xref: /netbsd/sys/kern/subr_pool.c (revision 6550d01e)
1 /*	$NetBSD: subr_pool.c,v 1.188 2011/01/17 07:36:58 uebayasi Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.188 2011/01/17 07:36:58 uebayasi Exp $");
36 
37 #include "opt_ddb.h"
38 #include "opt_pool.h"
39 #include "opt_poollog.h"
40 #include "opt_lockdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitops.h>
45 #include <sys/proc.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/pool.h>
50 #include <sys/syslog.h>
51 #include <sys/debug.h>
52 #include <sys/lockdebug.h>
53 #include <sys/xcall.h>
54 #include <sys/cpu.h>
55 #include <sys/atomic.h>
56 
57 #include <uvm/uvm_extern.h>
58 #ifdef DIAGNOSTIC
59 #include <uvm/uvm_km.h>	/* uvm_km_va_drain */
60 #endif
61 
62 /*
63  * Pool resource management utility.
64  *
65  * Memory is allocated in pages which are split into pieces according to
66  * the pool item size. Each page is kept on one of three lists in the
67  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
68  * for empty, full and partially-full pages respectively. The individual
69  * pool items are on a linked list headed by `ph_itemlist' in each page
70  * header. The memory for building the page list is either taken from
71  * the allocated pages themselves (for small pool items) or taken from
72  * an internal pool of page headers (`phpool').
73  */
74 
75 /* List of all pools */
76 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
77 
78 /* Private pool for page header structures */
79 #define	PHPOOL_MAX	8
80 static struct pool phpool[PHPOOL_MAX];
81 #define	PHPOOL_FREELIST_NELEM(idx) \
82 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
83 
84 #ifdef POOL_SUBPAGE
85 /* Pool of subpages for use by normal pools. */
86 static struct pool psppool;
87 #endif
88 
89 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
90     SLIST_HEAD_INITIALIZER(pa_deferinitq);
91 
92 static void *pool_page_alloc_meta(struct pool *, int);
93 static void pool_page_free_meta(struct pool *, void *);
94 
95 /* allocator for pool metadata */
96 struct pool_allocator pool_allocator_meta = {
97 	pool_page_alloc_meta, pool_page_free_meta,
98 	.pa_backingmapptr = &kmem_map,
99 };
100 
101 /* # of seconds to retain page after last use */
102 int pool_inactive_time = 10;
103 
104 /* Next candidate for drainage (see pool_drain()) */
105 static struct pool	*drainpp;
106 
107 /* This lock protects both pool_head and drainpp. */
108 static kmutex_t pool_head_lock;
109 static kcondvar_t pool_busy;
110 
111 /* This lock protects initialization of a potentially shared pool allocator */
112 static kmutex_t pool_allocator_lock;
113 
114 typedef uint32_t pool_item_bitmap_t;
115 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
116 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
117 
118 struct pool_item_header {
119 	/* Page headers */
120 	LIST_ENTRY(pool_item_header)
121 				ph_pagelist;	/* pool page list */
122 	SPLAY_ENTRY(pool_item_header)
123 				ph_node;	/* Off-page page headers */
124 	void *			ph_page;	/* this page's address */
125 	uint32_t		ph_time;	/* last referenced */
126 	uint16_t		ph_nmissing;	/* # of chunks in use */
127 	uint16_t		ph_off;		/* start offset in page */
128 	union {
129 		/* !PR_NOTOUCH */
130 		struct {
131 			LIST_HEAD(, pool_item)
132 				phu_itemlist;	/* chunk list for this page */
133 		} phu_normal;
134 		/* PR_NOTOUCH */
135 		struct {
136 			pool_item_bitmap_t phu_bitmap[1];
137 		} phu_notouch;
138 	} ph_u;
139 };
140 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
141 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
142 
143 struct pool_item {
144 #ifdef DIAGNOSTIC
145 	u_int pi_magic;
146 #endif
147 #define	PI_MAGIC 0xdeaddeadU
148 	/* Other entries use only this list entry */
149 	LIST_ENTRY(pool_item)	pi_list;
150 };
151 
152 #define	POOL_NEEDS_CATCHUP(pp)						\
153 	((pp)->pr_nitems < (pp)->pr_minitems)
154 
155 /*
156  * Pool cache management.
157  *
158  * Pool caches provide a way for constructed objects to be cached by the
159  * pool subsystem.  This can lead to performance improvements by avoiding
160  * needless object construction/destruction; it is deferred until absolutely
161  * necessary.
162  *
163  * Caches are grouped into cache groups.  Each cache group references up
164  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
165  * object from the pool, it calls the object's constructor and places it
166  * into a cache group.  When a cache group frees an object back to the
167  * pool, it first calls the object's destructor.  This allows the object
168  * to persist in constructed form while freed to the cache.
169  *
170  * The pool references each cache, so that when a pool is drained by the
171  * pagedaemon, it can drain each individual cache as well.  Each time a
172  * cache is drained, the most idle cache group is freed to the pool in
173  * its entirety.
174  *
175  * Pool caches are layed on top of pools.  By layering them, we can avoid
176  * the complexity of cache management for pools which would not benefit
177  * from it.
178  */
179 
180 static struct pool pcg_normal_pool;
181 static struct pool pcg_large_pool;
182 static struct pool cache_pool;
183 static struct pool cache_cpu_pool;
184 
185 /* List of all caches. */
186 TAILQ_HEAD(,pool_cache) pool_cache_head =
187     TAILQ_HEAD_INITIALIZER(pool_cache_head);
188 
189 int pool_cache_disable;		/* global disable for caching */
190 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
191 
192 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
193 				    void *);
194 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
195 				    void **, paddr_t *, int);
196 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
197 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
198 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
199 static void	pool_cache_xcall(pool_cache_t);
200 
201 static int	pool_catchup(struct pool *);
202 static void	pool_prime_page(struct pool *, void *,
203 		    struct pool_item_header *);
204 static void	pool_update_curpage(struct pool *);
205 
206 static int	pool_grow(struct pool *, int);
207 static void	*pool_allocator_alloc(struct pool *, int);
208 static void	pool_allocator_free(struct pool *, void *);
209 
210 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
211 	void (*)(const char *, ...));
212 static void pool_print1(struct pool *, const char *,
213 	void (*)(const char *, ...));
214 
215 static int pool_chk_page(struct pool *, const char *,
216 			 struct pool_item_header *);
217 
218 /*
219  * Pool log entry. An array of these is allocated in pool_init().
220  */
221 struct pool_log {
222 	const char	*pl_file;
223 	long		pl_line;
224 	int		pl_action;
225 #define	PRLOG_GET	1
226 #define	PRLOG_PUT	2
227 	void		*pl_addr;
228 };
229 
230 #ifdef POOL_DIAGNOSTIC
231 /* Number of entries in pool log buffers */
232 #ifndef POOL_LOGSIZE
233 #define	POOL_LOGSIZE	10
234 #endif
235 
236 int pool_logsize = POOL_LOGSIZE;
237 
238 static inline void
239 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
240 {
241 	int n;
242 	struct pool_log *pl;
243 
244 	if ((pp->pr_roflags & PR_LOGGING) == 0)
245 		return;
246 
247 	if (pp->pr_log == NULL) {
248 		if (kmem_map != NULL)
249 			pp->pr_log = malloc(
250 				pool_logsize * sizeof(struct pool_log),
251 				M_TEMP, M_NOWAIT | M_ZERO);
252 		if (pp->pr_log == NULL)
253 			return;
254 		pp->pr_curlogentry = 0;
255 		pp->pr_logsize = pool_logsize;
256 	}
257 
258 	/*
259 	 * Fill in the current entry. Wrap around and overwrite
260 	 * the oldest entry if necessary.
261 	 */
262 	n = pp->pr_curlogentry;
263 	pl = &pp->pr_log[n];
264 	pl->pl_file = file;
265 	pl->pl_line = line;
266 	pl->pl_action = action;
267 	pl->pl_addr = v;
268 	if (++n >= pp->pr_logsize)
269 		n = 0;
270 	pp->pr_curlogentry = n;
271 }
272 
273 static void
274 pr_printlog(struct pool *pp, struct pool_item *pi,
275     void (*pr)(const char *, ...))
276 {
277 	int i = pp->pr_logsize;
278 	int n = pp->pr_curlogentry;
279 
280 	if (pp->pr_log == NULL)
281 		return;
282 
283 	/*
284 	 * Print all entries in this pool's log.
285 	 */
286 	while (i-- > 0) {
287 		struct pool_log *pl = &pp->pr_log[n];
288 		if (pl->pl_action != 0) {
289 			if (pi == NULL || pi == pl->pl_addr) {
290 				(*pr)("\tlog entry %d:\n", i);
291 				(*pr)("\t\taction = %s, addr = %p\n",
292 				    pl->pl_action == PRLOG_GET ? "get" : "put",
293 				    pl->pl_addr);
294 				(*pr)("\t\tfile: %s at line %lu\n",
295 				    pl->pl_file, pl->pl_line);
296 			}
297 		}
298 		if (++n >= pp->pr_logsize)
299 			n = 0;
300 	}
301 }
302 
303 static inline void
304 pr_enter(struct pool *pp, const char *file, long line)
305 {
306 
307 	if (__predict_false(pp->pr_entered_file != NULL)) {
308 		printf("pool %s: reentrancy at file %s line %ld\n",
309 		    pp->pr_wchan, file, line);
310 		printf("         previous entry at file %s line %ld\n",
311 		    pp->pr_entered_file, pp->pr_entered_line);
312 		panic("pr_enter");
313 	}
314 
315 	pp->pr_entered_file = file;
316 	pp->pr_entered_line = line;
317 }
318 
319 static inline void
320 pr_leave(struct pool *pp)
321 {
322 
323 	if (__predict_false(pp->pr_entered_file == NULL)) {
324 		printf("pool %s not entered?\n", pp->pr_wchan);
325 		panic("pr_leave");
326 	}
327 
328 	pp->pr_entered_file = NULL;
329 	pp->pr_entered_line = 0;
330 }
331 
332 static inline void
333 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
334 {
335 
336 	if (pp->pr_entered_file != NULL)
337 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
338 		    pp->pr_entered_file, pp->pr_entered_line);
339 }
340 #else
341 #define	pr_log(pp, v, action, file, line)
342 #define	pr_printlog(pp, pi, pr)
343 #define	pr_enter(pp, file, line)
344 #define	pr_leave(pp)
345 #define	pr_enter_check(pp, pr)
346 #endif /* POOL_DIAGNOSTIC */
347 
348 static inline unsigned int
349 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
350     const void *v)
351 {
352 	const char *cp = v;
353 	unsigned int idx;
354 
355 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
356 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
357 	KASSERT(idx < pp->pr_itemsperpage);
358 	return idx;
359 }
360 
361 static inline void
362 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
363     void *obj)
364 {
365 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
366 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
367 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
368 
369 	KASSERT((*bitmap & mask) == 0);
370 	*bitmap |= mask;
371 }
372 
373 static inline void *
374 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
375 {
376 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
377 	unsigned int idx;
378 	int i;
379 
380 	for (i = 0; ; i++) {
381 		int bit;
382 
383 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
384 		bit = ffs32(bitmap[i]);
385 		if (bit) {
386 			pool_item_bitmap_t mask;
387 
388 			bit--;
389 			idx = (i * BITMAP_SIZE) + bit;
390 			mask = 1 << bit;
391 			KASSERT((bitmap[i] & mask) != 0);
392 			bitmap[i] &= ~mask;
393 			break;
394 		}
395 	}
396 	KASSERT(idx < pp->pr_itemsperpage);
397 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
398 }
399 
400 static inline void
401 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
402 {
403 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
404 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
405 	int i;
406 
407 	for (i = 0; i < n; i++) {
408 		bitmap[i] = (pool_item_bitmap_t)-1;
409 	}
410 }
411 
412 static inline int
413 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
414 {
415 
416 	/*
417 	 * we consider pool_item_header with smaller ph_page bigger.
418 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
419 	 */
420 
421 	if (a->ph_page < b->ph_page)
422 		return (1);
423 	else if (a->ph_page > b->ph_page)
424 		return (-1);
425 	else
426 		return (0);
427 }
428 
429 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
430 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
431 
432 static inline struct pool_item_header *
433 pr_find_pagehead_noalign(struct pool *pp, void *v)
434 {
435 	struct pool_item_header *ph, tmp;
436 
437 	tmp.ph_page = (void *)(uintptr_t)v;
438 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
439 	if (ph == NULL) {
440 		ph = SPLAY_ROOT(&pp->pr_phtree);
441 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
442 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
443 		}
444 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
445 	}
446 
447 	return ph;
448 }
449 
450 /*
451  * Return the pool page header based on item address.
452  */
453 static inline struct pool_item_header *
454 pr_find_pagehead(struct pool *pp, void *v)
455 {
456 	struct pool_item_header *ph, tmp;
457 
458 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
459 		ph = pr_find_pagehead_noalign(pp, v);
460 	} else {
461 		void *page =
462 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
463 
464 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
465 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
466 		} else {
467 			tmp.ph_page = page;
468 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
469 		}
470 	}
471 
472 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
473 	    ((char *)ph->ph_page <= (char *)v &&
474 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
475 	return ph;
476 }
477 
478 static void
479 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
480 {
481 	struct pool_item_header *ph;
482 
483 	while ((ph = LIST_FIRST(pq)) != NULL) {
484 		LIST_REMOVE(ph, ph_pagelist);
485 		pool_allocator_free(pp, ph->ph_page);
486 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
487 			pool_put(pp->pr_phpool, ph);
488 	}
489 }
490 
491 /*
492  * Remove a page from the pool.
493  */
494 static inline void
495 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
496      struct pool_pagelist *pq)
497 {
498 
499 	KASSERT(mutex_owned(&pp->pr_lock));
500 
501 	/*
502 	 * If the page was idle, decrement the idle page count.
503 	 */
504 	if (ph->ph_nmissing == 0) {
505 #ifdef DIAGNOSTIC
506 		if (pp->pr_nidle == 0)
507 			panic("pr_rmpage: nidle inconsistent");
508 		if (pp->pr_nitems < pp->pr_itemsperpage)
509 			panic("pr_rmpage: nitems inconsistent");
510 #endif
511 		pp->pr_nidle--;
512 	}
513 
514 	pp->pr_nitems -= pp->pr_itemsperpage;
515 
516 	/*
517 	 * Unlink the page from the pool and queue it for release.
518 	 */
519 	LIST_REMOVE(ph, ph_pagelist);
520 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
521 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
522 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
523 
524 	pp->pr_npages--;
525 	pp->pr_npagefree++;
526 
527 	pool_update_curpage(pp);
528 }
529 
530 static bool
531 pa_starved_p(struct pool_allocator *pa)
532 {
533 
534 	if (pa->pa_backingmap != NULL) {
535 		return vm_map_starved_p(pa->pa_backingmap);
536 	}
537 	return false;
538 }
539 
540 static int
541 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
542 {
543 	struct pool *pp = obj;
544 	struct pool_allocator *pa = pp->pr_alloc;
545 
546 	KASSERT(&pp->pr_reclaimerentry == ce);
547 	pool_reclaim(pp);
548 	if (!pa_starved_p(pa)) {
549 		return CALLBACK_CHAIN_ABORT;
550 	}
551 	return CALLBACK_CHAIN_CONTINUE;
552 }
553 
554 static void
555 pool_reclaim_register(struct pool *pp)
556 {
557 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
558 	int s;
559 
560 	if (map == NULL) {
561 		return;
562 	}
563 
564 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
565 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
566 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
567 	splx(s);
568 
569 #ifdef DIAGNOSTIC
570 	/* Diagnostic drain attempt. */
571 	uvm_km_va_drain(map, 0);
572 #endif
573 }
574 
575 static void
576 pool_reclaim_unregister(struct pool *pp)
577 {
578 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
579 	int s;
580 
581 	if (map == NULL) {
582 		return;
583 	}
584 
585 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
586 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
587 	    &pp->pr_reclaimerentry);
588 	splx(s);
589 }
590 
591 static void
592 pa_reclaim_register(struct pool_allocator *pa)
593 {
594 	struct vm_map *map = *pa->pa_backingmapptr;
595 	struct pool *pp;
596 
597 	KASSERT(pa->pa_backingmap == NULL);
598 	if (map == NULL) {
599 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
600 		return;
601 	}
602 	pa->pa_backingmap = map;
603 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
604 		pool_reclaim_register(pp);
605 	}
606 }
607 
608 /*
609  * Initialize all the pools listed in the "pools" link set.
610  */
611 void
612 pool_subsystem_init(void)
613 {
614 	struct pool_allocator *pa;
615 
616 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
617 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
618 	cv_init(&pool_busy, "poolbusy");
619 
620 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
621 		KASSERT(pa->pa_backingmapptr != NULL);
622 		KASSERT(*pa->pa_backingmapptr != NULL);
623 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
624 		pa_reclaim_register(pa);
625 	}
626 
627 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
628 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
629 
630 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
631 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
632 }
633 
634 /*
635  * Initialize the given pool resource structure.
636  *
637  * We export this routine to allow other kernel parts to declare
638  * static pools that must be initialized before malloc() is available.
639  */
640 void
641 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
642     const char *wchan, struct pool_allocator *palloc, int ipl)
643 {
644 	struct pool *pp1;
645 	size_t trysize, phsize;
646 	int off, slack;
647 
648 #ifdef DEBUG
649 	/*
650 	 * Check that the pool hasn't already been initialised and
651 	 * added to the list of all pools.
652 	 */
653 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
654 		if (pp == pp1)
655 			panic("pool_init: pool %s already initialised",
656 			    wchan);
657 	}
658 #endif
659 
660 #ifdef POOL_DIAGNOSTIC
661 	/*
662 	 * Always log if POOL_DIAGNOSTIC is defined.
663 	 */
664 	if (pool_logsize != 0)
665 		flags |= PR_LOGGING;
666 #endif
667 
668 	if (palloc == NULL)
669 		palloc = &pool_allocator_kmem;
670 #ifdef POOL_SUBPAGE
671 	if (size > palloc->pa_pagesz) {
672 		if (palloc == &pool_allocator_kmem)
673 			palloc = &pool_allocator_kmem_fullpage;
674 		else if (palloc == &pool_allocator_nointr)
675 			palloc = &pool_allocator_nointr_fullpage;
676 	}
677 #endif /* POOL_SUBPAGE */
678 	if (!cold)
679 		mutex_enter(&pool_allocator_lock);
680 	if (palloc->pa_refcnt++ == 0) {
681 		if (palloc->pa_pagesz == 0)
682 			palloc->pa_pagesz = PAGE_SIZE;
683 
684 		TAILQ_INIT(&palloc->pa_list);
685 
686 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
687 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
688 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
689 
690 		if (palloc->pa_backingmapptr != NULL) {
691 			pa_reclaim_register(palloc);
692 		}
693 	}
694 	if (!cold)
695 		mutex_exit(&pool_allocator_lock);
696 
697 	if (align == 0)
698 		align = ALIGN(1);
699 
700 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
701 		size = sizeof(struct pool_item);
702 
703 	size = roundup(size, align);
704 #ifdef DIAGNOSTIC
705 	if (size > palloc->pa_pagesz)
706 		panic("pool_init: pool item size (%zu) too large", size);
707 #endif
708 
709 	/*
710 	 * Initialize the pool structure.
711 	 */
712 	LIST_INIT(&pp->pr_emptypages);
713 	LIST_INIT(&pp->pr_fullpages);
714 	LIST_INIT(&pp->pr_partpages);
715 	pp->pr_cache = NULL;
716 	pp->pr_curpage = NULL;
717 	pp->pr_npages = 0;
718 	pp->pr_minitems = 0;
719 	pp->pr_minpages = 0;
720 	pp->pr_maxpages = UINT_MAX;
721 	pp->pr_roflags = flags;
722 	pp->pr_flags = 0;
723 	pp->pr_size = size;
724 	pp->pr_align = align;
725 	pp->pr_wchan = wchan;
726 	pp->pr_alloc = palloc;
727 	pp->pr_nitems = 0;
728 	pp->pr_nout = 0;
729 	pp->pr_hardlimit = UINT_MAX;
730 	pp->pr_hardlimit_warning = NULL;
731 	pp->pr_hardlimit_ratecap.tv_sec = 0;
732 	pp->pr_hardlimit_ratecap.tv_usec = 0;
733 	pp->pr_hardlimit_warning_last.tv_sec = 0;
734 	pp->pr_hardlimit_warning_last.tv_usec = 0;
735 	pp->pr_drain_hook = NULL;
736 	pp->pr_drain_hook_arg = NULL;
737 	pp->pr_freecheck = NULL;
738 
739 	/*
740 	 * Decide whether to put the page header off page to avoid
741 	 * wasting too large a part of the page or too big item.
742 	 * Off-page page headers go on a hash table, so we can match
743 	 * a returned item with its header based on the page address.
744 	 * We use 1/16 of the page size and about 8 times of the item
745 	 * size as the threshold (XXX: tune)
746 	 *
747 	 * However, we'll put the header into the page if we can put
748 	 * it without wasting any items.
749 	 *
750 	 * Silently enforce `0 <= ioff < align'.
751 	 */
752 	pp->pr_itemoffset = ioff %= align;
753 	/* See the comment below about reserved bytes. */
754 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
755 	phsize = ALIGN(sizeof(struct pool_item_header));
756 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
757 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
758 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
759 		/* Use the end of the page for the page header */
760 		pp->pr_roflags |= PR_PHINPAGE;
761 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
762 	} else {
763 		/* The page header will be taken from our page header pool */
764 		pp->pr_phoffset = 0;
765 		off = palloc->pa_pagesz;
766 		SPLAY_INIT(&pp->pr_phtree);
767 	}
768 
769 	/*
770 	 * Alignment is to take place at `ioff' within the item. This means
771 	 * we must reserve up to `align - 1' bytes on the page to allow
772 	 * appropriate positioning of each item.
773 	 */
774 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
775 	KASSERT(pp->pr_itemsperpage != 0);
776 	if ((pp->pr_roflags & PR_NOTOUCH)) {
777 		int idx;
778 
779 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
780 		    idx++) {
781 			/* nothing */
782 		}
783 		if (idx >= PHPOOL_MAX) {
784 			/*
785 			 * if you see this panic, consider to tweak
786 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
787 			 */
788 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
789 			    pp->pr_wchan, pp->pr_itemsperpage);
790 		}
791 		pp->pr_phpool = &phpool[idx];
792 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
793 		pp->pr_phpool = &phpool[0];
794 	}
795 #if defined(DIAGNOSTIC)
796 	else {
797 		pp->pr_phpool = NULL;
798 	}
799 #endif
800 
801 	/*
802 	 * Use the slack between the chunks and the page header
803 	 * for "cache coloring".
804 	 */
805 	slack = off - pp->pr_itemsperpage * pp->pr_size;
806 	pp->pr_maxcolor = (slack / align) * align;
807 	pp->pr_curcolor = 0;
808 
809 	pp->pr_nget = 0;
810 	pp->pr_nfail = 0;
811 	pp->pr_nput = 0;
812 	pp->pr_npagealloc = 0;
813 	pp->pr_npagefree = 0;
814 	pp->pr_hiwat = 0;
815 	pp->pr_nidle = 0;
816 	pp->pr_refcnt = 0;
817 
818 	pp->pr_log = NULL;
819 
820 	pp->pr_entered_file = NULL;
821 	pp->pr_entered_line = 0;
822 
823 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
824 	cv_init(&pp->pr_cv, wchan);
825 	pp->pr_ipl = ipl;
826 
827 	/*
828 	 * Initialize private page header pool and cache magazine pool if we
829 	 * haven't done so yet.
830 	 * XXX LOCKING.
831 	 */
832 	if (phpool[0].pr_size == 0) {
833 		int idx;
834 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
835 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
836 			int nelem;
837 			size_t sz;
838 
839 			nelem = PHPOOL_FREELIST_NELEM(idx);
840 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
841 			    "phpool-%d", nelem);
842 			sz = sizeof(struct pool_item_header);
843 			if (nelem) {
844 				sz = offsetof(struct pool_item_header,
845 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
846 			}
847 			pool_init(&phpool[idx], sz, 0, 0, 0,
848 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
849 		}
850 #ifdef POOL_SUBPAGE
851 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
852 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
853 #endif
854 
855 		size = sizeof(pcg_t) +
856 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
857 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
858 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
859 
860 		size = sizeof(pcg_t) +
861 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
862 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
863 		    "pcglarge", &pool_allocator_meta, IPL_VM);
864 	}
865 
866 	/* Insert into the list of all pools. */
867 	if (!cold)
868 		mutex_enter(&pool_head_lock);
869 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
870 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
871 			break;
872 	}
873 	if (pp1 == NULL)
874 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
875 	else
876 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
877 	if (!cold)
878 		mutex_exit(&pool_head_lock);
879 
880 	/* Insert this into the list of pools using this allocator. */
881 	if (!cold)
882 		mutex_enter(&palloc->pa_lock);
883 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
884 	if (!cold)
885 		mutex_exit(&palloc->pa_lock);
886 
887 	pool_reclaim_register(pp);
888 }
889 
890 /*
891  * De-commision a pool resource.
892  */
893 void
894 pool_destroy(struct pool *pp)
895 {
896 	struct pool_pagelist pq;
897 	struct pool_item_header *ph;
898 
899 	/* Remove from global pool list */
900 	mutex_enter(&pool_head_lock);
901 	while (pp->pr_refcnt != 0)
902 		cv_wait(&pool_busy, &pool_head_lock);
903 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
904 	if (drainpp == pp)
905 		drainpp = NULL;
906 	mutex_exit(&pool_head_lock);
907 
908 	/* Remove this pool from its allocator's list of pools. */
909 	pool_reclaim_unregister(pp);
910 	mutex_enter(&pp->pr_alloc->pa_lock);
911 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
912 	mutex_exit(&pp->pr_alloc->pa_lock);
913 
914 	mutex_enter(&pool_allocator_lock);
915 	if (--pp->pr_alloc->pa_refcnt == 0)
916 		mutex_destroy(&pp->pr_alloc->pa_lock);
917 	mutex_exit(&pool_allocator_lock);
918 
919 	mutex_enter(&pp->pr_lock);
920 
921 	KASSERT(pp->pr_cache == NULL);
922 
923 #ifdef DIAGNOSTIC
924 	if (pp->pr_nout != 0) {
925 		pr_printlog(pp, NULL, printf);
926 		panic("pool_destroy: pool busy: still out: %u",
927 		    pp->pr_nout);
928 	}
929 #endif
930 
931 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
932 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
933 
934 	/* Remove all pages */
935 	LIST_INIT(&pq);
936 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
937 		pr_rmpage(pp, ph, &pq);
938 
939 	mutex_exit(&pp->pr_lock);
940 
941 	pr_pagelist_free(pp, &pq);
942 
943 #ifdef POOL_DIAGNOSTIC
944 	if (pp->pr_log != NULL) {
945 		free(pp->pr_log, M_TEMP);
946 		pp->pr_log = NULL;
947 	}
948 #endif
949 
950 	cv_destroy(&pp->pr_cv);
951 	mutex_destroy(&pp->pr_lock);
952 }
953 
954 void
955 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
956 {
957 
958 	/* XXX no locking -- must be used just after pool_init() */
959 #ifdef DIAGNOSTIC
960 	if (pp->pr_drain_hook != NULL)
961 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
962 #endif
963 	pp->pr_drain_hook = fn;
964 	pp->pr_drain_hook_arg = arg;
965 }
966 
967 static struct pool_item_header *
968 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
969 {
970 	struct pool_item_header *ph;
971 
972 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
973 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
974 	else
975 		ph = pool_get(pp->pr_phpool, flags);
976 
977 	return (ph);
978 }
979 
980 /*
981  * Grab an item from the pool.
982  */
983 void *
984 #ifdef POOL_DIAGNOSTIC
985 _pool_get(struct pool *pp, int flags, const char *file, long line)
986 #else
987 pool_get(struct pool *pp, int flags)
988 #endif
989 {
990 	struct pool_item *pi;
991 	struct pool_item_header *ph;
992 	void *v;
993 
994 #ifdef DIAGNOSTIC
995 	if (pp->pr_itemsperpage == 0)
996 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
997 		    "pool not initialized?", pp->pr_wchan);
998 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
999 	    !cold && panicstr == NULL)
1000 		panic("pool '%s' is IPL_NONE, but called from "
1001 		    "interrupt context\n", pp->pr_wchan);
1002 #endif
1003 	if (flags & PR_WAITOK) {
1004 		ASSERT_SLEEPABLE();
1005 	}
1006 
1007 	mutex_enter(&pp->pr_lock);
1008 	pr_enter(pp, file, line);
1009 
1010  startover:
1011 	/*
1012 	 * Check to see if we've reached the hard limit.  If we have,
1013 	 * and we can wait, then wait until an item has been returned to
1014 	 * the pool.
1015 	 */
1016 #ifdef DIAGNOSTIC
1017 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1018 		pr_leave(pp);
1019 		mutex_exit(&pp->pr_lock);
1020 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1021 	}
1022 #endif
1023 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1024 		if (pp->pr_drain_hook != NULL) {
1025 			/*
1026 			 * Since the drain hook is going to free things
1027 			 * back to the pool, unlock, call the hook, re-lock,
1028 			 * and check the hardlimit condition again.
1029 			 */
1030 			pr_leave(pp);
1031 			mutex_exit(&pp->pr_lock);
1032 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1033 			mutex_enter(&pp->pr_lock);
1034 			pr_enter(pp, file, line);
1035 			if (pp->pr_nout < pp->pr_hardlimit)
1036 				goto startover;
1037 		}
1038 
1039 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1040 			/*
1041 			 * XXX: A warning isn't logged in this case.  Should
1042 			 * it be?
1043 			 */
1044 			pp->pr_flags |= PR_WANTED;
1045 			pr_leave(pp);
1046 			cv_wait(&pp->pr_cv, &pp->pr_lock);
1047 			pr_enter(pp, file, line);
1048 			goto startover;
1049 		}
1050 
1051 		/*
1052 		 * Log a message that the hard limit has been hit.
1053 		 */
1054 		if (pp->pr_hardlimit_warning != NULL &&
1055 		    ratecheck(&pp->pr_hardlimit_warning_last,
1056 			      &pp->pr_hardlimit_ratecap))
1057 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1058 
1059 		pp->pr_nfail++;
1060 
1061 		pr_leave(pp);
1062 		mutex_exit(&pp->pr_lock);
1063 		return (NULL);
1064 	}
1065 
1066 	/*
1067 	 * The convention we use is that if `curpage' is not NULL, then
1068 	 * it points at a non-empty bucket. In particular, `curpage'
1069 	 * never points at a page header which has PR_PHINPAGE set and
1070 	 * has no items in its bucket.
1071 	 */
1072 	if ((ph = pp->pr_curpage) == NULL) {
1073 		int error;
1074 
1075 #ifdef DIAGNOSTIC
1076 		if (pp->pr_nitems != 0) {
1077 			mutex_exit(&pp->pr_lock);
1078 			printf("pool_get: %s: curpage NULL, nitems %u\n",
1079 			    pp->pr_wchan, pp->pr_nitems);
1080 			panic("pool_get: nitems inconsistent");
1081 		}
1082 #endif
1083 
1084 		/*
1085 		 * Call the back-end page allocator for more memory.
1086 		 * Release the pool lock, as the back-end page allocator
1087 		 * may block.
1088 		 */
1089 		pr_leave(pp);
1090 		error = pool_grow(pp, flags);
1091 		pr_enter(pp, file, line);
1092 		if (error != 0) {
1093 			/*
1094 			 * We were unable to allocate a page or item
1095 			 * header, but we released the lock during
1096 			 * allocation, so perhaps items were freed
1097 			 * back to the pool.  Check for this case.
1098 			 */
1099 			if (pp->pr_curpage != NULL)
1100 				goto startover;
1101 
1102 			pp->pr_nfail++;
1103 			pr_leave(pp);
1104 			mutex_exit(&pp->pr_lock);
1105 			return (NULL);
1106 		}
1107 
1108 		/* Start the allocation process over. */
1109 		goto startover;
1110 	}
1111 	if (pp->pr_roflags & PR_NOTOUCH) {
1112 #ifdef DIAGNOSTIC
1113 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1114 			pr_leave(pp);
1115 			mutex_exit(&pp->pr_lock);
1116 			panic("pool_get: %s: page empty", pp->pr_wchan);
1117 		}
1118 #endif
1119 		v = pr_item_notouch_get(pp, ph);
1120 #ifdef POOL_DIAGNOSTIC
1121 		pr_log(pp, v, PRLOG_GET, file, line);
1122 #endif
1123 	} else {
1124 		v = pi = LIST_FIRST(&ph->ph_itemlist);
1125 		if (__predict_false(v == NULL)) {
1126 			pr_leave(pp);
1127 			mutex_exit(&pp->pr_lock);
1128 			panic("pool_get: %s: page empty", pp->pr_wchan);
1129 		}
1130 #ifdef DIAGNOSTIC
1131 		if (__predict_false(pp->pr_nitems == 0)) {
1132 			pr_leave(pp);
1133 			mutex_exit(&pp->pr_lock);
1134 			printf("pool_get: %s: items on itemlist, nitems %u\n",
1135 			    pp->pr_wchan, pp->pr_nitems);
1136 			panic("pool_get: nitems inconsistent");
1137 		}
1138 #endif
1139 
1140 #ifdef POOL_DIAGNOSTIC
1141 		pr_log(pp, v, PRLOG_GET, file, line);
1142 #endif
1143 
1144 #ifdef DIAGNOSTIC
1145 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1146 			pr_printlog(pp, pi, printf);
1147 			panic("pool_get(%s): free list modified: "
1148 			    "magic=%x; page %p; item addr %p\n",
1149 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1150 		}
1151 #endif
1152 
1153 		/*
1154 		 * Remove from item list.
1155 		 */
1156 		LIST_REMOVE(pi, pi_list);
1157 	}
1158 	pp->pr_nitems--;
1159 	pp->pr_nout++;
1160 	if (ph->ph_nmissing == 0) {
1161 #ifdef DIAGNOSTIC
1162 		if (__predict_false(pp->pr_nidle == 0))
1163 			panic("pool_get: nidle inconsistent");
1164 #endif
1165 		pp->pr_nidle--;
1166 
1167 		/*
1168 		 * This page was previously empty.  Move it to the list of
1169 		 * partially-full pages.  This page is already curpage.
1170 		 */
1171 		LIST_REMOVE(ph, ph_pagelist);
1172 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1173 	}
1174 	ph->ph_nmissing++;
1175 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1176 #ifdef DIAGNOSTIC
1177 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1178 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1179 			pr_leave(pp);
1180 			mutex_exit(&pp->pr_lock);
1181 			panic("pool_get: %s: nmissing inconsistent",
1182 			    pp->pr_wchan);
1183 		}
1184 #endif
1185 		/*
1186 		 * This page is now full.  Move it to the full list
1187 		 * and select a new current page.
1188 		 */
1189 		LIST_REMOVE(ph, ph_pagelist);
1190 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1191 		pool_update_curpage(pp);
1192 	}
1193 
1194 	pp->pr_nget++;
1195 	pr_leave(pp);
1196 
1197 	/*
1198 	 * If we have a low water mark and we are now below that low
1199 	 * water mark, add more items to the pool.
1200 	 */
1201 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1202 		/*
1203 		 * XXX: Should we log a warning?  Should we set up a timeout
1204 		 * to try again in a second or so?  The latter could break
1205 		 * a caller's assumptions about interrupt protection, etc.
1206 		 */
1207 	}
1208 
1209 	mutex_exit(&pp->pr_lock);
1210 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1211 	FREECHECK_OUT(&pp->pr_freecheck, v);
1212 	return (v);
1213 }
1214 
1215 /*
1216  * Internal version of pool_put().  Pool is already locked/entered.
1217  */
1218 static void
1219 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1220 {
1221 	struct pool_item *pi = v;
1222 	struct pool_item_header *ph;
1223 
1224 	KASSERT(mutex_owned(&pp->pr_lock));
1225 	FREECHECK_IN(&pp->pr_freecheck, v);
1226 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1227 
1228 #ifdef DIAGNOSTIC
1229 	if (__predict_false(pp->pr_nout == 0)) {
1230 		printf("pool %s: putting with none out\n",
1231 		    pp->pr_wchan);
1232 		panic("pool_put");
1233 	}
1234 #endif
1235 
1236 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1237 		pr_printlog(pp, NULL, printf);
1238 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1239 	}
1240 
1241 	/*
1242 	 * Return to item list.
1243 	 */
1244 	if (pp->pr_roflags & PR_NOTOUCH) {
1245 		pr_item_notouch_put(pp, ph, v);
1246 	} else {
1247 #ifdef DIAGNOSTIC
1248 		pi->pi_magic = PI_MAGIC;
1249 #endif
1250 #ifdef DEBUG
1251 		{
1252 			int i, *ip = v;
1253 
1254 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1255 				*ip++ = PI_MAGIC;
1256 			}
1257 		}
1258 #endif
1259 
1260 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1261 	}
1262 	KDASSERT(ph->ph_nmissing != 0);
1263 	ph->ph_nmissing--;
1264 	pp->pr_nput++;
1265 	pp->pr_nitems++;
1266 	pp->pr_nout--;
1267 
1268 	/* Cancel "pool empty" condition if it exists */
1269 	if (pp->pr_curpage == NULL)
1270 		pp->pr_curpage = ph;
1271 
1272 	if (pp->pr_flags & PR_WANTED) {
1273 		pp->pr_flags &= ~PR_WANTED;
1274 		cv_broadcast(&pp->pr_cv);
1275 	}
1276 
1277 	/*
1278 	 * If this page is now empty, do one of two things:
1279 	 *
1280 	 *	(1) If we have more pages than the page high water mark,
1281 	 *	    free the page back to the system.  ONLY CONSIDER
1282 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1283 	 *	    CLAIM.
1284 	 *
1285 	 *	(2) Otherwise, move the page to the empty page list.
1286 	 *
1287 	 * Either way, select a new current page (so we use a partially-full
1288 	 * page if one is available).
1289 	 */
1290 	if (ph->ph_nmissing == 0) {
1291 		pp->pr_nidle++;
1292 		if (pp->pr_npages > pp->pr_minpages &&
1293 		    pp->pr_npages > pp->pr_maxpages) {
1294 			pr_rmpage(pp, ph, pq);
1295 		} else {
1296 			LIST_REMOVE(ph, ph_pagelist);
1297 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1298 
1299 			/*
1300 			 * Update the timestamp on the page.  A page must
1301 			 * be idle for some period of time before it can
1302 			 * be reclaimed by the pagedaemon.  This minimizes
1303 			 * ping-pong'ing for memory.
1304 			 *
1305 			 * note for 64-bit time_t: truncating to 32-bit is not
1306 			 * a problem for our usage.
1307 			 */
1308 			ph->ph_time = time_uptime;
1309 		}
1310 		pool_update_curpage(pp);
1311 	}
1312 
1313 	/*
1314 	 * If the page was previously completely full, move it to the
1315 	 * partially-full list and make it the current page.  The next
1316 	 * allocation will get the item from this page, instead of
1317 	 * further fragmenting the pool.
1318 	 */
1319 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1320 		LIST_REMOVE(ph, ph_pagelist);
1321 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1322 		pp->pr_curpage = ph;
1323 	}
1324 }
1325 
1326 /*
1327  * Return resource to the pool.
1328  */
1329 #ifdef POOL_DIAGNOSTIC
1330 void
1331 _pool_put(struct pool *pp, void *v, const char *file, long line)
1332 {
1333 	struct pool_pagelist pq;
1334 
1335 	LIST_INIT(&pq);
1336 
1337 	mutex_enter(&pp->pr_lock);
1338 	pr_enter(pp, file, line);
1339 
1340 	pr_log(pp, v, PRLOG_PUT, file, line);
1341 
1342 	pool_do_put(pp, v, &pq);
1343 
1344 	pr_leave(pp);
1345 	mutex_exit(&pp->pr_lock);
1346 
1347 	pr_pagelist_free(pp, &pq);
1348 }
1349 #undef pool_put
1350 #endif /* POOL_DIAGNOSTIC */
1351 
1352 void
1353 pool_put(struct pool *pp, void *v)
1354 {
1355 	struct pool_pagelist pq;
1356 
1357 	LIST_INIT(&pq);
1358 
1359 	mutex_enter(&pp->pr_lock);
1360 	pool_do_put(pp, v, &pq);
1361 	mutex_exit(&pp->pr_lock);
1362 
1363 	pr_pagelist_free(pp, &pq);
1364 }
1365 
1366 #ifdef POOL_DIAGNOSTIC
1367 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1368 #endif
1369 
1370 /*
1371  * pool_grow: grow a pool by a page.
1372  *
1373  * => called with pool locked.
1374  * => unlock and relock the pool.
1375  * => return with pool locked.
1376  */
1377 
1378 static int
1379 pool_grow(struct pool *pp, int flags)
1380 {
1381 	struct pool_item_header *ph = NULL;
1382 	char *cp;
1383 
1384 	mutex_exit(&pp->pr_lock);
1385 	cp = pool_allocator_alloc(pp, flags);
1386 	if (__predict_true(cp != NULL)) {
1387 		ph = pool_alloc_item_header(pp, cp, flags);
1388 	}
1389 	if (__predict_false(cp == NULL || ph == NULL)) {
1390 		if (cp != NULL) {
1391 			pool_allocator_free(pp, cp);
1392 		}
1393 		mutex_enter(&pp->pr_lock);
1394 		return ENOMEM;
1395 	}
1396 
1397 	mutex_enter(&pp->pr_lock);
1398 	pool_prime_page(pp, cp, ph);
1399 	pp->pr_npagealloc++;
1400 	return 0;
1401 }
1402 
1403 /*
1404  * Add N items to the pool.
1405  */
1406 int
1407 pool_prime(struct pool *pp, int n)
1408 {
1409 	int newpages;
1410 	int error = 0;
1411 
1412 	mutex_enter(&pp->pr_lock);
1413 
1414 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1415 
1416 	while (newpages-- > 0) {
1417 		error = pool_grow(pp, PR_NOWAIT);
1418 		if (error) {
1419 			break;
1420 		}
1421 		pp->pr_minpages++;
1422 	}
1423 
1424 	if (pp->pr_minpages >= pp->pr_maxpages)
1425 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1426 
1427 	mutex_exit(&pp->pr_lock);
1428 	return error;
1429 }
1430 
1431 /*
1432  * Add a page worth of items to the pool.
1433  *
1434  * Note, we must be called with the pool descriptor LOCKED.
1435  */
1436 static void
1437 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1438 {
1439 	struct pool_item *pi;
1440 	void *cp = storage;
1441 	const unsigned int align = pp->pr_align;
1442 	const unsigned int ioff = pp->pr_itemoffset;
1443 	int n;
1444 
1445 	KASSERT(mutex_owned(&pp->pr_lock));
1446 
1447 #ifdef DIAGNOSTIC
1448 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1449 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1450 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1451 #endif
1452 
1453 	/*
1454 	 * Insert page header.
1455 	 */
1456 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1457 	LIST_INIT(&ph->ph_itemlist);
1458 	ph->ph_page = storage;
1459 	ph->ph_nmissing = 0;
1460 	ph->ph_time = time_uptime;
1461 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1462 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1463 
1464 	pp->pr_nidle++;
1465 
1466 	/*
1467 	 * Color this page.
1468 	 */
1469 	ph->ph_off = pp->pr_curcolor;
1470 	cp = (char *)cp + ph->ph_off;
1471 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1472 		pp->pr_curcolor = 0;
1473 
1474 	/*
1475 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1476 	 */
1477 	if (ioff != 0)
1478 		cp = (char *)cp + align - ioff;
1479 
1480 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1481 
1482 	/*
1483 	 * Insert remaining chunks on the bucket list.
1484 	 */
1485 	n = pp->pr_itemsperpage;
1486 	pp->pr_nitems += n;
1487 
1488 	if (pp->pr_roflags & PR_NOTOUCH) {
1489 		pr_item_notouch_init(pp, ph);
1490 	} else {
1491 		while (n--) {
1492 			pi = (struct pool_item *)cp;
1493 
1494 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1495 
1496 			/* Insert on page list */
1497 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1498 #ifdef DIAGNOSTIC
1499 			pi->pi_magic = PI_MAGIC;
1500 #endif
1501 			cp = (char *)cp + pp->pr_size;
1502 
1503 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1504 		}
1505 	}
1506 
1507 	/*
1508 	 * If the pool was depleted, point at the new page.
1509 	 */
1510 	if (pp->pr_curpage == NULL)
1511 		pp->pr_curpage = ph;
1512 
1513 	if (++pp->pr_npages > pp->pr_hiwat)
1514 		pp->pr_hiwat = pp->pr_npages;
1515 }
1516 
1517 /*
1518  * Used by pool_get() when nitems drops below the low water mark.  This
1519  * is used to catch up pr_nitems with the low water mark.
1520  *
1521  * Note 1, we never wait for memory here, we let the caller decide what to do.
1522  *
1523  * Note 2, we must be called with the pool already locked, and we return
1524  * with it locked.
1525  */
1526 static int
1527 pool_catchup(struct pool *pp)
1528 {
1529 	int error = 0;
1530 
1531 	while (POOL_NEEDS_CATCHUP(pp)) {
1532 		error = pool_grow(pp, PR_NOWAIT);
1533 		if (error) {
1534 			break;
1535 		}
1536 	}
1537 	return error;
1538 }
1539 
1540 static void
1541 pool_update_curpage(struct pool *pp)
1542 {
1543 
1544 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1545 	if (pp->pr_curpage == NULL) {
1546 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1547 	}
1548 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1549 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1550 }
1551 
1552 void
1553 pool_setlowat(struct pool *pp, int n)
1554 {
1555 
1556 	mutex_enter(&pp->pr_lock);
1557 
1558 	pp->pr_minitems = n;
1559 	pp->pr_minpages = (n == 0)
1560 		? 0
1561 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1562 
1563 	/* Make sure we're caught up with the newly-set low water mark. */
1564 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1565 		/*
1566 		 * XXX: Should we log a warning?  Should we set up a timeout
1567 		 * to try again in a second or so?  The latter could break
1568 		 * a caller's assumptions about interrupt protection, etc.
1569 		 */
1570 	}
1571 
1572 	mutex_exit(&pp->pr_lock);
1573 }
1574 
1575 void
1576 pool_sethiwat(struct pool *pp, int n)
1577 {
1578 
1579 	mutex_enter(&pp->pr_lock);
1580 
1581 	pp->pr_maxpages = (n == 0)
1582 		? 0
1583 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1584 
1585 	mutex_exit(&pp->pr_lock);
1586 }
1587 
1588 void
1589 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1590 {
1591 
1592 	mutex_enter(&pp->pr_lock);
1593 
1594 	pp->pr_hardlimit = n;
1595 	pp->pr_hardlimit_warning = warnmess;
1596 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1597 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1598 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1599 
1600 	/*
1601 	 * In-line version of pool_sethiwat(), because we don't want to
1602 	 * release the lock.
1603 	 */
1604 	pp->pr_maxpages = (n == 0)
1605 		? 0
1606 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1607 
1608 	mutex_exit(&pp->pr_lock);
1609 }
1610 
1611 /*
1612  * Release all complete pages that have not been used recently.
1613  *
1614  * Might be called from interrupt context.
1615  */
1616 int
1617 #ifdef POOL_DIAGNOSTIC
1618 _pool_reclaim(struct pool *pp, const char *file, long line)
1619 #else
1620 pool_reclaim(struct pool *pp)
1621 #endif
1622 {
1623 	struct pool_item_header *ph, *phnext;
1624 	struct pool_pagelist pq;
1625 	uint32_t curtime;
1626 	bool klock;
1627 	int rv;
1628 
1629 	if (cpu_intr_p() || cpu_softintr_p()) {
1630 		KASSERT(pp->pr_ipl != IPL_NONE);
1631 	}
1632 
1633 	if (pp->pr_drain_hook != NULL) {
1634 		/*
1635 		 * The drain hook must be called with the pool unlocked.
1636 		 */
1637 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1638 	}
1639 
1640 	/*
1641 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1642 	 * to block.
1643 	 */
1644 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1645 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1646 		KERNEL_LOCK(1, NULL);
1647 		klock = true;
1648 	} else
1649 		klock = false;
1650 
1651 	/* Reclaim items from the pool's cache (if any). */
1652 	if (pp->pr_cache != NULL)
1653 		pool_cache_invalidate(pp->pr_cache);
1654 
1655 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1656 		if (klock) {
1657 			KERNEL_UNLOCK_ONE(NULL);
1658 		}
1659 		return (0);
1660 	}
1661 	pr_enter(pp, file, line);
1662 
1663 	LIST_INIT(&pq);
1664 
1665 	curtime = time_uptime;
1666 
1667 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1668 		phnext = LIST_NEXT(ph, ph_pagelist);
1669 
1670 		/* Check our minimum page claim */
1671 		if (pp->pr_npages <= pp->pr_minpages)
1672 			break;
1673 
1674 		KASSERT(ph->ph_nmissing == 0);
1675 		if (curtime - ph->ph_time < pool_inactive_time
1676 		    && !pa_starved_p(pp->pr_alloc))
1677 			continue;
1678 
1679 		/*
1680 		 * If freeing this page would put us below
1681 		 * the low water mark, stop now.
1682 		 */
1683 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1684 		    pp->pr_minitems)
1685 			break;
1686 
1687 		pr_rmpage(pp, ph, &pq);
1688 	}
1689 
1690 	pr_leave(pp);
1691 	mutex_exit(&pp->pr_lock);
1692 
1693 	if (LIST_EMPTY(&pq))
1694 		rv = 0;
1695 	else {
1696 		pr_pagelist_free(pp, &pq);
1697 		rv = 1;
1698 	}
1699 
1700 	if (klock) {
1701 		KERNEL_UNLOCK_ONE(NULL);
1702 	}
1703 
1704 	return (rv);
1705 }
1706 
1707 /*
1708  * Drain pools, one at a time.  This is a two stage process;
1709  * drain_start kicks off a cross call to drain CPU-level caches
1710  * if the pool has an associated pool_cache.  drain_end waits
1711  * for those cross calls to finish, and then drains the cache
1712  * (if any) and pool.
1713  *
1714  * Note, must never be called from interrupt context.
1715  */
1716 void
1717 pool_drain_start(struct pool **ppp, uint64_t *wp)
1718 {
1719 	struct pool *pp;
1720 
1721 	KASSERT(!TAILQ_EMPTY(&pool_head));
1722 
1723 	pp = NULL;
1724 
1725 	/* Find next pool to drain, and add a reference. */
1726 	mutex_enter(&pool_head_lock);
1727 	do {
1728 		if (drainpp == NULL) {
1729 			drainpp = TAILQ_FIRST(&pool_head);
1730 		}
1731 		if (drainpp != NULL) {
1732 			pp = drainpp;
1733 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1734 		}
1735 		/*
1736 		 * Skip completely idle pools.  We depend on at least
1737 		 * one pool in the system being active.
1738 		 */
1739 	} while (pp == NULL || pp->pr_npages == 0);
1740 	pp->pr_refcnt++;
1741 	mutex_exit(&pool_head_lock);
1742 
1743 	/* If there is a pool_cache, drain CPU level caches. */
1744 	*ppp = pp;
1745 	if (pp->pr_cache != NULL) {
1746 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1747 		    pp->pr_cache, NULL);
1748 	}
1749 }
1750 
1751 bool
1752 pool_drain_end(struct pool *pp, uint64_t where)
1753 {
1754 	bool reclaimed;
1755 
1756 	if (pp == NULL)
1757 		return false;
1758 
1759 	KASSERT(pp->pr_refcnt > 0);
1760 
1761 	/* Wait for remote draining to complete. */
1762 	if (pp->pr_cache != NULL)
1763 		xc_wait(where);
1764 
1765 	/* Drain the cache (if any) and pool.. */
1766 	reclaimed = pool_reclaim(pp);
1767 
1768 	/* Finally, unlock the pool. */
1769 	mutex_enter(&pool_head_lock);
1770 	pp->pr_refcnt--;
1771 	cv_broadcast(&pool_busy);
1772 	mutex_exit(&pool_head_lock);
1773 
1774 	return reclaimed;
1775 }
1776 
1777 /*
1778  * Diagnostic helpers.
1779  */
1780 void
1781 pool_print(struct pool *pp, const char *modif)
1782 {
1783 
1784 	pool_print1(pp, modif, printf);
1785 }
1786 
1787 void
1788 pool_printall(const char *modif, void (*pr)(const char *, ...))
1789 {
1790 	struct pool *pp;
1791 
1792 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1793 		pool_printit(pp, modif, pr);
1794 	}
1795 }
1796 
1797 void
1798 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1799 {
1800 
1801 	if (pp == NULL) {
1802 		(*pr)("Must specify a pool to print.\n");
1803 		return;
1804 	}
1805 
1806 	pool_print1(pp, modif, pr);
1807 }
1808 
1809 static void
1810 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1811     void (*pr)(const char *, ...))
1812 {
1813 	struct pool_item_header *ph;
1814 #ifdef DIAGNOSTIC
1815 	struct pool_item *pi;
1816 #endif
1817 
1818 	LIST_FOREACH(ph, pl, ph_pagelist) {
1819 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1820 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1821 #ifdef DIAGNOSTIC
1822 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1823 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1824 				if (pi->pi_magic != PI_MAGIC) {
1825 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1826 					    pi, pi->pi_magic);
1827 				}
1828 			}
1829 		}
1830 #endif
1831 	}
1832 }
1833 
1834 static void
1835 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1836 {
1837 	struct pool_item_header *ph;
1838 	pool_cache_t pc;
1839 	pcg_t *pcg;
1840 	pool_cache_cpu_t *cc;
1841 	uint64_t cpuhit, cpumiss;
1842 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1843 	char c;
1844 
1845 	while ((c = *modif++) != '\0') {
1846 		if (c == 'l')
1847 			print_log = 1;
1848 		if (c == 'p')
1849 			print_pagelist = 1;
1850 		if (c == 'c')
1851 			print_cache = 1;
1852 	}
1853 
1854 	if ((pc = pp->pr_cache) != NULL) {
1855 		(*pr)("POOL CACHE");
1856 	} else {
1857 		(*pr)("POOL");
1858 	}
1859 
1860 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1861 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1862 	    pp->pr_roflags);
1863 	(*pr)("\talloc %p\n", pp->pr_alloc);
1864 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1865 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1866 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1867 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1868 
1869 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1870 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1871 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1872 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1873 
1874 	if (print_pagelist == 0)
1875 		goto skip_pagelist;
1876 
1877 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1878 		(*pr)("\n\tempty page list:\n");
1879 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1880 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1881 		(*pr)("\n\tfull page list:\n");
1882 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1883 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1884 		(*pr)("\n\tpartial-page list:\n");
1885 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1886 
1887 	if (pp->pr_curpage == NULL)
1888 		(*pr)("\tno current page\n");
1889 	else
1890 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1891 
1892  skip_pagelist:
1893 	if (print_log == 0)
1894 		goto skip_log;
1895 
1896 	(*pr)("\n");
1897 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1898 		(*pr)("\tno log\n");
1899 	else {
1900 		pr_printlog(pp, NULL, pr);
1901 	}
1902 
1903  skip_log:
1904 
1905 #define PR_GROUPLIST(pcg)						\
1906 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1907 	for (i = 0; i < pcg->pcg_size; i++) {				\
1908 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1909 		    POOL_PADDR_INVALID) {				\
1910 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1911 			    pcg->pcg_objects[i].pcgo_va,		\
1912 			    (unsigned long long)			\
1913 			    pcg->pcg_objects[i].pcgo_pa);		\
1914 		} else {						\
1915 			(*pr)("\t\t\t%p\n",				\
1916 			    pcg->pcg_objects[i].pcgo_va);		\
1917 		}							\
1918 	}
1919 
1920 	if (pc != NULL) {
1921 		cpuhit = 0;
1922 		cpumiss = 0;
1923 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1924 			if ((cc = pc->pc_cpus[i]) == NULL)
1925 				continue;
1926 			cpuhit += cc->cc_hits;
1927 			cpumiss += cc->cc_misses;
1928 		}
1929 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1930 		(*pr)("\tcache layer hits %llu misses %llu\n",
1931 		    pc->pc_hits, pc->pc_misses);
1932 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1933 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1934 		    pc->pc_contended);
1935 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1936 		    pc->pc_nempty, pc->pc_nfull);
1937 		if (print_cache) {
1938 			(*pr)("\tfull cache groups:\n");
1939 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1940 			    pcg = pcg->pcg_next) {
1941 				PR_GROUPLIST(pcg);
1942 			}
1943 			(*pr)("\tempty cache groups:\n");
1944 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1945 			    pcg = pcg->pcg_next) {
1946 				PR_GROUPLIST(pcg);
1947 			}
1948 		}
1949 	}
1950 #undef PR_GROUPLIST
1951 
1952 	pr_enter_check(pp, pr);
1953 }
1954 
1955 static int
1956 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1957 {
1958 	struct pool_item *pi;
1959 	void *page;
1960 	int n;
1961 
1962 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1963 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1964 		if (page != ph->ph_page &&
1965 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1966 			if (label != NULL)
1967 				printf("%s: ", label);
1968 			printf("pool(%p:%s): page inconsistency: page %p;"
1969 			       " at page head addr %p (p %p)\n", pp,
1970 				pp->pr_wchan, ph->ph_page,
1971 				ph, page);
1972 			return 1;
1973 		}
1974 	}
1975 
1976 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1977 		return 0;
1978 
1979 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1980 	     pi != NULL;
1981 	     pi = LIST_NEXT(pi,pi_list), n++) {
1982 
1983 #ifdef DIAGNOSTIC
1984 		if (pi->pi_magic != PI_MAGIC) {
1985 			if (label != NULL)
1986 				printf("%s: ", label);
1987 			printf("pool(%s): free list modified: magic=%x;"
1988 			       " page %p; item ordinal %d; addr %p\n",
1989 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1990 				n, pi);
1991 			panic("pool");
1992 		}
1993 #endif
1994 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1995 			continue;
1996 		}
1997 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1998 		if (page == ph->ph_page)
1999 			continue;
2000 
2001 		if (label != NULL)
2002 			printf("%s: ", label);
2003 		printf("pool(%p:%s): page inconsistency: page %p;"
2004 		       " item ordinal %d; addr %p (p %p)\n", pp,
2005 			pp->pr_wchan, ph->ph_page,
2006 			n, pi, page);
2007 		return 1;
2008 	}
2009 	return 0;
2010 }
2011 
2012 
2013 int
2014 pool_chk(struct pool *pp, const char *label)
2015 {
2016 	struct pool_item_header *ph;
2017 	int r = 0;
2018 
2019 	mutex_enter(&pp->pr_lock);
2020 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2021 		r = pool_chk_page(pp, label, ph);
2022 		if (r) {
2023 			goto out;
2024 		}
2025 	}
2026 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2027 		r = pool_chk_page(pp, label, ph);
2028 		if (r) {
2029 			goto out;
2030 		}
2031 	}
2032 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2033 		r = pool_chk_page(pp, label, ph);
2034 		if (r) {
2035 			goto out;
2036 		}
2037 	}
2038 
2039 out:
2040 	mutex_exit(&pp->pr_lock);
2041 	return (r);
2042 }
2043 
2044 /*
2045  * pool_cache_init:
2046  *
2047  *	Initialize a pool cache.
2048  */
2049 pool_cache_t
2050 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2051     const char *wchan, struct pool_allocator *palloc, int ipl,
2052     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2053 {
2054 	pool_cache_t pc;
2055 
2056 	pc = pool_get(&cache_pool, PR_WAITOK);
2057 	if (pc == NULL)
2058 		return NULL;
2059 
2060 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2061 	   palloc, ipl, ctor, dtor, arg);
2062 
2063 	return pc;
2064 }
2065 
2066 /*
2067  * pool_cache_bootstrap:
2068  *
2069  *	Kernel-private version of pool_cache_init().  The caller
2070  *	provides initial storage.
2071  */
2072 void
2073 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2074     u_int align_offset, u_int flags, const char *wchan,
2075     struct pool_allocator *palloc, int ipl,
2076     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2077     void *arg)
2078 {
2079 	CPU_INFO_ITERATOR cii;
2080 	pool_cache_t pc1;
2081 	struct cpu_info *ci;
2082 	struct pool *pp;
2083 
2084 	pp = &pc->pc_pool;
2085 	if (palloc == NULL && ipl == IPL_NONE)
2086 		palloc = &pool_allocator_nointr;
2087 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2088 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2089 
2090 	if (ctor == NULL) {
2091 		ctor = (int (*)(void *, void *, int))nullop;
2092 	}
2093 	if (dtor == NULL) {
2094 		dtor = (void (*)(void *, void *))nullop;
2095 	}
2096 
2097 	pc->pc_emptygroups = NULL;
2098 	pc->pc_fullgroups = NULL;
2099 	pc->pc_partgroups = NULL;
2100 	pc->pc_ctor = ctor;
2101 	pc->pc_dtor = dtor;
2102 	pc->pc_arg  = arg;
2103 	pc->pc_hits  = 0;
2104 	pc->pc_misses = 0;
2105 	pc->pc_nempty = 0;
2106 	pc->pc_npart = 0;
2107 	pc->pc_nfull = 0;
2108 	pc->pc_contended = 0;
2109 	pc->pc_refcnt = 0;
2110 	pc->pc_freecheck = NULL;
2111 
2112 	if ((flags & PR_LARGECACHE) != 0) {
2113 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2114 		pc->pc_pcgpool = &pcg_large_pool;
2115 	} else {
2116 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2117 		pc->pc_pcgpool = &pcg_normal_pool;
2118 	}
2119 
2120 	/* Allocate per-CPU caches. */
2121 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2122 	pc->pc_ncpu = 0;
2123 	if (ncpu < 2) {
2124 		/* XXX For sparc: boot CPU is not attached yet. */
2125 		pool_cache_cpu_init1(curcpu(), pc);
2126 	} else {
2127 		for (CPU_INFO_FOREACH(cii, ci)) {
2128 			pool_cache_cpu_init1(ci, pc);
2129 		}
2130 	}
2131 
2132 	/* Add to list of all pools. */
2133 	if (__predict_true(!cold))
2134 		mutex_enter(&pool_head_lock);
2135 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2136 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2137 			break;
2138 	}
2139 	if (pc1 == NULL)
2140 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2141 	else
2142 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2143 	if (__predict_true(!cold))
2144 		mutex_exit(&pool_head_lock);
2145 
2146 	membar_sync();
2147 	pp->pr_cache = pc;
2148 }
2149 
2150 /*
2151  * pool_cache_destroy:
2152  *
2153  *	Destroy a pool cache.
2154  */
2155 void
2156 pool_cache_destroy(pool_cache_t pc)
2157 {
2158 	struct pool *pp = &pc->pc_pool;
2159 	u_int i;
2160 
2161 	/* Remove it from the global list. */
2162 	mutex_enter(&pool_head_lock);
2163 	while (pc->pc_refcnt != 0)
2164 		cv_wait(&pool_busy, &pool_head_lock);
2165 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2166 	mutex_exit(&pool_head_lock);
2167 
2168 	/* First, invalidate the entire cache. */
2169 	pool_cache_invalidate(pc);
2170 
2171 	/* Disassociate it from the pool. */
2172 	mutex_enter(&pp->pr_lock);
2173 	pp->pr_cache = NULL;
2174 	mutex_exit(&pp->pr_lock);
2175 
2176 	/* Destroy per-CPU data */
2177 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2178 		pool_cache_invalidate_cpu(pc, i);
2179 
2180 	/* Finally, destroy it. */
2181 	mutex_destroy(&pc->pc_lock);
2182 	pool_destroy(pp);
2183 	pool_put(&cache_pool, pc);
2184 }
2185 
2186 /*
2187  * pool_cache_cpu_init1:
2188  *
2189  *	Called for each pool_cache whenever a new CPU is attached.
2190  */
2191 static void
2192 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2193 {
2194 	pool_cache_cpu_t *cc;
2195 	int index;
2196 
2197 	index = ci->ci_index;
2198 
2199 	KASSERT(index < __arraycount(pc->pc_cpus));
2200 
2201 	if ((cc = pc->pc_cpus[index]) != NULL) {
2202 		KASSERT(cc->cc_cpuindex == index);
2203 		return;
2204 	}
2205 
2206 	/*
2207 	 * The first CPU is 'free'.  This needs to be the case for
2208 	 * bootstrap - we may not be able to allocate yet.
2209 	 */
2210 	if (pc->pc_ncpu == 0) {
2211 		cc = &pc->pc_cpu0;
2212 		pc->pc_ncpu = 1;
2213 	} else {
2214 		mutex_enter(&pc->pc_lock);
2215 		pc->pc_ncpu++;
2216 		mutex_exit(&pc->pc_lock);
2217 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2218 	}
2219 
2220 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2221 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2222 	cc->cc_cache = pc;
2223 	cc->cc_cpuindex = index;
2224 	cc->cc_hits = 0;
2225 	cc->cc_misses = 0;
2226 	cc->cc_current = __UNCONST(&pcg_dummy);
2227 	cc->cc_previous = __UNCONST(&pcg_dummy);
2228 
2229 	pc->pc_cpus[index] = cc;
2230 }
2231 
2232 /*
2233  * pool_cache_cpu_init:
2234  *
2235  *	Called whenever a new CPU is attached.
2236  */
2237 void
2238 pool_cache_cpu_init(struct cpu_info *ci)
2239 {
2240 	pool_cache_t pc;
2241 
2242 	mutex_enter(&pool_head_lock);
2243 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2244 		pc->pc_refcnt++;
2245 		mutex_exit(&pool_head_lock);
2246 
2247 		pool_cache_cpu_init1(ci, pc);
2248 
2249 		mutex_enter(&pool_head_lock);
2250 		pc->pc_refcnt--;
2251 		cv_broadcast(&pool_busy);
2252 	}
2253 	mutex_exit(&pool_head_lock);
2254 }
2255 
2256 /*
2257  * pool_cache_reclaim:
2258  *
2259  *	Reclaim memory from a pool cache.
2260  */
2261 bool
2262 pool_cache_reclaim(pool_cache_t pc)
2263 {
2264 
2265 	return pool_reclaim(&pc->pc_pool);
2266 }
2267 
2268 static void
2269 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2270 {
2271 
2272 	(*pc->pc_dtor)(pc->pc_arg, object);
2273 	pool_put(&pc->pc_pool, object);
2274 }
2275 
2276 /*
2277  * pool_cache_destruct_object:
2278  *
2279  *	Force destruction of an object and its release back into
2280  *	the pool.
2281  */
2282 void
2283 pool_cache_destruct_object(pool_cache_t pc, void *object)
2284 {
2285 
2286 	FREECHECK_IN(&pc->pc_freecheck, object);
2287 
2288 	pool_cache_destruct_object1(pc, object);
2289 }
2290 
2291 /*
2292  * pool_cache_invalidate_groups:
2293  *
2294  *	Invalidate a chain of groups and destruct all objects.
2295  */
2296 static void
2297 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2298 {
2299 	void *object;
2300 	pcg_t *next;
2301 	int i;
2302 
2303 	for (; pcg != NULL; pcg = next) {
2304 		next = pcg->pcg_next;
2305 
2306 		for (i = 0; i < pcg->pcg_avail; i++) {
2307 			object = pcg->pcg_objects[i].pcgo_va;
2308 			pool_cache_destruct_object1(pc, object);
2309 		}
2310 
2311 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2312 			pool_put(&pcg_large_pool, pcg);
2313 		} else {
2314 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2315 			pool_put(&pcg_normal_pool, pcg);
2316 		}
2317 	}
2318 }
2319 
2320 /*
2321  * pool_cache_invalidate:
2322  *
2323  *	Invalidate a pool cache (destruct and release all of the
2324  *	cached objects).  Does not reclaim objects from the pool.
2325  *
2326  *	Note: For pool caches that provide constructed objects, there
2327  *	is an assumption that another level of synchronization is occurring
2328  *	between the input to the constructor and the cache invalidation.
2329  */
2330 void
2331 pool_cache_invalidate(pool_cache_t pc)
2332 {
2333 	pcg_t *full, *empty, *part;
2334 #if 0
2335 	uint64_t where;
2336 
2337 	if (ncpu < 2 || !mp_online) {
2338 		/*
2339 		 * We might be called early enough in the boot process
2340 		 * for the CPU data structures to not be fully initialized.
2341 		 * In this case, simply gather the local CPU's cache now
2342 		 * since it will be the only one running.
2343 		 */
2344 		pool_cache_xcall(pc);
2345 	} else {
2346 		/*
2347 		 * Gather all of the CPU-specific caches into the
2348 		 * global cache.
2349 		 */
2350 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
2351 		xc_wait(where);
2352 	}
2353 #endif
2354 	mutex_enter(&pc->pc_lock);
2355 	full = pc->pc_fullgroups;
2356 	empty = pc->pc_emptygroups;
2357 	part = pc->pc_partgroups;
2358 	pc->pc_fullgroups = NULL;
2359 	pc->pc_emptygroups = NULL;
2360 	pc->pc_partgroups = NULL;
2361 	pc->pc_nfull = 0;
2362 	pc->pc_nempty = 0;
2363 	pc->pc_npart = 0;
2364 	mutex_exit(&pc->pc_lock);
2365 
2366 	pool_cache_invalidate_groups(pc, full);
2367 	pool_cache_invalidate_groups(pc, empty);
2368 	pool_cache_invalidate_groups(pc, part);
2369 }
2370 
2371 /*
2372  * pool_cache_invalidate_cpu:
2373  *
2374  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2375  *	identified by its associated index.
2376  *	It is caller's responsibility to ensure that no operation is
2377  *	taking place on this pool cache while doing this invalidation.
2378  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2379  *	pool cached objects from a CPU different from the one currently running
2380  *	may result in an undefined behaviour.
2381  */
2382 static void
2383 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2384 {
2385 
2386 	pool_cache_cpu_t *cc;
2387 	pcg_t *pcg;
2388 
2389 	if ((cc = pc->pc_cpus[index]) == NULL)
2390 		return;
2391 
2392 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2393 		pcg->pcg_next = NULL;
2394 		pool_cache_invalidate_groups(pc, pcg);
2395 	}
2396 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2397 		pcg->pcg_next = NULL;
2398 		pool_cache_invalidate_groups(pc, pcg);
2399 	}
2400 	if (cc != &pc->pc_cpu0)
2401 		pool_put(&cache_cpu_pool, cc);
2402 
2403 }
2404 
2405 void
2406 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2407 {
2408 
2409 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2410 }
2411 
2412 void
2413 pool_cache_setlowat(pool_cache_t pc, int n)
2414 {
2415 
2416 	pool_setlowat(&pc->pc_pool, n);
2417 }
2418 
2419 void
2420 pool_cache_sethiwat(pool_cache_t pc, int n)
2421 {
2422 
2423 	pool_sethiwat(&pc->pc_pool, n);
2424 }
2425 
2426 void
2427 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2428 {
2429 
2430 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2431 }
2432 
2433 static bool __noinline
2434 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2435 		    paddr_t *pap, int flags)
2436 {
2437 	pcg_t *pcg, *cur;
2438 	uint64_t ncsw;
2439 	pool_cache_t pc;
2440 	void *object;
2441 
2442 	KASSERT(cc->cc_current->pcg_avail == 0);
2443 	KASSERT(cc->cc_previous->pcg_avail == 0);
2444 
2445 	pc = cc->cc_cache;
2446 	cc->cc_misses++;
2447 
2448 	/*
2449 	 * Nothing was available locally.  Try and grab a group
2450 	 * from the cache.
2451 	 */
2452 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2453 		ncsw = curlwp->l_ncsw;
2454 		mutex_enter(&pc->pc_lock);
2455 		pc->pc_contended++;
2456 
2457 		/*
2458 		 * If we context switched while locking, then
2459 		 * our view of the per-CPU data is invalid:
2460 		 * retry.
2461 		 */
2462 		if (curlwp->l_ncsw != ncsw) {
2463 			mutex_exit(&pc->pc_lock);
2464 			return true;
2465 		}
2466 	}
2467 
2468 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2469 		/*
2470 		 * If there's a full group, release our empty
2471 		 * group back to the cache.  Install the full
2472 		 * group as cc_current and return.
2473 		 */
2474 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2475 			KASSERT(cur->pcg_avail == 0);
2476 			cur->pcg_next = pc->pc_emptygroups;
2477 			pc->pc_emptygroups = cur;
2478 			pc->pc_nempty++;
2479 		}
2480 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2481 		cc->cc_current = pcg;
2482 		pc->pc_fullgroups = pcg->pcg_next;
2483 		pc->pc_hits++;
2484 		pc->pc_nfull--;
2485 		mutex_exit(&pc->pc_lock);
2486 		return true;
2487 	}
2488 
2489 	/*
2490 	 * Nothing available locally or in cache.  Take the slow
2491 	 * path: fetch a new object from the pool and construct
2492 	 * it.
2493 	 */
2494 	pc->pc_misses++;
2495 	mutex_exit(&pc->pc_lock);
2496 	splx(s);
2497 
2498 	object = pool_get(&pc->pc_pool, flags);
2499 	*objectp = object;
2500 	if (__predict_false(object == NULL))
2501 		return false;
2502 
2503 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2504 		pool_put(&pc->pc_pool, object);
2505 		*objectp = NULL;
2506 		return false;
2507 	}
2508 
2509 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2510 	    (pc->pc_pool.pr_align - 1)) == 0);
2511 
2512 	if (pap != NULL) {
2513 #ifdef POOL_VTOPHYS
2514 		*pap = POOL_VTOPHYS(object);
2515 #else
2516 		*pap = POOL_PADDR_INVALID;
2517 #endif
2518 	}
2519 
2520 	FREECHECK_OUT(&pc->pc_freecheck, object);
2521 	return false;
2522 }
2523 
2524 /*
2525  * pool_cache_get{,_paddr}:
2526  *
2527  *	Get an object from a pool cache (optionally returning
2528  *	the physical address of the object).
2529  */
2530 void *
2531 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2532 {
2533 	pool_cache_cpu_t *cc;
2534 	pcg_t *pcg;
2535 	void *object;
2536 	int s;
2537 
2538 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2539 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2540 	    ("pool '%s' is IPL_NONE, but called from interrupt context\n",
2541 	    pc->pc_pool.pr_wchan));
2542 
2543 	if (flags & PR_WAITOK) {
2544 		ASSERT_SLEEPABLE();
2545 	}
2546 
2547 	/* Lock out interrupts and disable preemption. */
2548 	s = splvm();
2549 	while (/* CONSTCOND */ true) {
2550 		/* Try and allocate an object from the current group. */
2551 		cc = pc->pc_cpus[curcpu()->ci_index];
2552 		KASSERT(cc->cc_cache == pc);
2553 	 	pcg = cc->cc_current;
2554 		if (__predict_true(pcg->pcg_avail > 0)) {
2555 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2556 			if (__predict_false(pap != NULL))
2557 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2558 #if defined(DIAGNOSTIC)
2559 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2560 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2561 			KASSERT(object != NULL);
2562 #endif
2563 			cc->cc_hits++;
2564 			splx(s);
2565 			FREECHECK_OUT(&pc->pc_freecheck, object);
2566 			return object;
2567 		}
2568 
2569 		/*
2570 		 * That failed.  If the previous group isn't empty, swap
2571 		 * it with the current group and allocate from there.
2572 		 */
2573 		pcg = cc->cc_previous;
2574 		if (__predict_true(pcg->pcg_avail > 0)) {
2575 			cc->cc_previous = cc->cc_current;
2576 			cc->cc_current = pcg;
2577 			continue;
2578 		}
2579 
2580 		/*
2581 		 * Can't allocate from either group: try the slow path.
2582 		 * If get_slow() allocated an object for us, or if
2583 		 * no more objects are available, it will return false.
2584 		 * Otherwise, we need to retry.
2585 		 */
2586 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2587 			break;
2588 	}
2589 
2590 	return object;
2591 }
2592 
2593 static bool __noinline
2594 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2595 {
2596 	pcg_t *pcg, *cur;
2597 	uint64_t ncsw;
2598 	pool_cache_t pc;
2599 
2600 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2601 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2602 
2603 	pc = cc->cc_cache;
2604 	pcg = NULL;
2605 	cc->cc_misses++;
2606 
2607 	/*
2608 	 * If there are no empty groups in the cache then allocate one
2609 	 * while still unlocked.
2610 	 */
2611 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2612 		if (__predict_true(!pool_cache_disable)) {
2613 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2614 		}
2615 		if (__predict_true(pcg != NULL)) {
2616 			pcg->pcg_avail = 0;
2617 			pcg->pcg_size = pc->pc_pcgsize;
2618 		}
2619 	}
2620 
2621 	/* Lock the cache. */
2622 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2623 		ncsw = curlwp->l_ncsw;
2624 		mutex_enter(&pc->pc_lock);
2625 		pc->pc_contended++;
2626 
2627 		/*
2628 		 * If we context switched while locking, then our view of
2629 		 * the per-CPU data is invalid: retry.
2630 		 */
2631 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
2632 			mutex_exit(&pc->pc_lock);
2633 			if (pcg != NULL) {
2634 				pool_put(pc->pc_pcgpool, pcg);
2635 			}
2636 			return true;
2637 		}
2638 	}
2639 
2640 	/* If there are no empty groups in the cache then allocate one. */
2641 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2642 		pcg = pc->pc_emptygroups;
2643 		pc->pc_emptygroups = pcg->pcg_next;
2644 		pc->pc_nempty--;
2645 	}
2646 
2647 	/*
2648 	 * If there's a empty group, release our full group back
2649 	 * to the cache.  Install the empty group to the local CPU
2650 	 * and return.
2651 	 */
2652 	if (pcg != NULL) {
2653 		KASSERT(pcg->pcg_avail == 0);
2654 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2655 			cc->cc_previous = pcg;
2656 		} else {
2657 			cur = cc->cc_current;
2658 			if (__predict_true(cur != &pcg_dummy)) {
2659 				KASSERT(cur->pcg_avail == cur->pcg_size);
2660 				cur->pcg_next = pc->pc_fullgroups;
2661 				pc->pc_fullgroups = cur;
2662 				pc->pc_nfull++;
2663 			}
2664 			cc->cc_current = pcg;
2665 		}
2666 		pc->pc_hits++;
2667 		mutex_exit(&pc->pc_lock);
2668 		return true;
2669 	}
2670 
2671 	/*
2672 	 * Nothing available locally or in cache, and we didn't
2673 	 * allocate an empty group.  Take the slow path and destroy
2674 	 * the object here and now.
2675 	 */
2676 	pc->pc_misses++;
2677 	mutex_exit(&pc->pc_lock);
2678 	splx(s);
2679 	pool_cache_destruct_object(pc, object);
2680 
2681 	return false;
2682 }
2683 
2684 /*
2685  * pool_cache_put{,_paddr}:
2686  *
2687  *	Put an object back to the pool cache (optionally caching the
2688  *	physical address of the object).
2689  */
2690 void
2691 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2692 {
2693 	pool_cache_cpu_t *cc;
2694 	pcg_t *pcg;
2695 	int s;
2696 
2697 	KASSERT(object != NULL);
2698 	FREECHECK_IN(&pc->pc_freecheck, object);
2699 
2700 	/* Lock out interrupts and disable preemption. */
2701 	s = splvm();
2702 	while (/* CONSTCOND */ true) {
2703 		/* If the current group isn't full, release it there. */
2704 		cc = pc->pc_cpus[curcpu()->ci_index];
2705 		KASSERT(cc->cc_cache == pc);
2706 	 	pcg = cc->cc_current;
2707 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2708 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2709 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2710 			pcg->pcg_avail++;
2711 			cc->cc_hits++;
2712 			splx(s);
2713 			return;
2714 		}
2715 
2716 		/*
2717 		 * That failed.  If the previous group isn't full, swap
2718 		 * it with the current group and try again.
2719 		 */
2720 		pcg = cc->cc_previous;
2721 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2722 			cc->cc_previous = cc->cc_current;
2723 			cc->cc_current = pcg;
2724 			continue;
2725 		}
2726 
2727 		/*
2728 		 * Can't free to either group: try the slow path.
2729 		 * If put_slow() releases the object for us, it
2730 		 * will return false.  Otherwise we need to retry.
2731 		 */
2732 		if (!pool_cache_put_slow(cc, s, object))
2733 			break;
2734 	}
2735 }
2736 
2737 /*
2738  * pool_cache_xcall:
2739  *
2740  *	Transfer objects from the per-CPU cache to the global cache.
2741  *	Run within a cross-call thread.
2742  */
2743 static void
2744 pool_cache_xcall(pool_cache_t pc)
2745 {
2746 	pool_cache_cpu_t *cc;
2747 	pcg_t *prev, *cur, **list;
2748 	int s;
2749 
2750 	s = splvm();
2751 	mutex_enter(&pc->pc_lock);
2752 	cc = pc->pc_cpus[curcpu()->ci_index];
2753 	cur = cc->cc_current;
2754 	cc->cc_current = __UNCONST(&pcg_dummy);
2755 	prev = cc->cc_previous;
2756 	cc->cc_previous = __UNCONST(&pcg_dummy);
2757 	if (cur != &pcg_dummy) {
2758 		if (cur->pcg_avail == cur->pcg_size) {
2759 			list = &pc->pc_fullgroups;
2760 			pc->pc_nfull++;
2761 		} else if (cur->pcg_avail == 0) {
2762 			list = &pc->pc_emptygroups;
2763 			pc->pc_nempty++;
2764 		} else {
2765 			list = &pc->pc_partgroups;
2766 			pc->pc_npart++;
2767 		}
2768 		cur->pcg_next = *list;
2769 		*list = cur;
2770 	}
2771 	if (prev != &pcg_dummy) {
2772 		if (prev->pcg_avail == prev->pcg_size) {
2773 			list = &pc->pc_fullgroups;
2774 			pc->pc_nfull++;
2775 		} else if (prev->pcg_avail == 0) {
2776 			list = &pc->pc_emptygroups;
2777 			pc->pc_nempty++;
2778 		} else {
2779 			list = &pc->pc_partgroups;
2780 			pc->pc_npart++;
2781 		}
2782 		prev->pcg_next = *list;
2783 		*list = prev;
2784 	}
2785 	mutex_exit(&pc->pc_lock);
2786 	splx(s);
2787 }
2788 
2789 /*
2790  * Pool backend allocators.
2791  *
2792  * Each pool has a backend allocator that handles allocation, deallocation,
2793  * and any additional draining that might be needed.
2794  *
2795  * We provide two standard allocators:
2796  *
2797  *	pool_allocator_kmem - the default when no allocator is specified
2798  *
2799  *	pool_allocator_nointr - used for pools that will not be accessed
2800  *	in interrupt context.
2801  */
2802 void	*pool_page_alloc(struct pool *, int);
2803 void	pool_page_free(struct pool *, void *);
2804 
2805 #ifdef POOL_SUBPAGE
2806 struct pool_allocator pool_allocator_kmem_fullpage = {
2807 	pool_page_alloc, pool_page_free, 0,
2808 	.pa_backingmapptr = &kmem_map,
2809 };
2810 #else
2811 struct pool_allocator pool_allocator_kmem = {
2812 	pool_page_alloc, pool_page_free, 0,
2813 	.pa_backingmapptr = &kmem_map,
2814 };
2815 #endif
2816 
2817 void	*pool_page_alloc_nointr(struct pool *, int);
2818 void	pool_page_free_nointr(struct pool *, void *);
2819 
2820 #ifdef POOL_SUBPAGE
2821 struct pool_allocator pool_allocator_nointr_fullpage = {
2822 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2823 	.pa_backingmapptr = &kernel_map,
2824 };
2825 #else
2826 struct pool_allocator pool_allocator_nointr = {
2827 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2828 	.pa_backingmapptr = &kernel_map,
2829 };
2830 #endif
2831 
2832 #ifdef POOL_SUBPAGE
2833 void	*pool_subpage_alloc(struct pool *, int);
2834 void	pool_subpage_free(struct pool *, void *);
2835 
2836 struct pool_allocator pool_allocator_kmem = {
2837 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2838 	.pa_backingmapptr = &kmem_map,
2839 };
2840 
2841 void	*pool_subpage_alloc_nointr(struct pool *, int);
2842 void	pool_subpage_free_nointr(struct pool *, void *);
2843 
2844 struct pool_allocator pool_allocator_nointr = {
2845 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2846 	.pa_backingmapptr = &kmem_map,
2847 };
2848 #endif /* POOL_SUBPAGE */
2849 
2850 static void *
2851 pool_allocator_alloc(struct pool *pp, int flags)
2852 {
2853 	struct pool_allocator *pa = pp->pr_alloc;
2854 	void *res;
2855 
2856 	res = (*pa->pa_alloc)(pp, flags);
2857 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2858 		/*
2859 		 * We only run the drain hook here if PR_NOWAIT.
2860 		 * In other cases, the hook will be run in
2861 		 * pool_reclaim().
2862 		 */
2863 		if (pp->pr_drain_hook != NULL) {
2864 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2865 			res = (*pa->pa_alloc)(pp, flags);
2866 		}
2867 	}
2868 	return res;
2869 }
2870 
2871 static void
2872 pool_allocator_free(struct pool *pp, void *v)
2873 {
2874 	struct pool_allocator *pa = pp->pr_alloc;
2875 
2876 	(*pa->pa_free)(pp, v);
2877 }
2878 
2879 void *
2880 pool_page_alloc(struct pool *pp, int flags)
2881 {
2882 	bool waitok = (flags & PR_WAITOK) ? true : false;
2883 
2884 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2885 }
2886 
2887 void
2888 pool_page_free(struct pool *pp, void *v)
2889 {
2890 
2891 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2892 }
2893 
2894 static void *
2895 pool_page_alloc_meta(struct pool *pp, int flags)
2896 {
2897 	bool waitok = (flags & PR_WAITOK) ? true : false;
2898 
2899 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2900 }
2901 
2902 static void
2903 pool_page_free_meta(struct pool *pp, void *v)
2904 {
2905 
2906 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2907 }
2908 
2909 #ifdef POOL_SUBPAGE
2910 /* Sub-page allocator, for machines with large hardware pages. */
2911 void *
2912 pool_subpage_alloc(struct pool *pp, int flags)
2913 {
2914 	return pool_get(&psppool, flags);
2915 }
2916 
2917 void
2918 pool_subpage_free(struct pool *pp, void *v)
2919 {
2920 	pool_put(&psppool, v);
2921 }
2922 
2923 /* We don't provide a real nointr allocator.  Maybe later. */
2924 void *
2925 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2926 {
2927 
2928 	return (pool_subpage_alloc(pp, flags));
2929 }
2930 
2931 void
2932 pool_subpage_free_nointr(struct pool *pp, void *v)
2933 {
2934 
2935 	pool_subpage_free(pp, v);
2936 }
2937 #endif /* POOL_SUBPAGE */
2938 void *
2939 pool_page_alloc_nointr(struct pool *pp, int flags)
2940 {
2941 	bool waitok = (flags & PR_WAITOK) ? true : false;
2942 
2943 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2944 }
2945 
2946 void
2947 pool_page_free_nointr(struct pool *pp, void *v)
2948 {
2949 
2950 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2951 }
2952 
2953 #if defined(DDB)
2954 static bool
2955 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2956 {
2957 
2958 	return (uintptr_t)ph->ph_page <= addr &&
2959 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2960 }
2961 
2962 static bool
2963 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2964 {
2965 
2966 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2967 }
2968 
2969 static bool
2970 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2971 {
2972 	int i;
2973 
2974 	if (pcg == NULL) {
2975 		return false;
2976 	}
2977 	for (i = 0; i < pcg->pcg_avail; i++) {
2978 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2979 			return true;
2980 		}
2981 	}
2982 	return false;
2983 }
2984 
2985 static bool
2986 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2987 {
2988 
2989 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2990 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2991 		pool_item_bitmap_t *bitmap =
2992 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2993 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2994 
2995 		return (*bitmap & mask) == 0;
2996 	} else {
2997 		struct pool_item *pi;
2998 
2999 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3000 			if (pool_in_item(pp, pi, addr)) {
3001 				return false;
3002 			}
3003 		}
3004 		return true;
3005 	}
3006 }
3007 
3008 void
3009 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3010 {
3011 	struct pool *pp;
3012 
3013 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3014 		struct pool_item_header *ph;
3015 		uintptr_t item;
3016 		bool allocated = true;
3017 		bool incache = false;
3018 		bool incpucache = false;
3019 		char cpucachestr[32];
3020 
3021 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3022 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3023 				if (pool_in_page(pp, ph, addr)) {
3024 					goto found;
3025 				}
3026 			}
3027 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3028 				if (pool_in_page(pp, ph, addr)) {
3029 					allocated =
3030 					    pool_allocated(pp, ph, addr);
3031 					goto found;
3032 				}
3033 			}
3034 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3035 				if (pool_in_page(pp, ph, addr)) {
3036 					allocated = false;
3037 					goto found;
3038 				}
3039 			}
3040 			continue;
3041 		} else {
3042 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3043 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3044 				continue;
3045 			}
3046 			allocated = pool_allocated(pp, ph, addr);
3047 		}
3048 found:
3049 		if (allocated && pp->pr_cache) {
3050 			pool_cache_t pc = pp->pr_cache;
3051 			struct pool_cache_group *pcg;
3052 			int i;
3053 
3054 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3055 			    pcg = pcg->pcg_next) {
3056 				if (pool_in_cg(pp, pcg, addr)) {
3057 					incache = true;
3058 					goto print;
3059 				}
3060 			}
3061 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3062 				pool_cache_cpu_t *cc;
3063 
3064 				if ((cc = pc->pc_cpus[i]) == NULL) {
3065 					continue;
3066 				}
3067 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3068 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3069 					struct cpu_info *ci =
3070 					    cpu_lookup(i);
3071 
3072 					incpucache = true;
3073 					snprintf(cpucachestr,
3074 					    sizeof(cpucachestr),
3075 					    "cached by CPU %u",
3076 					    ci->ci_index);
3077 					goto print;
3078 				}
3079 			}
3080 		}
3081 print:
3082 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3083 		item = item + rounddown(addr - item, pp->pr_size);
3084 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3085 		    (void *)addr, item, (size_t)(addr - item),
3086 		    pp->pr_wchan,
3087 		    incpucache ? cpucachestr :
3088 		    incache ? "cached" : allocated ? "allocated" : "free");
3089 	}
3090 }
3091 #endif /* defined(DDB) */
3092