval part of an interval timer is acceptable, and
658  * fix it to have at least minimal value (i.e. if it is less
659  * than the resolution of the clock, round it up.)
660  */
661 int
662 itimerfix(tv)
663 	struct timeval *tv;
664 {
665 
666 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
667 		return (EINVAL);
668 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
669 		tv->tv_usec = tick;
670 	return (0);
671 }
672 
673 /*
674  * Decrement an interval timer by a specified number
675  * of microseconds, which must be less than a second,
676  * i.e. < 1000000.  If the timer expires, then reload
677  * it.  In this case, carry over (usec - old value) to
678  * reduce the value reloaded into the timer so that
679  * the timer does not drift.  This routine assumes
680  * that it is called in a context where the timers
681  * on which it is operating cannot change in value.
682  */
683 int
684 itimerdecr(itp, usec)
685 	struct itimerval *itp;
686 	int usec;
687 {
688 
689 	if (itp->it_value.tv_usec < usec) {
690 		if (itp->it_value.tv_sec == 0) {
691 			/* expired, and already in next interval */
692 			usec -= itp->it_value.tv_usec;
693 			goto expire;
694 		}
695 		itp->it_value.tv_usec += 1000000;
696 		itp->it_value.tv_sec--;
697 	}
698 	itp->it_value.tv_usec -= usec;
699 	usec = 0;
700 	if (timerisset(&itp->it_value))
701 		return (1);
702 	/* expired, exactly at end of interval */
703 expire:
704 	if (timerisset(&itp->it_interval)) {
705 		itp->it_value = itp->it_interval;
706 		itp->it_value.tv_usec -= usec;
707 		if (itp->it_value.tv_usec < 0) {
708 			itp->it_value.tv_usec += 1000000;
709 			itp->it_value.tv_sec--;
710 		}
711 	} else
712 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
713 	return (0);
714 }
715 
716 /*
717  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
718  * for usage and rationale.
719  */
720 int
721 ratecheck(lasttime, mininterval)
722 	struct timeval *lasttime;
723 	const struct timeval *mininterval;
724 {
725 	struct timeval tv, delta;
726 	int s, rv = 0;
727 
728 	s = splclock();
729 	tv = mono_time;
730 	splx(s);
731 
732 	timersub(&tv, lasttime, &delta);
733 
734 	/*
735 	 * check for 0,0 is so that the message will be seen at least once,
736 	 * even if interval is huge.
737 	 */
738 	if (timercmp(&delta, mininterval, >=) ||
739 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
740 		*lasttime = tv;
741 		rv = 1;
742 	}
743 
744 	return (rv);
745 }
746 
747 /*
748  * ppsratecheck(): packets (or events) per second limitation.
749  */
750 int
751 ppsratecheck(lasttime, curpps, maxpps)
752 	struct timeval *lasttime;
753 	int *curpps;
754 	int maxpps;	/* maximum pps allowed */
755 {
756 	struct timeval tv, delta;
757 	int s, rv;
758 
759 	s = splclock();
760 	tv = mono_time;
761 	splx(s);
762 
763 	timersub(&tv, lasttime, &delta);
764 
765 	/*
766 	 * check for 0,0 is so that the message will be seen at least once.
767 	 * if more than one second have passed since the last update of
768 	 * lasttime, reset the counter.
769 	 *
770 	 * we do increment *curpps even in *curpps < maxpps case, as some may
771 	 * try to use *curpps for stat purposes as well.
772 	 */
773 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
774 	    delta.tv_sec >= 1) {
775 		*lasttime = tv;
776 		*curpps = 0;
777 		rv = 1;
778 	} else if (maxpps < 0)
779 		rv = 1;
780 	else if (*curpps < maxpps)
781 		rv = 1;
782 	else
783 		rv = 0;
784 
785 #if 1 /*DIAGNOSTIC?*/
786 	/* be careful about wrap-around */
787 	if (*curpps + 1 > *curpps)
788 		*curpps = *curpps + 1;
789 #else
790 	/*
791 	 * assume that there's not too many calls to this function.
792 	 * not sure if the assumption holds, as it depends on *caller's*
793 	 * behavior, not the behavior of this function.
794 	 * IMHO it is wrong to make assumption on the caller's behavior,
795 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
796 	 */
797 	*curpps = *curpps + 1;
798 #endif
799 
800 	return (rv);
801 }
802