xref: /netbsd/sys/kern/subr_disk.c (revision c4a72b64)
1 /*	$NetBSD: subr_disk.c,v 1.49 2002/11/06 02:31:34 enami Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1982, 1986, 1988, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
78  */
79 
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: subr_disk.c,v 1.49 2002/11/06 02:31:34 enami Exp $");
82 
83 #include "opt_compat_netbsd.h"
84 
85 #include <sys/param.h>
86 #include <sys/kernel.h>
87 #include <sys/malloc.h>
88 #include <sys/buf.h>
89 #include <sys/syslog.h>
90 #include <sys/disklabel.h>
91 #include <sys/disk.h>
92 #include <sys/sysctl.h>
93 #include <lib/libkern/libkern.h>
94 
95 /*
96  * A global list of all disks attached to the system.  May grow or
97  * shrink over time.
98  */
99 struct	disklist_head disklist;	/* TAILQ_HEAD */
100 int	disk_count;		/* number of drives in global disklist */
101 struct simplelock disklist_slock = SIMPLELOCK_INITIALIZER;
102 
103 /*
104  * Compute checksum for disk label.
105  */
106 u_int
107 dkcksum(struct disklabel *lp)
108 {
109 	u_short *start, *end;
110 	u_short sum = 0;
111 
112 	start = (u_short *)lp;
113 	end = (u_short *)&lp->d_partitions[lp->d_npartitions];
114 	while (start < end)
115 		sum ^= *start++;
116 	return (sum);
117 }
118 
119 /*
120  * Disk error is the preface to plaintive error messages
121  * about failing disk transfers.  It prints messages of the form
122 
123 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
124 
125  * if the offset of the error in the transfer and a disk label
126  * are both available.  blkdone should be -1 if the position of the error
127  * is unknown; the disklabel pointer may be null from drivers that have not
128  * been converted to use them.  The message is printed with printf
129  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
130  * The message should be completed (with at least a newline) with printf
131  * or addlog, respectively.  There is no trailing space.
132  */
133 void
134 diskerr(const struct buf *bp, const char *dname, const char *what, int pri,
135     int blkdone, const struct disklabel *lp)
136 {
137 	int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
138 	void (*pr)(const char *, ...);
139 	char partname = 'a' + part;
140 	int sn;
141 
142 	if (pri != LOG_PRINTF) {
143 		static const char fmt[] = "";
144 		log(pri, fmt);
145 		pr = addlog;
146 	} else
147 		pr = printf;
148 	(*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
149 	    bp->b_flags & B_READ ? "read" : "writ");
150 	sn = bp->b_blkno;
151 	if (bp->b_bcount <= DEV_BSIZE)
152 		(*pr)("%d", sn);
153 	else {
154 		if (blkdone >= 0) {
155 			sn += blkdone;
156 			(*pr)("%d of ", sn);
157 		}
158 		(*pr)("%d-%d", bp->b_blkno,
159 		    bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
160 	}
161 	if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
162 		sn += lp->d_partitions[part].p_offset;
163 		(*pr)(" (%s%d bn %d; cn %d", dname, unit, sn,
164 		    sn / lp->d_secpercyl);
165 		sn %= lp->d_secpercyl;
166 		(*pr)(" tn %d sn %d)", sn / lp->d_nsectors,
167 		    sn % lp->d_nsectors);
168 	}
169 }
170 
171 /*
172  * Initialize the disklist.  Called by main() before autoconfiguration.
173  */
174 void
175 disk_init(void)
176 {
177 
178 	TAILQ_INIT(&disklist);
179 	disk_count = 0;
180 }
181 
182 /*
183  * Searches the disklist for the disk corresponding to the
184  * name provided.
185  */
186 struct disk *
187 disk_find(char *name)
188 {
189 	struct disk *diskp;
190 
191 	if ((name == NULL) || (disk_count <= 0))
192 		return (NULL);
193 
194 	simple_lock(&disklist_slock);
195 	for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
196 	    diskp = TAILQ_NEXT(diskp, dk_link))
197 		if (strcmp(diskp->dk_name, name) == 0) {
198 			simple_unlock(&disklist_slock);
199 			return (diskp);
200 		}
201 	simple_unlock(&disklist_slock);
202 
203 	return (NULL);
204 }
205 
206 /*
207  * Attach a disk.
208  */
209 void
210 disk_attach(struct disk *diskp)
211 {
212 	int s;
213 
214 	/*
215 	 * Allocate and initialize the disklabel structures.  Note that
216 	 * it's not safe to sleep here, since we're probably going to be
217 	 * called during autoconfiguration.
218 	 */
219 	diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
220 	diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
221 	    M_NOWAIT);
222 	if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
223 		panic("disk_attach: can't allocate storage for disklabel");
224 
225 	memset(diskp->dk_label, 0, sizeof(struct disklabel));
226 	memset(diskp->dk_cpulabel, 0, sizeof(struct cpu_disklabel));
227 
228 	/*
229 	 * Set the attached timestamp.
230 	 */
231 	s = splclock();
232 	diskp->dk_attachtime = mono_time;
233 	splx(s);
234 
235 	/*
236 	 * Link into the disklist.
237 	 */
238 	simple_lock(&disklist_slock);
239 	TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
240 	simple_unlock(&disklist_slock);
241 	++disk_count;
242 }
243 
244 /*
245  * Detach a disk.
246  */
247 void
248 disk_detach(struct disk *diskp)
249 {
250 
251 	/*
252 	 * Remove from the disklist.
253 	 */
254 	if (--disk_count < 0)
255 		panic("disk_detach: disk_count < 0");
256 	simple_lock(&disklist_slock);
257 	TAILQ_REMOVE(&disklist, diskp, dk_link);
258 	simple_unlock(&disklist_slock);
259 
260 	/*
261 	 * Free the space used by the disklabel structures.
262 	 */
263 	free(diskp->dk_label, M_DEVBUF);
264 	free(diskp->dk_cpulabel, M_DEVBUF);
265 }
266 
267 /*
268  * Increment a disk's busy counter.  If the counter is going from
269  * 0 to 1, set the timestamp.
270  */
271 void
272 disk_busy(struct disk *diskp)
273 {
274 	int s;
275 
276 	/*
277 	 * XXX We'd like to use something as accurate as microtime(),
278 	 * but that doesn't depend on the system TOD clock.
279 	 */
280 	if (diskp->dk_busy++ == 0) {
281 		s = splclock();
282 		diskp->dk_timestamp = mono_time;
283 		splx(s);
284 	}
285 }
286 
287 /*
288  * Decrement a disk's busy counter, increment the byte count, total busy
289  * time, and reset the timestamp.
290  */
291 void
292 disk_unbusy(struct disk *diskp, long bcount, int read)
293 {
294 	int s;
295 	struct timeval dv_time, diff_time;
296 
297 	if (diskp->dk_busy-- == 0) {
298 		printf("%s: dk_busy < 0\n", diskp->dk_name);
299 		panic("disk_unbusy");
300 	}
301 
302 	s = splclock();
303 	dv_time = mono_time;
304 	splx(s);
305 
306 	timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
307 	timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);
308 
309 	diskp->dk_timestamp = dv_time;
310 	if (bcount > 0) {
311 		if (read) {
312 			diskp->dk_rbytes += bcount;
313 			diskp->dk_rxfer++;
314 		} else {
315 			diskp->dk_wbytes += bcount;
316 			diskp->dk_wxfer++;
317 		}
318 	}
319 }
320 
321 /*
322  * Reset the metrics counters on the given disk.  Note that we cannot
323  * reset the busy counter, as it may case a panic in disk_unbusy().
324  * We also must avoid playing with the timestamp information, as it
325  * may skew any pending transfer results.
326  */
327 void
328 disk_resetstat(struct disk *diskp)
329 {
330 	int s = splbio(), t;
331 
332 	diskp->dk_rxfer = 0;
333 	diskp->dk_rbytes = 0;
334 	diskp->dk_wxfer = 0;
335 	diskp->dk_wbytes = 0;
336 
337 	t = splclock();
338 	diskp->dk_attachtime = mono_time;
339 	splx(t);
340 
341 	timerclear(&diskp->dk_time);
342 
343 	splx(s);
344 }
345 
346 int
347 sysctl_disknames(void *vwhere, size_t *sizep)
348 {
349 	char buf[DK_DISKNAMELEN + 1];
350 	char *where = vwhere;
351 	struct disk *diskp;
352 	size_t needed, left, slen;
353 	int error, first;
354 
355 	first = 1;
356 	error = 0;
357 	needed = 0;
358 	left = *sizep;
359 
360 	simple_lock(&disklist_slock);
361 	for (diskp = TAILQ_FIRST(&disklist); diskp != NULL;
362 	    diskp = TAILQ_NEXT(diskp, dk_link)) {
363 		if (where == NULL)
364 			needed += strlen(diskp->dk_name) + 1;
365 		else {
366 			memset(buf, 0, sizeof(buf));
367 			if (first) {
368 				strncpy(buf, diskp->dk_name, sizeof(buf));
369 				first = 0;
370 			} else {
371 				buf[0] = ' ';
372 				strncpy(buf + 1, diskp->dk_name,
373 				    sizeof(buf) - 1);
374 			}
375 			buf[DK_DISKNAMELEN] = '\0';
376 			slen = strlen(buf);
377 			if (left < slen + 1)
378 				break;
379 			/* +1 to copy out the trailing NUL byte */
380 			error = copyout(buf, where, slen + 1);
381 			if (error)
382 				break;
383 			where += slen;
384 			needed += slen;
385 			left -= slen;
386 		}
387 	}
388 	simple_unlock(&disklist_slock);
389 	*sizep = needed;
390 	return (error);
391 }
392 
393 int
394 sysctl_diskstats(int *name, u_int namelen, void *vwhere, size_t *sizep)
395 {
396 	struct disk_sysctl sdisk;
397 	struct disk *diskp;
398 	char *where = vwhere;
399 	size_t tocopy, left;
400 	int error;
401 
402 	/*
403 	 * The original hw.diskstats call was broken and did not require
404 	 * the userland to pass in it's size of struct disk_sysctl.  This
405 	 * was fixed after NetBSD 1.6 was released, and any applications
406 	 * that do not pass in the size are given an error only, unless
407 	 * we care about 1.6 compatibility.
408 	 */
409 	if (namelen == 0)
410 #ifdef COMPAT_16
411 		tocopy = offsetof(struct disk_sysctl, dk_rxfer);
412 #else
413 		return (EINVAL);
414 #endif
415 	else
416 		tocopy = name[0];
417 
418 	if (where == NULL) {
419 		*sizep = disk_count * tocopy;
420 		return (0);
421 	}
422 
423 	error = 0;
424 	left = *sizep;
425 	memset(&sdisk, 0, sizeof(sdisk));
426 	*sizep = 0;
427 
428 	simple_lock(&disklist_slock);
429 	TAILQ_FOREACH(diskp, &disklist, dk_link) {
430 		if (left < tocopy)
431 			break;
432 		strncpy(sdisk.dk_name, diskp->dk_name, sizeof(sdisk.dk_name));
433 		sdisk.dk_xfer = diskp->dk_rxfer + diskp->dk_wxfer;
434 		sdisk.dk_rxfer = diskp->dk_rxfer;
435 		sdisk.dk_wxfer = diskp->dk_wxfer;
436 		sdisk.dk_seek = diskp->dk_seek;
437 		sdisk.dk_bytes = diskp->dk_rbytes + diskp->dk_wbytes;
438 		sdisk.dk_rbytes = diskp->dk_rbytes;
439 		sdisk.dk_wbytes = diskp->dk_wbytes;
440 		sdisk.dk_attachtime_sec = diskp->dk_attachtime.tv_sec;
441 		sdisk.dk_attachtime_usec = diskp->dk_attachtime.tv_usec;
442 		sdisk.dk_timestamp_sec = diskp->dk_timestamp.tv_sec;
443 		sdisk.dk_timestamp_usec = diskp->dk_timestamp.tv_usec;
444 		sdisk.dk_time_sec = diskp->dk_time.tv_sec;
445 		sdisk.dk_time_usec = diskp->dk_time.tv_usec;
446 		sdisk.dk_busy = diskp->dk_busy;
447 
448 		error = copyout(&sdisk, where, min(tocopy, sizeof(sdisk)));
449 		if (error)
450 			break;
451 		where += tocopy;
452 		*sizep += tocopy;
453 		left -= tocopy;
454 	}
455 	simple_unlock(&disklist_slock);
456 	return (error);
457 }
458 
459 struct bufq_fcfs {
460 	TAILQ_HEAD(, buf) bq_head;	/* actual list of buffers */
461 };
462 
463 struct bufq_disksort {
464 	TAILQ_HEAD(, buf) bq_head;	/* actual list of buffers */
465 };
466 
467 #define PRIO_READ_BURST		48
468 #define PRIO_WRITE_REQ		16
469 
470 struct bufq_prio {
471 	TAILQ_HEAD(, buf) bq_read, bq_write; /* actual list of buffers */
472 	struct buf *bq_write_next;	/* next request in bq_write */
473 	struct buf *bq_next;		/* current request */
474 	int bq_read_burst;		/* # of consecutive reads */
475 };
476 
477 
478 /*
479  * Check if two buf's are in ascending order.
480  */
481 static __inline int
482 buf_inorder(struct buf *bp, struct buf *bq, int sortby)
483 {
484 	int r;
485 
486 	if (bp == NULL || bq == NULL)
487 		return (bq == NULL);
488 
489 	if (sortby == BUFQ_SORT_CYLINDER)
490 		r = bp->b_cylinder - bq->b_cylinder;
491 	else
492 		r = 0;
493 
494 	if (r == 0)
495 		r = bp->b_rawblkno - bq->b_rawblkno;
496 
497 	return (r <= 0);
498 }
499 
500 
501 /*
502  * First-come first-served sort for disks.
503  *
504  * Requests are appended to the queue without any reordering.
505  */
506 static void
507 bufq_fcfs_put(struct bufq_state *bufq, struct buf *bp)
508 {
509 	struct bufq_fcfs *fcfs = bufq->bq_private;
510 
511 	TAILQ_INSERT_TAIL(&fcfs->bq_head, bp, b_actq);
512 }
513 
514 static struct buf *
515 bufq_fcfs_get(struct bufq_state *bufq, int remove)
516 {
517 	struct bufq_fcfs *fcfs = bufq->bq_private;
518 	struct buf *bp;
519 
520 	bp = TAILQ_FIRST(&fcfs->bq_head);
521 
522 	if (bp != NULL && remove)
523 		TAILQ_REMOVE(&fcfs->bq_head, bp, b_actq);
524 
525 	return (bp);
526 }
527 
528 
529 /*
530  * Seek sort for disks.
531  *
532  * There are actually two queues, sorted in ascendening order.  The first
533  * queue holds those requests which are positioned after the current block;
534  * the second holds requests which came in after their position was passed.
535  * Thus we implement a one-way scan, retracting after reaching the end of
536  * the drive to the first request on the second queue, at which time it
537  * becomes the first queue.
538  *
539  * A one-way scan is natural because of the way UNIX read-ahead blocks are
540  * allocated.
541  */
542 static void
543 bufq_disksort_put(struct bufq_state *bufq, struct buf *bp)
544 {
545 	struct bufq_disksort *disksort = bufq->bq_private;
546 	struct buf *bq, *nbq;
547 	int sortby;
548 
549 	sortby = bufq->bq_flags & BUFQ_SORT_MASK;
550 
551 	bq = TAILQ_FIRST(&disksort->bq_head);
552 
553 	/*
554 	 * If the queue is empty it's easy; we just go on the end.
555 	 */
556 	if (bq == NULL) {
557 		TAILQ_INSERT_TAIL(&disksort->bq_head, bp, b_actq);
558 		return;
559 	}
560 
561 	/*
562 	 * If we lie before the currently active request, then we
563 	 * must locate the second request list and add ourselves to it.
564 	 */
565 	if (buf_inorder(bp, bq, sortby)) {
566 		while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
567 			/*
568 			 * Check for an ``inversion'' in the normally ascending
569 			 * block numbers, indicating the start of the second
570 			 * request list.
571 			 */
572 			if (buf_inorder(nbq, bq, sortby)) {
573 				/*
574 				 * Search the second request list for the first
575 				 * request at a larger block number.  We go
576 				 * after that; if there is no such request, we
577 				 * go at the end.
578 				 */
579 				do {
580 					if (buf_inorder(bp, nbq, sortby))
581 						goto insert;
582 					bq = nbq;
583 				} while ((nbq =
584 				    TAILQ_NEXT(bq, b_actq)) != NULL);
585 				goto insert;		/* after last */
586 			}
587 			bq = nbq;
588 		}
589 		/*
590 		 * No inversions... we will go after the last, and
591 		 * be the first request in the second request list.
592 		 */
593 		goto insert;
594 	}
595 	/*
596 	 * Request is at/after the current request...
597 	 * sort in the first request list.
598 	 */
599 	while ((nbq = TAILQ_NEXT(bq, b_actq)) != NULL) {
600 		/*
601 		 * We want to go after the current request if there is an
602 		 * inversion after it (i.e. it is the end of the first
603 		 * request list), or if the next request is a larger cylinder
604 		 * than our request.
605 		 */
606 		if (buf_inorder(nbq, bq, sortby) ||
607 		    buf_inorder(bp, nbq, sortby))
608 			goto insert;
609 		bq = nbq;
610 	}
611 	/*
612 	 * Neither a second list nor a larger request... we go at the end of
613 	 * the first list, which is the same as the end of the whole schebang.
614 	 */
615 insert:	TAILQ_INSERT_AFTER(&disksort->bq_head, bq, bp, b_actq);
616 }
617 
618 static struct buf *
619 bufq_disksort_get(struct bufq_state *bufq, int remove)
620 {
621 	struct bufq_disksort *disksort = bufq->bq_private;
622 	struct buf *bp;
623 
624 	bp = TAILQ_FIRST(&disksort->bq_head);
625 
626 	if (bp != NULL && remove)
627 		TAILQ_REMOVE(&disksort->bq_head, bp, b_actq);
628 
629 	return (bp);
630 }
631 
632 
633 /*
634  * Seek sort for disks.
635  *
636  * There are two queues.  The first queue holds read requests; the second
637  * holds write requests.  The read queue is first-come first-served; the
638  * write queue is sorted in ascendening block order.
639  * The read queue is processed first.  After PRIO_READ_BURST consecutive
640  * read requests with non-empty write queue PRIO_WRITE_REQ requests from
641  * the write queue will be processed.
642  */
643 static void
644 bufq_prio_put(struct bufq_state *bufq, struct buf *bp)
645 {
646 	struct bufq_prio *prio = bufq->bq_private;
647 	struct buf *bq;
648 	int sortby;
649 
650 	sortby = bufq->bq_flags & BUFQ_SORT_MASK;
651 
652 	/*
653 	 * If it's a read request append it to the list.
654 	 */
655 	if ((bp->b_flags & B_READ) == B_READ) {
656 		TAILQ_INSERT_TAIL(&prio->bq_read, bp, b_actq);
657 		return;
658 	}
659 
660 	bq = TAILQ_FIRST(&prio->bq_write);
661 
662 	/*
663 	 * If the write list is empty, simply append it to the list.
664 	 */
665 	if (bq == NULL) {
666 		TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
667 		prio->bq_write_next = bp;
668 		return;
669 	}
670 
671 	/*
672 	 * If we lie after the next request, insert after this request.
673 	 */
674 	if (buf_inorder(prio->bq_write_next, bp, sortby))
675 		bq = prio->bq_write_next;
676 
677 	/*
678 	 * Search for the first request at a larger block number.
679 	 * We go before this request if it exists.
680 	 */
681 	while (bq != NULL && buf_inorder(bq, bp, sortby))
682 		bq = TAILQ_NEXT(bq, b_actq);
683 
684 	if (bq != NULL)
685 		TAILQ_INSERT_BEFORE(bq, bp, b_actq);
686 	else
687 		TAILQ_INSERT_TAIL(&prio->bq_write, bp, b_actq);
688 }
689 
690 static struct buf *
691 bufq_prio_get(struct bufq_state *bufq, int remove)
692 {
693 	struct bufq_prio *prio = bufq->bq_private;
694 	struct buf *bp;
695 
696 	/*
697 	 * If no current request, get next from the lists.
698 	 */
699 	if (prio->bq_next == NULL) {
700 		/*
701 		 * If at least one list is empty, select the other.
702 		 */
703 		if (TAILQ_FIRST(&prio->bq_read) == NULL) {
704 			prio->bq_next = prio->bq_write_next;
705 			prio->bq_read_burst = 0;
706 		} else if (prio->bq_write_next == NULL) {
707 			prio->bq_next = TAILQ_FIRST(&prio->bq_read);
708 			prio->bq_read_burst = 0;
709 		} else {
710 			/*
711 			 * Both list have requests.  Select the read list up
712 			 * to PRIO_READ_BURST times, then select the write
713 			 * list PRIO_WRITE_REQ times.
714 			 */
715 			if (prio->bq_read_burst++ < PRIO_READ_BURST)
716 				prio->bq_next = TAILQ_FIRST(&prio->bq_read);
717 			else if (prio->bq_read_burst <
718 			    PRIO_READ_BURST + PRIO_WRITE_REQ)
719 				prio->bq_next = prio->bq_write_next;
720 			else {
721 				prio->bq_next = TAILQ_FIRST(&prio->bq_read);
722 				prio->bq_read_burst = 0;
723 			}
724 		}
725 	}
726 
727 	bp = prio->bq_next;
728 
729 	if (bp != NULL && remove) {
730 		if ((bp->b_flags & B_READ) == B_READ)
731 			TAILQ_REMOVE(&prio->bq_read, bp, b_actq);
732 		else {
733 			/*
734 			 * Advance the write pointer before removing
735 			 * bp since it is actually prio->bq_write_next.
736 			 */
737 			prio->bq_write_next =
738 			    TAILQ_NEXT(prio->bq_write_next, b_actq);
739 			TAILQ_REMOVE(&prio->bq_write, bp, b_actq);
740 			if (prio->bq_write_next == NULL)
741 				prio->bq_write_next =
742 				    TAILQ_FIRST(&prio->bq_write);
743 		}
744 
745 		prio->bq_next = NULL;
746 	}
747 
748 	return (bp);
749 }
750 
751 /*
752  * Create a device buffer queue.
753  */
754 void
755 bufq_alloc(struct bufq_state *bufq, int flags)
756 {
757 	struct bufq_fcfs *fcfs;
758 	struct bufq_disksort *disksort;
759 	struct bufq_prio *prio;
760 
761 	bufq->bq_flags = flags;
762 
763 	switch (flags & BUFQ_SORT_MASK) {
764 	case BUFQ_SORT_RAWBLOCK:
765 	case BUFQ_SORT_CYLINDER:
766 		break;
767 	case 0:
768 		if ((flags & BUFQ_METHOD_MASK) == BUFQ_FCFS)
769 			break;
770 		/* FALLTHROUGH */
771 	default:
772 		panic("bufq_alloc: sort out of range");
773 	}
774 
775 	switch (flags & BUFQ_METHOD_MASK) {
776 	case BUFQ_FCFS:
777 		bufq->bq_get = bufq_fcfs_get;
778 		bufq->bq_put = bufq_fcfs_put;
779 		MALLOC(bufq->bq_private, struct bufq_fcfs *,
780 		    sizeof(struct bufq_fcfs), M_DEVBUF, M_ZERO);
781 		fcfs = (struct bufq_fcfs *)bufq->bq_private;
782 		TAILQ_INIT(&fcfs->bq_head);
783 		break;
784 	case BUFQ_DISKSORT:
785 		bufq->bq_get = bufq_disksort_get;
786 		bufq->bq_put = bufq_disksort_put;
787 		MALLOC(bufq->bq_private, struct bufq_disksort *,
788 		    sizeof(struct bufq_disksort), M_DEVBUF, M_ZERO);
789 		disksort = (struct bufq_disksort *)bufq->bq_private;
790 		TAILQ_INIT(&disksort->bq_head);
791 		break;
792 	case BUFQ_READ_PRIO:
793 		bufq->bq_get = bufq_prio_get;
794 		bufq->bq_put = bufq_prio_put;
795 		MALLOC(bufq->bq_private, struct bufq_prio *,
796 		    sizeof(struct bufq_prio), M_DEVBUF, M_ZERO);
797 		prio = (struct bufq_prio *)bufq->bq_private;
798 		TAILQ_INIT(&prio->bq_read);
799 		TAILQ_INIT(&prio->bq_write);
800 		break;
801 	default:
802 		panic("bufq_alloc: method out of range");
803 	}
804 }
805 
806 /*
807  * Destroy a device buffer queue.
808  */
809 void
810 bufq_free(struct bufq_state *bufq)
811 {
812 
813 	KASSERT(bufq->bq_private != NULL);
814 	KASSERT(BUFQ_PEEK(bufq) == NULL);
815 
816 	FREE(bufq->bq_private, M_DEVBUF);
817 	bufq->bq_get = NULL;
818 	bufq->bq_put = NULL;
819 }
820